EP1819644A2 - Support element and support element system, especially for concrete constructions and concrete building components - Google Patents

Support element and support element system, especially for concrete constructions and concrete building components

Info

Publication number
EP1819644A2
EP1819644A2 EP05770875A EP05770875A EP1819644A2 EP 1819644 A2 EP1819644 A2 EP 1819644A2 EP 05770875 A EP05770875 A EP 05770875A EP 05770875 A EP05770875 A EP 05770875A EP 1819644 A2 EP1819644 A2 EP 1819644A2
Authority
EP
European Patent Office
Prior art keywords
crystallite
polymer component
element according
binder
support element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05770875A
Other languages
German (de)
French (fr)
Inventor
Josef Scherer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1819644A2 publication Critical patent/EP1819644A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements

Definitions

  • Support element and support element arrangement in particular for concrete structures and concrete components
  • the invention relates to a support element and a support arrangement, in particular for concrete structures and concrete components, the.
  • Carrying element comprises at least one supporting fiber arrangement embedded in a binder.
  • the supporting element arrangement belonging to the subject matter of the invention the supporting element is connected to a building or component by means of an adhesive.
  • Support elements and support element arrangements of this type are known, for example in the form of scrims or woven fabrics made of high-strength fibers, which are laminated on with a binder in the tension zone of a concrete surface. Correspondingly prefabricated laminates are also used, which are glued in the tension zone of a concrete surface.
  • the application extends to repairs at cracks and fractures of load-bearing concrete structures, but also to the reinforcement of structures that are still intact for increased loads as well as to new designs for concentrated loads, especially in situations where space is soaked up. In these and other applications, concrete with more or less high moisture content is generally present in the base of the laminate support elements.
  • the coatings and intermediate layers may also contain water and other dampening media, the long-term diffusion of which in the form of corresponding vapors should not be hindered by the extensive support elements or their hardened binder polymer components.
  • Known urethane-based polymers are available for the binders, which, when cured, have sufficient vapor permeability for the purposes at hand.
  • such binders have a very low shear emodule compared to the modules of the high-strength laminate fibers.
  • fiber strength cannot be fully exploited in many cases because the shear-soft binder located between the substrate to be relieved and the laminate fibers as well as between the laminate fibers themselves limits the force transmission to the fibers to values that are too low. This is especially true for pre-stressed fiber arrangements.
  • known binder polymers with modulus values suitable for the present purposes in particular the known epoxy binders, have practically no vapor permeability in the hardened state.
  • a first object of the invention is therefore to create a support element which comprises at least one support fiber arrangement embedded in a binder and which is distinguished by high vapor permeability with high strength and modulus values at the same time.
  • the further task of the invention directed towards a support element arrangement the same applies correspondingly to the bonding between the substrate and the support element.
  • the solution according to the invention of the first task of the invention is determined by the features of patent claim 1, that of further tasks of the invention by the features of the subordinate claims.
  • a binder polymer component is first required which, taken by itself, has a relatively high water vapor diffusion resistance coefficient ⁇ in the hardened state.
  • This standardized coefficient is a dimensionless number and indicates how many times the water vapor diffusion resistance of a layer of the The substance in question is that of an equally thick, resting air layer of the same temperature. It is therefore a material-specific characteristic value for water vapor diffusion.
  • the ⁇ -value is around 10 5 , which means practically impermeability and makes these resins unsuitable as binders for purposes of building reinforcement with relevant post-drying of the substrate.
  • epoxy resins have a high potential in terms of tensile and shear strength and also in terms of shear modulus (high shear stiffness), which makes them preferred as binders in reinforcement laminates, particularly in constructions with high fiber prestressing.
  • microcrystalline mineral substances are particularly suitable for the crystallite fraction, preferably those with alkaline reactivity, for example, in particular silicate-containing crystallite materials. PH values in the range between 9 and 12 are therefore advantageous for the crystallite fraction.
  • the alkaline crystallite fraction in fine distribution within the binder polymer component comes into contact with air diffusing in from the outside and can neutralize the carbon dioxide present in it. This helps to maintain the alkaline character in the concrete and thus to prevent corrosion effects on steel reinforcements in the concrete.
  • fiber arrangements interspersed with a binder polymer component and a crystallite component, at least partially consisting of high-strength polymer are therefore particularly suitable, especially those with fibers made of aramide, carbon and / or alkali-resistant glass.
  • Such fiber arrangements preferably with an epoxy-based binder, are eminently suitable for the production of supporting fiber arrangements with strands and scrims, especially in a unidirectional arrangement, but also of fabrics and the like with fibers or fiber bundles twisted at least partially with respect to one another.
  • a laminate support element or a plurality thereof is connected to a building by gluing.
  • This bond contains a polymer component which, by itself, ie without crystallite content, has a relatively high diffusion resistance number ⁇ of, for example, at least 20,000 in the hardened state, but advantageously high mechanical elasticity and strength values, namely, for example, a shear modulus G of at least 5000 N / mm 2 and a tensile strength of at least 10 N / mm 2 .
  • Including a crystallite fraction according to the invention then results in a water vapor diffusion resistance number ⁇ of at most 10,000.
  • a peculiarity of such a support element arrangement can be seen in the fact that the bonding of the support element to the substrate is vapor-permeable. This is of significant importance in practice, in particular for prefabricated laminate fiber support elements which are to be connected in the solid state to a component or building and which themselves can also be more or less vapor-permeable. Without the vapor permeability of the bond itself, the total vapor permeability would be largely eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The invention relates to a support element, especially for concrete constructions and concrete building components, comprising at least one supporting fiber system embedded in a binder. The aim of the invention is to create a support element that comprises at least one supporting fiber system embedded in a binder and is characterized by excellent vapor permeability and at the same time by high stability and good modulus E values. Another corresponding aim applies to a support element system regarding the binder contained in the adhesive between the ground and the support element. The first aim is achieved by the fact that the binder contains at least one polymer component that is provided with a minimum shear modulus G of 3000 N/mm2 and a minimum tensile strength of 10 N/mm2 in the cured state, said binder containing at least one crystallite moiety which permeates the supporting fiber system at least in part while being provided with a maximum effective water vapor diffusion resistance factor µ of 18,000 in the cured state of the polymer component thereof. The other aim is achieved by the fact that the adhesive contains at least one polymer component that is provided with a minimum shear modulus G of 5000 N/mm2 and a minimum tensile strength of 10 N/mm2 in the cured state while said adhesive contains a crystallite moiety which forms a solid dispersoid having a maximum effective water vapor diffusion resistance factor µ of 18,000 in combination with the adhesive polymer component.

Description

Tragelement und Tragelementanordnung, insbesondere für Betonbauwerke und BetonbauteileSupport element and support element arrangement, in particular for concrete structures and concrete components
Die Erfindung betrifft ein Tragelement sowie eine Tragqlementanord- nung, insbesondere für Betonbauwerke und Betonbauteile, wobei das ,. Tragelement wenigstens eine in einen Binder eingebettete Tragfaseranordnung umfasst Bei der zum Erfmdungsgegenstand gehörenden Tragelementanordnung ist das Tragelement durch eine Verklebung mit einem Bauwerk oder Bauteil verbunden.The invention relates to a support element and a support arrangement, in particular for concrete structures and concrete components, the. Carrying element comprises at least one supporting fiber arrangement embedded in a binder. In the supporting element arrangement belonging to the subject matter of the invention, the supporting element is connected to a building or component by means of an adhesive.
Tragelemente und Tragelementanordnungen dieser Art sind bekannt, z.B. in Form von Gelegen oder Geweben aus hochfesten Fasern, die mit einem Binder in der Zugspannungszone einer Betonoberfläche auf laminiert sind. Auch kommen entsprechend vorgefertigte Laminate zum Einsatz, die in der Zugspannungszone einer Betonoberfläche aufgeklebt sind. Der Einsatz erstreckt sich auf Reparaturen an Riss- und Bruchstellen von tragenden Betonbauten, aber auch auf die Verstärkung von an sich noch intakten Bauten für aufgestockte Belastungen sowie auf Neukonstruktionen für konzentrierte Belastungen, vor allem bei z.B. räumlich eingesctoänkten Gegebenheiten. Bei diesen und anderen Anwendungen ist im allgemeinen im Untergrund der Laminat-Tragelemente Beton mit mehr oder weniger hohem Feuchtigkeitsgehalt vorhanden. Auch können in Beschichtungen und Zwischenschichten Gehalte an Wasser und anderen Feuchtmedien vorhanden sein, deren langfristiges Ausdiffundieren in Form entsprechender Dämpfe durch die lächenhaft ausgedehnten Tragelemente bzw. deren ausgehärtete Binder-Polymerkomponenten nicht behindert werden sollte. Für die Binder stehen bekannte Polymere auf Urethanbasis zur Verfügung, die im ausgehärteten Zustand eine für die vorliegenden Zwecke ausreichende Dampfdurchlässigkeit aufweisen. Solche Binder haben jedoch einen im Vergleich zu den Modulen der hochfesten Laminatfasern sehr niedrigen Schub-Emodul. Infolgedessen kann in vielen Fällen die Faserfestigkeit nicht voll ausgenutzt werden, weil der zwischen dem zu entlastenden Untergrund und den Laminatfasern sowie zwischen den Laminatfasern selbst befindliche, schubweiche Binder die Kraftübertragung auf die Fasern auf zu niedrige Werte begrenzt. Dies gilt besonders für vorgespannte Faseranordnungen. Andererseits haben bekannte Binderpolymere mit für die vorliegenden Zwecke passenden Modulwerten, insbesondere die bekannten Epoxybinder, im ausgehärteten Zustand praktisch keine Dampfdurchlässigkeit.Support elements and support element arrangements of this type are known, for example in the form of scrims or woven fabrics made of high-strength fibers, which are laminated on with a binder in the tension zone of a concrete surface. Correspondingly prefabricated laminates are also used, which are glued in the tension zone of a concrete surface. The application extends to repairs at cracks and fractures of load-bearing concrete structures, but also to the reinforcement of structures that are still intact for increased loads as well as to new designs for concentrated loads, especially in situations where space is soaked up. In these and other applications, concrete with more or less high moisture content is generally present in the base of the laminate support elements. The coatings and intermediate layers may also contain water and other dampening media, the long-term diffusion of which in the form of corresponding vapors should not be hindered by the extensive support elements or their hardened binder polymer components. Known urethane-based polymers are available for the binders, which, when cured, have sufficient vapor permeability for the purposes at hand. However, such binders have a very low shear emodule compared to the modules of the high-strength laminate fibers. As a result, fiber strength cannot be fully exploited in many cases because the shear-soft binder located between the substrate to be relieved and the laminate fibers as well as between the laminate fibers themselves limits the force transmission to the fibers to values that are too low. This is especially true for pre-stressed fiber arrangements. On the other hand, known binder polymers with modulus values suitable for the present purposes, in particular the known epoxy binders, have practically no vapor permeability in the hardened state.
Eine erste Aufgabe der Erfindung ist daher die Schaffung eines Tragelementes, das wenigstens eine in einen Binder eingebettete Tragfaseranordnung umfasst und sich durch hohe Dampfdurchlässigkeit bei gleichzeitig hohen Festigkeits- und Emodulwerten auszeichnet. Bezüglich der weiterführenden, auf eine Tragelementanordnung gerichteten Erfmdungsaufgabe gilt entsprechendes für die Verklebung zwischen Untergrund und Tragelement. Die erfin- dungsgemässe Lösung der ersten Erfindungsaufgabe ist bestimmt durch die Merkmale des Patentanspruchs 1, diejenige von weiterführenden Erfmdungsaufgaben durch die Merkmale der nachgeordneten Patentansprüche.A first object of the invention is therefore to create a support element which comprises at least one support fiber arrangement embedded in a binder and which is distinguished by high vapor permeability with high strength and modulus values at the same time. With regard to the further task of the invention directed towards a support element arrangement, the same applies correspondingly to the bonding between the substrate and the support element. The solution according to the invention of the first task of the invention is determined by the features of patent claim 1, that of further tasks of the invention by the features of the subordinate claims.
Beim erfindungsgemässen Tragelement wird zunächst eine Binder- Polymerkomponente vorausgesetzt, die - für sich genommen - im ausgehärteten Zustand eine relativ hohe Wasserdampf-Diffusionswiderstandszahl μ aufweist. Dieser genormte Beiwert ist eine dimensionslose Zahlengrösse und gibt an, wievielmal grösser der Wasserdampf-Diffusionsdurchlasswiderstand einer Schicht des betreffenden Stoffes ist als derjenige einer gleich dicken ruhenden Luftschicht gleicher Temperatur. Es handelt sich also um einen materialspezifischen Kennwert für Wasserdampfdiffusion.In the case of the support element according to the invention, a binder polymer component is first required which, taken by itself, has a relatively high water vapor diffusion resistance coefficient μ in the hardened state. This standardized coefficient is a dimensionless number and indicates how many times the water vapor diffusion resistance of a layer of the The substance in question is that of an equally thick, resting air layer of the same temperature. It is therefore a material-specific characteristic value for water vapor diffusion.
Z.B. für ausgehärtete Epoxyharze liegt der μ-Wert bei etwa 105, was praktisch Undurchlässigkeit bedeutet und diese Harze als Binder für Zwecke der Bauverstärkung mit relevanter Nachtrocknung des Untergrundes ungeeignet macht. Andererseits haben Epoxyharze jedoch ein hohes Potenzial hinsichtlich Zug- und Schubfestigkeit sowie auch hinsichtlich des Schub-Emoduls (hohe Schubsteifheit), was sie als Binder in Verstärkungslaminaten, besonders bei Konstruktionen mit hoher Faservorspannung, bevorzugt geeignet macht.For example, for cured epoxy resins, the μ-value is around 10 5 , which means practically impermeability and makes these resins unsuitable as binders for purposes of building reinforcement with relevant post-drying of the substrate. On the other hand, however, epoxy resins have a high potential in terms of tensile and shear strength and also in terms of shear modulus (high shear stiffness), which makes them preferred as binders in reinforcement laminates, particularly in constructions with high fiber prestressing.
Hier setzt nun der erfmdungsgemässe Fortschritt ein. Er beruht auf der Erkenntnis, dass eine Kompositstruktur aus einer Tragfaseränordnung mit einem im viskosen Zustand eingearbeiteten Polymer-Binder mit einem Kristallitanteil auch dann die erstrebte Dampfdurchlässigkeit des verfestigten Komposits ermöglicht, wenn das Polymer für sich im abgebundenen Zustand nicht oder nur sehr gering dampfdurchlässig ist. Das erfmdungsgemässe Tragelement verwirklicht eine solche Komposit- stmktur. Dabei haben praktische Ausführungen und Erprobungen erwiesen, dass erfmdungsgemäss μ- Werte deutlich unter 12000 bei Komposit-Tragelementen mit hochfesten Faseranordnungen und verfestigtem Binder erreichbar sind. Dies gilt gesichert reproduzierbar nicht nur bei Polymerbindern mit relativ niedrigen μ- Werten als Ausgangsmaterial, sondern ebenso bei hochgradig dampfsperrenden Polymeren wie Epoxyharzen mit μ- Werten von etwa 75000 und weit darüber als Binder.This is where progress according to the invention begins. It is based on the knowledge that a composite structure made of a supporting fiber arrangement with a polymer binder incorporated in the viscous state with a crystallite content enables the desired vapor permeability of the solidified composite even if the polymer is not or only very slightly vapor permeable when set. The support element according to the invention realizes such a composite structure. Practical designs and tests have shown that, according to the invention, μ values well below 12,000 can be achieved with composite support elements with high-strength fiber arrangements and solidified binders. This applies reproducibly with certainty not only for polymer binders with relatively low μ values as the starting material, but also for highly vapor-barrier polymers such as epoxy resins with μ values of approximately 75,000 and far above as binders.
Dabei ist wesentlich, dass gewisse Kristallite ihre den Dampfdurchlass auslösende Wirkung innerhalb des Komposits erst dann entfalten, wenn tatsächlich ein Dampfdruck ansteht, also z.B. bei einem erfmdungs- gemässen Laminat, das an seiner Innenseite mit mehr oder weniger frischem Beton in Berührung steht. Für den Kristallitanteil kommen erfmdungsgemäss vor allem mikrokristalline mineralische Substanzen in Betracht, vorzugsweise solche mit alkalischer Reaktivität, so z.B. insbesondere silikathaltige Kristallitmaterialien. Für den Kristallitanteil sind daher pH- Wert im Bereich zwischen 9 und 12 vorteilhaft.It is important here that certain crystallites only develop their vapor-inducing effect within the composite when there is actually a vapor pressure, for example in the case of a laminate according to the invention which is in contact with more or less fresh concrete on the inside. According to the invention, microcrystalline mineral substances are particularly suitable for the crystallite fraction, preferably those with alkaline reactivity, for example, in particular silicate-containing crystallite materials. PH values in the range between 9 and 12 are therefore advantageous for the crystallite fraction.
Nach vollzogener Austrocknung des Untergrundes tritt der alkalische Kristallitanteil in feiner Verteilung innerhalb der Binder-Polymerkomponente mit von aussen eindiffundierender Luft in Berührung und kann die in dieser vorhandene Kohlensäure neutralisieren. Dies trägt dazu bei, den alkalischen Charakter im Beton aufrechtzuerhalten und damit Korrosionseffekte an Stahlarmierungen im Beton hintan zu halten.After the substrate has dried out, the alkaline crystallite fraction in fine distribution within the binder polymer component comes into contact with air diffusing in from the outside and can neutralize the carbon dioxide present in it. This helps to maintain the alkaline character in the concrete and thus to prevent corrosion effects on steel reinforcements in the concrete.
Auch hinsichtlich der Tragfaseranordnungen haben sich erfindungs- gemäss Optimierungsmöglichkeiten für die vorliegende Anwendung ergeben. Neben Kohlenstoff- und anderen Hochfestigkeits-Fasem kommen daher insbesondere mit einer Binder-Polymerkomponente und einem Kristallitanteil durchsetzte, wenigstens teilweise aus hochfestem Polymer bestehende Faseranordnungen in Betracht, vor allem solche mit Fasern aus Aramid, Carbon und/oder alkali-resistentem Glas. Solche Faseranordnungen, und zwar bevorzugt mit einem Binder auf Epoxybasis, eignen sich hervorragend für die Erstellung von Tragfaseranordnungen mit Strängen und Gelegen, vor allem in unidirektionaler Anordnung, aber auch von Geweben und dergl. mit wenigstens teilweise in Bezug aufeinander verdrillten Fasern oder Faserbündeln. Eine solche Ausbildung der tragenden Elemente begünstigt die Gleichförmigkeit der Schubkrafteinleitung auf die einzelnen Fasern bzw. Faserbündel und damit die Gleichförmigkeit der Spannungsverteilung über den Querschnitt der Tragfaseranordnung. Bei einer Tragelementanordnung als besonderem Ausfuhrungsbeispiel der Erfindung ist ein Laminat-Tragelement oder eine Mehrzahl derselben durch Verklebung mit einem Bauwerk verbunden. Diese Verklebung enthält eine Polymerkomponente, die für sich, d.h. ohne Kristallitanteil, im ausgehärteten Zustand eine relativ hohe Diffusionswiderstandszahl μ von z.B. mindestens 20000 aufweist, jedoch vorteilhaft hohe mechanische Elastizitäts- und Festigkeitswerte, nämlich z.B. einen Schub- Emodul G von mindestens 5000 N/mm2 und eine Zugfestigkeit von mindestens 10 N/mm2. Unter erfindungsgemässem Einschluss eines Kristallitanteils ergibt sich dann eine Wasserdampf-Diffusionswiderstandszahl μ von höchstens 10000.According to the invention, optimization possibilities for the present application have also arisen with regard to the supporting fiber arrangements. In addition to carbon and other high-strength fibers, fiber arrangements interspersed with a binder polymer component and a crystallite component, at least partially consisting of high-strength polymer, are therefore particularly suitable, especially those with fibers made of aramide, carbon and / or alkali-resistant glass. Such fiber arrangements, preferably with an epoxy-based binder, are eminently suitable for the production of supporting fiber arrangements with strands and scrims, especially in a unidirectional arrangement, but also of fabrics and the like with fibers or fiber bundles twisted at least partially with respect to one another. Such a design of the load-bearing elements favors the uniformity of the introduction of shear forces onto the individual fibers or fiber bundles and thus the uniformity of the stress distribution over the cross section of the supporting fiber arrangement. In a support element arrangement as a special exemplary embodiment of the invention, a laminate support element or a plurality thereof is connected to a building by gluing. This bond contains a polymer component which, by itself, ie without crystallite content, has a relatively high diffusion resistance number μ of, for example, at least 20,000 in the hardened state, but advantageously high mechanical elasticity and strength values, namely, for example, a shear modulus G of at least 5000 N / mm 2 and a tensile strength of at least 10 N / mm 2 . Including a crystallite fraction according to the invention then results in a water vapor diffusion resistance number μ of at most 10,000.
Eine Besonderheit einer solchen Tragelementanordnung ist darin zu sehen, dass die Verklebung des Tragelementes mit dem Untergrund dampfdurchlässig ausgebildet ist. Dies hat für die Praxis wesentliche Bedeutung, insbesondere für vorgefertigte und in festem Zustand mit einem Bauteil oder Bauwerk zu verbindende Laminat-Fasertragelemente, die selbst ebenfalls mehr oder weniger dampfdurchlässig sein können. Ohne die nun vorliegende Dampfdurchlässigkeit der Verklebung selbst würde der Gesamt-Dampfdurchlass weitgehend entfallen. A peculiarity of such a support element arrangement can be seen in the fact that the bonding of the support element to the substrate is vapor-permeable. This is of significant importance in practice, in particular for prefabricated laminate fiber support elements which are to be connected in the solid state to a component or building and which themselves can also be more or less vapor-permeable. Without the vapor permeability of the bond itself, the total vapor permeability would be largely eliminated.

Claims

PATENTANSPRÜCHE
1. Tragelement, insbesondere für Betonbautwerke und Betonbauteile, das wenigstens eine in einen Binder eingebettete Tragfaseranordnung aufweist, gekennzeichnet durch die Kombination folgender Merkmale:1. Support element, in particular for concrete structures and concrete components, which has at least one support fiber arrangement embedded in a binder, characterized by the combination of the following features:
a) der Binder enthält mindestens eine Polymerkomponente, die im ausgehärteten Zustand einen Schub-Emodul G von mindestens 3000 N/mm2 und eine Zugfestigkeit von mindestens 10 N/mm2 aufweist;a) the binder contains at least one polymer component which, in the hardened state, has a shear modulus G of at least 3000 N / mm 2 and a tensile strength of at least 10 N / mm 2 ;
b) der Binder enthält mindestens einen die Tragfaseranordnung wenigstens teilweise durchsetzende Kristallitanteil, und hat im ausgehärteten Zustan seiner Polymerkomponente einen Betriebswert der Diffusionswiderstandszahl μ für Wasserdampf von höchstens 18000.b) the binder contains at least one crystallite component which at least partially penetrates the supporting fiber arrangement, and in the hardened state of its polymer component has an operating value of the diffusion resistance number μ for water vapor of at most 18000.
2. Tragelement nach Anspruch 1, dadurch gekennzeichnet, dass der Kristallitanteil, auf die Polymerkomponente des ausgehärteten2. Supporting element according to claim 1, characterized in that the crystallite content, on the polymer component of the hardened
Binders bezogen, maximal 42 Volumen% beträgt.Binders related, is a maximum of 42 volume%.
3. Tragelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Kristallitanteil auf die ausgehärtete Binder- Polymerkomponente bezogen mindestens 4 Volumen% beträgt. 3. Supporting element according to one of the preceding claims, characterized in that the proportion of crystallite based on the hardened binder polymer component is at least 4% by volume.
4. Tragelement nach Anspruch 3, dadurch gekennzeichnet, dass der Kristallitanteil auf die ausgehärtete Binder-Polymerkomponent bezogen mindestens 10 Volumen% beträgt.4. Supporting element according to claim 3, characterized in that the proportion of crystallite based on the hardened binder polymer component is at least 10% by volume.
5. Tragelement nach einem der vorangehenden Ansprüche, gekennzeichnet durch einen Kristallitanteil mit alkalischer Reaktivität.5. Supporting element according to one of the preceding claims, characterized by a crystallite content with alkaline reactivity.
6. Tragelement nach Anspruch 5, gekennzeichnet durch einen Kristallitanteil mit einem pH- Wert im Bereich zwischen 9 und 12.6. Supporting element according to claim 5, characterized by a crystallite content with a pH in the range between 9 and 12.
7. Tragelement nach einem der vorangehenden Ansprüche, gekennzeichnet durch einen silikathaltigen Kristallitanteil.7. Supporting element according to one of the preceding claims, characterized by a silicate-containing crystallite component.
8. Tragelement nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine wenigstens teilweise aus Epoxyharz bestehende Binder-Polymerkomponente. 8. Support element according to one of the preceding claims, characterized by an at least partially made of epoxy resin binder polymer component.
9. Tragelement nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine mit einer Binder-Polymerkomponente und einem Kristallitanteil durchsetzte, wenigstens teilweise aus hochfestem Polymer bestehende Tragfaseranordnung.9. Support element according to one of the preceding claims, characterized by a support fiber arrangement which is interspersed with a binder polymer component and a crystallite component and which consists at least partially of high-strength polymer.
10. Tragelement nach Anspruch 9, gekennzeichnet durch eine mit einer Binder-Polymerkomponente und einem Kristallitanteil durchsetzte, wenigstens teilweise aus Aramidfasern bestehende Tragfaseranordnung.10. Supporting element according to claim 9, characterized by a supporting fiber arrangement which is interspersed with a binder polymer component and a crystallite component and which at least partially consists of aramid fibers.
11. Tragelement nach Anspruch 9, gekennzeichnet durch eine mit einer Binder-Polymerkomponente und einem Kristallitanteil durchsetzte, wenigstens teilweise aus Carbonfasern bestehende Tragfaseranordnung.11. Support element according to claim 9, characterized by a support fiber arrangement which is interspersed with a binder polymer component and a crystallite component and which at least partially consists of carbon fibers.
12. Tragelement nach Anspruch 9, gekennzeichnet durch eine mit einer Binder-Polymerkomponente und einem Kristallitanteil durchsetzte, wenigstens teilweise aus alkaliresistenten Glasfasern bestehende Tragfaseranordnung. 12. Support element according to claim 9, characterized by a support fiber arrangement which is interspersed with a binder polymer component and a crystallite component and which consists at least partially of alkali-resistant glass fibers.
13. Tragelementanordnung mit mindestens einem Tragelement nach einem der vorangehenden Ansprüche, wobei das Tragelement durch eine Verklebung mit einem Bauwerk oder Bauteil verbunden ist, gekennzeichnet durch die Kombination folgender Merkmale:13. Supporting element arrangement with at least one supporting element according to one of the preceding claims, wherein the supporting element is connected by gluing to a building or component, characterized by the combination of the following features:
a) die Verklebung enthält mindestens eine Polymerkomponente, die im ausgehärteten Zustand einen Schub-Emodul G von mindestens 5000 N/mm2 und eine Zugfestigkeit von mindestens 10 N/mm2 aufweist;a) the bond contains at least one polymer component which, when cured, has a shear modulus G of at least 5000 N / mm 2 and a tensile strength of at least 10 N / mm 2 ;
b) die Verklebung enthält einen Kristallitanteil, der mit der Verklebungs-Polymerkomponente ein Festkörper-Dispersoid mit einer im Betrieb wirksamen Diffusionswiderstandszahl μ für Wasserdampf von höchstens 18000 bildet. b) the bond contains a proportion of crystallite which, together with the bond polymer component, forms a solid-state dispersoid with an effective diffusion resistance number μ for water vapor of at most 18,000 during operation.
EP05770875A 2004-04-27 2005-04-18 Support element and support element system, especially for concrete constructions and concrete building components Withdrawn EP1819644A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202004006742U DE202004006742U1 (en) 2004-04-27 2004-04-27 Support element and support element arrangement, in particular for concrete structures and concrete components
PCT/EP2005/004096 WO2005102955A2 (en) 2004-04-27 2005-04-18 Support element and support element system, especially for concrete constructions and concrete building components

Publications (1)

Publication Number Publication Date
EP1819644A2 true EP1819644A2 (en) 2007-08-22

Family

ID=34979339

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05770875A Withdrawn EP1819644A2 (en) 2004-04-27 2005-04-18 Support element and support element system, especially for concrete constructions and concrete building components

Country Status (3)

Country Link
EP (1) EP1819644A2 (en)
DE (1) DE202004006742U1 (en)
WO (1) WO2005102955A2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4003381A1 (en) * 1990-02-05 1991-08-08 Sto Ag SYNTHETIC-RESISTANT COATING MATERIAL FOR APPLICATION ON BUILDING WALLS, PREFERABLY SYNTHETIC RESIN PLASTER
DE19756930A1 (en) * 1997-12-20 1999-06-24 Josef Scherer Surface reinforcement of building components e.g. concrete structures
DE10105337A1 (en) * 2001-02-05 2002-08-08 Josef Scherer Support element and support element arrangement, in particular for concrete structures and concrete components

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005102955A2 *

Also Published As

Publication number Publication date
DE202004006742U1 (en) 2005-10-20
WO2005102955A2 (en) 2005-11-03
WO2005102955A3 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
EP2121150B1 (en) Fiber composite material and sliding board core made of a fiber composite material based on wood fiber mats, particularly for skis or snowboards
CH638856A5 (en) Gas-concrete structural part and process for its production
EP3216944B1 (en) Assembly for reinforcing support structures
EP2545219A1 (en) Concrete sleeper and method for the production thereof
EP0947637B1 (en) Thermal and/or sound insulating element and treatment process, especially coating of insulating materials
DE102008040919A1 (en) Concrete component manufacturing method for e.g. ceiling lining, involves concrete-casting textile material soaked with polymer in concrete component in unhardened condition, such that polymer is mixed with concrete in compound zone
DE202007015789U1 (en) Stone carrier with preload
DE19828607A1 (en) Structure increasing loading capacity of concrete floors
EP4003678A1 (en) Composite wood material
CH663052A5 (en) MOLDED PIECE MADE OF HYDRAULICALLY SET MATERIAL.
DE10332491B4 (en) Concrete mixture for an ultra-high-strength concrete and its use
WO2005102955A2 (en) Support element and support element system, especially for concrete constructions and concrete building components
DE19525508A1 (en) Laminate coating for reinforced concrete or brickwork
WO2015007311A1 (en) Saddle tree for a riding saddle
DE202011106980U1 (en) Non-combustible building board
WO2002062722A2 (en) Support element and support element system, especially for concrete constructions and concrete building components
DE202009001846U1 (en) Lightweight body made of a fiber composite based on wood fiber mats, especially for rotor blades in wind turbines
DE202006018958U1 (en) Sandwich protective system for tower of wind energy plant, has solvent free components as basic coating for epoxy resin coating material, on which water-dilutable component polyurethane material is applied in non hardened, sticky condition
DE102004020782A1 (en) Carrier for concrete constructions and components has binder receiving support fibres with polymer component in fibre of given physical characteristics
DE102007014636A1 (en) Sandwich protective system for tower of wind energy plant, has solvent free components as basic coating for epoxy resin coating material, on which water-dilutable component polyurethane material is applied in non hardened, sticky condition
DE19954337A1 (en) Method for on-site production of textile-reinforced concrete comprises pressing a textile structure to a specified depth into a fresh concrete layer and allowing the concrete to harden
DE202006004153U1 (en) sandwich element
EP3266605A1 (en) Construction panel with reinforcement fabric and method for its manufacture
DE10138069A1 (en) Plaster-base façade insulation
WO1995013252A1 (en) Rock wool product and process for its manufacture, coating material therefor and use thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070412

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071106

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071101