EP1821366B1 - Mechanical scanning antenna scanning a broad spatial range with reduced bulk - Google Patents

Mechanical scanning antenna scanning a broad spatial range with reduced bulk Download PDF

Info

Publication number
EP1821366B1
EP1821366B1 EP07101714A EP07101714A EP1821366B1 EP 1821366 B1 EP1821366 B1 EP 1821366B1 EP 07101714 A EP07101714 A EP 07101714A EP 07101714 A EP07101714 A EP 07101714A EP 1821366 B1 EP1821366 B1 EP 1821366B1
Authority
EP
European Patent Office
Prior art keywords
stator
rotor
antenna
output
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07101714A
Other languages
German (de)
French (fr)
Other versions
EP1821366A1 (en
Inventor
Claude Chekroun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1821366A1 publication Critical patent/EP1821366A1/en
Application granted granted Critical
Publication of EP1821366B1 publication Critical patent/EP1821366B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/14Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/12Longitudinally slotted cylinder antennas; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/22Longitudinal slot in boundary wall of waveguide or transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing

Definitions

  • the present invention relates to a mechanical scanning antenna scanning a wide space domain and reduced space. It is particularly applicable for airborne radar applications subject to space constraints and aerodynamic performance.
  • Radar detection is done within one or more transmit beams produced by the radar antenna.
  • a beam covers a limited part of the space. The detection therefore requires scanning of a transmission beam to cover most of the space.
  • a first mode is mechanical scanning. In this mode, the beam remains fixed with respect to the mechanical structure of the antenna. It is the antenna movements, in azimuth and / or in site which then generate the scanning of the emission beam.
  • a second basic mode is electronic scanning. In this case, the antenna remains fixed and the scanning of the emission beam is generated electronically by playing on the phase shifts of radiating modules.
  • a third mode can combine mechanical scanning and electronic scanning.
  • An electronic scanning antenna has very good scanning performance, in particular with regard to scanning speed and agility but also the spatial amplitude of the scanning.
  • a mechanical scanning antenna which does not always have the performance of an electronic scanning antenna, may be perfectly suitable for certain applications, particularly for economic aspects, where simplicity or low realization costs are required.
  • the disadvantages of mechanical scanning are well known.
  • the spatial amplitude of the scanning of the beam is limited by the movements of the antenna itself.
  • the antenna can move only inside a sphere of space limiting the spatial scanning range of the emission beam of the antenna.
  • the space required for the operation of the antenna in particular for performing its scanning movements in one or two planes, in fact its sphere of space itself, increases the overall bulk volume of the antenna. In fact, to obtain a sweep over a wide domain imposes a sphere of large size.
  • the document US 3,018,479 discloses a beam scanning antenna which has a conical shaped stator having an input and an output and a conically shaped rotor rotating inside the stator, the space between the rotor and the waveguide stator.
  • the focusing system is for example integrated in a radome.
  • the stator comprises, for example upstream of the inlet and downstream of the outlet, a protuberance blocking the passage of the microwave wave.
  • the rotor comprises, for example downstream of the inlet and upstream of the output of the diametral waveguide, a microwave trap blocking the passage of the microwave wave.
  • the focusing system comprises a second focusing lens whose focus is located substantially at the entrance of the stator.
  • the main advantages of the invention are that it makes it possible to reduce the space required for the operation of the antenna, that it makes it possible to obtain a strong misalignment of the antenna, that it avoids the use of rotating joints, that it makes it possible to obtain an antenna radome of aerodynamic shape and that it is economical.
  • the figure 1 shows by way of example the case of an antenna for SAR applications ("Synthetic Aperture Radar" in the English terminology).
  • This antenna slots, is placed in a pod 1 integrated under a plane 2.
  • the deflections of the antenna are limited by the pod defining a sphere of space.
  • this sphere of space limits the scanning range of the antenna. Since the dimensions of a pod or radome inside which an antenna is placed can not be increased indefinitely, especially in airborne applications, it follows that the mechanical scanning of an antenna is systematically limited, more or more important depending on the case. In other words, the small volume of space available limits the misalignment of an antenna.
  • the figure 2 illustrates in perspective view a mechanical scanning antenna according to the invention.
  • the antenna comprises a Foster 21 system which is associated with a focusing system 22 allowing in particular the emission of a high directivity antenna lobe.
  • the focusing system is for example a tapered focusing radome.
  • the Foster 21 system provides mechanical misalignment of an antenna beam.
  • a Foster system 21 is thus composed of two parts 31, 32.
  • a first part is a stator 31 and a second part is a rotor 32.
  • the rotor and the stator are both of conical shape, the rotor rotating inside. of the stator.
  • the wave 33 to be transmitted first enters an input 34 of the stator 31, continues its way in the space between the stator and the rotor and then enters the inside of the rotor in a diametrical passage 35. diametrical waveguide inside the rotor. At the output of the rotor the wave continues its path between the stator and the rotor to an output 36 of the stator.
  • the openings, at the inlet 34 and at the outlet 36, are made longitudinally along the entire length of the stator or in a portion.
  • the diametral waveguide 35 is made in the rotor on the same length as the openings of the inlet and the outlet.
  • the incoming wave 33 is out of phase with an electrical path as described later.
  • the Figures 4a and 4b allows to describe the functioning of a Foster system.
  • the figure 4a presents a perspective view of the stator and the rotor.
  • the stator 31 of conical shape is fixed.
  • the rotor 32 also conical in shape, rotates inside the stator.
  • These two parts 31, 32 have a common axis of symmetry 41.
  • the figure 4b presents a sectional view of the figure 4a in a plane 42 perpendicular to the axis of symmetry 41 of the stator. Note the position of this plane 42 along the axis of symmetry 41.
  • the wave 33 enters the stator and then into the rotor as indicated above.
  • the input 34 and the output 36 of the stator are for example symmetrical with respect to the axis of symmetry 41 of the stator.
  • the passage of the wave 33 through the rotor is inside a path 35 hollowed out diametrically in the rotor.
  • this diametrical path 35 makes an angle ⁇ r with the entry point 34 of the wave in the stator.
  • This angle ⁇ r is in fact the angle of rotation of the stator with respect to the stator having its origin at the point of entry 34 of the wave 33 in the stator.
  • the angle ⁇ r is a function of time.
  • the wave 33 enters the stator at the input 34 then enters the diametrical path 35 and finally leaves the stator at the output 36. path traveled within the system formed by the stator and the rotor is thus composed of three portions.
  • a first portion 43 located between the stator and the rotor, begins at the point of entry 34 to the point of entry into the rotor.
  • the distance traveled in this first portion 43 is R (z) ⁇ r .
  • R (z) is the radius of the path traveled, it depends on the position z of the plane 42 along the axis of symmetry 41 due to the conical shape of the stator and the rotor. The origin of the positions z on the axis of symmetry can for example be taken at the top of the cone S.
  • the second path portion consists of the entire transverse path within the rotor. The distance traveled in this second portion is substantially equal to 2R (z).
  • the third portion 44 is symmetrically opposed to the first portion 43, it goes from the output of the rotor to the output point 36 of the stator. It is therefore equal to R (z) ⁇ r .
  • the interior of the stator 31 and the outside of the rotor 32 are for example covered with a metal layer so that the space between the stator and the rotor can guide the incoming microwave wave 33.
  • the width of this space can be defined according to the wavelength.
  • the passage 35 provided inside the rotor 32 forms a waveguide. Its inner faces are for example covered with a metal layer, the width of this passage depending in particular on the wavelength.
  • a protrusion 45 projecting inside the stator is located near the inlet 34 to block the passage of the incoming wave in one direction.
  • the protuberance 45 extends as far as possible from the surface of the rotor. It therefore prevents the incoming wave from following the wrong direction by forcing it to follow the intended path 43.
  • a second protrusion 46 is, for example, provided next to the previous 45.
  • a microwave trap 47 is placed downstream of the rotor inlet, and close to the latter.
  • This trap 47 is, for example, formed of a microwave short circuit at ⁇ / 4.
  • This trap 47 is placed on the surface of the rotor but on the inside so as not to come into contact with a protuberance 45, 46 of the stator during the rotation of the rotor.
  • Another microwave trap 48 is diametrically opposed to the previous 47 to force the microwave to follow the path 44 to the output 36 of the stator.
  • the stator has another protrusion 49 diametrically opposed to the first 45 to force the microwave to continue to the output 36.
  • the protuberances 45, 49 could be replaced by microwave traps.
  • the incoming wave is out of phase with the electrical path ⁇ (z) on the portions 43, 35, 44.
  • the phase shift is therefore a function of the angular position of the rotor and the distance z with respect to the tip S of the cone.
  • the relation (6) gives the angle of misalignment of the microwave beam at the output 36 of the stator.
  • This angle ⁇ p is the angle made by the direction 50 of the beam with the perpendicular. It is a function of the rotation angle ⁇ r of the rotor, itself a function of time. Rotation of the rotor thus induces a misalignment of the output microwave beam 36 of the stator, the misalignment angle being a function of the rotation of the rotor according to relation (6).
  • the misalignment angle is independent of the microwave wavelength ⁇ .
  • the microwave beam is very directional, due in particular to the small opening width of the stator at the outlet 36.
  • the figure 5 shows an embodiment of an antenna according to the invention where the assembly consisting of the stator and the rotor of the Figures 4a and 4b is equipped with a focusing system 22.
  • the focusing system comprises at least one focusing lens 51.
  • the focus of the lens 51 is substantially at the output 36 of the stator. In this way, the lens 51 makes it possible to focus the microwave beam and to obtain a very directional microwave beam.
  • This beam forms the antenna beam 53 of an antenna according to the invention.
  • This beam sweeps the space according to the misalignment angle ⁇ p itself a function of the rotation ⁇ r of the rotor.
  • the focusing system may be completed by a second lens 52, for example symmetrical with respect to the first. This second lens is useful when the input 34 of the stator becomes the output of the microwave wave.
  • a focusing lens 51, 52 is for example of type D glass to which is added a binder of polyester type.
  • Unrepresented waveguides are provided to guide the microwave to the input of the stator.
  • the focusing system 22 may also act as a radome. Its shape is imposed by the shape of the stator on which the lenses must focus. This results in a form of substantially conical radome so very aerodynamic.
  • a mechanical antenna beam scan according to the invention although of mechanical type, does not require rotating joints.
  • no space sphere is necessary. This solution is, therefore, well suited for applications requiring high misalignments, for example, of ⁇ 120 °.

Abstract

The antenna has a conical shaped stator (31) provided with an input (34) and an output (36), and a conical shaped rotor (32) rotating inside the stator, where the space between the rotor and the stator forms a waveguide. The rotor has a diametral waveguide e.g. path, that guides a microwave from the input to the output of the stator. A foster system has a focusing system (22) e.g. focusing radome, provided with a focusing lens (51) whose focal spot is situated at the output of the stator. The system (22) is integrated in an aerodynamic shaped radome of the antenna.

Description

La présente invention concerne une antenne à balayage mécanique balayant un large domaine spatial et à encombrement réduit. Elle s'applique notamment pour des applications radar aéroportées soumises à des contraintes d'encombrement et de performances aérodynamiques.The present invention relates to a mechanical scanning antenna scanning a wide space domain and reduced space. It is particularly applicable for airborne radar applications subject to space constraints and aerodynamic performance.

Une détection radar se fait à l'intérieur d'un ou plusieurs faisceaux d'émission produits par l'antenne du radar. Un faisceau couvre une partie limitée de l'espace. La détection impose donc d'effectuer un balayage d'un faisceau d'émission en vue de couvrir la plus grande partie de l'espace.
Il existe deux modes de base pour produire un balayage de faisceaux d'émission.
Un premier mode est le balayage mécanique. Dans ce mode, le faisceau reste fixe par rapport à la structure mécanique de l'antenne. Ce sont les mouvements d'antenne, en azimut et/ou en site qui génèrent alors le balayage du faisceau d'émission.
Un deuxième mode de base est le balayage électronique. Dans ce cas, l'antenne reste fixe et le balayage du faisceau d'émission est généré électroniquement en jouant de façon sur les déphasages de modules rayonnant. Un troisième mode peut combiner le balayage mécanique et le balayage électronique.
Une antenne à balayage électronique présente de très bonnes performances de balayage, en particulier en ce qui concerne la rapidité et l'agilité de balayage mais aussi l'amplitude spatiale du balayage. Par ailleurs, son fonctionnement ne nécessite qu'un encombrement relativement réduit puisqu'il n'est pas nécessaire de réserver un espace aux mouvements de l'antenne. Ce mode de balayage présente néanmoins certains inconvénient, notamment en ce qui concerne les coûts et la complexité de réalisation.
Une antenne à balayage mécanique, qui ne possède pas toujours les performances d'une antenne à balayage électronique, peut parfaitement convenir à certaines applications, en particulier pour des aspects économiques, lorsque la simplicité ou de faibles coûts de réalisation sont exigés. Les inconvénients du balayage mécanique sont bien connus. En particulier, l'amplitude spatiale du balayage du faisceau est limitée par les mouvements de l'antenne elle-même. Dans une configuration mécanique donnée, l'antenne ne peut se mouvoir qu'à l'intérieur d'une sphère d'encombrement limitant le domaine spatial de balayage du faisceau d'émission de l'antenne. De plus l'encombrement nécessaire au fonctionnement de l'antenne notamment pour effectuer ses mouvements de balayage dans un ou deux plans, en fait sa sphère d'encombrement elle-même, augmente le volume d'encombrement général de l'antenne. En fait, pour obtenir un balayage sur un large domaine impose une sphère d'encombrement importante.
Radar detection is done within one or more transmit beams produced by the radar antenna. A beam covers a limited part of the space. The detection therefore requires scanning of a transmission beam to cover most of the space.
There are two basic modes for producing a transmit beam scan.
A first mode is mechanical scanning. In this mode, the beam remains fixed with respect to the mechanical structure of the antenna. It is the antenna movements, in azimuth and / or in site which then generate the scanning of the emission beam.
A second basic mode is electronic scanning. In this case, the antenna remains fixed and the scanning of the emission beam is generated electronically by playing on the phase shifts of radiating modules. A third mode can combine mechanical scanning and electronic scanning.
An electronic scanning antenna has very good scanning performance, in particular with regard to scanning speed and agility but also the spatial amplitude of the scanning. Moreover, its operation requires only a relatively small footprint since it is not necessary to reserve space for the movements of the antenna. This scanning mode nevertheless has certain drawbacks, especially as regards the costs and the complexity of implementation.
A mechanical scanning antenna, which does not always have the performance of an electronic scanning antenna, may be perfectly suitable for certain applications, particularly for economic aspects, where simplicity or low realization costs are required. The disadvantages of mechanical scanning are well known. In particular, the spatial amplitude of the scanning of the beam is limited by the movements of the antenna itself. In a mechanical configuration given, the antenna can move only inside a sphere of space limiting the spatial scanning range of the emission beam of the antenna. In addition, the space required for the operation of the antenna, in particular for performing its scanning movements in one or two planes, in fact its sphere of space itself, increases the overall bulk volume of the antenna. In fact, to obtain a sweep over a wide domain imposes a sphere of large size.

Le document US 3,018,479 décrit une antenne à balayage de faiseau qui comporte un stator de forme conique comportant une entrée et une sortie et un rotor de forme conique tournant à l'intériaur du stator, l'espace entre le rotor et le stator formant guide d'onde.The document US 3,018,479 discloses a beam scanning antenna which has a conical shaped stator having an input and an output and a conically shaped rotor rotating inside the stator, the space between the rotor and the waveguide stator.

Un but de l'invention est de pallier cet inconvénient, en particulier en permettant la réalisation d'une antenne à balayage mécanique balayant un large domaine spatial. A cet effet, l'invention a pour objet une antenne à balayage de faisceau comportant au moins :

  • un stator de forme conique comportant une entrée et une sortie ;
  • un rotor de forme conique tournant à l'intérieur du stator, l'espace entre le rotor et le stator formant guide d'onde, le rotor comportant un guide d'onde diamétral, une onde hyperfréquence à émettre étant guidée de l'entrée jusqu'à la sortie via le guide diamétral du rotor ;
  • un système focalisateur comportant au moins une lentille focalisante dont le foyer est situé sensiblement à la sortie du stator.
An object of the invention is to overcome this disadvantage, in particular by allowing the realization of a mechanical scanning antenna scanning a wide range of space. For this purpose, the subject of the invention is a beam scanning antenna comprising at least:
  • a conical shaped stator having an inlet and an outlet;
  • a conical rotor rotating inside the stator, the space between the rotor and the waveguide stator, the rotor comprising a diametrical waveguide, a microwave wave to be emitted being guided from the input to the at the outlet via the diametral guide of the rotor;
  • a focusing system comprising at least one focusing lens whose focus is located substantially at the output of the stator.

Le système focalisateur est par exemple intégré dans un radôme.
Le stator comporte par exemple en amont de l'entrée et en aval de la sortie une protubérance bloquant le passage de l'onde hyperfréquence.
Le rotor comporte par exemple en aval de l'entrée et en amont de la sortie du guide d'onde diamétral un piège hyperfréquence bloquant le passage de l'onde hyperfréquence.
Le système focalisateur comporte une deuxième lentille focalisante dont le foyer est situé sensiblement à l'entrée du stator.
The focusing system is for example integrated in a radome.
The stator comprises, for example upstream of the inlet and downstream of the outlet, a protuberance blocking the passage of the microwave wave.
The rotor comprises, for example downstream of the inlet and upstream of the output of the diametral waveguide, a microwave trap blocking the passage of the microwave wave.
The focusing system comprises a second focusing lens whose focus is located substantially at the entrance of the stator.

L'invention a pour principaux avantages qu'elle permet de réduire l'encombrement nécessaire au fonctionnement de l'antenne, qu'elle permet d'obtenir un fort dépointage d'antenne, qu'elle évite l'utilisation de joints tournants, qu'elle permet d'obtenir un radôme d'antenne de forme aérodynamique et qu'elle est économique.The main advantages of the invention are that it makes it possible to reduce the space required for the operation of the antenna, that it makes it possible to obtain a strong misalignment of the antenna, that it avoids the use of rotating joints, that it makes it possible to obtain an antenna radome of aerodynamic shape and that it is economical.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :

  • la figure 1, un exemple d'antenne selon l'art antérieur nécessitant une sphère d'encombrement ;
  • la figure 2, une illustration d'un système de Foster comportant d'un stator et d'un rotor et un système focalisateur formant une antenne selon l'invention ;
  • la figure 3, les composantes d'un système de Foster ;
  • les figures 4a et 4b, une illustration du fonctionnement d'un système de Foster tel qu'utilisé dans une antenne selon l'invention ;
  • la figure 5, un exemple de réalisation d'une antenne selon l'invention.
Other characteristics and advantages of the invention will become apparent with the aid of the following description made with reference to appended drawings which represent:
  • the figure 1 an example of an antenna according to the prior art requiring a sphere of space;
  • the figure 2 , an illustration of a Foster system comprising a stator and a rotor and a focusing system forming an antenna according to the invention;
  • the figure 3 , the components of a Foster system;
  • the Figures 4a and 4b an illustration of the operation of a Foster system as used in an antenna according to the invention;
  • the figure 5 , an exemplary embodiment of an antenna according to the invention.

La figure 1 présente à titre d'exemple le cas d'une antenne pour des applications SAR (« Synthetic Aperture Radar » dans la terminologie anglo-saxonne). Cette antenne 3, à fentes, est placée dans un pod 1 intégré sous un avion 2. Les débattements de l'antenne sont limités par le pod définissant une sphère d'encombrement. Dans le cas d'une antenne à balayage mécanique, dû aux mouvements de l'antenne, cette sphère d'encombrement limite le domaine de balayage de l'antenne. Etant donné que l'on ne peut augmenter indéfiniment les dimensions d'un pod ou d'un radôme à l'intérieur duquel est placée une antenne, notamment dans les applications aéroportées, il s'ensuit que le balayage mécanique d'une antenne est systématiquement limité, de façon plus ou importante selon les cas. En d'autres termes, le faible volume d'encombrement disponible limite le dépointage d'une antenne.The figure 1 shows by way of example the case of an antenna for SAR applications ("Synthetic Aperture Radar" in the English terminology). This antenna 3, slots, is placed in a pod 1 integrated under a plane 2. The deflections of the antenna are limited by the pod defining a sphere of space. In the case of a mechanical scanning antenna, due to the movements of the antenna, this sphere of space limits the scanning range of the antenna. Since the dimensions of a pod or radome inside which an antenna is placed can not be increased indefinitely, especially in airborne applications, it follows that the mechanical scanning of an antenna is systematically limited, more or more important depending on the case. In other words, the small volume of space available limits the misalignment of an antenna.

La figure 2 illustre par une vue en perspective une antenne à balayage mécanique selon l'invention. L'antenne comporte un système de Foster 21 auquel est associé un système focalisateur 22 permettant notamment l'émission d'un lobe d'antenne de forte directivité. Le système focalisateur est par exemple un radôme focalisateur de forme conique. Le système de Foster 21 assure un dépointage mécanique d'un faisceau d'antenne.The figure 2 illustrates in perspective view a mechanical scanning antenna according to the invention. The antenna comprises a Foster 21 system which is associated with a focusing system 22 allowing in particular the emission of a high directivity antenna lobe. The focusing system is for example a tapered focusing radome. The Foster 21 system provides mechanical misalignment of an antenna beam.

La figure 3 présente les composantes d'un système de Foster. Un système de Foster 21 est ainsi composé de deux parties 31, 32. Une première partie est un stator 31 et une deuxième partie est un rotor 32. Le rotor et le stator sont tous deux de forme conique, le rotor tournant à l'intérieur du stator. L'onde à émettre 33 pénètre d'abord dans une entrée 34 du stator 31, poursuit son chemin dans l'espace compris entre le stator et le rotor puis pénètre à l'intérieur du rotor selon un passage diamétral 35. Ce passage forme un guide d'onde diamétral à l'intérieur du rotor. En sortie du rotor l'onde poursuit son chemin entre le stator et le rotor jusqu'à une sortie 36 du stator.
Les ouvertures, au niveau de l'entrée 34 et au niveau de la sortie 36, sont réalisées longitudinalement sur toute la longueur du stator ou selon une portion. Le guide d'onde diamétral 35 est réalisé dans le rotor sur la même longueur que les ouvertures de l'entrée et de la sortie.
L'onde entrante 33 est déphasée avec un chemin électrique comme décrit par la suite.
The figure 3 presents the components of a Foster system. A Foster system 21 is thus composed of two parts 31, 32. A first part is a stator 31 and a second part is a rotor 32. The rotor and the stator are both of conical shape, the rotor rotating inside. of the stator. The wave 33 to be transmitted first enters an input 34 of the stator 31, continues its way in the space between the stator and the rotor and then enters the inside of the rotor in a diametrical passage 35. diametrical waveguide inside the rotor. At the output of the rotor the wave continues its path between the stator and the rotor to an output 36 of the stator.
The openings, at the inlet 34 and at the outlet 36, are made longitudinally along the entire length of the stator or in a portion. The diametral waveguide 35 is made in the rotor on the same length as the openings of the inlet and the outlet.
The incoming wave 33 is out of phase with an electrical path as described later.

Les figures 4a et 4b permet de décrire le fonctionnement d'un système de Foster. La figure 4a présente une vue en perspective du stator et du rotor. Le stator 31 de forme conique est fixe. Le rotor 32, lui aussi de forme conique, tourne à l'intérieur du stator. Ces deux parties 31, 32 ont un axe de symétrie commun 41.
La figure 4b présente une vue en coupe de la figure 4a dans un plan 42 perpendiculaire à l'axe de symétrie 41 du stator. On note z la position de ce plan 42 le long de l'axe de symétrie 41. L'onde 33 pénètre dans le stator puis dans le rotor comme indiqué précédemment. L'entrée 34 et la sortie 36 du stator sont par exemple symétriques par rapport à l'axe de symétrie 41 du stator. Le passage de l'onde 33 à travers le rotor se fait à l'intérieur d'un chemin 35 creusé diamétralement dans le rotor. A un instant donné, ce chemin diamétral 35 fait un angle θr avec le point d'entrée 34 de l'onde dans le stator. Cet angle θr est en fait l'angle de rotation du stator par rapport au stator ayant son origine au point d'entrée 34 de l'onde 33 dans le stator. L'angle θr est fonction du temps.
L'onde 33 entre dans le stator au niveau de l'entrée 34 puis pénètre dans le chemin diamétral 35 et enfin sort du stator au niveau de la sortie 36. Le chemin parcouru à l'intérieur du système formé par le stator et le rotor est donc composé de trois portions. Une première portion 43, située entre le stator et le rotor, débute au point d'entrée 34 jusqu'au point d'entrée dans le rotor. La distance parcourue dans cette première portion 43 est R(z)θr. R(z) est le rayon du chemin parcouru, il dépend de la position z du plan 42 le long de l'axe de symétrie 41 en raison de la forme conique du stator et du rotor. L'origine des positions z sur l'axe de symétrie peut par exemple être prise au sommet du cône S.
La deuxième portion de chemin est constituée de la totalité du chemin transversale 35 à l'intérieur du rotor. La distance parcourue dans cette deuxième portion est sensiblement égale à 2R(z). Enfin, la troisième portion 44 est symétriquement opposée à la première portion 43, elle va de la sortie du rotor jusqu'au point de sortie 36 du stator. Elle est donc égale à R(z)θr. Ainsi, au niveau d'un point z de l'axe de symétrie 41 du stator, le chemin électrique δ(z) parcouru par l'onde entrante 33 est donné par la relation suivante : δ z = 2 R z + 2 R z θ r = 2 R z 1 + θ r

Figure imgb0001

θ r étant exprimé en radians dans cette relation (1).The Figures 4a and 4b allows to describe the functioning of a Foster system. The figure 4a presents a perspective view of the stator and the rotor. The stator 31 of conical shape is fixed. The rotor 32, also conical in shape, rotates inside the stator. These two parts 31, 32 have a common axis of symmetry 41.
The figure 4b presents a sectional view of the figure 4a in a plane 42 perpendicular to the axis of symmetry 41 of the stator. Note the position of this plane 42 along the axis of symmetry 41. The wave 33 enters the stator and then into the rotor as indicated above. The input 34 and the output 36 of the stator are for example symmetrical with respect to the axis of symmetry 41 of the stator. The passage of the wave 33 through the rotor is inside a path 35 hollowed out diametrically in the rotor. At a given instant, this diametrical path 35 makes an angle θ r with the entry point 34 of the wave in the stator. This angle θ r is in fact the angle of rotation of the stator with respect to the stator having its origin at the point of entry 34 of the wave 33 in the stator. The angle θ r is a function of time.
The wave 33 enters the stator at the input 34 then enters the diametrical path 35 and finally leaves the stator at the output 36. path traveled within the system formed by the stator and the rotor is thus composed of three portions. A first portion 43, located between the stator and the rotor, begins at the point of entry 34 to the point of entry into the rotor. The distance traveled in this first portion 43 is R (z) θ r . R (z) is the radius of the path traveled, it depends on the position z of the plane 42 along the axis of symmetry 41 due to the conical shape of the stator and the rotor. The origin of the positions z on the axis of symmetry can for example be taken at the top of the cone S.
The second path portion consists of the entire transverse path within the rotor. The distance traveled in this second portion is substantially equal to 2R (z). Finally, the third portion 44 is symmetrically opposed to the first portion 43, it goes from the output of the rotor to the output point 36 of the stator. It is therefore equal to R (z) θ r . Thus, at a point z of the axis of symmetry 41 of the stator, the electrical path δ (z) traversed by the incoming wave 33 is given by the following relation: δ z = 2 R z + 2 R z θ r = 2 R z 1 + θ r
Figure imgb0001

θ r being expressed in radians in this relation (1).

L'intérieur du stator 31 et l'extérieur du rotor 32 sont par exemple recouverts d'une couche métallique de façon à ce que l'espace compris entre le stator et le rotor puisse guider l'onde hyperfréquence entrante 33. En particulier la largeur de cet espace peut être définie en fonction de la longueur d'onde. De même le passage 35 prévu à l'intérieur du rotor 32 forme un guide d'onde. Ses faces intérieures sont par exemple recouvertes d'une couche métallique, la largeur de ce passage dépendant notamment de la longueur d'onde.
Une protubérance 45 faisant saillie à l'intérieur du stator est située à proximité de l'entrée 34 pour bloquer le passage de l'onde entrante dans une direction. A cet effet la protubérance 45 s'étend le plus possible de la surface du rotor. Elle empêche donc l'onde entrante de suivre la mauvaise direction en l'obligeant à suivre le chemin 43 prévu. Pour renforcer le blocage du passage une deuxième protubérance 46 est, par exemple, prévu à côté de la précédente 45.
The interior of the stator 31 and the outside of the rotor 32 are for example covered with a metal layer so that the space between the stator and the rotor can guide the incoming microwave wave 33. In particular the width of this space can be defined according to the wavelength. Similarly, the passage 35 provided inside the rotor 32 forms a waveguide. Its inner faces are for example covered with a metal layer, the width of this passage depending in particular on the wavelength.
A protrusion 45 projecting inside the stator is located near the inlet 34 to block the passage of the incoming wave in one direction. For this purpose the protuberance 45 extends as far as possible from the surface of the rotor. It therefore prevents the incoming wave from following the wrong direction by forcing it to follow the intended path 43. To reinforce the locking of the passage a second protrusion 46 is, for example, provided next to the previous 45.

Après avoir suivi le chemin 43 à l'intérieur du stator l'onde hyperfréquence doit ensuite entrer dans le chemin diamétral 35 du rotor. Pour empêcher l'onde de continuer plus loin sa course à l'intérieur du stator, un piège hyperfréquence 47 est placé en aval de l'entrée du rotor, et à proximité de cette dernière. Ce piège 47 est, par exemple, formé d'un court-circuit hyperfréquence à λ/4. Ce piège 47 est placé à la surface du rotor mais à l'intérieur pour ne pas entrer en contact avec une protubérance 45, 46 du stator lors de la rotation du rotor. Un autre piège hyperfréquence 48, par exemple de même structure, est diamétralement opposé au précédent 47 pour forcer l'onde hyperfréquence à suivre le chemin 44 vers la sortie 36 du stator. Le stator comporte une autre protubérance 49 diamétralement opposée à la première 45 pour forcer l'onde hyperfréquence à continuer vers la sortie 36. Les protubérances 45, 49 pourraient être remplacées par des pièges hyperfréquence.After following the path 43 inside the stator, the microwave must then enter the diametral path 35 of the rotor. To prevent the wave from continuing farther its travel inside the stator, a microwave trap 47 is placed downstream of the rotor inlet, and close to the latter. This trap 47 is, for example, formed of a microwave short circuit at λ / 4. This trap 47 is placed on the surface of the rotor but on the inside so as not to come into contact with a protuberance 45, 46 of the stator during the rotation of the rotor. Another microwave trap 48, for example of the same structure, is diametrically opposed to the previous 47 to force the microwave to follow the path 44 to the output 36 of the stator. The stator has another protrusion 49 diametrically opposed to the first 45 to force the microwave to continue to the output 36. The protuberances 45, 49 could be replaced by microwave traps.

L'onde entrante est déphasée avec le chemin électrique δ(z) sur les portions 43, 35, 44. Le déphasage est donc fonction de la position angulaire du rotor et de la distance z par rapport à la pointe S du cône.
Le déphasage ϕ(z), fonction de la position z le long de l'axe de symétrie 41 est donné par la relation suivante : ϕ z = 2 π λ δ z

Figure imgb0002

où λ est la longueur de l'onde entrante 33.
En référence aux relations (1) et (2), le déphasage peut encore s'écrire : ϕ z = 2 R z 1 + θ r .2 π λ
Figure imgb0003

Si α représente le demi-angle au sommet du cône, la relation entre le rayon R(z) en un point de l'axe de symétrie 41 du stator et la distance z de ce point au sommet est la suivante : R z = z . tg α
Figure imgb0004

L'angle de dépointage θp de l'onde en regard d'un point z de l'axe 41 vérifie la relation suivante : 2 π . z . sin θ p λ = 2 z . tg α 1 + θ .2 π λ
Figure imgb0005

Il en résulte que : sin θ p = 2. 1 + θ r . tg α
Figure imgb0006
The incoming wave is out of phase with the electrical path δ (z) on the portions 43, 35, 44. The phase shift is therefore a function of the angular position of the rotor and the distance z with respect to the tip S of the cone.
The phase shift φ (z), a function of the position z along the axis of symmetry 41 is given by the following relation: φ z = 2 π λ δ z
Figure imgb0002

where λ is the length of the incoming wave 33.
With reference to relations (1) and (2), the phase difference can still be written: φ z = 2 R z 1 + θ r .2 π λ
Figure imgb0003

If α represents the half-angle at the apex of the cone, the relationship between the radius R (z) at a point of the axis of symmetry 41 of the stator and the distance z from this point to the vertex is as follows: R z = z . tg α
Figure imgb0004

The misalignment angle θ p of the wave opposite a point z of the axis 41 satisfies the following relation: 2 π . z . sin θ p λ = 2 z . tg α 1 + θ .2 π λ
Figure imgb0005

It follows that : sin θ p = 2. 1 + θ r . tg α
Figure imgb0006

La relation (6) donne l'angle de dépointage du faisceau hyperfréquence à la sortie 36 du stator. Cet angle θp est l'angle que fait la direction 50 du faisceau avec la perpendiculaire. Il est fonction de l'angle de rotation θr du rotor, lui-même fonction du temps. La rotation du rotor induit donc un dépointage du faisceau hyperfréquence en sortie 36 du stator, l'angle de dépointage étant fonction de la rotation du rotor selon la relation (6). L'angle de dépointage est indépendant de la longueur d'onde hyperfréquence λ. En sortie 36 du stator, le faisceau hyperfréquence est très peu directive, du fait notamment de la faible largeur d'ouverture du stator au niveau de la sortie 36.The relation (6) gives the angle of misalignment of the microwave beam at the output 36 of the stator. This angle θ p is the angle made by the direction 50 of the beam with the perpendicular. It is a function of the rotation angle θ r of the rotor, itself a function of time. Rotation of the rotor thus induces a misalignment of the output microwave beam 36 of the stator, the misalignment angle being a function of the rotation of the rotor according to relation (6). The misalignment angle is independent of the microwave wavelength λ. At the output 36 of the stator, the microwave beam is very directional, due in particular to the small opening width of the stator at the outlet 36.

La figure 5 présente un exemple de réalisation d'une antenne selon l'invention où l'ensemble composé du stator et du rotor des figures 4a et 4b est équipé d'un système focalisateur 22. Le système focalisateur comporte au moins une lentille focalisatrice 51. Le foyer de la lentille 51 se situe sensiblement à la sortie 36 du stator. De la sorte la lentille 51 permet de focaliser le faisceau hyperfréquence et d'obtenir un faisceau hyperfréquence très directif. Ce faisceau forme le faisceau d'antenne 53 d'une antenne selon l'invention. Ce faisceau balaye l'espace selon l'angle de dépointage θp lui-même fonction de la rotation θr du rotor.
Le système focalisateur peut être complété par une deuxième lentille 52, par exemple symétrique par rapport à la première. Cette deuxième lentille est utile lorsque l'entrée 34 du stator devient la sortie de l'onde hyperfréquence.
Une lentille focalisante 51, 52 est par exemple en verre de type D auquel est ajouté un liant de type polyester.
The figure 5 shows an embodiment of an antenna according to the invention where the assembly consisting of the stator and the rotor of the Figures 4a and 4b is equipped with a focusing system 22. The focusing system comprises at least one focusing lens 51. The focus of the lens 51 is substantially at the output 36 of the stator. In this way, the lens 51 makes it possible to focus the microwave beam and to obtain a very directional microwave beam. This beam forms the antenna beam 53 of an antenna according to the invention. This beam sweeps the space according to the misalignment angle θ p itself a function of the rotation θ r of the rotor.
The focusing system may be completed by a second lens 52, for example symmetrical with respect to the first. This second lens is useful when the input 34 of the stator becomes the output of the microwave wave.
A focusing lens 51, 52 is for example of type D glass to which is added a binder of polyester type.

Des guides d'onde non représentés sont prévus pour guider l'onde hyperfréquence jusqu'à l'entrée du stator.
Le système focalisateur 22 peut, par ailleurs, faire office de radôme. Sa forme est imposée par la forme du stator sur lequel les lentilles doivent se focaliser. Il en résulte une forme de radôme sensiblement conique donc très aérodynamique.
Unrepresented waveguides are provided to guide the microwave to the input of the stator.
The focusing system 22 may also act as a radome. Its shape is imposed by the shape of the stator on which the lenses must focus. This results in a form of substantially conical radome so very aerodynamic.

Avantageusement, un balayage mécanique de faisceau d'antenne selon l'invention, bien que de type mécanique, ne nécessite pas de joints tournants.
Dans la solution proposée par une antenne selon l'invention, aucune sphère d'encombrement est nécessaire. Cette solution est, par conséquent, bien adaptée pour des applications nécessitant de forts dépointages, par exemple, de ± 120°.
Advantageously, a mechanical antenna beam scan according to the invention, although of mechanical type, does not require rotating joints.
In the solution proposed by an antenna according to the invention, no space sphere is necessary. This solution is, therefore, well suited for applications requiring high misalignments, for example, of ± 120 °.

Claims (5)

  1. Beam-scanning antenna, the antenna comprising at least:
    - a stator (31) of conical shape comprising longitudinally over its length an input (34) and an output (36);
    - a rotor (32) of conical shape rotating inside the stator (31), the space between the rotor and the stator forming a waveguide, characterized in that the rotor comprises a diametral waveguide (35), a microwave (33) to be emitted being guided from the input (34) to the output (36) via the diametral guide of the rotor; and
    - a focusing system (22) comprising at least one focusing lens (51) whose focus is situated substantially at the output (36) of the stator.
  2. Antenna according to Claim 1, characterized in that the focusing system (22) is integrated into a radome.
  3. Antenna according to any one of the preceding claims, characterized in that the stator (31) comprises upstream of the input (34) and downstream of the output (36) a protuberance (45, 49) blocking the passage of the microwave (33).
  4. Antenna according to any one of the preceding claims, characterized in that the rotor (32) comprises downstream of the input and upstream of the output of the diametral waveguide (35) a microwave trap (47, 48) blocking the passage of the microwave (33).
  5. Antenna according to any one of the preceding claims, characterized in that the focusing system (22) comprises a second focusing lens (52) whose focus is situated substantially at the input (34) of the stator.
EP07101714A 2006-02-15 2007-02-05 Mechanical scanning antenna scanning a broad spatial range with reduced bulk Not-in-force EP1821366B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0601325A FR2897475B1 (en) 2006-02-15 2006-02-15 MECHANICAL SCANNING ANTENNA SCANNING A WIDE SPATIAL DOMAIN WITH REDUCED DIMENSIONS

Publications (2)

Publication Number Publication Date
EP1821366A1 EP1821366A1 (en) 2007-08-22
EP1821366B1 true EP1821366B1 (en) 2008-12-10

Family

ID=36790949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07101714A Not-in-force EP1821366B1 (en) 2006-02-15 2007-02-05 Mechanical scanning antenna scanning a broad spatial range with reduced bulk

Country Status (5)

Country Link
EP (1) EP1821366B1 (en)
AT (1) ATE417383T1 (en)
DE (1) DE602007000328D1 (en)
ES (1) ES2319579T3 (en)
FR (1) FR2897475B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2670436A (en) * 1950-05-03 1954-02-23 Allen S Dunbar Helical slot scanner
US3018479A (en) * 1959-02-02 1962-01-23 Hughes Aircraft Co Scanning antenna
FR1320855A (en) * 1962-01-31 1963-03-15 Csf Radiation program antenna

Also Published As

Publication number Publication date
FR2897475B1 (en) 2008-04-18
ES2319579T3 (en) 2009-05-08
FR2897475A1 (en) 2007-08-17
EP1821366A1 (en) 2007-08-22
ATE417383T1 (en) 2008-12-15
DE602007000328D1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
EP2081258B1 (en) Secondary reflector of an antenna with double reflector
EP2264832B1 (en) Secondary reflector for a double reflector antenna
FR2886773A1 (en) Antenna e.g. airborne antenna, for airborne weather radar, has radiating waveguide divided into three sections, where central section of radiating wave guide is crossed with central section of vertical component stack of feed waveguide
EP2130266B1 (en) Antenna with resonator having a filtering coating and system including such antenna
EP3086409B1 (en) Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module
WO2016207787A1 (en) Dual-reflector microwave antenna
EP2658032B1 (en) Corrugated horn antenna
EP1821366B1 (en) Mechanical scanning antenna scanning a broad spatial range with reduced bulk
EP0014605B1 (en) Reverse cassegrain antenna for multipurpose radar
FR2886771A1 (en) Airborne weather radar antenna for e.g. meteorological phenomenon detection, has feed waveguide connected by coupling slots to radiating waveguides, where antenna beam pointing angle is varied by varying frequency of wave of feed waveguide
FR2814614A1 (en) DIVERGENT DOME LENS FOR MICROWAVE WAVES AND ANTENNA COMPRISING SUCH A LENS
EP0021866B1 (en) Device for reducing jamming signals with a rotating linear polarization and use thereof in a radar
EP0061965B1 (en) Antenna with a device for controlling the linear-polarization direction
FR2594260A1 (en) HYPERFREQUENCY PRIMARY SOURCE FOR CONCEALED SCANNING ANTENNA AND INCORPORATING ANTENNA.
EP3220181B1 (en) Hybrid optical system with reduced size for imaging array antenna
FR3000289A1 (en) OSCILLATING VIRTUAL CATHODE MICROWAVE GENERATOR WITH OPEN REFLECTORS
EP0109322A1 (en) Double reflector antenna for a tracking radar improving the target acquisition capability
FR2767971A1 (en) Lens antenna for motor vehicle
EP0897201A1 (en) Cylindrical reflector with sliding radiating elements
FR2943466A1 (en) Radiating element i.e. single pulse bipolarization radiating element, for e.g. Cassegrain reflector antenna of radar, has polarization filters set along direction parallel to dipole branches placed above plane of openings of waveguides
EP0161127B1 (en) Plane antenna with fast mechanical scan
WO2019238643A1 (en) Beam-forming mispointing system
EP4148902A1 (en) Electromagnetic system with angular deviation of the main dispersion lobe of an antenna.
FR2783974A1 (en) METHOD FOR ENLARGING THE RADIATION DIAGRAM OF AN ANTENNA, AND ANTENNA IMPLEMENTING THE SAME
FR2738401A1 (en) Wide angle antenna network e.g. for radar, telecommunications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080222

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602007000328

Country of ref document: DE

Date of ref document: 20090122

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2319579

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090310

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

BERE Be: lapsed

Owner name: THALES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090410

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090511

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

26N No opposition filed

Effective date: 20090911

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090205

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140129

Year of fee payment: 8

Ref country code: SE

Payment date: 20140211

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140129

Year of fee payment: 8

Ref country code: IT

Payment date: 20140217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140206

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007000328

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150205

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180626