EP1834154A1 - An apparatus for altering the course of travelling of a moving article and a method thereof - Google Patents
An apparatus for altering the course of travelling of a moving article and a method thereofInfo
- Publication number
- EP1834154A1 EP1834154A1 EP05810615A EP05810615A EP1834154A1 EP 1834154 A1 EP1834154 A1 EP 1834154A1 EP 05810615 A EP05810615 A EP 05810615A EP 05810615 A EP05810615 A EP 05810615A EP 1834154 A1 EP1834154 A1 EP 1834154A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- target
- driving mechanism
- section
- chute
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B19/00—Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
- F42B19/46—Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means adapted to be launched from aircraft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H11/00—Defence installations; Defence devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B10/00—Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
- F42B10/32—Range-reducing or range-increasing arrangements; Fall-retarding means
- F42B10/48—Range-reducing, destabilising or braking arrangements, e.g. impact-braking arrangements; Fall-retarding means, e.g. balloons, rockets for braking or fall-retarding
- F42B10/56—Range-reducing, destabilising or braking arrangements, e.g. impact-braking arrangements; Fall-retarding means, e.g. balloons, rockets for braking or fall-retarding of parachute or paraglider type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B15/00—Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
- F42B15/22—Missiles having a trajectory finishing below water surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B19/00—Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
- F42B19/01—Steering control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/24—Anchors
- B63B21/48—Sea-anchors; Drogues
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C7/00—Salvaging of disabled, stranded, or sunken vessels; Salvaging of vessel parts or furnishings, e.g. of safes; Salvaging of other underwater objects
- B63C7/16—Apparatus engaging vessels or objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H25/00—Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
- B63H25/50—Slowing-down means not otherwise provided for
Definitions
- the present invention relates to an apparatus for altering the course of travelling of a moving article and a method thereof. More particularly, the present invention relates to an apparatus, which is capable of intercepting an errant moving article and thereafter altering its path of movement to a desired direction. Most particularly, the present invention relates to an apparatus for intercepting and altering the direction of an article moving in water such as vessels, submarines and the like and a method thereof.
- US Patent 6,418,870 (hereinafter referred as '870) teaches a vehicle launch assembly to launch a torpedo with a plurality of gas generators held therein. Further to this, the said '870 discloses that the said gas generators are automotive air bag inflators, which are probably used to propel the said torpedo at a desired direction.
- US Patent 5,444,669 (hereinafter referred as '669) teaches a torpedo relative position measuring system.
- the said '669 further discloses that the invention includes an active sonar system and a passive magnetic system, both coupled to computing apparatus which operates in response to a set of stored computer programs, all located in the torpedo for homing in on a ferrous target.
- the torpedo is directed to the target by the sonar system, while at near ranges the magnetic system determines the x, y, z, relative position coordinates between the target and the torpedo in accordance with a calibrated stored magnetic model of the target and numerical solution of the non-linear equations linking the target's magnetic field, as measured at the torpedo, with the target's relative position.
- Guidance information derived there from is then fed to the torpedo's guidance system.
- the torpedo's normal guidance system can readily steer the torpedo to a desired hit point on the target.
- US Patent No. 5,247,895 (hereinafter referred as '895) teaches method and apparatus for guiding an acoustic torpedo toward a ship selected as target which, as a defence against torpedoes drags noise generating decoys (so- called disturbance generators) wherein the torpedo is acoustically guided toward the noise source having the greatest noise level for the torpedo.
- This patent further discloses that as the torpedo approaches the noise source a check is made to detect the presence of a wake, and after detection of a wake in the immediate vicinity of the noise source during passage of the torpedo underneath the noise source, a check is made for the minimum expanse of the noise source in the vertical and travelling direction of the torpedo.
- the torpedo is set to search for a further noise source if no wake is detected or if a wake is detected in the vicinity of the noise source but a predetermined minimum expanse for the noise source is not detected.
- this patent teaches a means of creating a disturbance to a launched torpedo and forcing the said torpedo to follow and target the source of the disturbances rather than any earlier targeted ship.
- US Patent No. 6,714,845 (hereinafter referred as '845) teaches a method and apparatus for directing a pursuing vehicle, such as a torpedo, on an intercept trajectory from a launching vehicle to a target vehicle with evasion capabilities. This patent further discloses that the target vehicle is alerted to pursuing vehicle at the time that the pursuing vehicle enables its seeker. Models of the pursuing vehicle and evading target provide proposed trajectories based upon various environmental considerations.
- a guidance system uses estimates of initial operating parameter solutions for the pursuing vehicle, such as gyro angle, intercept time and run-to-enable time, to begin a convergent, iterative process that defines final operating parameter solutions from which the guidance parameters are determined and transferred to the pursuing vehicle at launch.
- US Patent No. 4,429,652 (hereinafter referred as '652) teaches a means for enhancing the manoeuvrability, speed, survivability, and targeting accuracy of a torpedo moving below the surface of a body of water.
- ultrasonic vibrations are set-up at the exterior of the torpedo hull, using controlled piezoelectric crystals to generate the vibrations in the 5-50 KHZ and 5-30 KW frequency and power ranges.
- This patent further discloses ways for operating the piezoelectric crystals to steer the hull without need for mechanically moving parts such as flaps or fins.
- US Patent Nos. 6,591,774 and 2003/0051652 (hereinafter referred as '774 and '1652) teaches an apparatus and methods for protecting ships and harbours from attack from other vessels.
- a barrier, fence or obstruction is constructed around the ship or harbour to be defended, either floating on the surface above and/or beneath the surface of the water.
- the barrier uses the momentum of the vessel against itself by using the forward momentum of the attacking vessel in such a manner as to divert, impede, stop, damage or destroy the vessel or mitigate a blast from a vessel.
- the barrier may be active or passive.
- a constructed wall of water can be provided to stop, destroy or disable a vessel attempting to go through the wall.
- both patents disclose a method of stopping, destroying or disabling an invading ship, particularly small sized ship from the target. Nevertheless, both inventions surely appear to have numerous flaws.
- US Patent No. 4,418,624 (hereinafter referred as '624) teaches an aerodynamic braking arrangement for projectile components which are to be salvaged, such as detonators.
- This patent also discloses that the invention further consist of a drag parachute having a high air-resistance index and of cables which connect the projectile components with the parachute.
- the drag chute is formed as a brake basket which consists of two cup-shaped tops at the ends thereof constituted of metal or plastic material, which are separated from each other along the axial direction of the projectile through the intermediary of at least one space formed of metal or plastic material, wherein the cables are fastened to one of the tops.
- an object of the present invention to introduce an apparatus and method to alter the direction on an article which maybe travelling fast and with large momentum to avoid any collision or planned destruction. It is yet another object of the present invention to provide an external steering means to alter the original trajectory of an article to a desired direction.
- the present invention relates to an apparatus for altering the course of a moving article comprising of a launching aircraft or surface craft to deploy said apparatus towards a moving article.
- Said apparatus further comprises of a driving mechanism, wherein said driving mechanism further comprises of a plurality of sections such as a nose section, a propulsion section, a drag chute section and a cutting section. Said sections are integrally connected with one another in a tight and secure manner.
- said driving mechanism is capable to be launched from an aircraft or a surface craft towards a target and wherein upon launch said driving mechanism is capable of steering itself on its own towards its target and thereafter attaching itself to the target.
- said driving mechanism is designed and configured to alter the initial trajectory or direction of the target to another direction by dragging it and wherein permanently changing the course of the said target.
- the driving mechanism as mentioned above is further configured and designed to include at least one surface in which is generally flat compared to the rest of the surface.
- the driving mechanism could be selected from a tubular shaped like, rectangular shaped like or any other geometrical shaped like structure.
- the nose portion includes a navigation unit and a homing unit.
- the propulsion section includes a propeller assembly, which can either utilize liquid based propellent as fuel or electrical power supply as fuel or turbine drive means as fuel or the like propellent means known in the art.
- the drag chute section includes at least one chute assembly. Said chute assembly further comprises of a main chute and a secondary chute. The main chute has a greater dimension than the secondary chute, and wherein the secondary chute is configured to deploy first before the main chute is deployed.
- the cutting section of the present embodiment further comprises of a gas cylinder, an electromagnetic coil, a motor and a plurality of cutting rods.
- the gas cylinder is nitrogen gas cylinder and wherein said gas cylinder is provided therein to supply fuel for the cutting rods to operate.
- the electromagnetic coil is a conventional electromagnetic coil wherein said electromagnetic coil is powered by a power supply means and wherein said electromagnetic coil is designed and configured to produce a magnetic force to temporarily mount the driving mechanism to the target during operation.
- the motor as mentioned earlier is provided to drive a rack and pinion mechanism which in return activates the cutting rods and are extended outwardly from the inner surface of the driving mechanism towards the target.
- the cutting rods are selected from plasma cutting rods. Each cutting rod is positioned diagonally at an angle in relation with the other cutting rod and is extended outwardly in the same manner.
- the driving mechanism as mentioned in the description could be selected from a torpedo, small ships and the like structures.
- the target is an errant ship and may be selected from a vessel, submarine and the like surface craft.
- a method of altering the course of travelling of a moving article as described in the present invention wherein when a target is identified, the driving mechanism is deployed and is driven by its propulsion section towards the target. Upon approaching the target, said driving mechanism with the assistant of the nose section would approach the target preferably from the rear and would home itself into the stern of the target.
- an electromagnetic coil in the cutting section When the driving mechanism is in position, an electromagnetic coil in the cutting section would be activated and thereafter creating a magnetic field to temporarily mount the driving mechanism onto the stern of the target. After said driving mechanism is electromagnetically mounted onto the target, said driving mechanism would be travelling parallel and at the same speed of the target and using the said target as a propeller means. Further according to the invention, once the said driving mechanism is temporarily mounted to the target, the cutting section would be activated and wherein at least one opening would be created at the bottom of the target. After the opening is created, a motor means held in the cutting section would be activated and would result in a plurality of diagonally positioned cutting rods to be extended by means of rack and pinion mechanism outwardly from the driving mechanism and into the opening and thereafter anchoring itself diagonally into the crust of the target.
- the propulsion section When the driving mechanism is securely mounted to the target, the propulsion section would be ejected from the driving mechanism and thereafter exposing the drag chute section.
- a secondary chute is deployed followed by a main chute and wherein when restriction is created within the chutes; a drag is created resulting in the target to alter its initial trajectory by the chutes to another path.
- At least one driving mechanism could be deployed during operation and wherein the driving mechanism is preferably mounted onto the side of the target.
- Figure 1 shows an overall layout of the complete system within the driving mechanism
- Figure 2 illustrates how the driving mechanism can be launched from the air or sea
- Figure 3 shows a driving mechanism approaches from the stern of a targeted ship
- Figure 4 shows a close up view of a plasma gas cutter in operation
- FIG. 5 illustrates how the plasma cutting rods operates according to the present invention
- Figure 6 illustrates the jettison of the propulsion unit and deployment of the pilot chute and drag chute in the water
- Figure 7 illustrate how a driving mechanism can divert a ship from its original direction of travel.
- FIG. 1 wherein there is shown an apparatus for altering the course of travelling of a moving article hereinafter referred as a driving mechanism (10).
- said driving mechanism (10) is substantially a tubular shaped like member with at least one tapered end while the other end is rounded. It should be understood that other type of combinations should not be isolated herein as the configuration of the said driving mechanism (10) may vary according to purpose and definition.
- said driving mechanism (10) comprises of at least four main sections, namely a nose section (12), propulsion section (14), a drag chute section (16) and a cutting section (18).
- the rounded end as described earlier is actually the nose section (12).
- the nose section (12) further includes a navigation unit (20) and a homing unit (22). Both the navigation unit (20) and the homing unit (22) are conventional devices.
- the said navigation unit (20) and homing unit (22) utilize a conventionally available navigation and homing control mechanisms such as those used in modern torpedos in order to guide and steer the torpedo towards its target.
- the algorithm used to control said torpedo could be easily modified in order to instruct any launched torpedo to approach its target from the rear and to home accurately to the approximate of the target such as a stern of a ship.
- said navigation unit (20) and homing unit (22) are conventional units, therefore said units would not be described further in detail.
- the propulsion section (14) as shown in Figure 1 is located at the tapered end of the driving mechanism as mentioned earlier.
- the propulsion section (14) of the present invention is similar in construction and configuration as in a modern torpedo.
- the propulsion section (14) is designed and configured to use a liquid based propellant such as nitrate ester solution to power the propellers.
- a plurality of fins is provided therein to act as a means to control and steer the driving mechanism (10) to any desired direction just as in a modern torpedo.
- the drag chute section (16) is designed and configured to house at least one main chute (24) and at least one secondary chute (26). Said chutes are conventional chutes and therefore it would not be described in more detail.
- the cutting section (18) of the present invention comprises of a cutting gas cylinder (28), an electromagnetic coil (30), and a motor with a rack and pinion mechanism (32) and a plurality of plasma cutting rods (34). Further to this, the present invention is also provided with a power supply means (36), which hereinafter is a battery. It would be appreciated that the external surface of the driving mechanism (10) where the cutting section (18) is located would be substantially flat in comparison to the other sections of the driving mechanism (10). The purpose of such configuration would be described later in the description.
- FIG. 1 the arrangement of the sections would be described beginning from the nose section (12) of the driving mechanism (10) and towards the propulsion section (14) of the same.
- the arrangement of the present invention is just an example and the most suitable, however, other type of arrangements may also be adopted even though it may cause some difficulties during operation.
- the nose section (12) is attached to the cutting section (18) via an attachment portion. Said attachment portion houses the battery (36) and the cutting gas cylinder (28) as mentioned earlier.
- the cutting section (18) is further connected to the drag chute section (16). Finally the drag chute section (16) is connected to the propulsion section (14).
- the driving mechanism (10) would be configured and designed to be similar in shape and design of a modern torpedo.
- the present invention could be launched from an aircraft or a surface craft.
- the target would be a ship hereinafter referred as an errant ship (38) as shown in Figure 2.
- FIGS 2 to 7 show the preferred embodiment in a shape of a torpedo being deployed either from an aircraft or a surface craft to a target hereinafter referred as an errant ship (38).
- the driving mechanism (10) would be referred as a torpedo (10).
- torpedo is only one example of a driving mechanism and should not be confused or limiting its definition.
- the torpedo (10) may be deployed from an aircraft or a surface craft. Upon launch said torpedo (10) would be guided by the onboard navigation unit (20) and the homing unit (22) towards the rear end of the errant ship (38). The said torpedo (10) will then travel right under the errant ship (38) and once it is in the vicinity of the hull of the errant ship (38), the electromagnetic coil (30) would be activated. The purpose of the said electromagnetic coil (30) is to generate a sufficient amount of magnetic force allowing the said torpedo (10) to be temporarily secured to the hull of the errant ship (38). As mentioned earlier in this description, a portion of the external surface of the torpedo (10) is a flat surface. This is to ensure that the torpedo (10) would have sufficient surface area to secure itself to the hull of the errant ship (38) during operation.
- the cutting section (18) would be activated.
- the plasma cutting will be activated to create an opening on the hull of the errant ship (38).
- Plasma cutter uses high current, which is supplied to a plurality of electrodes (40) to ignite the pressurized cutting gas such as nitrogen (42).
- the nitrogen gas (42) flows through a nozzle (44) towards the hull of the errant ship (38) in a fast and pressurized condition.
- This constant collision of the fast moving electrons and ions will generate high temperatures ranging more that 15,000 0 C, which is an ideal temperature for plasma cutting purposes.
- a ceramic shield (46) is provided on the nozzle (44).
- Said ceramic shield (46) is designed and configured to have a cup like shape wherein when attached therein it would encapsulate the said nozzle (44). Short circuit and oxidation is avoided by the said ceramic shield (46) by encapsulating the said nozzle (44) and by creating channel into which a shielding medium (48) such as water can flow thereto.
- the speed and thickness of the opening created depend on certain criteria such as the type of metal on the hull, the arc current, type of cutting gas used, the flow rate of the gas, the dimension of the nozzle and etc.
- a 120A plasma cutter could achieve the required size of opening within 10 to 15 seconds.
- Other type of gas, which could also be used, is oxygen. However using oxygen as an alternative may cause the life span of the electrodes (40) to shorten and therefore increase the cost of operation.
- the plasma cutting rods (34) would be extended outwardly from the internal of the torpedo (10) into the hull of the errant ship (38) via the openings created earlier.
- the plasma cutting rods (34) are driven by the earlier mentioned rack and pinion mechanism. If reference were made to any of the figures, it would be noticeable that the plasma cutting rods (34) are diagonally positioned in the cutting section (18). Therefore, when the said plasma cutting rods (34) are extended into the hull of the errant ship (38), they will form a strong anchoring means to permanently secure the torpedo (10) to the hull of the errant ship (38).
- torpedo (10) when the torpedo (10) is being deployed and is travelling towards the errant ship (38), it is travelling on its own propellers. However, upon securing itself onto the errant ship (38), it would preferably shut down its propellers and travel at the same speed of the errant ship (38) by using the errant ship (38) as a driving mechanism.
- the propulsion section (14) of the torpedo (10) would be ejected automatically leaving a portion of the drag chute section (16) exposed therein.
- the secondary chute (26) would be ejected into the water stream by a compressed spring action.
- the secondary chute (26) acts as a pilot chute before the main chute (24) is ejected.
- the main chute (24) When the main chute (24) is completely developed, it would trap water within it and would generate a drag. According to the present invention, the main chute (24) is preferably greater in size than the secondary chute (26). Once the drag is created, it will inevitably slow down the errant ship (38). In order to steer the errant ship (38) away from its original trajectory, the torpedo (10) is preferably mounted onto the side of the errant ship (38). Taking in consideration the differential in the hydrodynamic drag created by the drag chutes (24,26) and the forward movement of the cruising errant ship (38), the drag will steer the errant ship (38) sideways and divert it from its actual trajectory.
- the said driving mechanism (10) is generally a tubular shaped like structure.
- other type of possible configuration such as a rectangular shaped like driving mechanism (10) or other geometrical shapes may also be used therein.
- the cutting apparatus is driven by a rack and pinion mechanism, however other type of mechanism could also be utilized therein.
- an electromagnetic coil is utilized to generate a strong magnetic field.
- other means known in the art to temporarily mount the driving mechanism to the hull of the errant ship (38) may be utilized.
- a plasma cutter is utilized to create an opening in the hull of the errant ship (38)
- other type of cutting means known in the art may also be utilized therein.
- at least one chute is deployed in order to create a drag during operation, however other type of means known in the art to create a drag may also be utilized therein.
- the driving mechanism (10) is described as a torpedo but yet other type of driving mechanism such as smaller ships and the like may also be utilized.
- the errant ship (38) as described in the description may not necessarily be a ship as it may also be a submarine, a tanker and the like surface craft known in the art.
- the driving mechanism (10) is propelled by utilizing liquid base propellent as fuel, however other type of propellent means known in the art could also be utilized such as an electrically powered propeller or a turbine drive engine using hydrogen peroxide as oxidant.
- a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface to secure wooden parts together, in the environment of fastening wooden parts, a nail and a screw are equivalent structures.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Toys (AREA)
- Radar Systems Or Details Thereof (AREA)
- Forklifts And Lifting Vehicles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG200407511A SG123624A1 (en) | 2004-12-17 | 2004-12-17 | An apparatus for altering the course of travellingof a moving article and a method thereof |
PCT/SG2005/000412 WO2006065227A1 (en) | 2004-12-17 | 2005-12-02 | An apparatus for altering the course of travelling of a moving article and a method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1834154A1 true EP1834154A1 (en) | 2007-09-19 |
EP1834154A4 EP1834154A4 (en) | 2010-05-19 |
EP1834154B1 EP1834154B1 (en) | 2011-10-05 |
Family
ID=36588172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05810615A Not-in-force EP1834154B1 (en) | 2004-12-17 | 2005-12-02 | An apparatus for altering the course of travelling of a moving article and a method thereof |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1834154B1 (en) |
AT (1) | ATE527516T1 (en) |
AU (1) | AU2005317242B2 (en) |
SG (1) | SG123624A1 (en) |
WO (1) | WO2006065227A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2474512C2 (en) * | 2011-05-12 | 2013-02-10 | Открытое акционерное общество "Таганрогский научно-исследовательский институт связи" (ОАО"ТНИИС") | Method of protecting submarine against wide-range mine-torpedo |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG127787A1 (en) * | 2005-06-03 | 2006-12-29 | Singapore Tech Dynamics Pte | Method of intercepting and yawing a sailing vesselwith external propulsion means |
UA108363C2 (en) * | 2009-10-08 | 2015-04-27 | IMINOTIADIASIADIOXIDE OXIDES AS BACE INHIBITORS, COMPOSITIONS THEREOF AND THEIR APPLICATIONS | |
JP5648278B2 (en) | 2009-12-01 | 2015-01-07 | 日本電気株式会社 | Navigation body position reporting device, navigation body position reporting method, and program |
DE102015100729A1 (en) * | 2015-01-20 | 2016-07-21 | Atlas Elektronik Gmbh | Heavyweight torpedo for launching into a body of water out of sight of a target, as well as transport sled and aircraft |
DE102015109408A1 (en) * | 2015-01-20 | 2016-07-21 | Atlas Elektronik Gmbh | Heavyweight torpedo, transport sledge and airplane |
US10619983B2 (en) | 2017-11-27 | 2020-04-14 | Raytheon Company | Non-lethal naval vessel interdiction weapon |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6325015B1 (en) * | 2000-10-30 | 2001-12-04 | The United States Of America As Represented By The Secretary Of The Navy | System for arresting a seagoing vessel |
US20040065247A1 (en) * | 2002-10-08 | 2004-04-08 | Horton Duane M. | Unmanned underwater vehicle for tracking and homing in on submarines |
EP1768895A1 (en) * | 2004-06-03 | 2007-04-04 | Singapore Technologies Dynamics Pte Ltd. | Method for changing the direction of travel of a watercraft and apparatus therefore |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1131685A (en) * | 1966-10-08 | 1968-10-23 | Gq Parachute Comp Ltd | Improvements in or relating to parachute installations in marine craft |
US4231311A (en) * | 1978-09-01 | 1980-11-04 | The United States Of America As Represented By The Secretary Of The Navy | Towable pod assembly for protectively disabling incoming torpedoes |
DE3029914C2 (en) | 1980-08-07 | 1984-08-16 | Diehl GmbH & Co, 8500 Nürnberg | Aerodynamic braking device for projectile parts to be salvaged |
US4429652A (en) | 1981-11-23 | 1984-02-07 | Invocas, Inc. | Ultrasonic excitation of underwater torpedoes for enhancing maneuverability, speed and targeting accuracy |
DE3148734C2 (en) | 1981-12-09 | 1994-10-20 | Atlas Elektronik Gmbh | Device for steering a torpedo |
US5444669A (en) | 1990-12-10 | 1995-08-22 | Westinghouse Electric Corporation | Magnetic relative position measuring system |
DE4409424C1 (en) * | 1994-03-18 | 1995-08-10 | Daimler Benz Aerospace Ag | Catchment device for flying objects |
US5947051A (en) * | 1997-06-04 | 1999-09-07 | Geiger; Michael B. | Underwater self-propelled surface adhering robotically operated vehicle |
US6418870B1 (en) | 2000-05-31 | 2002-07-16 | Systems Engineering Associates Corporation | Torpedo launch mechanism and method |
US6591774B2 (en) | 2001-05-24 | 2003-07-15 | Mark B. Metherell | Apparatus and method for protecting ships and harbors from attack by vessels |
RU2219092C2 (en) * | 2001-07-23 | 2003-12-20 | Калининградский государственный технический университет | Technological tool carrier for performing underwater jobs |
US6714845B2 (en) | 2002-02-14 | 2004-03-30 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for intercepting an evading target alerted at seeker turn-on |
US6946617B2 (en) * | 2003-04-11 | 2005-09-20 | Hypertherm, Inc. | Method and apparatus for alignment of components of a plasma arc torch |
-
2004
- 2004-12-17 SG SG200407511A patent/SG123624A1/en unknown
-
2005
- 2005-12-02 AU AU2005317242A patent/AU2005317242B2/en not_active Ceased
- 2005-12-02 WO PCT/SG2005/000412 patent/WO2006065227A1/en active Application Filing
- 2005-12-02 EP EP05810615A patent/EP1834154B1/en not_active Not-in-force
- 2005-12-02 AT AT05810615T patent/ATE527516T1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6325015B1 (en) * | 2000-10-30 | 2001-12-04 | The United States Of America As Represented By The Secretary Of The Navy | System for arresting a seagoing vessel |
US20040065247A1 (en) * | 2002-10-08 | 2004-04-08 | Horton Duane M. | Unmanned underwater vehicle for tracking and homing in on submarines |
EP1768895A1 (en) * | 2004-06-03 | 2007-04-04 | Singapore Technologies Dynamics Pte Ltd. | Method for changing the direction of travel of a watercraft and apparatus therefore |
Non-Patent Citations (1)
Title |
---|
See also references of WO2006065227A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2474512C2 (en) * | 2011-05-12 | 2013-02-10 | Открытое акционерное общество "Таганрогский научно-исследовательский институт связи" (ОАО"ТНИИС") | Method of protecting submarine against wide-range mine-torpedo |
Also Published As
Publication number | Publication date |
---|---|
EP1834154A4 (en) | 2010-05-19 |
AU2005317242B2 (en) | 2011-04-28 |
AU2005317242A1 (en) | 2006-06-22 |
EP1834154B1 (en) | 2011-10-05 |
ATE527516T1 (en) | 2011-10-15 |
WO2006065227A1 (en) | 2006-06-22 |
SG123624A1 (en) | 2006-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1834154B1 (en) | An apparatus for altering the course of travelling of a moving article and a method thereof | |
US5400688A (en) | Missile defense system | |
US6325015B1 (en) | System for arresting a seagoing vessel | |
US11279455B1 (en) | Countermeasures apparatus and method | |
US7328644B2 (en) | System and method for intercepting a projectile | |
KR870000748B1 (en) | Undersea weapon | |
JP2007525637A (en) | Active defensive device and associated apparatus, system, and method | |
US6766745B1 (en) | Low cost rapid mine clearance system | |
US5144587A (en) | Expendable moving echo radiator | |
US7576281B2 (en) | Apparatus for altering the course of travelling of a moving article and a method thereof | |
US8552282B1 (en) | Propulsion defeating system | |
RU2713546C2 (en) | Cruise missile and method of combat use thereof | |
RU2534476C1 (en) | Underwater target hitting method | |
US8371204B2 (en) | Bubble weapon system and methods for inhibiting movement and disrupting operations of vessels | |
US6305263B1 (en) | Appended pod underwater gun mount | |
KR20210045621A (en) | Submarine torpedo injection device | |
CN114993107B (en) | Submarine striking system and striking method | |
CA3119245A1 (en) | Device and method for launching an underwater running body from a watercraft | |
CN115289919A (en) | High-efficiency damage warhead for underwater target based on high-pressure and normal-pressure bubble combined pulsation principle | |
RU2733732C1 (en) | Method of protecting surface ship and vessel from damage by torpedo | |
USH485H (en) | Frangible target with hydraulic warhead simulator | |
US7503259B2 (en) | Anti-submarine warfare cluster munitions and cluster depth charges | |
US5177316A (en) | Process and apparatus for attacking rotating wing aircraft | |
JP5506581B2 (en) | Aircraft defense device | |
US4865328A (en) | Low-cost, expendable, crushable target aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070717 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20100415 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F42B 19/00 20060101AFI20060626BHEP Ipc: B63H 25/44 20060101ALI20100409BHEP Ipc: F41H 11/00 20060101ALI20100409BHEP Ipc: F42B 12/56 20060101ALN20100409BHEP |
|
17Q | First examination report despatched |
Effective date: 20110209 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F42B 19/00 20060101AFI20110630BHEP Ipc: F42B 12/56 20060101ALN20110630BHEP Ipc: B63H 25/44 20060101ALI20110630BHEP Ipc: F41H 11/00 20060101ALI20110630BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005030482 Country of ref document: DE Effective date: 20111208 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20111005 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 527516 Country of ref document: AT Kind code of ref document: T Effective date: 20111005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120205 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: DAS PRIORITAETSAKTENZEICHEN WURDE BERICHTIGT: SG 200475115 / 17.12.2004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120106 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120206 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120105 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120831 |
|
26N | No opposition filed |
Effective date: 20120706 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111202 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005030482 Country of ref document: DE Effective date: 20120706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121130 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20121218 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20121217 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120116 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111005 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005030482 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20140701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131202 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005030482 Country of ref document: DE Effective date: 20140701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140701 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131202 |