EP1831259A2 - Compositions of influenza viral proteins and methods of use thereof - Google Patents
Compositions of influenza viral proteins and methods of use thereofInfo
- Publication number
- EP1831259A2 EP1831259A2 EP05855253A EP05855253A EP1831259A2 EP 1831259 A2 EP1831259 A2 EP 1831259A2 EP 05855253 A EP05855253 A EP 05855253A EP 05855253 A EP05855253 A EP 05855253A EP 1831259 A2 EP1831259 A2 EP 1831259A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- protein
- influenza
- seq
- composition
- pathogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 206010022000 influenza Diseases 0.000 title claims abstract description 136
- 239000000203 mixture Substances 0.000 title claims abstract description 134
- 108010067390 Viral Proteins Proteins 0.000 title claims description 49
- 238000000034 method Methods 0.000 title claims description 40
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 163
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 159
- 230000001717 pathogenic effect Effects 0.000 claims abstract description 71
- 244000052769 pathogen Species 0.000 claims abstract description 66
- 108010052285 Membrane Proteins Proteins 0.000 claims abstract description 61
- 102000018697 Membrane Proteins Human genes 0.000 claims abstract description 61
- 230000028993 immune response Effects 0.000 claims abstract description 34
- 101001039853 Sonchus yellow net virus Matrix protein Proteins 0.000 claims description 90
- 108010084333 N-palmitoyl-S-(2,3-bis(palmitoyloxy)propyl)cysteinyl-seryl-lysyl-lysyl-lysyl-lysine Proteins 0.000 claims description 84
- UPAQRWMRKQCLSD-HTIIIDOHSA-N 2,3-dipalmitoyl-S-glycerylcysteine Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(CSC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCC UPAQRWMRKQCLSD-HTIIIDOHSA-N 0.000 claims description 59
- 108010038122 S-(2,3-bis(palmitoyloxy)propyl)cysteine Proteins 0.000 claims description 58
- 101100115709 Mus musculus Stfa2 gene Proteins 0.000 claims description 53
- 101100311241 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) STF2 gene Proteins 0.000 claims description 53
- 108090000623 proteins and genes Proteins 0.000 claims description 42
- 102000004169 proteins and genes Human genes 0.000 claims description 35
- 108010040721 Flagellin Proteins 0.000 claims description 33
- 239000000556 agonist Substances 0.000 claims description 28
- 208000037797 influenza A Diseases 0.000 claims description 26
- 101150104647 fljB gene Proteins 0.000 claims description 23
- 230000004936 stimulating effect Effects 0.000 claims description 22
- 101000669460 Homo sapiens Toll-like receptor 5 Proteins 0.000 claims description 21
- 102100039357 Toll-like receptor 5 Human genes 0.000 claims description 21
- 241000588724 Escherichia coli Species 0.000 claims description 18
- 102000005348 Neuraminidase Human genes 0.000 claims description 16
- 108010006232 Neuraminidase Proteins 0.000 claims description 16
- 241000607124 Salmonella enterica subsp. enterica serovar Muenchen Species 0.000 claims description 14
- 208000037798 influenza B Diseases 0.000 claims description 10
- 208000037799 influenza C Diseases 0.000 claims description 8
- 210000004899 c-terminal region Anatomy 0.000 claims description 5
- 101000831567 Homo sapiens Toll-like receptor 2 Proteins 0.000 claims 2
- 102100024333 Toll-like receptor 2 Human genes 0.000 claims 2
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 98
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 75
- 229920001184 polypeptide Polymers 0.000 abstract description 71
- 230000003612 virological effect Effects 0.000 abstract description 19
- 239000000427 antigen Substances 0.000 abstract description 18
- 108091007433 antigens Proteins 0.000 abstract description 18
- 102000036639 antigens Human genes 0.000 abstract description 18
- 150000007523 nucleic acids Chemical group 0.000 description 59
- 108091028043 Nucleic acid sequence Proteins 0.000 description 44
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 39
- 102000002689 Toll-like receptor Human genes 0.000 description 39
- 108020000411 Toll-like receptor Proteins 0.000 description 39
- 210000004027 cell Anatomy 0.000 description 39
- 241000700605 Viruses Species 0.000 description 31
- 125000003275 alpha amino acid group Chemical group 0.000 description 29
- 235000018102 proteins Nutrition 0.000 description 29
- 235000001014 amino acid Nutrition 0.000 description 25
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 24
- 239000000872 buffer Substances 0.000 description 23
- 241000699670 Mus sp. Species 0.000 description 22
- 150000001413 amino acids Chemical group 0.000 description 21
- 230000028327 secretion Effects 0.000 description 21
- 241000271566 Aves Species 0.000 description 20
- 101150038062 fliC gene Proteins 0.000 description 20
- 102000008228 Toll-like receptor 2 Human genes 0.000 description 19
- 108010060888 Toll-like receptor 2 Proteins 0.000 description 19
- 230000005847 immunogenicity Effects 0.000 description 17
- 241000712461 unidentified influenza virus Species 0.000 description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 238000002965 ELISA Methods 0.000 description 14
- 235000019441 ethanol Nutrition 0.000 description 14
- 230000003053 immunization Effects 0.000 description 14
- 241000282412 Homo Species 0.000 description 13
- 241001465754 Metazoa Species 0.000 description 13
- 241000283973 Oryctolagus cuniculus Species 0.000 description 13
- 238000002649 immunization Methods 0.000 description 13
- 208000015181 infectious disease Diseases 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 229920005989 resin Polymers 0.000 description 13
- 239000011780 sodium chloride Substances 0.000 description 13
- 241000699666 Mus <mouse, genus> Species 0.000 description 12
- 230000000890 antigenic effect Effects 0.000 description 12
- 241000712431 Influenza A virus Species 0.000 description 11
- 238000010367 cloning Methods 0.000 description 11
- 239000002158 endotoxin Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 9
- 239000002671 adjuvant Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000036039 immunity Effects 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 9
- 239000013598 vector Substances 0.000 description 9
- 108010058846 Ovalbumin Proteins 0.000 description 8
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 8
- 239000007983 Tris buffer Substances 0.000 description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 229940092253 ovalbumin Drugs 0.000 description 8
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 8
- 229960005486 vaccine Drugs 0.000 description 8
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 7
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 7
- 238000011725 BALB/c mouse Methods 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 7
- 241000287828 Gallus gallus Species 0.000 description 7
- 102000004890 Interleukin-8 Human genes 0.000 description 7
- 108090001007 Interleukin-8 Proteins 0.000 description 7
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 7
- 210000000612 antigen-presenting cell Anatomy 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 235000018417 cysteine Nutrition 0.000 description 7
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 108090001030 Lipoproteins Proteins 0.000 description 6
- 102000004895 Lipoproteins Human genes 0.000 description 6
- 102000004389 Ribonucleoproteins Human genes 0.000 description 6
- 108010081734 Ribonucleoproteins Proteins 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 239000003636 conditioned culture medium Substances 0.000 description 6
- 230000034994 death Effects 0.000 description 6
- 231100000517 death Toxicity 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 6
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 6
- 229940068968 polysorbate 80 Drugs 0.000 description 6
- 229920000053 polysorbate 80 Polymers 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- 239000007790 solid phase Substances 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000012154 double-distilled water Substances 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 229930027917 kanamycin Natural products 0.000 description 5
- 229960000318 kanamycin Drugs 0.000 description 5
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 5
- 229930182823 kanamycin A Natural products 0.000 description 5
- 102000007863 pattern recognition receptors Human genes 0.000 description 5
- 108010089193 pattern recognition receptors Proteins 0.000 description 5
- 238000010647 peptide synthesis reaction Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- PZFZLRNAOHUQPH-GOOVXGPGSA-N (2r)-3-[2,3-di(hexadecanoyloxy)propylsulfanyl]-2-(hexadecanoylamino)propanoic acid Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@H](C(O)=O)CSCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PZFZLRNAOHUQPH-GOOVXGPGSA-N 0.000 description 4
- UBCHPRBFMUDMNC-UHFFFAOYSA-N 1-(1-adamantyl)ethanamine Chemical compound C1C(C2)CC3CC2CC1(C(N)C)C3 UBCHPRBFMUDMNC-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 4
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 4
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 4
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 4
- 239000007984 Tris EDTA buffer Substances 0.000 description 4
- 208000036142 Viral infection Diseases 0.000 description 4
- 229940037003 alum Drugs 0.000 description 4
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 4
- 229960003805 amantadine Drugs 0.000 description 4
- 150000003862 amino acid derivatives Chemical class 0.000 description 4
- 230000005875 antibody response Effects 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 235000013601 eggs Nutrition 0.000 description 4
- VFRSADQPWYCXDG-LEUCUCNGSA-N ethyl (2s,5s)-5-methylpyrrolidine-2-carboxylate;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CCOC(=O)[C@@H]1CC[C@H](C)N1 VFRSADQPWYCXDG-LEUCUCNGSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 229920006008 lipopolysaccharide Polymers 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 229960000888 rimantadine Drugs 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005382 thermal cycling Methods 0.000 description 4
- 230000009385 viral infection Effects 0.000 description 4
- 210000002845 virion Anatomy 0.000 description 4
- -1 (RS)-2,3-di(palmitoyloxy)-propyl Chemical group 0.000 description 3
- 108010002375 2,3-bis(palmitoyloxy)-2-propyl-1-palmitoylcysteine Proteins 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 3
- 241000713196 Influenza B virus Species 0.000 description 3
- 241000713297 Influenza C virus Species 0.000 description 3
- 208000002979 Influenza in Birds Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 206010064097 avian influenza Diseases 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 210000004443 dendritic cell Anatomy 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 3
- 229960000878 docusate sodium Drugs 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000015788 innate immune response Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000007922 nasal spray Substances 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- VSZGPKBBMSAYNT-RRFJBIMHSA-N oseltamivir Chemical compound CCOC(=O)C1=C[C@@H](OC(CC)CC)[C@H](NC(C)=O)[C@@H](N)C1 VSZGPKBBMSAYNT-RRFJBIMHSA-N 0.000 description 3
- 229960003752 oseltamivir Drugs 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ARAIBEBZBOPLMB-UFGQHTETSA-N zanamivir Chemical compound CC(=O)N[C@@H]1[C@@H](N=C(N)N)C=C(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO ARAIBEBZBOPLMB-UFGQHTETSA-N 0.000 description 3
- 229960001028 zanamivir Drugs 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 2
- 108090000862 Ion Channels Proteins 0.000 description 2
- 102000004310 Ion Channels Human genes 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 101100481579 Mus musculus Tlr11 gene Proteins 0.000 description 2
- 101100481580 Mus musculus Tlr12 gene Proteins 0.000 description 2
- 208000000112 Myalgia Diseases 0.000 description 2
- 102000011931 Nucleoproteins Human genes 0.000 description 2
- 108010061100 Nucleoproteins Proteins 0.000 description 2
- 101100120241 Salmonella muenchen fliC gene Proteins 0.000 description 2
- 101900195698 Salmonella typhimurium Flagellin Proteins 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 102100040247 Tumor necrosis factor Human genes 0.000 description 2
- 159000000021 acetate salts Chemical class 0.000 description 2
- 230000033289 adaptive immune response Effects 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012412 chemical coupling Methods 0.000 description 2
- YTRQFSDWAXHJCC-UHFFFAOYSA-N chloroform;phenol Chemical compound ClC(Cl)Cl.OC1=CC=CC=C1 YTRQFSDWAXHJCC-UHFFFAOYSA-N 0.000 description 2
- 230000035602 clotting Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 229940009976 deoxycholate Drugs 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 108010003342 flaB flagellin Proteins 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000012537 formulation buffer Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000000984 immunochemical effect Effects 0.000 description 2
- 230000021995 interleukin-8 production Effects 0.000 description 2
- 230000031146 intracellular signal transduction Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001617 migratory effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002516 postimmunization Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002953 preparative HPLC Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 238000004007 reversed phase HPLC Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000003118 sandwich ELISA Methods 0.000 description 2
- 239000007974 sodium acetate buffer Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 238000011765 DBA/2 mouse Methods 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108700022810 Drosophila Hsc70-3 Proteins 0.000 description 1
- 208000004739 Egg Hypersensitivity Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000831496 Homo sapiens Toll-like receptor 3 Proteins 0.000 description 1
- 101000669406 Homo sapiens Toll-like receptor 6 Proteins 0.000 description 1
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010022005 Influenza viral infections Diseases 0.000 description 1
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 1
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 1
- 108010055717 JNK Mitogen-Activated Protein Kinases Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108010006444 Leucine-Rich Repeat Proteins Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 101710199771 Matrix protein 1 Proteins 0.000 description 1
- 101710199769 Matrix protein 2 Proteins 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 102100037808 Mitogen-activated protein kinase 8 Human genes 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 101000648740 Mus musculus Tumor necrosis factor Proteins 0.000 description 1
- 241000282339 Mustela Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000712464 Orthomyxoviridae Species 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 108010093965 Polymyxin B Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 208000034809 Product contamination Diseases 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 101710194807 Protective antigen Proteins 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- 101000697856 Rattus norvegicus Bile acid-CoA:amino acid N-acyltransferase Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 229940124615 TLR 7 agonist Drugs 0.000 description 1
- 229940124614 TLR 8 agonist Drugs 0.000 description 1
- 102100024324 Toll-like receptor 3 Human genes 0.000 description 1
- 102100039387 Toll-like receptor 6 Human genes 0.000 description 1
- 102100039390 Toll-like receptor 7 Human genes 0.000 description 1
- 108010065667 Viral Matrix Proteins Proteins 0.000 description 1
- BKXQBXXALHYQKZ-NPGUAINNSA-N [3-[(2r)-2-(hexadecanoylamino)-3-methoxy-3-oxopropyl]sulfanyl-2-hexadecanoyloxypropyl] hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@H](C(=O)OC)CSCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC BKXQBXXALHYQKZ-NPGUAINNSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical group 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000008088 immune pathway Effects 0.000 description 1
- 102000028557 immunoglobulin binding proteins Human genes 0.000 description 1
- 108091009323 immunoglobulin binding proteins Proteins 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229960003971 influenza vaccine Drugs 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000006662 intracellular pathway Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 210000004901 leucine-rich repeat Anatomy 0.000 description 1
- 238000012454 limulus amebocyte lysate test Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001459 mortal effect Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 231100001160 nonlethal Toxicity 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000013081 phylogenetic analysis Methods 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000024 polymyxin B Polymers 0.000 description 1
- 229960005266 polymyxin b Drugs 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 239000013014 purified material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 102000057702 transmembrane signaling receptor Human genes 0.000 description 1
- 108700011013 transmembrane signaling receptor Proteins 0.000 description 1
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 description 1
- 230000006433 tumor necrosis factor production Effects 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- 230000007923 virulence factor Effects 0.000 description 1
- 239000000304 virulence factor Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6075—Viral proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6093—Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/74—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- Influenza is a contagious disease that usually results from an RNA virus.
- Three types of influenza viruses are known - influenza type A, B and C.
- the natural host for influenza type A is the aquatic bird.
- Influenza type A viruses can infect humans, birds, farm animals (e.g., pigs, horses) and aquatic animals (e.g., seals).
- Influenza type B viruses are usually found only in humans. Infection with influenza is generally characterized by fever, myalgia, headache, cough and muscle aches. In the elderly and infirm, influenza type B infection can result in disability and death.
- Influenza type B viruses can cause epidemics in humans.
- Influenza type C viruses can cause mild illness in humans and do not cause epidemics.
- the present invention relates to compositions, fusion proteins and polypeptides comprising pathogen-associated molecular patterns (PAMPs) and influenza viral proteins.
- PAMPs pathogen-associated molecular patterns
- influenza viral proteins influenza viral proteins.
- the compositions, fusion proteins and polypeptides of the invention can be employed in methods to stimulate an immune response in a subject.
- the invention is a composition comprising at least one Pam3Cys and at least a portion of at least one integral membrane protein of an influenza viral protein.
- the invention is a fusion protein comprising at least one pathogen-associated molecular pattern (PAMP) and at least one influenza M2 protein, wherein the pathogen-associated molecular pattern is not a Pam2Cys.
- PAMP pathogen-associated molecular pattern
- the invention is a composition comprising a pathogen-associated molecular pattern and an M2 protein, wherein the pathogen- associated molecular pattern is not a Pam2Cys.
- the invention is a composition comprising at least a portion of at least one pathogen-associated molecular pattern and at least a portion of at least one influenza M2 protein, wherein, if the pathogen-associated molecular pattern includes a Pam2Cys, at least a portion of the Pam2Cys is not fused to the influenza M2 protein and at least a portion of the influenza M2 protein is not fused to the Pam2Cys.
- the invention is a fusion protein comprising at least a portion of at least one pathogen-associated molecular pattern and at least a portion of at least one influenza M2 protein, wherein, if the pathogen-associated molecular pattern includes a Pam2Cys, at least a portion of the Pam2Cys is not fused to the influenza M2 protein and at least a portion of the influenza M2 protein is not fused to the Pam2Cys.
- the invention is a method of stimulating an immune response in a subject, comprising the step of administering to the subject a composition that includes at least one Pam3Cys and at least a portion of at least one integral membrane protein of an influenza viral protein.
- the invention is a method of stimulating an immune response in a subject, comprising the step of administering to the subject a composition that includes a fusion protein comprising at least one pathogen- associated molecular pattern and at least one influenza M2 protein, wherein the pathogen-associated molecular pattern is not a Pam2Cys.
- the invention is a method of stimulating an immune response in a subject, comprising the step of administering to the subject a composition that includes at least one pathogen-associated molecular pattern and at least one influenza M2 protein, wherein the pathogen-associated molecular pattern is not a Pam2Cys and the M2 protein is not an M2e protein.
- the invention is a method of stimulating an immune response in a subject, comprising the step of administering to the subject a composition that includes a composition comprising at least a portion of at least one pathogen-associated molecular pattern and at least a portion of at least one influenza M2 protein, wherein, if the pathogen-associated molecular pattern includes a Pam2Cys, at least a portion of the Pam2Cys is not fused to the influenza M2 protein and at least a portion of the influenza M2 protein is not fused to the Pam2Cys.
- the invention is a method of stimulating an immune response in a subject, comprising the step of administering to the subject a composition that includes a fusion protein comprising at least a portion of at least one pathogen-associated molecular pattern and at least a portion of at least one influenza M2 protein, wherein, if the pathogen-associated molecular pattern includes a Pam2Cys, at least a portion of the Pam2Cys is not fused to the influenza M2 protein and at least a portion of the influenza M2 protein is not fused to the Pam2Cys.
- compositions, fusion proteins and polypeptides of the invention can be employed to stimulate an immune response in a subject.
- Advantages of the claimed invention include, for example, cost effective compositions, fusion proteins and polypeptides that can be produced in relatively large quantities for use in the prevention and treatment of influenza infection.
- the claimed compositions, fusion proteins, polypeptides and methods can be employed to prevent or treat influenza infection and, therefore, avoid serious illness and death consequent to influenza infection.
- Figure 1 depicts the amino acid sequence of Salmonella typhimurium flagellin type 2 (fljB/STF2) with the hinge region underlined (SEQ ID NO: 1).
- Figure 2 depicts the nucleic acid sequence (SEQ ID NO: 2) encoding SEQ ID NO: 1.
- the nucleic acid sequence encoding the hinge region is underlined.
- Figure 3 depicts the amino acid sequence of fljB/STF2 without the hinge region (also referred to herein as "fljB/STF2 ⁇ ” or “STF2 ⁇ ”) (SEQ ID NO: 3).
- Figure 4 depicts the nucleic acid sequence (SEQ ID NO: 4) encoding SEQ ID NO: 3.
- Figure 5 depicts the amino acid sequence of E.coli flagellin fliC (also referred to herein as "E.coli fliC”) with the hinge region underlined (SEQ ID NO: 5).
- Figure 6 depicts the nucleic acid sequence (SEQ ID NO: 6) encoding SEQ ID NO: 5.
- the nucleic acid sequence encoding the hinge region is underlined.
- Figure 7 depicts the amino acid sequence of S. muenchen flagellin fliC (also referred to herein as "S. muenchen fliC”) with the hinge region underlined (SEQ ID NO: 7).
- Figure 8 depicts the nucleic acid sequence (SEQ ID NO: 8) encoding SEQ ID NO: 7.
- the nucleic acid sequence encoding the hinge region is underlined.
- Figure 9 depicts the amino acid sequence of pMT/STF2. The linker is underlined and the sequence of the BiP secretion signal is bolded (SEQ ID NO: 9).
- Figure 10 depicts the nucleic acid sequence (SEQ ID NO: 10) of SEQ ID NO: 9.
- the nucleic acid sequence encoding the linker is underlined and the nucleic acid sequence encoding the BiP sequence is bolded.
- Figure 11 depicts the nucleic acid sequence (SEQ ID NO: 17) encoding a multimer (4 units) of the amino-terminus of an M2 protein (also referred to herein as "4xM2e").
- Figure 12 depicts an amino acid sequence (SEQ ID NO: 18) encoded by SEQ ID NO: 17.
- Figure 13 depicts the amino acid sequence (SEQ ID NO: 31) of a fusion protein (referred to herein as "fljB/STF2-4xM2e” or “fljB/STF2.4xM2e") comprising fljB/STF2 and four, 24-amino acid sequences of an amino-terminus of an M2 protein.
- fljB/STF2-4xM2e referred to herein as "fljB/STF2-4xM2e” or "fljB/STF2.4xM2e”
- Figure 14 depicts the nucleic acid sequence (SEQ ID NO: 32) encoding SEQ E) NO: 31.
- Figure 15 depicts a Pam3Cys.M2e fusion protein. The amino acid sequence
- Figures 17A and 17B depict plasmid constructs to express an amino- terminus of an M2 (e.g., SEQ ID NOS: 13, 47) of Hl and H5 (SEQ E) NO: 39) influenza A viral isolates.
- pMT metallothionein promoter-based expression vector.
- BiP secretion signal sequence of immunoglobulin-binding protein.
- STF2 full- length flagellin of £ typhimurium.
- STF2 ⁇ hinge region-deleted STF2.
- MCS multiple cloning site.
- Figure 18 depicts plasmid constructs designed to express HA of Hl and H5 influenza A virus isolates.
- AOXl AOXl promoter of pPICZ ⁇ expression vector (Invitrogen Corporation, Carlsbad, CA).
- ⁇ f secretion signal sequence of yeast.
- STF2 full-length flagellin of S. typhimurium.
- STF2 ⁇ hinge region-deleted STF2.
- MCS multiple cloning site.
- Figure 19 depicts the amino acid sequence (SEQ ID NO: 60) of the
- Figure 20 depicts the nucleic acid sequence (SEQ ID NO: 61) encoding SEQ ID NO: 60. The linker is underlined.
- Figure 21 depicts the amino acid sequence (SEQ ID NO: 62) of the
- Figure 22 depicts the nucleic acid sequence (SEQ ID NO: 63) encoding SEQ ID NO: 62. The linker is underlined.
- Figure 23 depicts the amino acid sequence (SEQ DD NO: 64) of HA (PR8).
- Figure 24 depicts the nucleic acid sequence (SEQ ID NO: 65) encoding SEQ E) NO: 64.
- Figure 25 depicts the amino acid sequence (SEQ ID NO: 66) of E. coli fliC without the hinge region.
- Figure 28 depicts the amino acid sequence of pMT/STF2.4xM2e (Hl) (SEQ ID NO: 83). The linker sequence between STF2 and 4xM2e is underlined and the Drosophila BiP secretion signal is bolded.
- Figure 29 depicts the nucleic acid sequence (SEQ ID NO: 84) encoding SEQ
- nucleic acid sequence encoding the linker is underlined and the nucleic acid sequence encoding the BiP secretion signal is bolded.
- Figure 31 depicts the nucleic acid sequence (SEQ ID NO: 86) encoding SEQ ID NO: 85.
- the nucleic acid sequence encoding the linker is underlined and the nucleic acid sequence encoding the BiP secretion signal is bolded.
- Figure 33 depicts the nucleic acid sequence (SEQ ID NO: 88) encoding SEQ ID NO: 87.
- the nucleic acid sequence encoding the linker is underlined and the nucleic acid sequence encoding the BiP secretion signal is bolded.
- Figure 34 depicts the amino acid sequence of pMT/STF2 ⁇ (SEQ ID NO:
- Figure 35 depicts the nucleic acid sequence (SEQ ID NO: 90) encoding SEQ ID NO: 89.
- the nucleic acid sequence encoding the linker is underlined and the nucleic acid sequence encoding the BiP secretion signal is bolded.
- Figure 36 depicts the amino acid sequence of pMT/STF2 ⁇ .4xM2e (Hl)
- FIG. 91 The linker sequence is underlined and the BiP secretion signal sequence is bolded.
- Figure 37 depicts the nucleic acid sequence (SEQ DD NO: 92) encoding SEQ ID NO: 91.
- the nucleic acid sequence encoding the linker is underlined and the nucleic acid sequence encoding the BiP secretion signal is bolded.
- Figure 38 depicts the amino acid sequence of pMT/STF2 ⁇ .4xM2e (H5) (SEQ ID NO: 93). The linker sequence is underlined and the BiP secretion signal is bolded.
- Figure 39 depicts the nucleic acid sequence (SEQ ID NO: 94) encoding SEQ ID NO: 93.
- the nucleic acid sequence encoding the linker is underlined and the nucleic acid sequence encoding the BiP secretion signal is bolded.
- Figure 40 depicts the amino acid sequence pMT/STF2 ⁇ .4xM2e (H1H5)
- Figure 42 depicts the amino acid sequence (SEQ ID NO: 99) of the Salmonella muenchen fliC without the hinge region, which is also referred to herein as "S. muenchen fliC ⁇ .”
- Figure 44 depicts IL-8 secretion following stimulation of TLR5+ cells.
- Figure 45 depicts TNF secretion following stimulation of TLR2+ cells.
- Figure 46 depicts M2e-specific IgG.
- Figure 49 depicts the M2e-specific serum IgG titer post-boost.
- Figure 50 depicts the Pam3Cys.M2e dose response.
- Figure 51 depicts the M2e-specific serum IgG titer.
- Figure 52 depicts the rabbit IgG response to M2e.
- Figure 53 depicts the immunogenicity of STF2.4xM2e in a rabbit 14 days post-prime.
- Figure 54 depicts the survival following viral challenge. DETAILED DESCRIPTION OF THE INVENTION
- the invention is a composition comprising at least one Pam3Cys ([Palmitoyl]-Cys((RS)-2,3-di(palmitoyloxy)-propyl cysteine) and at least a portion of at least one integral membrane protein of an influenza viral protein.
- Pam3Cys also referred to herein as "P2”
- TLR2 Toll-like receptor 2
- compositions can include, for example, two, three, four, five, six or more pathogen-associated molecular patterns (e.g., Pam2Cys, Pam3Cys) and two, three, four (e.g., SEQ ID NOS: 17 and 18), five, six or more integral membrane proteins of an influenza viral protein.
- pathogen-associated molecular patterns e.g., Pam2Cys, Pam3Cys
- SEQ ID NOS: 17 and 18 e.g., SEQ ID NOS: 17 and 18
- a multimer of the amino-terminus of an M2 protein can be four, 24-amino acid sequences (total of 96 amino acids), which is referred to herein as 4xM2 or 4xM2e ("M2e" refers to the 24 amino acid amino-terminus of the M2 protein or its ectodomain).
- Pathogen-associated molecular pattern refers to a class of molecules (e.g., proteins, peptide, carbohydrates, lipids) found in microorganisms that when bound to a pattern recognition receptor (PRR) can trigger an innate immune response.
- PRR pattern recognition receptor
- the PRR can be a Toll-like receptor (TLR).
- TLR Toll-like receptor
- Toll-like receptors refer to a family of receptor proteins that are homologous to the Drosophila melangogaster Toll protein. Toll-like receptors are type I transmembrane signaling receptor proteins characterized by an extracellular leucine-rich repeat domain and an intracellular domain homologous of that of the interleukin 1 receptor.
- Toll-like receptors include TLRl, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR 8, TLR9, TLRlO, TLRI l and TLR12.
- the pathogen-associated molecular pattern can be an agonist of a toll-like receptor, for example, a TLR2 agonist, such as Pam3Cys.
- a TLR2 agonist such as Pam3Cys.
- Agonist as used herein in referring to a TLR, means a molecule that activates a TLR signaling pathway.
- a TLR signaling pathway is an intracellular signal transduction pathway employed by a particular TLR that can be activated by a TLR ligand or a TLR agonist.
- TLRs include, for example, NF- ⁇ B, Jun N-terminal kinase and mitogen-activated protein kinase.
- the pathogen-associated molecular pattern can include at least one member selected from the group consisting of a TLRl agonist, a TLR2 agonist, a TLR 3 agonist, a TLR 4 agonist, a TLR 5 agonist, a TLR 6 agonist, a TLR 7 agonist, a TLR 8 agonist, a TLR 9 agonist, TLRlO agonist, a TLRl 1 agonist and a TLR12 agonist.
- Influenza viruses are divided into three types (i.e., A, B, C) determined by the antigenic differences in ribonucleoprotein (RNP) and matrix (M) antigens of the viruses.
- Influenza A virus can cause epidemics and pandemics and has an avian intermediate host.
- Influenza B virus appears to naturally infect only humans and can cause epidemics in humans. It naturally infects humans and several other mammalian species, including swine and horses, and a wide variety of avian species.
- Influenza C virus has been isolated from humans and swine, but generally does not occur in epidemics and usually results in mild disease in humans.
- Influenza A virus, influenza B virus and influenza C virus belong to the viral family Orthomyxoviridae.
- Virions of the genera influenza A virus, influenza B virus and influenza C virus contain a single stranded, negative sense, segmented RNA genome and are enveloped with a pleomorphic structure ranging in diameter from 80 - 120 nm.
- the single-stranded RNA genome is closely associated with a helical nucleoprotein and is present in seven (influenza C) or eight (influenza A and B) separate segments of ribonucleoprotein (RNP), each of which has to be present for successful replication of the virus.
- the segmented genome is enclosed within an outer lipoprotein envelope.
- Matrix protein 1 (MPl or also referred to herein as "Ml) lines the inside of the outer lipoprotein envelope and is bound to the RNP.
- the outer lipoprotein envelope of the influenza virus has two types of protruding spikes.
- One of the protruding spikes is the integral membrane protein neuraminidase (NA), which has enzymatic properties.
- the other envelope spike is the trimeric integral membrane protein haemagglutinin (HA), which participates in attachment of the virus particle to a cell membrane and can combine with specific receptors on a variety of cells, including red blood cells.
- the outer lipoprotein envelope makes the virion labile and susceptible to heat, drying, detergents and solvents.
- Matrix protein 2 is a proton-selective integral membrane ion channel protein of the influenza A virus. M2 is abundantly expressed at the plasma membrane of virus-infected cells, but is generally underexpressed by virions. For example, a portion of an M2 sequence of influenza A is MSLLTEVETPIRNEWGCRCNDSSDPLVVAASIIGILHLILWILDRLFFKCIYRL FKHGLKRGPSTEGVPESMREEYRKEQQNAVDADDSHFVSIELE (SEQ ID NO: 11), which is encoded by
- the native form of the M2 protein is a homotetramer (i.e., four identical disulf ⁇ de-linked M2 protein molecules).
- Each of the units are helices stabilized by two disulfide bonds.
- M2 is activated by low pH.
- Each of the M2 protein molecules in the homotetramer consists of three domains: a 24 amino acid outer or N (amino)-terminal domain (e.g., SLLTEVETPIRNEWGCRCNDSSDP (SEQ ID NO: 13; also referred to herein as a "human consensus sequence”), which is encoded by
- the M2 protein can vary depending upon the influenza viral subtype (e.g., Hl and H5 subtypes of influenza A) and influenza viral source (e.g., Puerto Rico, Thailand, New York, 1 Hong Kong), as shown, for example, in exemplary amino-terminal sequences of M2 proteins in Table 1 ⁇ infra).
- influenza viral subtype e.g., Hl and H5 subtypes of influenza A
- influenza viral source e.g., Puerto Rico, Thailand, New York, 1 Hong Kong
- the M2 protein has an important role in the life cycle of the influenza A virus.
- the function of the M2 channel can be inhibited by antiviral drugs, such as amantadine and rimantadine, which prevent the virus from infecting the host cell.
- antiviral drugs usually bind the transmembrane region of the M2 protein and sterically block the ion channel created by the M2 protein, which prevents protons from entering and uncoating the virion.
- M2, HA and NA are integral membrane proteins (e.g., proteins that extend from the outer surface of the virus to the inner surface of the virus) of influenza viruses (influenza A, B, C).
- "At least a portion,” as used herein in reference to an integral membrane protein of an influenza virus, means any part of an entire integral membrane protein.
- the 24 amino acid N-terminus of the M2 protein (e.g., SEQ ID NO: 13), EVETPIRNEWG (SEQ ID NO: 15), EVETPIRNE (SEQ ID NO: 19), EVETPIRNEW (SEQ ID NO: 34) or EVETPIRN (SEQ ID NO: 20) is at least a portion of an M2 protein; and PAKLLKERGRRGAIAGFLE (SEQ ID NO: 33) is at least a portion of an HA protein.
- compositions, fusion proteins and polypeptides of the invention can include at least one member selected from the group consisting of an influenza A viral protein, influenza B viral protein and an influenza C viral protein.
- the influenza viral protein can include an integral membrane protein that includes at least one member selected from the group consisting of a haemagglutinin integral membrane protein, a neuraminidase integral membrane protein and an M2 integral membrane protein.
- the integral membrane protein can include an M2 protein that includes at least a portion of SLLTEVETPIRNEWGCRCNDSSDP (SEQ ID NO: 13) encoded by SEQ ID NO: 14 or at least a portion of SEQ ID NO: 47, encoded by AGCTTGCTGACTGAGGTTGAGACCCCGATTCGCAACGAATGGGGTTCCC GTTCCAACGATTCTTCCGACCCG (SEQ ID NO: 107).
- the M2 protein can further include at least one member selected from the group consisting of EVETPIRNEWG (SEQ ID NO: 15), EVETPIRNE (SEQ ID NO: 19), EVETPIRNEW (SEQ ID NO: 34); SLLTEVETPTRNEWESRSSDSSDP (SEQ ID NO: 39) (Flu A H5N1 M2e, 2004 Viet Nam Isolate with serine replacing cysteine); SLLTEVETPTRNEWECRCSDSSDP (SEQ ID NO: 40) (Flu A H5N1 M2e, 2004 Viet Nam Isolate); SLLTEVETLTRNGWGSRSSDSSDP (SEQ ID NO: 41) (Flu A H5N1 M2e, Hong Kong 97 Isolate with serine replacing cysteine); SLLTEVETLTRNGWGCRCSDSSDP (SEQ ID NO: 42) (Flu A H5N1 M2e, Hong Kong 97 Isolate); SLLTEVETPTRNGWESKSSD
- cysteine residues for example, amino acids 16 and 18 of SEQ ID NO: 40; amino acids 17 and 19 of SEQ ID NOS: 42, 44 and 46 in the naturally occurring sequence of at least a portion of M2 protein are replaced with a serine (see, SEQ ID NOS: 41, 43, 45 and 47, respectively).
- the integral membrane protein can include a haemagglutinin protein that includes, for example, at least a portion of SEQ ID NOS: 64 and 67, encoded by SEQ ID NOS: 65 and 68, respectively.
- the haemagglutinin protein can include at least a portion of at least one member selected from the group consisting of PAKLLKERGRRGAIAGFLE (SEQ ID NO: 33) (Influenza B); SLWSEEPAKLLKERGFFGAIAGFLEE (SEQ ID NO: 35) (Flu B); SLWSEENIPSIQSRGLFGAIAGFIEE (SEQ ID NO: 36) (FIuA HI/HO); SLWSEENVPEKQTRGIFGAIAGFIEE (SEQ ED NO: 37) (Flu A H3/H0); SLWSEEEWEERERRRKKRGLFGAIAGFIEE (SEQ ID NO: 38) (Flu A H5/H0); PAKLLKERGFFGAIAGFLEE (SEQ ID
- composition comprising at least one Pam3Cys and at least a portion of at least one integral membrane protein of an influenza viral protein can further include at least one Pam2Cys (S-[2,3-bis(palmitoyloxy) propyl] cysteine).
- the composition of at least one Pam3Cys, at least one Pam2Cys and at least a portion of at least one integral membrane protein can be components of a fusion protein.
- the composition comprising at least one Pam3Cys and at least a portion of at least one integral membrane protein of an influenza viral protein can also be components of a fusion protein.
- Fusion protein refers to a protein generated from at least two similar or distinct components (e.g., Pa ⁇ Cys, Pam3Cys, PAMP, at least a portion of an integral membrane protein of an influenza viral protein) that are linked covalently or noncovalently.
- the components of the fusion protein can be made, for example, synthetically (e.g., Pam3Cys, Pam2Cys) or by recombinant nucleic acid techniques (e.g., transfection of a host cell with a nucleic acid sequence encoding a component of the fusion protein, such as at least a portion of a PAMP, or at least a portion of an integral membrane protein of an influenza viral protein).
- One component of the fusion protein e.g., Pam2Cys, Pam3Cys, PAMP, at least a portion of an integral membrane protein of an influenza viral protein
- fusion protein e.g., Pam2Cys, Pam3Cys, PAMP, at least a portion of an integral membrane protein of an influenza viral protein
- another component of the fusion protein e.g., Pam2Cys, Pam3Cys, PAMP, at least a portion of an integral membrane protein of an influenza viral protein
- chemical conjugation techniques including peptide conjugation
- molecular biological techniques including recombinant technology
- Exemplary fusion proteins of the invention include SEQ ID NO: 31 ( Figure 13), encoded by SEQ ID NO: 32 ( Figure 14); SEQ ID NO: 62 ( Figure 21), encoded by SEQ ID NO: 63 ( Figure 22); SEQ ID NO: 60 ( Figure 19), encoded by SEQ ID NO: 61 ( Figure 20); SEQ ID NO: 83 (( Figure 28), encoded by SEQ ID NO: 84 ( Figure 29); SEQ ID NO: 85 ( Figure 30), encoded by SEQ ID NO: 86 ( Figure 31); SEQ ID NO: 87 ( Figure 32), encoded by SEQ ID NO: 88 ( Figure 33); SEQ ID NO: 91 ( Figure 36), encoded by SEQ ID NO: 92 ( Figure 37); SEQ ID NO: 93 ( Figure 38), encoded by SEQ ID NO: 94 ( Figure 39); SEQ ID NO: 95 ( Figure 40), encoded by SEQ ID NO: 96 ( Figure 41); and Pam3Cys, such as depicted in Figure 15.
- Fusion proteins of the invention can be designated by components of the fusion proteins separated by a ".” or "-.”
- STF2.M2e refers to a fusion protein comprising one fljB/STF2 protein and one M2e protein
- STF2 ⁇ .4xM2e refers to a fusion protein comprising one fljB/STF2 protein without the hinge region and (4) 24-amino acid sequences of the N-terminus of the M2 protein (SEQ ID NO: 47).
- a component of the fusion protein can include MKATKLVLGAVILGSTLLAGCSSN (SEQ ID NO: 21) encoded by ATGAAAGCTACTAAACTGGTACTGGGCGCGGTAATCCTGGGTTCTACTCT GCTGCTGGCAGGTTGCTCCAGCAAC (SEQ ID NO: 22).
- the fusion proteins of the invention can further include a linker between at least one component of the fusion protein (e.g., Pam3Cys, Pam2Cys, PAMP) and at least one other component of the fusion protein (e.g., at least a portion of an integral membrane protein of an influenza viral protein) of the composition, a linker between at least two of similar components of the fusion protein (e.g., Pam3Cys, Pam2Cys, PAMP, at least a portion of an integral membrane protein of an influenza viral protein) or any combination thereof.
- Linker refers to a connector between components of the fusion protein in a manner that the components of the fusion protein are not directly joined.
- one component of the fusion protein e.g., Pam3Cys, Pam2Cys, PAMP
- a distinct component e.g., at least a portion of an integral membrane protein of an influenza viral protein
- at least two or more similar or like components of the fusion protein can be linked (e.g., two PAMPs can further include a linker between each PAMP, or two integral membrane proteins can further include a linker between each integral membrane protein).
- the fusion proteins of the invention can include a combination of a linker between distinct components of the fusion protein and similar or like components of the fusion protein.
- a fusion protein can comprise at least two PAMPs, Pam3Cys and/or Pam2Cys components that further includes a linker between, for example, two or more PAMPs; at least two integral membrane proteins of an influenza viral antigen that further include a linker between them; a linker between one component of the fusion protein (e.g., PAMP) and another distinct component of the fusion protein (e.g., at least a portion of at least one integral membrane protein of an influenza viral protein), or any combination thereof.
- PAMP one component of the fusion protein
- another distinct component of the fusion protein e.g., at least a portion of at least one integral membrane protein of an influenza viral protein
- the linker can be an amino acid linker.
- the amino acid linker can include synthetic or naturally occurring amino acid residues.
- the amino acid linker employed in the fusion proteins of the invention can include at least one member selected from the group consisting of a lysine residue, a glutamic acid residue, a serine residue and an arginine residue.
- the amino acid linker can include, for example, SEQ TD NOS: 24 (KGNSKLEGQLEFPRTS), 26 (EFCRYPAQ WRPL), 27 (EFSRYPAQWRPL) and 29
- compositions of the invention can further include a linker between at least two integral membrane proteins of the composition.
- compositions, fusion proteins and polypeptides of the invention can further include a PAMP that is a TLR5 agonist.
- the TLR5 agonist can be a flagellin.
- the flagellin can be at least one member selected from the group consisting of fljB/STF2 (S. typhimurium flagellin B, Genbank Accession Number AF045151), at least a portion of fljB/STF2, E. coli flagellin fliC (also referred to herein as "E. coli fliC”) (Genbank Accession Number AB028476), at least a portion of E. coli flagellin fliC, S. muenchen flagellin fliC (also referred to herein as "S. muenchen fliC”) and at least a portion of S. muenchen flagellin fliC.
- the flagellin includes the polypeptides of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, and SEQ ID NO: 7; at least a portion of SEQ ID NO: 1, at least a portion of SEQ ID NO: 3, at least a portion of SEQ ID NO: 5, at least a portion of SEQ ID NO: 7; and a polypeptide encoded by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 and SEQ ID NO: 8; or at least a portion of a polypeptide encoded by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 and SEQ ID NO: 8.
- At least a portion refers to any part of the flagellin that can initiate an intracellular signal transduction pathway for a TLR.
- At least a portion is also referred to herein as a "fragment.”
- the pathogen-associated molecular pattern can be a TLR2 agonist.
- the TLR2 agonist can include at least a portion of a bacterial lipoprotein (BLP), such as SEQ ID NO: 21 or a polypeptide encoded by SEQ ID NO: 22.
- BLP bacterial lipoprotein
- the invention is a fusion protein comprising at least one pathogen-associated molecular pattern and at least one influenza M2 protein, wherein the pathogen-associated molecular pattern is not Pam2Cys.
- the fusion proteins of the invention can further include at least a portion of at least one member selected from the group consisting of an M2 protein, an HA protein and an NA protein.
- the M2 protein can include at least a portion of SEQ ID NO: 13, EVETPIRNEWG (SEQ ID NO: 15), EVETPTRNE (SEQ ID NO: 19) or EVETPIRNEW (SEQ ID NO: 34).
- the HA protein can include at least a portion of PAKLLKERGRRGAIAGFLE (SEQ ID NO: 33).
- the fusion proteins of the invention can further include a linker between at least one pathogen-associated molecular pattern and at least one M2 protein; a linker between at least two M2 proteins; a linker between at least two PAMPs or any combination thereof.
- the invention is a fusion protein comprising at least two Pam2Cys and at least one influenza M2 protein.
- the pathogen-associated molecular pattern of the compositions, fusion proteins and polypeptides of the invention can include a TLR5 agonist, such as a flagellin.
- the flagellin can include at least one member selected from the group consisting of fljB/STF2, E.coli fliC, and S. muenchen fliC.
- compositions, fusion proteins and polypeptides of the invention can include a flagellin that includes fljB/STF2 that includes at least a portion of SEQ ID NO: 1 , such as the fljB/STF2 that includes SEQ ID NO: 3 or a nucleic acid sequence that encodes at least of portion of SEQ ID NO: 2, such as SEQ
- compositions, fusion proteins and polypeptides of the invention can include a flagellin that includes includes E. coli fliC that includes at least a portion of SEQ ID NOS: 5, 9, such as E. coli fliC that includes
- SEQ ID NO: 66 or a nucleic acid sequence that encodes at least of portion of SEQ
- compositions, fusion proteins and polypeptides of the invention can include a flagellin that includes S. muenchen fliC that includes at least a portion of SEQ ID NO: 7, such as S. muenchen fliC that includes SEQ ED NO: 99 or a nucleic acid sequence that encodes at least of portion of SEQ ID NO: 8, such as SEQ ID NO: 100.
- the flagellin employed in the compositions, fusion proteins and polypeptides of the invention can lack a hinge region or at least a portion of a hinge region.
- Hinge regions are the hypervariable regions of a flagellin that link the amino- terminus and carboxy-terminus of the flagellin.
- Example of hinge regions include amino acids 177-416 of SEQ ID NO: 1 that are encoded by nucleic acids 531-1248 of SEQ ID NO: 2; amino acids 174-422 of SEQ ID NO: 5 that are encoded by nucleic acids 522-1266 of SEQ ID NO: 6; or amino acids 173-464 of SEQ ID NO: 60 that are encoded by nucleic acids 519-1392 of SEQ ID NO: 61.
- a hinge region refers to any part of the hinge region of the PAMP that is less than the entire hinge region. "At least a portion of a hinge region” is also referred to herein as a "fragment of a hinge region.”
- the hinge region of S. typhimurium flagellin B (fljB, also referred to herein as fljB/STF2 or STF2) is amino acids 175-415 of SEQ ID NO: 1, which are encoded by nucleic acids at position 541-1246 of SEQ ID NO: 2.
- a fragment of the hinge region of fljB/STF2 can be, for example, amino acids 200-300 of SEQ ID NO: 1.
- compositions, fusion proteins and polypeptides of the invention can also include at least a portion of an influenza viral protein placed in or fused to a portion of the pathogen-associated molecular pattern, such as a region of the pathogen- associated molecular pattern that contains or contained a hinge region.
- the hinge region of the pathogen-associated molecular pattern or at least a portion of the hinge region of the pathogen-associated molecular pattern can be removed from the pathogen-associated molecular pattern and replaced with at least a portion of an influenza viral antigen (e.g., M2, such as SEQ ID NOS: 13, 19 and 39-59).
- a linker can further be included between the influenza viral antigen and the pathogen- associated molecular pattern in such a replacement.
- the pathogen-associated molecular pattern of the fusion proteins of the invention can be fused to a carboxy-terminus, the amino-terminus or both the carboxy- and amino-terminus of an influenza protein, such as an integral membrane protein of an influenza viral protein (e.g., M2, HA, NA).
- the fusion proteins of the invention can include at least one pathogen-associated molecular pattern between at least two influenza M2 proteins, which can, optionally, include a linker between the pathogen-associate molecular pattern and the M2 protein.
- the pathogen-associated molecular pattern of the fusion proteins of the invention can include a TLR2 agonist, such as at least one Pam2Cys, at least one Pam3Cys or any combination thereof.
- the fusion proteins of the invention can include at least one member selected from the group consisting of Pam2Cys and a Pam3Cys.
- the fusion proteins comprising at least one pathogen-associated molecular pattern and at least a portion of at least one M2 protein can further include at least a portion of a haemagglutinin membrane protein; at least a portion of a neuraminidase membrane protein; at least one member selected from the group consisting of an influenza B viral protein and an influenza C viral protein; or any combination thereof.
- the influenza B viral protein and/or influenza C viral protein can be an integral membrane protein.
- the invention is a composition comprising a pathogen-associated molecular pattern and an M2 protein.
- the invention is a composition comprising at least a portion of at least one pathogen-associated molecular pattern and at least a portion of at least one influenza M2 protein, wherein, if the pathogen-associated molecular pattern includes a Pam2Cys, at least a portion of the Pam2Cys is not fused to the influenza M2 protein and at least a portion of the influenza M2 protein is not fused to the Pam2Cys.
- the invention is a fusion protein comprising at least a portion of at least one pathogen-associated molecular pattern and at least a portion of at least one influenza M2 protein, wherein, if the pathogen-associated molecular pattern includes a Pan ⁇ Cys, at least a portion of the Pam2Cys is not fused to the influenza M2 protein and at least a portion of the influenza M2 protein is not fused to the Pan ⁇ Cys.
- the invention includes a polypeptide that includes SEQ ID NOS: 9, 31, 64, 60, 83, 85, 87, 89, 91, 93 and 95 and a polypeptide encoded by SEQ ID NOS: 10, 32, 63, 61, 84, 86, 88, 90, 91, 94 and 96.
- the invention includes a polypeptide having at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98% and at least about 99% sequence identity to the polypeptides of SEQ ID NOS: 9, 31, 64, 60, 83, 85, 87, 89, 91, 93 and 95 and the nucleic acids of SEQ ID NOS: 10, 32, 63, 61, 84, 86, 88, 90, 91, 94 and 96.
- the length of the protein or nucleic acid encoding a PAMP, at least a portion of an influenza viral protein, a fusion protein of the invention or a polypeptide of the invention aligned for comparison purposes is at least 30%, preferably, at least 40%, more preferably, at least 60%, and even more preferably, at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or 100%, of the length of the reference sequence, for example, the nucleic acid sequence of a PAMP, at least a portion of an integral membrane protein of an influenza viral protein, or a polypeptide or fusion protein, for example, as depicted in SEQ ID NOS: 9, 31, 64, 60, 83, 85, 87, 89, 91, 93 and 95 and SEQ ID NOS: 10, 32, 63, 61, 84, 86, 88, 90, 91, 94 and 96.
- the default parameters of the respective programs can be used.
- the database searched is a non- redundant (NR) database, and parameters for sequence comparison can be set at: no filters; Expect value of 10; Word Size of 3; the Matrix is BLOSUM62; and Gap Costs have an Existence of 11 and an Extension of 1.
- the invention is host cells and vectors that include the nucleic acid sequences of the invention.
- the host cells can be prokaryotic (e.g., E. coli) or eukaryotic (e.g., insect cells, such as Drosophila Dmel2 cells; Baculovirus; CHO cells; yeast cells, such as Pichia) host cells.
- the percent identity between two amino acid sequences can also be accomplished using the GAP program in the GCG software package (Accelrys, San Diego, California) using either a Blossom 63 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4.
- the percent identity between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package (Accelrys, San Diego, California), using a gap weight of 50 and a length weight of 3.
- the nucleic acid sequence encoding a PAMP, at least a portion of an integral membrane protein of an influenza viral protein, fusion proteins of the invention and polypeptides of the invention can include nucleic acid sequences that hybridize to, for example, a fljB/STF2 (e.g., SEQ ID NOS: 2, 4), a fliC (e.g., SEQ ID NOs: 6, 8, 100), at least a portion of an integral membrane protein of an influenza viral protein (e.g., SEQ ID NOS: 11, 13, 15, 18, 19, 21, 33, 35-59, 64 and 67) and fusion proteins of the invention (e.g., SEQ ID NOS: 31, 64 and 60) under selective hybridization conditions (e.g., highly stringent hybridization conditions).
- a fljB/STF2 e.g., SEQ ID NOS: 2, 4
- a fliC e.g., SEQ ID NOs: 6, 8, 100
- hybridizes under low stringency As used herein, the terms “hybridizes under low stringency,” “hybridizes under medium stringency,” “hybridizes under high stringency,” or “hybridizes under very high stringency conditions,” describe conditions for hybridization and washing of the nucleic acid sequences.
- Guidance for performing hybridization reactions which can include aqueous and nonaqueous methods, can be found in Aubusel, F.M., et al, Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (2001), the teachings of which are hereby incorporated herein in its entirety.
- High stringency conditions are, for example, relatively low salt and/or high temperature conditions. High stringency are provided by about 0.02 M to about 0.10 M NaCl at temperatures of about 5O 0 C to about 7O 0 C. High stringency conditions allow for limited numbers of mismatches between the two sequences. In order to achieve less stringent conditions, the salt concentration may be increased and/or the temperature may be decreased.
- Medium stringency conditions are achieved at a salt concentration of about 0.1 to 0.25 M NaCl and a temperature of about 37 0 C to about 55 0 C, while low stringency conditions are achieved at a salt concentration of about 0.15 M to about 0.9 M NaCl, and a temperature ranging from about 2O 0 C to about 55 0 C.
- Selection of components and conditions for hybridization are well known to those skilled in the art and are reviewed in Ausubel et al, (1997, Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., Units 2.8-2.11, 3.18-3.19 and 4-64.9).
- compositions, fusion proteins and polypeptides of the invention can be employed in methods of stimulating an immune response in a subject.
- the method of the invention can include a method of stimulating an immune response in a subject, comprising the step of administering to the subject a composition that includes at least one Pam3Cys and at least a portion of at least one integral membrane protein of an influenza viral protein.
- the invention can include a method of stimulating an immune response in a subject, comprising the step of administering to the subject a composition that includes a fusion protein comprising at least one pathogen-associated molecular pattern and at least one influenza M2 protein.
- the invention can include a method of stimulating an immune response in a subject, comprising the step of administering to the subject a composition that includes at least one pathogen-associated molecular pattern and at least one influenza M2 protein, wherein the pathogen-associated molecular pattern is not a Pam2Cys and the M2 protein is not an M2e.
- the invention is a method of stimulating an immune response in a subject, comprising the step of administering to the subject a composition that includes a composition comprising at least a portion of at least one pathogen-associated molecular pattern and at least a portion of at least one influenza M2 protein, wherein, if the pathogen-associated molecular pattern includes a Pam2Cys, at least a portion of the Pam2Cys is not fused to the influenza M2 protein and at least a portion of the influenza M2 protein is not fused to the Pam2Cys.
- the invention is a method of stimulating an immune response in a subject, comprising the step of administering to the subject a composition that includes a fusion protein comprising at least a portion of at least one pathogen-associated molecular pattern and at least a portion of at least one influenza M2 protein, wherein, if the pathogen-associated molecular pattern includes a Pam2Cys, at least a portion of the Parr ⁇ Cys is not fused to the influenza M2 protein and at least a portion of the influenza M2 protein is not fused to the Pam2Cys.
- a subject treated by the methods of the invention can be a mammal, such as a primate or a rodent (e.g., mouse, rat). In a particular embodiment, the subject is a human. A subject is also referred to herein as "an individual.”
- Stimulating an immune response refers to the generation of antibodies to at least a portion of an influenza viral protein (e.g., an integral membrane, such as M2, HA, NA of influenza A, B and/or C). Stimulating an immune response in a subject can include the production of humoral and/or cellular immune responses that are reactive against the influenza viral protein. In stimulating an immune response in the subject, the subject may be protected from infection by the influenza virus or conditions associated with infection by the influenza virus that may diminish or be halted as a consequence of stimulating an immune response in the subject.
- an influenza viral protein e.g., an integral membrane, such as M2, HA, NA of influenza A, B and/or C.
- Stimulating an immune response in a subject can include the production of humoral and/or cellular immune responses that are reactive against the influenza viral protein.
- the subject may be protected from infection by the influenza virus or conditions associated with infection by the influenza virus that may diminish or be halted as a consequence of stimulating an immune response in the subject.
- compositions, fusion proteins and polypeptides of the invention can be administered to a subject with or without an adjuvant to coordinate the innate and adaptive immune mechanisms and induce a potent antibody response accompanied by minimal non-specific inflammation.
- the induced immune response may provide protection against homologous and heterologous strains of influenza viruses and thereby may provide protection against circulating influenza viruses and against potential pandemic influenza caused by introduction of the H5 avian strain into the human population.
- Strategies to manage infection and illness consequent to influenza viral infection have not changed significantly in the past four decades.
- compositions e.g., compositions containing more than one type of influenza viral protein
- Certain compositions, such as vaccines are produced from stocks of selected prototype viral strains grown in embryonated chicken eggs.
- Limitations of the currently available techniques include, for example, uncertain prediction of circulating strains; the ability to grow the appropriate strains in chicken eggs; the egg-based production system carries risks of product contamination; the product produced in eggs cannot be used in subjects with egg allergies; and risk that the multivalent composition will not confer protection against a pandemic strain of virus to which the a subject has no preexisting immunity.
- the dominant protective component of an influenza composition is the viral haemaggrutinin, the major virulence factor associated with the influenza A virus.
- Neutralizing antibodies to HA arise in response to natural infection or administration with influenza A virus and provide sterilizing immunity to subsequent exposure to a virus expressing that particular HA.
- compositions, fusion proteins and polypeptides of the invention may prevent influenza infection in a manner that is cost-effective to produce and that can be stockpiled in preparation for an influenza pandemic.
- Subtypes of the influenza A virus are generally named according to the particular antigenic determinants of hemagglutinin (H, about 13 major types) and neuraminidase (N, about 9 major types).
- subtypes include influenza A (H2N1), A(H3N2), A(EKNl), A(H7N2), A(H9N2), A(HlZHO), A(H3ZH0) and A(H5/H0).
- H2N1 influenza A
- A(H3N2) A(EKNl)
- A(H7N2) A(H9N2)
- A(HlZHO) A(H3ZH0)
- H5/H0 A(H5/H0).
- influenza virus New strains of the influenza virus emerge due to antigenic drift, a process whereby mutations within the virus antibody-binding sites accumulate over time. As a consequence of antigenic drift, the influenza virus can circumvent the infected subject's immune system, which may not be able to recognize and confirm immunity to a new influenza strain despite the immunity to different strains of the virus. Influenza A and B undergo antigenic drift.
- Influenza A can also undergo antigenic shift resulting in a new virus subtype.
- Antigenic shift is a sudden change in viral antigenicity usually associated with recombination of the influenza genome that can occur when a cell is simultaneously infected by two different strains of influenza A virus.
- compositions, fusion proteins and polypeptides of the invention may be refractory to the genetic instability of the prototypical influenza targets, HA and neuraminidase (NA), which requires annual selection of multiple strains for use in preventing influenza infection.
- a composition, fusion protein and polypeptide based on a genetically stable antigen may provide long-lasting immunity to influenza infection, be useful year after year, and be particularly valuable in case of an influenza A pandemic.
- M2 has genetic stability.
- the amino terminal 24 amino acid sequence (SEQ ID NO: 13, also referred to herein as "M2e") has changed little in human pathogenic influenza virus strains isolated since 1933 (Neirynck, S., et al Nature Medicine 5:1157).
- M2 is poorly immunogenic in its native form; however, when administered with adjuvants or conjugated to an appropriate carrier backbone, M2e induces the production of specific antibodies that correlate with protection from subsequent live virus challenge (Neirynck, S., et al. Nature Medicine 5:1157; Frace, A.M., et al Vaccine 17:2237; Mozdzanowska, K.
- Antibodies to M2e also confer passive protection in animal models of influenza A infection (Treanor, JJ., et al J. Virol 64:1375; Liu, W., et al Immunol Lett 93:131), not by neutralizing the virus and preventing infectivity, but rather by killing infected cells and disrupting the viral life cycle (Zebedee, S.L., et al J. Virol 62:12762; Jegerlehner, A., et al. J. Immunol 172:5598). It has been proposed that one mechanism of protection is antibody-dependent NK cell activity (Jegerlehner, A., et al J. Immunol 172:5598).
- compositions, fusion proteins and polypeptides of the invention may limit the severity of influenza illness while allowing the host immune response to develop adaptive immunity to the dominant neutralizing influenza antigen, HA.
- the compositions, fusion proteins and polypeptides of the invention can be employed in methods of stimulating an immune response in a subject.
- the compositions, fusion proteins and polypeptides of the invention can be administered alone or with currently available influenza vaccines and drugs.
- compositions, fusion proteins and polypeptides of the invention that include M2e may stimulate an immune response in a subject to M2e that may provide protection against a possible pandemic arising from the introduction of a totally new HA/NA subtype into a population nature to that subtype.
- the same genetic conservation lends itself to providing broad protection against a potential bioterrorism use of any influenza strain, such as influenza A.
- the M2e sequence of certain avian influenza A isolates differs slightly from that of human isolates, but is highly-conserved among the avian isolates, as shown in Table 1 (infra).
- the compositions, fusion proteins and polypeptides of the invention that include M2e may target circulating human pathogenic strains of influenza A (Hl and H3 subtypes) as well as avian strains that present a pandemic threat (H5 subtypes).
- M2e amino acid sequences of the compositions, fusion proteins and polypeptides of the invention are shown in Table 1.
- the M2e amino acid sequences were based on Fan, et al. Vaccine 22:2993 (2004) or the NCBI Protein Database (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html). Variants in reference to A/New Caledonia/20/99 sequence are denoted by bolded and underlined letters.
- a cysteine (C) residue in the naturally occurring M2 sequence e.g., SEQ ID NOS: 40, 42, 44 and 46, supra; and SEQ ID NOS: 48, 49 and 50, in Table 1, infra
- S serine residue
- SEQ ID NOS: 39, 41, 43 and 45, supra; and SEQ ID NOS: 54, 73 and 74 in Table 1, infra Such substitution may improve solubility and structural integrity of the compositions, fusion proteins and polypeptides of the invention.
- compositions, fusion proteins and polypeptides of the invention include a pathogen-associated molecular pattern.
- Certain PAMPs e.g., TLR ligands, TLR agonists
- TLR TLR
- bind TLR TLR, which act as initiators of the innate immune response and gatekeepers of the adaptive immune response
- Pasare C, et al. Semin Immunol 16:23; Barton, G.M., et al. Curr Opin Immunol 14:380; Bendelac, A., et al.
- TLRs are the best characterized type of Pattern Recognition Receptor (PRR) expressed on antigen-presenting cells (APC).
- PRR Pattern Recognition Receptor
- APC antigen-presenting cells
- APC utilize TLRs to survey the microenvironment and detect signals of pathogenic infection by engaging the cognate ligands of TLRs, Pathogen- Associated Molecular Patterns (PAMPs).
- PAMP and TLR interaction triggers the innate immune response, the first line of defense against pathogenic insult, manifested as release of cytokines, chemokines and other inflammatory mediators; recruitment of phagocytic cells; and important cellular mechanisms which lead to the expression of costimulatory molecules and efficient processing and presentation of antigens to T-cells.
- TLRs control both innate and the adaptive immune responses.
- TLRs recognize PAMPs including bacterial cell wall components such as lipoproteins (TLR2) and lipopolysaccharides (TLR4), bacterial DNA sequences that contain unmethylated CpG residues (TLR9), and bacterial flagellin (TLR5).
- TLR2 lipoproteins
- TLR4 lipopolysaccharides
- TLR9 bacterial DNA sequences that contain unmethylated CpG residues
- TLR5 bacterial flagellin
- the binding of PAMPs to TLRs activates well-characterized immune pathways that can be mobilized for the development of more potent compositions, fusion proteins and polypeptides of the invention.
- the compositions, fusion proteins and polypeptides can be generated in a manner that ensure that those cells that are exposed to protective antigen(s) of the pathogenic agent also receive an innate immune signal (TLR activation) and vice versa.
- compositions, fusion proteins and polypeptides can include at least a portion of at least one PAMP and at least a portion of at least one influenza viral protein (e.g., an integral membrane protein).
- influenza viral protein e.g., an integral membrane protein.
- the compositions, fusion proteins and polypeptides of the invention can trigger signal transduction pathways in their target cells that result in the display of co-stimulatory molecules on the cell surface, as well as antigenic peptide in the context of major histocompatibility complex molecules (see Figure 16).
- Figure 16 depicts the activation of an APC by TLR signaling.
- the composition, fusion protein or polypeptide of the invention includes a PAMP that binds to a TLR, promoting differentiation and maturation of the APC, including production and display of co-stimulatory signals.
- the composition, fusion protein or polypeptide can be internalized by its interaction with the TLR and processed through the lysosomal pathway to generate antigenic peptides, which are displayed on the surface in the context of the major histocompatibility complex.
- the compositions, fusion proteins, or polypeptides of the invention can be administered in a single dose or in multiple doses.
- the methods of the present invention can be accomplished by the administration of the compositions, fusion proteins or polypeptides of the invention by enteral or parenteral means.
- the route of administration is by oral ingestion (e.g., drink, tablet, capsule fo ⁇ n) or intramuscular injection of the composition, fusion protein or polypeptide.
- routes of administration as also encompassed by the present invention including intravenous, intradermal, intraarterial, intraperitoneal, or subcutaneous routes, and nasal administration. Suppositories or transdermal patches can also be employed.
- compositions, fusion proteins or polypeptides of the invention can be administered ex vivo to a subject's autologous dendritic cells. Following exposure of the dendritic cells to the composition, fusion protein or polypeptide of the invention, the dendritic cells can be administered to the subject.
- compositions, fusion proteins or polypeptides of the invention can be administered alone or can be coadministered to the patient. Coadminstration is meant to include simultaneous or sequential administration of the composition, fusion protein or polypeptide of the invention individually or in combination. Where the composition, fusion protein or polypeptide are administered individually, the mode of administration can be conducted sufficiently close in time to each other (for example, administration of the composition close in time to administration of the fusion protein) so that the effects on stimulating an immune response in a subject are maximal. It is also envisioned that multiple routes of administration (e.g., intramuscular, oral, transdermal) can be used to administer the compositions and fusion proteins of the invention.
- routes of administration e.g., intramuscular, oral, transdermal
- compositions, fusion proteins or polypeptide of the invention can be administered alone or as admixtures with conventional excipients, for example, pharmaceutically, or physiologically, acceptable organic, or inorganic carrier substances suitable for enteral or parenteral application which do not deleteriously react with the extract.
- suitable pharmaceutically acceptable carriers include water, salt solutions (such as Ringer's solution), alcohols, oils, gelatins and carbohydrates such as lactose, amylose or starch, fatty acid esters, hydroxymethycellulose, and polyvinyl pyrolidine.
- compositions, fusion proteins or polypeptides of the invention can be sterilized and, if desired, mixed with auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like which do not deleteriously react with the compositions, fusion proteins or polypeptides of the invention.
- auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like which do not deleteriously react with the compositions, fusion proteins or polypeptides of the invention.
- the preparations can also be combined, when desired, with other active substances to reduce metabolic degradation.
- the compositions, fusion proteins or polypeptides of the invention can be administered by is oral administration, such as a drink, intramuscular or intraperitoneal injection.
- compositions, fusion proteins , or polypeptides alone, or when combined with an admixture can be administered in a single or in more than one dose over a period of time to confer the desired effect (e.g., alleviate prevent viral infection, to alleviate symptoms of viral infection).
- compositions, fusion proteins or polypeptides are injectable, sterile solutions, preferably oily or aqueous solutions, as well as suspensions, emulsions, or implants, including suppositories.
- carriers for parenteral administration include aqueous solutions of dextrose, saline, pure water, ethanol, glycerol, propylene glycol, peanut oil, sesame oil, polyoxyethylene-block polymers, and the like.
- Ampules are convenient unit dosages.
- the compositions, fusion proteins or polypeptides can also be incorporated into liposomes or administered via transdermal pumps or patches.
- compositions, fusion proteins and polypeptides of the invention can be administered to a subject on a carrier.
- Carrier means any composition that presents the compositions, fusion proteins and polypeptides of the invention to the immune system of the subject to generate an immune response in the subject.
- the presentation of the compositions, fusion proteins and polypeptides of the invention would preferably include exposure of antigenic portions of the influenza viral protein to generate antibodies.
- the components (PAMP and an integral membrane protein of an influenza virus) of the compositions, fusion proteins and polypeptides of the invention are in close physical proximity to one another on the carrier.
- the compositions, fusion proteins and polypeptides of the invention can be attached to the carrier by covalent or noncovalent attachment.
- the carrier is biocompatible.
- Biocompatible means that the carrier does not generate an immune response in the subject (e.g., the production of antibodies).
- the carrier can be a biodegradable substrate carrier, such as a polymer bead or a liposome.
- the carrier can further include alum or other suitable adjuvants.
- the dosage and frequency (single or multiple doses) administered to a subject can vary depending upon a variety of factors, including prior exposure to a viral antigen, the duration of viral infection, prior treatment of the viral infection, the route of administration of the composition, fusion protein or polypeptide; size, age, sex, health, body weight, body mass index, and diet of the subject; nature and extent of symptoms of influenza exposure, influenza infection and the particular influenza virus responsible for the infection (e.g., influenza A, B, C), the source of the influenza virus (e.g., Hong Kong, Puerto Rico, Wisconsin, Thailand) kind of concurrent treatment (e.g., nasal sprays and drugs, such as amantadine, rimantadine, zanamivir and oseltamivir), complications from the influenza exposure, influenza infection or other health-related problems.
- a viral antigen e.g., the duration of viral infection, prior treatment of the viral infection, the route of administration of the composition, fusion protein or polypeptide
- size age, sex
- compositions, fusion proteins or polypeptides of the present invention can be used in conjunction with the methods and compositions, fusion proteins or polypeptides of the present invention.
- administration of the compositions, fusion proteins or polypeptides can be accompanied by other viral therapeutics or use of agents to treat the symptoms of the influenza infection (e.g., nasal sprays and drugs, such as amantadine, rimantadine, zanamivir and oseltamivir).
- Adjustment and manipulation of established dosages e.g., frequency and duration
- the present invention is further illustrated by the following examples, which are not intended to be limiting in any way.
- M2e is conserved across multiple influenza A subtypes (also referred to herein as “strain”).
- M2e is at least a portion of the M2 protein, in particular, a 24 amino-terminus (also referred to herein as an "ectodomain") of the M2 protein.
- the M2 ectodomain is relatively small amino acid sequence (24 amino acids) compared to HA (about 566 amino acids) and NA (about 469 amino acids).
- the M2e sequence of exemplary avian influenza A isolates differs from that of human isolates, but is highly-conserved among the avian isolates (see Table 1, supra).
- STF2 ⁇ full-length or STF2 hinge region-deleted
- the carboxy-terminal fusion of the synthetic 4xM2e sequence (4 consecutive 24 amino acid sequences) with STF2 was constructed as follows.
- the pET24A vector was purchased from Novagen, San Diego, CA.
- the strategy employed the Seamless Cloning Kit (Catalog number 214400) from Stratagene (La Jolla, CA www.stratagene.com) performed by DNA 2.0 Inc. (Menlo Park, CA).
- the gene encoding the fusion protein was in pDrive 4xM2E G00448 and was used as a PCR template for insert preparation for construction of the C-terminal fusion expression construct with STF2.
- the synthetic 4xM2E construct pDrive 4xM2E G00448 was used as a template for PCR as outlined in the Seamless Cloning Kit (Catalog number 214400) from Stratagene (La Jolla, CA).
- the expected product from this amplification includes the 318 bp and the restriction enzyme sites incorporated into the oligonucleotides used to amplify this insert. The procedure was as follows:
- the 100 ⁇ L product was brought to a volume of 300 ⁇ L by the addition of TE buffer.
- the resulting product was phenol chloroform (Invitrogen Carlsbad, CA- Catalog number 15593-031) extracted once and chloroform extracted once.
- the amplification product was then ethanol precipitated by addition of 30 ⁇ L of Sodium acetate buffer pH 5.2 and 750 ⁇ L of 100% Ethanol.
- the DNA pellet was washed twice with 300 ⁇ L 70% Ethanol allowed to air dry for ten minutes and then resuspended in 50 ⁇ L TE buffer.
- the previously constructed pET24a/STF2.M2e construct was used as a template for PCR as outlined in the Seamless Cloning Kit (Catalog number 214400) from Stratagene (La Jolla, CA).
- the expected product from this amplification includes the whole of the pET24 plasmid plus the STF2 sequences but does not include the single copy of M2E that exists in this construct. The procedure was as follow:
- 4xM2EC-STF2 primer sequence 5'-CGCTCTTCACAGACGTAACAGAGACAGCACGTTCTGCGG (SEQ ID NO:
- the ligation reactions were mixed gently and incubated for 30 minutes at
- This mixture was incubated for ten minutes on ice gently mixing every 2 minutes.
- Seamless cloning ligation reaction (4 ⁇ l) was added, swirled gently and then incubated on ice for 30 minutes. The tubes were heat shocked for 35 seconds at 42°C in a water bath. The tubes were incubated on ice for at least two minutes. SOC medium (400 ⁇ L) were added to the cells and incubated for one hour at 37 0 C with agitation. Two LB agar kanamycin (50 ⁇ g/mL) plates are used to plate 200 ⁇ L and 10 ⁇ L of the transformed cells and allowed to grow overnight.
- Recombinant candidates were grown up for minipreps in Luria Broth containing Kanamycin (25 ug/mL) and extracted using the QIAprep Spin Miniprep Kit (Qiagen Valencia, CA Catalog Number 27106).
- Candidate clones were screened by restriction enzymes (New England Biolabs Beverly, MA) and positive clones were grown up in 100 mL of Luria Broth containing kanamycin (25 ug/mL) and extracted using the Qiagen HiSpeed Plasmid Midi Kit (Catalog number 12643). These clones were submitted to GENEWIZ (North Brunswick, NJ) for sequencing.
- STF2.4xM2e in E. coli BLR(DE3)pLysS host (Novagen, San Diego, CA, Catalog #69053) was retrieved from glycerol stock and scaled up to 5 L.
- the cells were harvested by centrifugation (7000 rpm x 7 minutes in a Sorvall RC5C centrifuge) and resuspended in 2x PBS, 1% glycerol, DNAse, 1 mM PMSF, protease inhibitor cocktail and 1 mg/ml lysozyme.
- the suspension was passed through a microfluidizer to lyse the cells.
- the lysate was centrifuged (45,000 g for one hour in a Beckman Optima L ultracentrifuge) to separate the soluble fraction from inclusion bodies. Protein was detected by SDS-PAGE in the soluble and insoluble fractions.
- the soluble fraction was applied to Sepharose Q resin in the presence of high salt via batch method to reduce DNA, endotoxin, and other contaminants.
- the flow through containing the protein of interest was loaded onto 30 ml Q Sepharose column (Amersham Biosciences). Bound protein was eluted using a linear gradient from Buffer A to B. (Buffer A: 100 mM Tris-Cl, pH 8.0. Buffer B: 100 mM Tris-Cl, 1 M NaCl, pH 8.0). Eluted protein was further purified using a 45 ml Source Q column that provided greater resolution needed to resolve contaminating proteins.
- Bound protein was eluted with a linear gradient from Buffer A to B (Buffer A: 100 mM Tris-Cl, pH 8.0 Buffer B: 100 mM Tris-Cl, 1 M NaCl, pH 8.0). Final purification of protein was completed using Superdex-200 gel filtration chromatography. The column was developed with 100 mM Tris, 150 mM NaCl and 1% glycerol plus 1% Na-deoxycholate to remove the LPS. Buffer exchange was carried out using overnight dialysis against buffer containing 50 mM Tris, 100 mM NaCl and 1% glycerol was done to remove Na-deoxycholate. Protein concentration was determined by the MicroBCA Protein Assay Reagent Kit (Pierce
- EXAMPLE 2 EXPRESSION AND PURIFICATION OF FLAGELLIN (STF2 AND STF2 ⁇ ) FUSION PROTEIN CONSTRUCTS ENCODING INFLUENZA A M2 ECTODOMAIN SEQUENCES
- the consensus M2e sequences from several influenza A strains of human and avian origin are depicted in Table 1.
- two vector cassettes, pMT/STF2 and pMT/STF2 ⁇ , each containing a multiple cloning site (MCS) were generated (See Figures 17A and 17B).
- MCS multiple cloning site
- To generate pMT/STF2 the 1.5 kb gene encoding full length flagellin of Salmonella typhimurium fljb type Z, or STF2, was fused to the Ig binding protein (BIP) secretion signal of pMTBIP/V5-His vector (Invitrogen Corporation, Carlsbad, CA) for expression in Drosophila.
- BIP Ig binding protein
- a similar strategy prophetically is employed to clone two H5-associated M2e sequences, SLLTEVETPTRNEWECRCSDSSDP (SEQ ID NO: 56) (A/Viet Nam/1203/2004) and SLLTEVETLTRNGWGCRCSDSSDP (SEQ ID NO: 55) (A/Hong Kong/156/97).
- Codon-optimized chemically synthesized genes containing four tandemly repeated copies of the indicated H5 -associated M2e sequence prophetically are cloned into pMT/STF2 to generate STF2.4xM2e(H5VN) and STF2.4xM2e(H5HK) , respectively.
- the heterologous 4xM2e sequence(s) prophetically are inserted into either of the primary constructs.
- Heterologous sequences means sequences from different species.
- the Hl sequence is a human sequence and the H5 sequence is an avian sequence.
- the Hl and H5 sequences are heterologous sequences (e.g.,
- Primary constructs comprise at least one pathogen-associated molecular pattern (e.g., STF2, STF2 ⁇ ) and at least a portion of at least one integral membrane protein (e.g., M2e, such as SEQ ID NOS: 13 and 47). If there is more than one integral membrane in a primary construct, the integral membrane proteins are from the same species.
- pathogen-associated molecular pattern e.g., STF2, STF2 ⁇
- integral membrane protein e.g., M2e, such as SEQ ID NOS: 13 and 47. If there is more than one integral membrane in a primary construct, the integral membrane proteins are from the same species.
- a heterologous construct includes at least two integral membrane proteins such as Hl (human) and H5 (avian), for example, in SEQ ID NOS: 87 and 88.
- the hyper-variable region that spans amino acids 170 to 415 of the full-length flagellin gene of SEQ ID NO: 2 was deleted and replaced with a short (10 amino acid) flexible linker (GAPVDPASPW, SEQ ID NO: 98) designed to facilitate interactions of the amino and carboxy terminal sequences necessary for TLR5 signaling.
- GAPVDPASPW short (10 amino acid) flexible linker
- the protein expressed from this construct retains potent TLR5 activity whether expressed alone or in fusion with test antigen.
- a second series of M2e constructs prophetically is generated based on pMT/STF2 ⁇ .
- Drosophila Dmel-2 cells (Invitrogen Corporation, Carlsbad, CA) grown at room temperature in Schneider's medium supplemented with 10% FBS and antibiotics prophetically is transfected with the constructs described above using Cellfectin reagent (Invitrogen) according to the manufacturer's instructions. Twenty-four hours post transfection, cells prophetically is induced with 0.5 mM CuSO 4 in medium lacking FBS and incubated for an additional 48 hours.
- Conditioned media (CM) prophetically is harvested from induced cultures and screened for protein expression by SDS-PAGE and Western blot analyses using anti-flagellin and anti- M2e specific antibodies. The identity, TLR bioactivity of the fusion protein, antigenicity assessed by ELISA and in vivo mouse studies for immunogenicity prophetically is performed.
- EXAMPLE 3 CONSTRUCTION AND EXPRESSION OF FLAGELLIN- HEMAGLUTININ (H-V) CONSTRUCTS
- the gene was fused to the STF2 ⁇ cassette that has been previously constructed in pPICZ ⁇ generating STF2 ⁇ .HAPR8 (SEQ ID NO: 63, encoding SEQ ID NO: 62) (See Figure 18).
- Purified recombinant protein was tested for immunogenicity and efficacy in BALB/c mice.
- the gene encoding H5N1 of the A/Vietnam/1203/04 strain was custom synthesized and fused to STF2 ⁇ cassette generating STF2 ⁇ .HAH5 (SEQ ID NO: 61, encoding SEQ ID NO: 60). Both human and avian HA constructs were transformed into Pichia pastoris strains GS 115 and X-33 (Invitrogen Corporation, Carlsbad, CA). Selected clones were screened for expression by fractionation on SDS-PAGE gel and staining by Coommassie Blue and Western blot analysis using anti-HA and anti-flagellin antibodies.
- Pam3Cys.M2e was synthesized using a solid phase peptide synthesis methodology based on a well established Fmoc-strategy (Houben-Weyl, 2004. Synthesis of peptides and peptidomimetics, Vol. 22, Georg Thieme Verlag Stuttgart, NY). The synthetic scheme and manufacturing process for Pam3Cys.M2e is diagrammed in the flow chart below.
- the Pam3Cys.M2e is a fusion protein (chemically linked) and is also referred to herein as a "lipidated peptide.”
- the first step in the synthesis included solid phase peptide synthesis.
- the amino acid sequence of Pam3Cys.M2e was assembled on an H-Pro-2-chlorotrityl chloride resin by solid phase peptide synthesis.
- This resin is highly suitable for the formation of peptides with the Fmoc-strategy.
- the peptide chain was elongated by successive coupling of the amino acid derivatives. Each coupling step was preceded by an Fmoc-deprotection step and both steps were accompanied by repeated washing of the resin. After coupling of the last amino acid derivative, the final Fmoc-deprotection step was performed. Finally, the peptide resin was washed and dried under reduced pressure. During solid phase peptide synthesis color indicator tests were performed for each step to monitor the completion of the Fmoc-cleavage and the subsequent coupling of the amino acid derivatives.
- Stage 2 of the synthesis included coupling of Pam3Cys-OH.
- Pam3Cys-OH was pre-activated with N,N'-dicyclohexyl-carbodiimide (DCCI) in the presence of 1- hydroxybenzotriazole (HOBt).
- DCCI N,N'-dicyclohexyl-carbodiimide
- HOBt 1- hydroxybenzotriazole
- the resulting solution was filtered and added to the peptide resin.
- the peptide resin was washed and dried under reduced pressure. Color indicator tests were performed to control the coupling of Pam3Cys-OH.
- Stage 3 of the synthesis included cleavage from the resin including cleavage of the side chain protecting groups.
- the peptide resin was treated with trifluoroacetic acid (TFA).
- TFA trifluoroacetic acid
- the product was precipitated from the reaction mixture and lyophilized.
- Stage 4 of the synthesis included purification by preparative reverse phase HPLC.
- the crude material obtained from Stage 3 was purified by preparative HPLC on a reverse phase column using a TFA system. The fractions were collected, checked by analytical HPLC and pooled accordingly. Pooled fractions from the TFA runs were lyophilized.
- Stage 5 of the synthesis included precipitation in the presence of EDTA.
- the purified material from Stage 4 was precipitated from an aqueous solution of EDTA.
- the product was filtered off and dried under reduced pressure.
- Stage 6 of the synthesis included ion exchange chromatography.
- the last stage of manufacturing Pam3Cys.M2e was the exchange from the trifluoroacetate salt into the acetate salt by ion exchange.
- the material from Stage 5 was loaded onto an ion exchange column and eluted with acetic acid. Fractions were checked by thin layer chromatography and the combined product-containing fractions were filtered and lyophilized to yield the final product.
- Pam3-Cys-0H Palmitoyl-Cys((RS)-2,3-d ⁇ (palm ⁇ toyloxy)-propyl)-OH
- the purity specification for the Pam3Cys.M2e drug substance was > 80% by RP-HPLC. The specification was based on the purity achieved with three non-GMP lots of Pam3Cys.M2e made from the same GMP batch of M2e-peptide intermediate resin. The purity of the three non-GMP lots of Pam3Cys.M2e was 80.2%, 80.3% and 80.8%, for lots D.001.Pam3Cys.M2e, D.002.Pam3Cys.M2e and D.003.Pam3Cys.M2e, respectively. EXAMPLE 5: IMMUNOGENICITY
- Pam3Cys.M2e was prepared by Genemed Synthesis and Bachem using solid phase synthesis methodologies and FMOC chemistry as described above. Mass spectroscopy analysis was used to verify the molecular weight of the final product.
- Endotoxin levels of the STF2.4xM2e and the Pam3Cys.M2e were measured using the QCL-1000 Quantitative Chromogenic LAL test kit (BioWhittaker #50- 648U), following the manufacturer's instructions for the microplate method.
- HEK293 cells constitutively express TLR5 and secrete several soluble factors, including IL-8, in response to TLR5 signaling.
- HEK293 cells were seeded in 96-well microplates (50,000 cells/well) and test proteins were added and incubated overnight. The next day, the conditioned medium was harvested, transferred to a clean 96-well microplate and frozen at -20 0 C. After thawing, the conditioned medium was assayed for the presence of IL-8 in a sandwich ELISA using an anti-human IL-8 matched antibody pair (Pierce, #M801E and #M802B) following the manufacturer's instructions. Optical density was measured using a microplate spectrophotometer (FARCyte, Amersham). Results are reported as pg of IL8 per ml as determined by inclusion of a standard curve for IL8 in the assay.
- RAW264.7 cells express TLR2 and secrete several soluble factors, including TNF ⁇ , in response to TLR2 signaling.
- RAW264.7 cells were seeded in 96-well microplates (50,000 cells/well), test compounds were added and incubated overnight. The next day, the conditioned medium was harvested, transferred to a clean 96-well microplate and frozen at -20 0 C. After thawing, the conditioned medium was assayed for the presence of TNF ⁇ in a sandwich ELISA using an anti- mouse TNF ⁇ matched antibody pair (Pierce) following the manufacturer's instructions. Optical density was measured using a microplate spectrophotometer (FARCyte, Amersham). Results are reported as ng of TNP per ml as determined by reference to a standard curve for TNF included in the assay.
- mice Female BALB/c mice (National Cancer Institute) were used at the age of about 6-8 weeks. Mice were divided into groups of 5 to 10 mice per group, and immunized subcutaneously on each side of the base of the tail on days 0 and 21 with the indicated concentrations of STF2.4xM2e or Pam3Cys.M2e fusion protein. On days 10 (primary) and 28 (boost), individual mice were bled by retro-orbital puncture. Sera were harvested by clotting and centrifugation of the heparin-free blood samples.
- MOUSE SERUM ANTIBODY DETERMINATION M2e-specific IgG levels were determined by ELISA.
- 96-well ELISA plates were coated overnight at 4 0 C with 100 ⁇ l /well of a 5 ⁇ g/ml solution of the M2e peptide in PBS. Plates were blocked with 200 ⁇ l/well of Assay Diluent Buffer (ADB; BD Pharmingen) for one hour at room temperature. The plates were washed three times in PBS containing 0.05% Tween-20 (PBS-T). Dilutions of the sera in ADB were added (100 ⁇ l/well) and the plates were incubated overnight at 4 0 C. The plates were washed three times with PBS-T.
- ADB Assay Diluent Buffer
- Horse radish peroxidase, or HRP- labeled goat anti-mouse IgG antibodies (Jackson Immunochemical) diluted in ADB were added (100 ⁇ l/well) and the plates were incubated at room temperature for 1 hour. The plates were washed three times with PBS-T. After adding TMB Ultra substrate (3,3',5,5'-tetramentylbenzidine; Pierce) and monitoring color development, the O. D. 450 was measured on a Tecan Farcyte microspectrophotometer.
- RABBIT IMMUNOGENICITY Female and male NZW rabbits (Covance Research Products) were used at the age of about 13-17 weeks. Rabbits were divided into groups of 3 male and 3 female per group, and immunized Im. on alternating thighs on days 0 and 21 and 42 with the indicated concentrations of Pam3Cys.M2e peptide or STF2.4xM2e fusion protein. Animals were bled on day -1 (prebleed), 14 (primary) and 28 and 42 (boost). Sera were prepared by clotting and centrifugation of samples.
- M2e-specific IgG levels were determined by ELISA. 96-well ELISA plates were coated overnight at about 4 0 C with 100 ⁇ l/well M2e peptide in PBS (5 ⁇ g/ml). Plates were blocked with 200 ⁇ l/well of Assay Diluent Buffer (ADB; BD Pharmingen) for one hour at room temperature. The plates were washed three times in PBS-T. Dilutions of the sera in ADB were added (100 ⁇ l/well) and the plates were incubated overnight at about 4 0 C. The plates were washed 3x with PBS-T. Bound IgG was detected using HRP-conjugated goat anti-rabbit IgG (Jackson Immunochemical).
- O.D. 450 was measured on a Molecular Devices Spectramax microspectrophotometer. Results are reported as the Delta O.D. which is determined by subtracting the O.D. 450 reading for the prebleed of each animal from the O.D. 450 for each animal post- immunization.
- mice about 5-6 week old female BALB/c mice (10-20 per group) were obtained and allowed to acclimate for one week. Fusion proteins formulated in PBS or other suitable formulation were administered by s.c. injection. Mice were immunized on days 0 and 14. On day 21, sera was harvested by retro- orbital puncture and evaluated for M2e specific IgG by ELISA. Mice were challenged by intranasal administration of lxLD90 of the well characterized mouse adapted Influenza A strain, A/Puerto Rico/8/34 (HlNl). Mice were monitored daily for 14 days for survival and weight loss. Mice that lost about 30% of their initial body weight were humanely sacrificed, and the day of sacrifice recorded as the day of death. Efficacy data were reported as survival times. RESULTS
- the experimental groups are: the known endotoxin, LPS, as a positive control ( ⁇ ), LPS plus the inhibitor of endotoxin polymixin B (PMB) as a negative control (O), free Pam3Cys as a positive control for TLR2 signalling ( ⁇ ), free Pam3Cys plus PMB (D), Pam3Cys.M2e ( ⁇ ) and Pam3Cys.M2e plus PMB (O).
- the results showed similar activity profiles for Pam3Cys.M2e and the free TLR21igand Pam3Cys.
- the addition of polymyxin B (PMB) did not reduce its activity, indicating that there is no or low endotoxin contamination.
- mice were immunized on days 0 and 21 with PBS as a negative control (*), the free TLR2 ligand, Pam3CSK-4 ((), M2e peptide alone (o), free Pam3CSK-4 mixed with M2e peptide (D), or the fusion of Pam3Cys and M2e referred to as Pam3.M2e ( ⁇ ).
- mice Groups of 5 BALB/c mice were immunized on day 0 and 14 with 30 ⁇ g of Pam3Cys.M2e ( ⁇ ), 22.5 ⁇ g of M2e which is the molar equivalent of M2e in 30 ⁇ g of Pam3Cys.M2e (O), 22.5 mg of M2e adsorbed to the conventional adjuvant Alum (D), or 25 mg of the recombinant protein STF2.4xM2e ( ⁇ ).
- a group receiving PBS was included as a negative control (o).
- Sera were harvested 7 days post the second dose and M2e specific IgG were evaluated by ELISA. The results shown in Figure 48 indicate that M2e alone is poorly immunogenic in that it failed to elicit antibody titers above background.
- the conventional adjuvant Alum provided a modest enhancement in the immune response to M2e.
- the PAMP linked M2e constructs provided the greatest enhancement in immunogenicity.
- mice For Pam3Cys.M2e, BALB/c mice were immunized on day 0 and 14 with 0.05 to 30 ⁇ g of Pam3Cys.M2e per immunization. Seven days following the last immunization (Day 21) mice were bled and M2e-specific IgG responses were evaluated by ELISA, The results shown in Figure 50 demonstrate that immunization with concentrations as low as 0.05 ⁇ g of Pam3Cys.M2e induced detectable levels of M2e-specific IgG, with the optimal dose for mice in this study of about 30 ⁇ g.
- the immunogenicity of Pam3Cys.M2e was evaluated in multiple mouse strains including BALB/c (•), C57BL/6 ( ⁇ ), CB6/F1 ( ⁇ ), DBA/2 (A), CnNIH (Swiss) (X) and C3H/HeN (*). Groups of five for each strain were immunized on day 0 and 14 with 30 ⁇ g of Pam3Cys.M2e per immunization. Sera were harvested on day 21 and levels of M2e-specific IgG evaluated by ELISA. All strains exhibited significant levels of M2e-specific IgG indicating that the immunogenicity of Pam3Cys.M2e is not dependent on a particular MHC ( Figure 51).
- a group receiving PBS alone was included as a negative control (o), and a convalescent group with immunity to PR/8 following a sublethal challenge with the virus was included as a positive control (O).
- animals were challenge with an LD90 of the PR/8 challenge stock. Weight loss and survival was followed for 14 days post challenge (Figure 54).
- Salmonella typhimurium flagellin is a ligand for TLR5.
- a recombinant protein consisting of full-length flijB (STF2) fused to four tandem repeats of M2e was expressed in E. coli and purified to > 95% purity with low endotoxin levels.
- this protein STF2.4xM2e
- the potency of the recombinant protein was further demonstrated in rabbit immunogenicity studies where animals receiving as little as 5 ⁇ g of protein seroconverted after a single dose.
- the efficacy of the PAMP fusion protein was demonstrated in the mouse challenge model using Influenza A/Puerto Rico/8/34 as the challenge virus. Mice immunized with as little as about 0.3 ⁇ g of the protein per dose exhibited mild morbidity with 100% of the mice surviving the challenge.
- Synthetic tripalmitoylated peptides mimic the acylated amino terminus of lipidated bacterial proteins and are potent activators of TLR2.
- a tripalmitoylated peptide consisting of three fatty acid chains linked to a cysteine residue and the amino terminus of the Influenza A M2 ectodomain (M2e) was synthesized using standard solid-phase peptide chemistries.
- This peptide (Pam3Cys.M2e) triggered TNF ⁇ production in a TLR2-dependent fashion in reporter cell lines.
- Pam3Cys.M2e When used to immunize mice without adjuvant, Pam3Cys.M2e generated an antibody response that was more potent than M2e when mixed with free Pam3CSK-4.
- Pam3Cys.M2e was also found to be immunogenic in rabbits where a dose response relationship was observed between the amount of Pam3Cys.M2e used for immunization and the antibody titer achieved.
- the efficacy of the Pam3Cys.M2e peptide in a number of different formulations was evaluated in the mouse challenge model using Influenza A/Puerto Rico/8/34 as the challenge virus.
- Pam.3Cys.M2e formulated in Fl 19 and F120 exhibited the mildest morbidity with about 80 to about 100% of the mice surviving the challenge.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Virology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Communicable Diseases (AREA)
- Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63825404P | 2004-12-21 | 2004-12-21 | |
US63835004P | 2004-12-21 | 2004-12-21 | |
US64506705P | 2005-01-19 | 2005-01-19 | |
US65320705P | 2005-02-15 | 2005-02-15 | |
US66687805P | 2005-03-31 | 2005-03-31 | |
US68207705P | 2005-05-18 | 2005-05-18 | |
US74120205P | 2005-11-30 | 2005-11-30 | |
PCT/US2005/046662 WO2006069262A2 (en) | 2004-12-21 | 2005-12-21 | Compositions of influenza viral proteins and methods of use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1831259A2 true EP1831259A2 (en) | 2007-09-12 |
Family
ID=36272492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05855253A Withdrawn EP1831259A2 (en) | 2004-12-21 | 2005-12-21 | Compositions of influenza viral proteins and methods of use thereof |
Country Status (9)
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2006206647C1 (en) * | 2005-01-19 | 2011-01-20 | Vaxinnate Corporation | Compositions comprising pathogen-associated molecular patterns and antigens and their use to stimulate an immune response |
CN106237316A (zh) | 2006-03-07 | 2016-12-21 | 法克斯因内特公司 | 包含血细胞凝集素的组合物、制造其的方法与使用其的方法 |
US20100068224A1 (en) * | 2006-04-24 | 2010-03-18 | Roberto Crea | Method for Producing Viral Vaccine and Therapeutic Peptide Antigens |
EP2857038B1 (en) * | 2006-09-18 | 2019-04-10 | The Board of Trustees of the University of Arkansas | Compositions and methods of enhancing immune responses |
EP1925318A1 (en) * | 2006-11-20 | 2008-05-28 | Paul-Ehrlich-Institut | Recombinant modified vaccinia virus Ankara (MVA)-based vaccine for the avian flu |
WO2008157419A2 (en) * | 2007-06-13 | 2008-12-24 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Immunogenic peptides of influenza virus |
CA2695399C (en) | 2007-08-02 | 2017-10-17 | Biondvax Pharmaceuticals Ltd. | Multimeric multiepitope influenza vaccines |
GB0720250D0 (en) | 2007-10-17 | 2007-11-28 | Univ Edinburgh | Immunogenic compositions containing escherichia coli h7 flagella and methods of use thereof |
WO2009062348A1 (fr) * | 2007-11-14 | 2009-05-22 | Institute Of Microbiology, Chinese Academy Of Sciences | Procédés d'inhibition d'une infection par le virus de la grippe et leurs médicaments |
WO2009128950A2 (en) | 2008-04-18 | 2009-10-22 | Vaxinnate Corporation | Deletion mutants of flagellin and methods of use |
WO2010115229A1 (en) | 2009-04-09 | 2010-10-14 | The University Of Melbourne | Immunogenic composition and uses thereof |
MX348663B (es) * | 2009-09-08 | 2017-05-26 | Inst Tecnologico Estudios Superiores Monterrey | Proceso de producción de una vacuna recombinante, dicha vacuna expresable en cepas de escherichia coli y su uso para combatir la influenza a h1ni1 brote 2009. |
JP2013516469A (ja) * | 2010-01-06 | 2013-05-13 | ヴァクシネイト コーポレイション | 高齢者に保護免疫を提供するための方法及び組成物 |
JP6242050B2 (ja) | 2010-01-21 | 2017-12-06 | ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ アーカンソー | 免疫応答を増強するワクチンベクターおよび方法 |
JP2013523096A (ja) * | 2010-03-26 | 2013-06-17 | エマージェント プロダクト デベロップメント ゲイザーズバーグ インコーポレイテッド | インフルエンザマトリックス2タンパク質の外部ドメイン、発現システムおよびそれらの使用 |
GB201009273D0 (en) * | 2010-06-03 | 2010-07-21 | Glaxosmithkline Biolog Sa | Novel vaccine |
WO2012037612A1 (en) | 2010-09-22 | 2012-03-29 | The University Of Melbourne | Novel immunostimulatory method |
AU2011360572B2 (en) | 2011-02-22 | 2017-03-02 | Biondvax Pharmaceuticals Ltd. | Multimeric multiepitope polypeptides in improved seasonal and pandemic influenza vaccines |
US8932598B2 (en) | 2012-08-28 | 2015-01-13 | Vaxinnate Corporation | Fusion proteins and methods of use |
EP2914283B1 (en) * | 2012-11-05 | 2020-05-20 | Georgia State University Research Foundation, Inc. | Universal influenza vaccine based on heterologous multiple m2e proteins |
RU2571944C1 (ru) * | 2014-10-17 | 2015-12-27 | Общество с ограниченной ответственностью "НТфарма" | Противогриппозная вакцина широкого спектра действия против птичьего гриппа а на основе эктодомена белка м2 |
CA3085377A1 (en) | 2017-12-21 | 2019-06-27 | Ena Therapeutics Pty Ltd | Optimised compounds |
CA3142501A1 (en) | 2019-06-26 | 2020-12-30 | Axelia Oncology Pty Ltd | Novel molecules |
EP4395762A1 (en) * | 2021-09-02 | 2024-07-10 | Ena Respiratory Pty Ltd | Formulation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1688606B (zh) * | 2002-08-12 | 2013-12-25 | 昆士兰医学研究所理事会 | 含有辅助t细胞和b细胞表位的新的免疫原性脂肽 |
US20040223976A1 (en) * | 2003-03-07 | 2004-11-11 | Elisabetta Bianchi | Influenza virus vaccine |
-
2005
- 2005-12-21 WO PCT/US2005/046662 patent/WO2006069262A2/en active Application Filing
- 2005-12-21 BR BRPI0519705-8A patent/BRPI0519705A2/pt not_active IP Right Cessation
- 2005-12-21 JP JP2007547054A patent/JP2008524261A/ja active Pending
- 2005-12-21 AU AU2005319141A patent/AU2005319141B8/en not_active Ceased
- 2005-12-21 NZ NZ556004A patent/NZ556004A/en not_active IP Right Cessation
- 2005-12-21 CA CA002593746A patent/CA2593746A1/en not_active Abandoned
- 2005-12-21 MX MX2007007586A patent/MX2007007586A/es not_active Application Discontinuation
- 2005-12-21 SG SG201001924-8A patent/SG160424A1/en unknown
- 2005-12-21 EP EP05855253A patent/EP1831259A2/en not_active Withdrawn
-
2010
- 2010-01-07 AU AU2010200048A patent/AU2010200048A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2006069262A2 * |
Also Published As
Publication number | Publication date |
---|---|
BRPI0519705A2 (pt) | 2009-03-10 |
MX2007007586A (es) | 2007-12-10 |
JP2008524261A (ja) | 2008-07-10 |
AU2005319141B8 (en) | 2010-03-18 |
AU2005319141B2 (en) | 2010-02-18 |
AU2005319141A1 (en) | 2006-06-29 |
NZ556004A (en) | 2010-05-28 |
AU2010200048A1 (en) | 2010-01-28 |
WO2006069262A3 (en) | 2007-02-01 |
SG160424A1 (en) | 2010-04-29 |
WO2006069262A2 (en) | 2006-06-29 |
CA2593746A1 (en) | 2006-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005319141B2 (en) | Compositions of influenza viral proteins and methods of use thereof | |
US20090162400A1 (en) | Compositions of influenza viral proteins and methods of use thereof | |
US9200042B2 (en) | Flagellin fusion proteins | |
Huleatt et al. | Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin | |
AU2009236585B2 (en) | Deletion mutants of flagellin and methods of use | |
EP2069503B1 (en) | Papaya mosaic virus-based vaccines for influenza | |
CN106661091B (zh) | 流行性感冒病毒疫苗及其用途 | |
AU2009259964B2 (en) | Compositions and methods for treating influenza | |
US20120052082A1 (en) | Cross-protective influenza vaccine | |
Zeng et al. | A lipidated form of the extracellular domain of influenza M2 protein as a self-adjuvanting vaccine candidate | |
JP7167088B2 (ja) | インフルエンザウイルスワクチンおよびその使用 | |
CN101087808A (zh) | 流行性感冒病毒蛋白质的组合物及其使用方法 | |
RU2757013C2 (ru) | Рекомбинантная противогриппозная вакцина с широким спектром защиты и способ ее получения | |
US20110097418A1 (en) | Compositions and methods for treating influenza |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070713 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1103410 Country of ref document: HK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20080331 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110701 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1103410 Country of ref document: HK |