EP1825488B1 - Mehrphasiges schaltgerät mit zumindest drei gleichartigen unterbrechereinheiten - Google Patents

Mehrphasiges schaltgerät mit zumindest drei gleichartigen unterbrechereinheiten Download PDF

Info

Publication number
EP1825488B1
EP1825488B1 EP05816245A EP05816245A EP1825488B1 EP 1825488 B1 EP1825488 B1 EP 1825488B1 EP 05816245 A EP05816245 A EP 05816245A EP 05816245 A EP05816245 A EP 05816245A EP 1825488 B1 EP1825488 B1 EP 1825488B1
Authority
EP
European Patent Office
Prior art keywords
switching device
outdoor
polyphase switching
polyphase
main axes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05816245A
Other languages
English (en)
French (fr)
Other versions
EP1825488A1 (de
Inventor
Bernd Bruchmann
Horst Waage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1825488A1 publication Critical patent/EP1825488A1/de
Application granted granted Critical
Publication of EP1825488B1 publication Critical patent/EP1825488B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/022Details particular to three-phase circuit breakers

Definitions

  • the invention relates to a multi-phase switching device with at least three similar interrupter units, each having a first and a second connector, each lying on a main axis, wherein the major axes are aligned approximately parallel to each other.
  • Such a multi-phase switching device is for example from the patent US 6,630,638 B1 known.
  • the local multiphase switching device has three interrupter units, which are each surrounded by a separate encapsulating.
  • outdoor bushings for introducing electrical conductors are respectively arranged on the encapsulating housings.
  • the encapsulating and thus also located inside the interrupter units of the known multi-phase switching device are close together. In order to ensure a necessary spacing of air-insulated electrical conductors at the free ends of the outdoor bushings, they are each pulled apart like a fan. Due to the compact arrangement of the interrupter units to each other a small footprint for the electrical switching device is needed. However, the retrofitting or expansion of the known multi-phase switching device with other modules, such as earthing switches or circuit breakers, is hardly possible due to the tight space.
  • the invention has for its object to provide a multi-phase switching device, which is flexible and reserves sufficient reserves for the introduction of other modules.
  • the object is achieved in a multi-phase switching device of the type mentioned in the present invention, that all distances of the major axes have different amounts from each other.
  • a multi-phase switching device By choosing different amounts for the distances of the main axes of the interrupter units to each other, a multi-phase switching device can be designed, which has an asymmetrical distribution of the interrupter units. Due to the asymmetrical distribution different areas are provided on the switching device, which are available for retrofitting of other modules such as earthing switches, voltage or current transformers or the like.
  • the different distances of the main axes to one another make it possible to provide areas of different sizes or volumes on the switching device in order to retrofit components of different sizes, such as switching devices, voltage transformers or other monitoring devices.
  • the breaker units may for example be designed such that two relatively movable contact pieces are arranged axially opposite one another and one or both contact pieces along the axis are displaceable. At the ends facing away from the switching point of the contact pieces are in each case the connecting pieces of the interrupter unit.
  • the main axis of the interrupter unit and the axis along which the relative movement of the contact pieces is approximately identical.
  • the connecting pieces are then advantageously designed substantially rotationally symmetrical and arranged coaxially with the axis.
  • the main axes are arranged in a common plane.
  • the switching device can be designed, for example, in a dead tank design. Due to the arrangements in a plane in connection with the choice of the distances of the main axes to each other are between the breaker units of the individual phases areas of different sizes for the installation of different sized elements available.
  • each of the interrupter units is surrounded by a separate encapsulating housing.
  • the sheathing of the interrupter units with separate encapsulation housings also makes it possible to variably set the distances of the main axes from one another depending on the site of installation.
  • Each of the encapsulating housings with the respective breaker units acts independently of the others in terms of arc extinction, insulation resistance and so on.
  • a further advantageous embodiment can provide that at least one outdoor bushing is arranged with an essentially radial orientation to the main axis of the respective encapsulating housing for the electrical connection of the interrupter units.
  • the encapsulating housing can consist of an electrically conductive material and can itself carry ground potential. This results in robust weather-resistant arrangements that can be used for example under difficult climatic conditions.
  • a further advantageous embodiment can provide that two outdoor bushings are each pivoted about the main axes with opposite sense of direction from a vertical and an outdoor bushing is arranged in the vertical.
  • Such a configuration may, for example, lead to the design of fan-shaped outdoor bushings of three phases of the switching device arranged in a fan-shaped manner. As a result, a sufficient impact distance at the different electrical potentials leading free ends of the outdoor bushings can be generated in a simple manner.
  • all outdoor bushings are pivoted by up to a maximum of 45 ° from a vertical respectively about the main axes, wherein an outdoor bushing is swung out with deviating from the other outdoor bushings sense of direction.
  • connection point of the centrally arranged passage is higher than the connection points of laterally pivoted outdoor bushings
  • a use of a switching device according to the invention is also possible on built-up areas of low height.
  • the switching device is a single-phase encapsulated switching device in dead-tank design and the switching device is a high-voltage circuit breaker.
  • Switchgear in dead-tank design are known for example from the prior art.
  • An inventive design of a high-voltage circuit breaker in dead-tank design is compatible with existing arrangements, that is, in a replacement of worn high-voltage circuit breakers can thus easily find an inventive high-voltage circuit breaker use.
  • At least one outdoor bushing is flanged directly to a flange arranged on the encapsulating housing.
  • a further advantageous embodiment can provide that at least one outdoor bushing is flanged indirectly to an encapsulating housing with the interposition of a further housing assembly.
  • the intermediate construction of another housing assembly makes it possible to attach additional components in a compact form to the multiphase switching device.
  • the interior of the housing assembly can be used.
  • a circuit breaker and / or a grounding switch is arranged.
  • disconnectors or earthing switches within a further housing assembly protects them from external environmental influences. At the same time, the environment is protected from hazards emanating from the switching devices arranged in the interior of the housing assembly.
  • the multi-phase electrical switching device is versatile. For example, it may be provided that individual overhead line sections are disconnected via the earthing switch and the disconnector, and that these are then earthed.
  • the FIG. 1 shows a multi-phase switching device 1.
  • the multi-phase switching device has three phases A, B, C.
  • Each of the three phases A, B, C is associated with a separate encapsulating housing 2, 3, 4.
  • the encapsulating housings 2, 3, 4 are each made of an electrically conductive material and surround an interrupter unit of a high-voltage circuit breaker.
  • the encapsulating housings 2, 3, 4 have a substantially tubular structure.
  • the respective interrupter units of the phases A, B, C are arranged in the interior of the encapsulating 2, 3, 4.
  • the main axes project vertically out of the plane of the drawing.
  • a main axis 5 of the phase C is in a side view in the FIG.
  • FIG. 2 recognizable.
  • the line of sight of the representation of FIG. 2 is in the FIG. 1 indicated by an arrow 6.
  • Is exemplary in the FIG. 2 an interrupter unit 11 is shown.
  • the interrupter unit 11 has a first contact piece 12 and a second contact piece 13.
  • the contact pieces 12, 13 are coaxial with the main axis 5.
  • the first contact piece 12 is tulip-shaped, the second contact piece 13 is designed bolt-shaped.
  • the second contact piece 13 is displaceable via a drive device 14 along the main axis 5.
  • the connecting pieces are substantially rotationally symmetrical and are arranged at the ends of the contact pieces 12, 13 facing away from the switching point.
  • a first and a second outdoor bushing 7a, b, c, d are respectively arranged on the encapsulation housings 2, 3, 4 on the jacket side.
  • the main axes of the phases A, B, C are each arranged in a common plane and aligned parallel to each other. All distances of the major axes of the phases A, B, C are different from each other. Thus, the distance between the major axes of the phases A and C is greater than the distance between the major axes of the phases A and B and greater than the distance between the major axes of the phases B and C. Whereby the distance between the major axes of the phases A and B is greater than the distance between the major axes of phases B and C.
  • the main axes are arranged parallel to one another, but lie in different planes, so that a so-called triangular arrangement arises. Also in this case, the distance of all major axes is different from each other. Furthermore, it can also be provided that one or more of the outdoor bushings of the phases A, B, C are in a vertical.
  • the axes of the outdoor bushings are pivoted out of a vertical.
  • the axes are all deflected by the same amount.
  • the outdoor bushings of phases A and B are each deflected with the same sense of direction.
  • the outdoor bushings of phase C are deflected by the same amount but with different sense of direction. This results in an arrangement in which the connection points of the outdoor bushings are at the same height, with approximately equal distances S between the connection points of the outer outdoor bushings and the middle outdoor bushing present.
  • asymmetric distribution of the main axes is formed between the phases A and B, a receiving space for the arrangement of other modules such as earthing switches or the like. Between phase B and C, such a space is not provided. Due to the asymmetrical arrangement, the entire multi-phase switching device is rotatable about a vertical axis, so that the space provided for retrofitting further modules space can be rotated in the desired position.
  • FIG. 3 By way of example, the equipment of the multi-phase switching device shown in FIG. 1 with an open-circuit grounding switch 8 is shown.
  • the Freilufterdungsschalter 8 has at each stage on a pivotable rod which are rotatably mounted near the base of the outdoor bushings 7a, 7b, 7c. There they are also connected to the earth potential.
  • the earthing rods in the in the FIG. 3 shown pivoted position upwards be and there in a mating contact at the free end of the respective outdoor bushings 7 a, 7 b, 7 c retract.
  • the earthing rods At the two outer phases A, C, the earthing rods are arranged on the outside.
  • the ground bar is arranged in the space obtained by the asymmetrical distribution of the breaker unit. Due to the similar but made with different sense direction swiveling and thus achieved the same height of the connection points of the outdoor bushings similar grounding rods at the outdoor earthing switch 8 can be used for all three phases.
  • FIG. 4 shows a further embodiment of a phase of a multi-phase switching device, wherein the outdoor bushings 7e, 7f are flanged with the interposition of a respective further housing assembly 9a, 9b to the encapsulating housing 10.
  • disconnectors or earthing switches can be arranged in the interior of the other housing assemblies 9a, 9b.
  • the circuit breaker for example, via the outdoor bushings 7e, 7f introduced into the interior of the encapsulating housing 10 Worcesteruch can be separated.
  • the earthing switch By means of the earthing switch, the corresponding conductor can be acted upon with ground potential.
  • the circuit breakers or earthing switches are protected against external environmental influences.
  • standing under high voltage potential outdoor bushings further away from the encapsulating housing 10 are flanged to this indirectly. As a result, a threat to operating personnel is avoided because high-voltage parts are further spaced from this.

Description

  • Die Erfindung bezieht sich auf ein mehrphasiges Schaltgerät mit zumindest drei gleichartigen Unterbrechereinheiten, die jeweils ein erstes und ein zweites Anschlussstück aufweisen, die jeweils auf einer Hauptachse liegen, wobei die Hauptachsen annähernd parallel zueinander ausgerichtet sind.
  • Ein derartiges mehrphasiges Schaltgerät ist beispielsweise aus der Patentschrift US 6,630,638 B1 bekannt. Das dortige mehrphasige Schaltgerät weist drei Unterbrechereinheiten auf, die jeweils von einem separaten Kapselungsgehäuse umgeben sind. Zum Anschluss der Unterbrechereinheiten an ein Elektroenergieübertragungsnetz sind an den Kapselungsgehäusen jeweils Freiluftdurchführungen zur Einführung von elektrischen Leitern angeordnet.
  • Ein anderes Beispiel ist in US-A-5128502 offenbart.
  • Die Kapselungsgehäuse und damit auch die im Innern befindlichen Unterbrechereinheiten des bekannten mehrphasigen Schaltgerätes sind eng aneinandergerückt. Um eine notwendige Beabstandung luftisolierter elektrischer Leiter an den freien Enden der Freiluftdurchführungen zu gewährleisten, sind diese jeweils fächerartig auseinander gezogen. Durch die kompakte Anordnung der Unterbrechereinheiten zueinander wird eine geringe Aufstellfläche für das elektrische Schaltgerät benötigt. Die Nachrüstung bzw. Erweiterung des bekannten mehrphasigen Schaltgerätes mit weiteren Baugruppen, beispielsweise mit Erdungsschaltern oder Trennschaltern, ist jedoch aufgrund der engen Platzverhältnisse kaum möglich.
  • Der Erfindung liegt die Aufgabe zugrunde ein mehrphasiges Schaltgerät anzugeben, welches flexibel einsetzbar ist und ausreichende Reserven zum Einbringen von weiteren Baugruppen vorhält.
  • Die Aufgabe wird bei einem mehrphasigen Schaltgerät der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass alle Abstände der Hauptachsen voneinander verschiedene Beträge aufweisen.
  • Durch eine Wahl verschiedener Beträge für die Abstände der Hauptachsen der Unterbrechereinheiten zueinander ist ein mehrphasiges Schaltgerät gestaltbar, welches eine asymmetrische Verteilung der Unterbrechereinheiten aufweist. Durch die asymmetrische Verteilung werden an dem Schaltgerät unterschiedliche Bereiche bereitgestellt, die für einen nachträglichen Einbau von weiteren Baugruppen wie beispielsweise Erdungsschaltern, Spannungs- oder Stromwandlern oder ähnlichem zur Verfügung stehen. Die verschiedenen Abstände der Hauptachsen zueinander gestatten es, verschieden große Bereiche bzw. Volumina an dem Schaltgerät vorzusehen, um verschieden große Baugruppen, wie Schaltgeräte, Spannungswandler oder andere Überwachungseinrichtungen, nachzurüsten.
  • Die Unterbrechereinheiten können beispielsweise derart ausgestaltet sein, dass zwei relativ zueinander bewegbare Kontaktstücke axial gegenüberliegend angeordnet sind und eines oder beide Kontaktstücke entlang der Achse verschiebbar sind. An den von der Schaltstelle der Kontaktstücke abgewandten Enden liegen jeweils die Anschlussstücke der Unterbrechereinheit. Bei einer derartigen Ausführung ist die Hauptachse der Unterbrechereinheit und die Achse entlang welcher die Relativbewegung der Kontaktstücke erfolgt annähernd identisch.
  • Die Anschlussstücke sind dann vorteilhaft im Wesentlichen rotationssymmetrisch ausgestaltet und koaxial zu der Achse angeordnet.
  • Vorteilhafterweise kann vorgesehen sein, dass die Hauptachsen in einer gemeinsamen Ebene angeordnet sind.
  • Bei einer Anordnung der Hauptachsen in einer gemeinsamen Ebene kann das Schaltgerät beispielsweise in einer Dead-Tank-Bauweise ausgeführt sein. Durch die Anordnungen in einer Ebene in Verbindung mit der Wahl der Abstände der Hauptachsen zueinander stehen zwischen den Unterbrechereinheiten der einzelnen Phasen Bereiche verschiedener Größe zum Einbau verschieden großer Elemente zur Verfügung.
  • Dabei kann weiterhin vorteilhaft vorgesehen sein, dass jede der Unterbrechereinheiten von einem separaten Kapselungsgehäuse umgeben ist.
  • Die Ummantelung der Unterbrechereinheiten mit separaten Kapselungsgehäusen ermöglicht weiterhin die Abstände der Hauptachsen voneinander je nach Aufstellungsort variabel festzulegen. Jedes der Kapselungsgehäuse mit den jeweiligen Unterbrechereinheiten wirkt hinsichtlich Lichtbogenlöschung, Isolationsfestigkeit usw. unabhängig von den anderen.
  • Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass zum elektrischen Anschluss der Unterbrechereinheiten jeweils zumindest eine Freiluftdurchführung mit im Wesentlichen radialer Ausrichtung zur Hauptachse des jeweiligen Kapselungsgehäuses angeordnet ist.
  • Mittels Freiluftdurchführungen können elektrische Leitungen sicher in das Innere des Kapselungsgehäuses eingeführt werden. Die radiale Ausrichtung gestattet eine sichere Beabstandung von spannungsführenden Teilen zu dem Gehäuse. So kann das Kapselungsgehäuse beispielsweise aus einem elektrisch leitenden Material bestehen und selbst Erdpotential führen. Dadurch entstehen robuste wetterbeständige Anordnungen, die beispielsweise auch unter erschwerten klimatischen Verhältnissen einsetzbar sind.
  • Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass zwei Freiluftdurchführungen jeweils um die Hauptachsen mit entgegengesetztem Richtungssinn aus einer Senkrechten verschwenkt sind und eine Freiluftdurchführung in der Senkrechten angeordnet ist.
  • Eine derartige Ausgestaltung kann beispielsweise zur Ausgestaltung von fächerförmig zueinander angeordneten Freiluftdurchführungen von drei Phasen des Schaltgerätes führen. Dadurch kann in einfacher Weise eine ausreichende Schlagweite an den verschiedene elektrische Potentiale führenden freien Enden der Freiluftdurchführungen erzeugt werden.
  • Weiterhin kann vorteilhaft vorgesehen sein, dass alle Freiluftdurchführungen um bis zu maximal 45° aus einer Senkrechten jeweils um die Hauptachsen verschwenkt sind, wobei eine Freiluftdurchführung mit von den anderen Freiluftdurchführungen abweichendem Richtungssinn ausgeschwenkt ist.
  • In Verbindung mit den unterschiedlichen Abständen der Hauptachsen der Unterbrechereinheiten und einer Verschwenkung aller Freiluftdurchführungen, wobei eine der Freiluftdurchführungen mit einem unterschiedlichen Richtungssinn ausgeschwenkt ist, ist die Einhaltung ausreichender Schlagweiten zwischen den Freiluftdurchführungen gewährleistet. Zusätzlich kann bei einer Anordnung der Unterbrechereinheiten in einer Ebene erreicht werden, dass die Höhe der Anschlussstellen an den freien Enden der Freiluftdurchführungen jeweils bei allen Phasen gleich ist. Dadurch ergeben sich Vorteile bei einer beengten Aufstellung des elektrischen Schaltgerätes beispielsweise unter einer Hochspannungsleitung. Gegenüber symmetrisch aufgefächerten Freiluftdurchführungen, bei denen der Anschlusspunkt der mittig angeordneten Durchführung höher liegt, als die Anschlusspunkte von seitlich abgeschwenkten Freiluftdurchführungen, ist eine Verwendung eines erfindungsgemäßen Schaltgerätes auch auf überbauten Flächen geringer Höhe möglich.
  • Weiterhin kann vorteilhaft vorgesehen sein, dass das Schaltgerät ein einphasig gekapseltes Schaltgerät in Dead-Tank-Bauweise ist und das Schaltgerät ein Hochspannungs-Leistungsschalter ist.
  • Schaltgeräte in Dead-Tank-Bauweise sind beispielsweise aus dem Stand der Technik bekannt. Eine erfindungsgemäße Ausgestaltung eines Hochspannungsleistungsschalters in Dead-Tank-Bauweise ist zu bereits bestehenden Anordnungen kompatibel, das heißt, bei einem Ersatz von verschlissenen Hochspannungs-Leistungsschaltern kann so in einfacher Weise ein erfindungsgemäßer Hochspannungs-Leistungsschalter Verwendung finden.
  • Es kann vorteilhafterweise weiterhin vorgesehen sein, dass zumindest eine Freiluftdurchführung unmittelbar an einem am Kapselungsgehäuse angeordneten Flansch angeflanscht ist.
  • Durch ein unmittelbares Anflanschen einer Freiluftdurchführung an das Kapselungsgehäuse entsteht eine mechanisch stabile Einheit. Schwingungen der Freiluftdurchführungen aufgrund von Schalthandlungen oder Windlasten können auf ein zulässiges Maß begrenzt werden.
  • Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass zumindest eine Freiluftdurchführung mittelbar unter Zwischenbau einer weiteren Gehäusebaugruppe an ein Kapselungsgehäuse angeflanscht ist.
  • Der Zwischenbau einer weiteren Gehäusebaugruppe ermöglicht es, weitere Bauteile in kompakter Form an das mehrphasige Schaltgerät anzubauen. Dazu kann beispielsweise der Innenraum der Gehäusebaugruppe genutzt werden.
  • Dabei kann vorteilhaft vorgesehen sein, dass in der weiteren Gehäusebaugruppe ein Trennschalter und/oder ein Erdungsschalter angeordnet ist.
  • Durch die Anordnung von Trennschaltern bzw. Erdungsschaltern innerhalb einer weiteren Gehäusebaugruppe sind diese vor äußeren Umwelteinflüssen geschützt. Gleichzeitig wird die Umwelt vor Gefährdungen, die von den im Innern der Gehäusebaugruppe angeordneten Schaltgeräten ausgehen, bewahrt.
  • Zusätzlich wird mit einer Ausrüstung des mehrphasigen Schaltgerätes mit einer weiteren Gehäusebaugruppe die Anzahl von möglichen Schaltungsvarianten erhöht. Damit ist das mehrphasige elektrische Schaltgerät vielfältig einsetzbar. So kann beispielsweise vorgesehen sein, dass über den Erdungsschalter und den Trennschalter einzelne Freileitungsabschnitte freigeschaltet werden und diese anschließend geerdet werden.
  • Im Folgenden wird ein Ausführungsbeispiel der Erfindung schematisch in einer Zeichnung gezeigt und nachfolgend näher beschrieben. Dabei zeigt die
  • Figur 1
    eine stirnseitige Ansicht eines mehrphasigen Schaltgerätes, die
    Figur 2
    eine seitliche Ansicht des in der Figur 1 dargestellten mehrphasigen Schaltgerätes, die
    Figur 3
    eine stirnseitige Ansicht des aus der Figur 1 bekannten Schaltgerätes mit einem Freilufterdungsschalter sowie die
    Figur 4
    eine seitliche Ansicht eines elektrischen Schaltgerätes mit Freiluftdurchführungen und zwischengebauten weiteren Gehäusebaugruppen.
  • Die Figur 1 zeigt ein mehrphasiges Schaltgerät 1. Das mehrphasige Schaltgerät weist drei Phasen A, B, C auf. Jede der drei Phasen A, B, C ist ein separates Kapselungsgehäuse 2, 3, 4 zugeordnet. Die Kapselungsgehäuse 2, 3, 4 sind jeweils aus einem elektrisch leitenden Material gefertigt und umgeben eine Unterbrechereinheit eines HochspannungsLeistungsschalters. Die Kapselungsgehäuse 2, 3, 4 weisen eine im Wesentlichen rohrförmige Struktur auf. Entlang der Rohrachsen der Kapselungsgehäuse 2, 3, 4 sind im Innern der Kapselungsgehäuse 2, 3, 4 die jeweiligen Unterbrechereinheiten der Phasen A, B, C angeordnet. In der Figur 1 ragen die Hauptachsen senkrecht aus der Zeichenebene heraus. Eine Hauptachse 5 der Phase C ist in einer seitlichen Ansicht in der Figur 2 erkennbar. Die Blickrichtung der Darstellung der Figur 2 ist in der Figur 1 mit einem Pfeil 6 kenntlich gemacht. Beispielhaft ist in der Figur 2 eine Unterbrechereinheit 11 dargestellt. Die Unterbrechereinheit 11 weist ein erstes Kontaktstück 12 sowie ein zweites Kontaktstück 13 auf. Die Kontaktstücke 12, 13 liegen koaxial zu der Hauptachse 5. Das erste Kontaktstück 12 ist tulpenförmig, das zweite Kontaktstück 13 ist bolzenförmig ausgestaltet. Das zweite Kontaktstück 13 ist über eine Antriebseinrichtung 14 längs der Hauptachse 5 verschiebbar. Die Anschlussstücke sind im Wesentlichen rotationssymmetrisch ausgebildet und sind an den von der Schaltstelle abgewandten Enden der Kontaktstücke 12, 13 angeordnet.
  • Zur Zuführung der elektrischen Leitungen zu den im Innern der Kapselungsgehäuse 2, 3, 4 befindlichen Unterbrechereinheiten sind an den Kapselungsgehäusen 2, 3, 4 mantelseitig jeweils eine erste und eine zweite Freiluftdurchführung 7a, b, c, d angeordnet. Die Hauptachsen der Phasen A, B, C sind jeweils in einer gemeinsamen Ebene angeordnet und zueinander parallel ausgerichtet. Alle Abstände der Hauptachsen der Phasen A, B, C sind voneinander verschieden. So ist der Abstand zwischen den Hauptachsen der Phasen A und C größer, als der Abstand der zwischen den Hauptachsen der Phasen A und B sowie größer als der Abstand zwischen den Hauptachsen der Phasen B und C. Wobei der Abstand zwischen den Hauptachsen der Phasen A und B wiederum größer ist, als der Abstand zwischen den Hauptachsen der Phasen B und C.
  • Neben der in der Figur 1 dargestellten Anordnung kann jedoch auch vorgesehen sein, dass die Hauptachsen zwar parallel zueinander angeordnet sind, jedoch in verschiedenen Ebenen liegen, so dass eine so genannte Dreiecksanordnung entsteht. Auch in diesem Fall ist der Abstand sämtlicher Hauptachsen voneinander verschieden. Weiterhin kann auch vorgesehen sein, dass eine oder mehrere der Freiluftdurchführungen der Phasen A, B, C in einer Senkrechten liegen.
  • Um eine ausreichende Schlagweite S an den freien Enden der Freiluftdurchführungen zu gewährleisten, sind die Achsen der Freiluftdurchführungen aus einer Senkrechten heraus geschwenkt. Dabei sind die Achsen alle um denselben Betrag ausgelenkt. Die Freiluftdurchführungen der Phasen A und B sind jeweils mit demselben Richtungssinn ausgelenkt. Die Freiluftdurchführungen der Phase C sind zwar um denselben Betrag jedoch mit unterschiedlichem Richtungssinn ausgelenkt. Dadurch entsteht eine Anordnung, bei welcher die Anschlusspunkte der Freiluftdurchführungen in ein und derselben Höhe liegen, wobei etwa gleiche Abstände S zwischen den Anschlusspunkten der äußeren Freiluftdurchführungen und der mittleren Freiluftdurchführung vorliegen.
  • Bei der in der Figur 1 dargestellten asymmetrischen Verteilung der Hauptachsen entsteht zwischen den Phasen A und B ein Aufnahmeraum zur Anordnung weiterer Baugruppen wie beispielsweise Erdungsschaltern oder ähnlichem. Zwischen der Phase B und C ist ein derartiger Raum nicht vorgesehen. Aufgrund der asymmetrischen Anordnung ist das gesamte mehrphasige Schaltgerät um eine Hochachse drehbar, so dass der zum Nachrüsten weiterer Baugruppen vorgesehene Bauraum in die gewünschte Lage verdrehbar ist.
  • In der Figur 3 ist beispielhaft die Ausrüstung des in der Figur 1 dargestellten mehrphasigen Schaltgerätes mit einem Freilufterdungsschalter 8 dargestellt. Der Freilufterdungsschalter 8 weist an jeder Phase eine schwenkbare Stange auf, die in der Nähe des Fußpunktes der Freiluftdurchführungen 7a, 7b, 7c drehbar gelagert sind. Dort sind sie auch mit dem Erdpotential verbunden. Zum Erden können die Erdungsstangen in die in der Figur 3 dargestellte Position nach oben geschwenkt werden und dort in einen Gegenkontakt an dem freien Ende der jeweiligen Freiluftdurchführungen 7a, 7b, 7c einfahren. An den beiden äußeren Phasen A, C sind die Erdungsstangen außen liegend angeordnet. An der mittleren Phase B ist die Erdungsstange in dem durch die asymmetrische Verteilung der Unterbrechereinheit gewonnenen Raum angeordnet. Aufgrund der gleichartigen jedoch mit unterschiedlichem Richtungssinn vorgenommenen Ausschwenkung und der dadurch erzielten gleichen Höhe der Anschlusspunkte der Freiluftdurchführungen sind auch für alle drei Phasen gleichartige Erdungsstangen an dem Freilufterdungsschalter 8 verwendbar.
  • Die Figur 4 zeigt eine weitere Ausgestaltung einer Phase eines mehrphasigen Schaltgerätes, wobei die Freiluftdurchführungen 7e, 7f unter Zwischenschaltung jeweils einer weiteren Gehäusebaugruppe 9a, 9b an das Kapselungsgehäuse 10 angeflanscht sind. Im Innern der weiteren Gehäusebaugruppen 9a, 9b können beispielsweise Trennschalter oder Erdungsschalter angeordnet sein. Mittels der Trennschalter ist beispielsweise der über die Freiluftdurchführungen 7e, 7f in das Innere des Kapselungsgehäuses 10 eingebrachte Leiterzug auftrennbar. Mittels der Erdungsschalter ist der entsprechende Leiterzug mit Erdpotential beaufschlagbar. Im Innern des Kapselungsgehäuses sind die Trennschalter bzw. Erdungsschalter vor äußeren Umwelteinflüssen geschützt. Weiterhin werden die unter Hochspannungspotential stehenden Freiluftdurchführungen weiter entfernt von dem Kapselungsgehäuses 10 an dieses mittelbar angeflanscht. Dadurch wird eine Gefährdung von Bedienpersonal vermieden, da hochspannungsführende Teile von diesem weiter beabstandet sind.

Claims (11)

  1. Mehrphasiges Schaltgerät (1) mit zumindest drei gleichartigen Unterbrechereinheiten (11), die jeweils ein erstes und ein zweites Anschlussstück aufweisen, die jeweils auf einer Hauptachse liegen, wobei die Hauptachsen annähernd parallel zueinander ausgerichtet sind,
    dadurch gekennzeichnet, dass
    alle Abstände der Hauptachsen voneinander verschiedene Beträge aufweisen.
  2. Mehrphasiges Schaltgerät (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Hauptachsen in einer gemeinsamen Ebene angeordnet sind.
  3. Mehrphasiges Schaltgerät (1) nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass
    jede der Unterbrechereinheiten (11) von einem separaten Kapselungsgehäuse (2, 3, 4) umgeben ist.
  4. Mehrphasiges Schaltgerät (1) nach Anspruch 3,
    dadurch gekennzeichnet, dass
    zum elektrischen Anschluss der Unterbrechereinheiten (11) jeweils zumindest eine Freiluftdurchführung (7a, b, c, d) mit im Wesentlichen radialer Ausrichtung zur Hauptachse des jeweiligen Kapselungsgehäuses(2, 3, 4) angeordnet ist.
  5. Mehrphasiges Schaltgerät (1) nach Anspruch 4,
    dadurch gekennzeichnet, dass
    zwei Freiluftdurchführungen (7a, b, c, d) jeweils um die Hauptachsen mit entgegengesetztem Richtungssinn aus einer Senkrechten verschwenkt sind und eine Freiluftdurchführung in der Senkrechten angeordnet ist.
  6. Mehrphasiges Schaltgerät (1) nach Anspruch 5,
    dadurch gekennzeichnet, dass
    alle Freiluftdurchführungen (7a, b, c, d) um bis zu maximal 45° aus einer Senkrechten jeweils um die Hauptachsen verschwenkt sind, wobei eine Freiluftdurchführung mit von den anderen Freiluftdurchführungen (7a, b, c, d) abweichendem Richtungssinn ausgeschwenkt ist.
  7. Mehrphasiges Schaltgerät (1) nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass
    das Schaltgerät ein einphasig gekapseltes Schaltgerät in Dead-Tank-Bauweise ist und das Schaltgerät ein Hochspannungs-Leistungsschalter ist.
  8. Mehrphasiges Schaltgerät (1) nach einem der Ansprüche 4 bis 7,
    dadurch gekennzeichnet, dass
    zumindest eine Freiluftdurchführung (7a, b, c, d) unmittelbar an einem am Kapselungsgehäuse (2, 3, 4) angeordneten Flansch angeflanscht ist.
  9. Mehrphasiges Schaltgerät (1) nach einem der Ansprüche 4 bis 7,
    dadurch gekennzeichnet, dass
    zumindest eine Freiluftdurchführung (7a, b, c, d) mittelbar unter Zwischenbau einer weiteren Gehäusebaugruppe (9a, 9b) an ein Kapselungsgehäuse (10) angeflanscht ist.
  10. Mehrphasiges Schaltgerät (1) nach Anspruch 9,
    dadurch gekennzeichnet, dass
    in der weiteren Gehäusebaugruppe (9a, 9b) ein Trennschalter angeordnet ist.
  11. Mehrphasiges Schaltgerät (1) nach Anspruch 9 oder 10,
    dadurch gekennzeichnet, dass
    in der weiteren Gehäusebaugruppe (9a, 9b) ein Erdungsschalter angeordnet ist.
EP05816245A 2004-12-13 2005-11-29 Mehrphasiges schaltgerät mit zumindest drei gleichartigen unterbrechereinheiten Not-in-force EP1825488B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004061277A DE102004061277A1 (de) 2004-12-13 2004-12-13 Mehrphasiges Schaltgerät mit zumindest drei gleichartigen Unterbrechereinheiten
PCT/EP2005/056303 WO2006063928A1 (de) 2004-12-13 2005-11-29 Mehrphasiges schaltgerät mit zumindest drei gleichartigen unterbrechereinheiten

Publications (2)

Publication Number Publication Date
EP1825488A1 EP1825488A1 (de) 2007-08-29
EP1825488B1 true EP1825488B1 (de) 2008-09-17

Family

ID=35788697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05816245A Not-in-force EP1825488B1 (de) 2004-12-13 2005-11-29 Mehrphasiges schaltgerät mit zumindest drei gleichartigen unterbrechereinheiten

Country Status (9)

Country Link
US (1) US20080105654A1 (de)
EP (1) EP1825488B1 (de)
CN (1) CN100594569C (de)
CA (1) CA2590504A1 (de)
DE (2) DE102004061277A1 (de)
ES (1) ES2312039T3 (de)
MX (1) MX2007007089A (de)
RU (1) RU2389103C2 (de)
WO (1) WO2006063928A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE454738T1 (de) * 2005-11-02 2010-01-15 Abb Technology Ag Hochspannungsleistungsschalter und schalteranordnung
RU2580937C1 (ru) * 2014-12-22 2016-04-10 Общество с ограниченной ответственностью "Эльмаш (УЭТМ)" Комбинированный газонаполненный аппарат высокого напряжения
US10818452B1 (en) 2018-08-30 2020-10-27 Robert Neal Hendrix Power outage isolation device
EP3671990B1 (de) * 2018-12-19 2021-11-24 ABB Schweiz AG Dreiphasiges schaltgerät

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168926A (ja) * 1986-12-30 1988-07-12 株式会社日立製作所 タンク形ガス遮断器
EP0405253A1 (de) * 1989-06-30 1991-01-02 Sprecher Energie AG Dreipolige, gasisolierte Schalteranordnung
DE19511168A1 (de) * 1995-03-28 1996-10-02 Abb Management Ag Schaltvorrichtung
IT1313321B1 (it) * 1999-10-01 2002-07-17 Abb Ricerca Spa Apparecchiatura di interruzione e sezionamento isolata in gas.
US6630638B1 (en) * 2000-05-26 2003-10-07 Abb Inc. Dead tank drawout breakers
JP2002051415A (ja) * 2000-08-02 2002-02-15 Toshiba Corp 複合形ガス絶縁開閉装置
AU763276B2 (en) * 2001-02-07 2003-07-17 Hitachi Limited Gas insulated switchgear

Also Published As

Publication number Publication date
DE502005005434D1 (de) 2008-10-30
RU2389103C2 (ru) 2010-05-10
ES2312039T3 (es) 2009-02-16
WO2006063928A1 (de) 2006-06-22
CA2590504A1 (en) 2006-06-22
DE102004061277A1 (de) 2006-06-22
CN100594569C (zh) 2010-03-17
MX2007007089A (es) 2007-08-08
RU2007126650A (ru) 2009-01-20
CN101073132A (zh) 2007-11-14
US20080105654A1 (en) 2008-05-08
EP1825488A1 (de) 2007-08-29

Similar Documents

Publication Publication Date Title
DE60126185T2 (de) Gasisolierte Schaltanlage
EP0678954B1 (de) Metallgekapselte gasisolierte Schaltanlage
EP1756924A1 (de) Leistungsschalter mit einer innerhalb eines kapselungsgehäu- ses angeordneten unterbrechereinheit
EP0678955B1 (de) Metallgekapselte gasisolierte Schaltanlage
EP2254135B1 (de) Metallgekapselter, mehrphasiger, gasisolierter Sammelschienentrenn- und Erdungsschalter
EP1829075B2 (de) Hochspannungsschaltanlage
EP1825488B1 (de) Mehrphasiges schaltgerät mit zumindest drei gleichartigen unterbrechereinheiten
DE102006040037A1 (de) Anschlussbaustein mit einem Kapselungsgehäuse
DE202006008709U1 (de) Anschlussschaltfeld für Mittelspannungsschaltanlagen
DE3318344C2 (de) Hochspannungsschaltanlage
DE19805705A1 (de) Gasisolierte metallgekapselte Schaltanlage
EP1629581B1 (de) Trennschalteranordnung
EP1629580B1 (de) Schalteranordnung
EP0878816A2 (de) Metallgekapselter, gasisolierter Leistungsschalter
EP0875971A2 (de) Hochspannungsschaltanlage
EP2891215A1 (de) Schaltanlagenschaltfeld
EP3488457A1 (de) Vorrichtung und verfahren zum schalten von mittel- und hochspannungen
DE19641391C1 (de) Hochspannungsschaltanlage in Hybridbauweise
DE4438787C1 (de) Metallgekapselte Hochspannungsschaltanlage mit einer dreipolig gekapselten Sammelschiene
DE1540176A1 (de) Gekapselte Umschalteinrichtung fuer mittlere oder hohe Spannung
EP1629578A2 (de) Gasisoliertes sammelschienenbauteil mit freiluftdurchführung
DE102006031219A1 (de) Leistungsschalter mit einem Gehäuse
EP1513236A2 (de) Druckgasisolierter Kabelanschlussbaustein
DE102020210912A1 (de) Eine gasisolierte Mittel- oder Hochspannungsschaltanlage mit einem Messerkontaktträger
EP4222829A1 (de) Schaltfeld für eine freiluftschaltanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005005434

Country of ref document: DE

Date of ref document: 20081030

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2312039

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101125

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111213

Year of fee payment: 7

Ref country code: FR

Payment date: 20111201

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120206

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120120

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005005434

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130