EP1810765B1 - Procédé pour moulage de pression pulsée - Google Patents
Procédé pour moulage de pression pulsée Download PDFInfo
- Publication number
- EP1810765B1 EP1810765B1 EP07001379.2A EP07001379A EP1810765B1 EP 1810765 B1 EP1810765 B1 EP 1810765B1 EP 07001379 A EP07001379 A EP 07001379A EP 1810765 B1 EP1810765 B1 EP 1810765B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- liquefied metal
- mold
- metal
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/04—Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/06—Vacuum casting, i.e. making use of vacuum to fill the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/09—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
- B22D27/11—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices
Definitions
- molten metal was simply poured into the mold and then allowed to cool. The cast component was then freed from the mold and, in some cases, subject to additional processing. Additional evolution in molding technology recognized that simply filling a cavity using nothing more than gravity was not as effective as forcing the molten metal into the cavity under pressure. Pressure molding machines applied pressure to the molten metal in order to direct the molten metal into a cavity, thus ensuring that every portion of the cavity could be uniformly filled with the molten metal.
- WO99/46072 describes a method, where in order to improve the solidification process, a secondary pressure on the liquid metal has been applied after the mold has been filled and the filling pipes have been closed on the piston. Further, this secondary pressure creates a mechanical pressure on the liquid metal in the mold with constant value higher than pneumatic filling pressure, or with lineal forcing the pressure to the finally solidification of the metal.
- DE 44 44 123 A1 describes a method known as high die pressure casting.
- the liquid metal is filled into the mold cavity with an additional mechanical pressure using a plunger.
- the pressure applied to the liquid metal in the mold is with constant amplitude and also with an oscillating pressure.
- the filling of the liquid metal is turbulent using a plunger high mechanical pressure.
- EP-A-0951 959 suggests a standard gravity casting which does not include a rising oscillating pressure.
- EP 0 361 837 A2 discloses a casting method, where a fluid-operated cylinder is used as an injecting plunger, and also applies a squeeze pressure to the substance to be molded. Thanks to the controlled motion of the plunger, some gas contained in the melt is automatically exhausted, and a high quality cast product having no gas voids can be obtained. In addition, the application of a vibration from the squeezing plunger to the molten substance prevents the generation of a thin solidified film or layer. However, it is still not possible to break down mechanically the crystals within the molten metal during the solidification process.
- Positive pressure could be used to drive molten metal from a crucible into the mold.
- Negative pressure could be applied around the mold, which results in drawing the molten metal into the cavity.
- a combination of positive and negative pressure has also been utilized in order to more effectively fill the cavity with molten metal.
- Fig. 1 is a flow diagram that depicts one example method for pulsed pressure molding.
- a casting is formed by liquefying a metal in a crucible wherein the crucible is disposed in a crucible chamber (step 5).
- a differential pressure is applied to the liquefied metal so as to force the liquefied metal into a mold (step 10).
- the pressure applied to liquefied metal is raised in order to reach a solidification pressure.
- the pressure is increased in oscillating and increasing pressure steps (step 15). Once the solidification pressure is reached, the liquefied metal is allowed to solidify (step 20).
- Fig. 2 is a flow diagram that depicts an alternative method for applying a differential pressure to a liquefied metal.
- a differential pressure is applied to liquefied metal by increasing the pressure in a crucial chamber (step 25).
- Fig. 3 is a flow diagram that depicts yet another alternative method for applying a differential pressure to a liquefied metal.
- a differential pressure is applied to the liquefied metal by decreasing the pressure in a mold chamber (step 30).
- Fig. 4 is a flow diagram that depicts an alternative example method for raising the pressure of the liquefied metal in oscillating pressure steps.
- the pressure of the liquefied metal is increased by applying a gaseous pressure at a first level to the liquefied metal in the mold. It should be appreciated that this first pressure level is greater than the differential pressure originally applied to the liquefied metal (step 35).
- Fig. 5 is a flow diagram that depicts alternative example methods for applying a gaseous pressure to the liquefied metal.
- gaseous pressure is applied to the mold chamber (step 50).
- gaseous pressure is applied to crucible chamber (step 55).
- Figs. 6 and 7 collectively form a flow diagram that depicts an alternative method for raising the pressure applied to liquefied metal in the mold using a mechanical means.
- raising the pressure of the liquefied metal in the mold is accomplished by isolating the liquefied metal in the crucible from the liquefied metal in the mold (step 55).
- mechanical pressure at a first level is applied to the liquefied metal in the mold. It should be appreciated that this first level of mechanical pressure is greater than the originally applied differential pressure used to force the liquefied metal into the mold (step 60).
- the mechanical pressure is then reduced to a lower level, wherein the reduced level is still greater than the originally applied differential pressure (step 65).
- the mechanical pressure is then increased to a second level, which is greater than the first mechanical pressure level applied to the liquefied metal (step 70).
- Fig. 7A is a pictorial illustration of one example pressure profile useful in pulsed-pressure counter pressure molding.
- counter pressure molding is accomplished by raising the pressure in a crucible chamber and in a mold chamber to a initial pressure (P0) 75. At this point, the pressure in the mold chamber is maintained for a period of time 80 until the liquefied metal flows into a mold. During the same period of time, additional pressure is applied to the crucial chamber until the mold is filled (Pf) with liquefied metal, which occurs at 85 in the profile. The pressure applied to the liquefied metal in the mold is then reduced to a first reduced pressure level 90, which is greater than the initial pressure P0 at 80.
- the pressure applied to the liquefied metal is then increased to a level 95 this greater than the flow pressure Pf 85.
- the time to reduce the pressure from level 85 down to level 90 is somewhat longer than the time expended in increasing the pressure from level 90 through 95. This shortened rise time results in a pulsing action upon the liquefied metal.
- additional cycles of reducing and increasing the pressure upon the liquefied metal are applied according to an alternative variation of the present method until a solidification pressure is achieved 100.
- the pulsing of pressure is typically, but not necessarily applied in a manner where pressure is increased at a rate that is faster (i.e. delta pressure over delta time) than it is decreased. Again, this results in a pressure impulse that causes breakdown of metal crystallization as described heretofore.
- the change in pressure over time is referred to as the slope of the pressure profile.
- Fig. 8 is a pictorial illustration of an alternative example pressure profile useful in vacuum pressure molding.
- a negative pressure, or a vacuum is applied to a mold chamber, thereby drawing the liquefied metal into a mold situated in the mold chamber.
- the liquefied metal once drawn into the mold, is found at a vacuum pressure level 105.
- the negative pressure is maintained for some period of time allowing the liquefied metal to settle in the mold.
- the pressure applied to the liquefied metal is then increased to a first positive pressure level 110. This additional pressure is typically applied as additional positive pressure to the crucible, from whence the liquefied metal is drawn into the mold.
- the increase in pressure to the first positive pressure level 110 must be accomplished rapidly in order to prevent the liquefied metal from withdrawing back into the crucible.
- This first pressure level 110 is greater than the initial pressure applied to the liquefied metal.
- the pressure is then reduced to a lower pressure level 115.
- This lower pressure level 115 is still greater than the original pressure 105 applied to the liquefied metal.
- the pressure applied to the liquefied metal is then increased to a level 1.20 that is greater than the first pressure level 110.
- these oscillating increasing pressure steps provide for a pulsating action upon the liquefied metal in order to breakdown the crystalline structure of the liquefied metal in the mold, thereby increasing its density.
- the magnitude of the slope of pressure increase is typically, but not necessarily greater than the magnitude of the slope of pressure decrease, thereby accentuating the impulses imparted upon the liquefied metal.
- Figs. 9 through 12 are pictorial illustrations that depict alternative example pressure profiles useful in other molding methods.
- Fig. 13 is a pictorial diagram that illustrates the structure of one example embodiment of a molding machine.
- a molding machine comprises a crucible 200 disposed in a crucible chamber 205.
- the molding machine further comprises a differential pressure unit 210 that applies a differential pressure to a liquefied metal 204 contained in the crucible 200.
- a mold 217 included in one alternative embodiment of a molding machine, receives the liquefied metal 250 when a differential pressure is applied to said liquefied metal.
- the molding machine of this example embodiment further comprises a pressure controller 215.
- the pressure controller 215 controls the differential pressure unit 210 so as to increase the pressure applied to liquefied metal in the mold 250 in increasing oscillating pressure steps in accordance with the method taught herein.
- the differential pressure unit 210 comprises a pressure unit 225, which is disposed to apply pressure to the crucible chamber 205. This is accomplished when the controller 215 opens a valve 260 enabling pressure from the pressure unit 225 to enter the crucible chamber 205.
- the differential pressure unit 210 comprises a vacuum unit 220 disposed to apply a vacuum to a mold chamber 247, which is included in this alternative example embodiment.
- the controller 215 controls a valve 222 that enables reduction in pressure in the mold chamber 247 by establishing a path from the mold chamber 247 to the vacuum unit 220.
- the differential pressure unit 210 comprises a gaseous pressure unit 225 which, under control of the controller 215, increases the applied differential pressure to a first increased level and then reduces the applied differential pressure to a level that is greater than the initially applied differential pressure.
- the controller 215 then causes the applied differential pressure to be increased to level that is greater than the first increased level in accordance with the techniques and teachings herein.
- an increase in the applied differential pressure to a first increased level is accomplished by controlling a valve 260 enabling pressure from the gaseous pressure unit 225 to be directed to the crucible chamber 205.
- an increase in the applied differential pressure to a first increased level is accomplished by controlling a valve 265 enabling pressure from the gaseous pressure unit 225 to be directed to the mold chamber 247.
- the controller 215 controls either the valve 260 enabling an increase in pressure in the crucible chamber 205 or the valve 265 enabling an increase in pressure in the mold chamber 247 in a pulsating manner consistent with the teachings of the method herein described.
- a molding machine further comprises a mechanical pressure actuator 230.
- the mechanical pressure actuator 230 receives work 240 and applies a proportionate amount of pressure to the liquefied metal contained in the mold 250.
- the mechanical pressure actuator 230 includes a gate mechanism 233 that isolates the liquefied metal in that crucible chamber 245 from the liquefied metal in the mold 250.
- the mechanical pressure actuator 230 then applies work to the liquefied metal in the mold 250 so as to increase the pressure therein to a first level that is greater than the pressure applied to liquefied metal by the differential pressure unit 210.
- the mechanical pressure actuator then reduces the work (i.e. pressure) applied to liquefied metal so as to reduce the pressure in the liquefied metal to a level that is greater than the pressure applied to liquefied metal by the differential pressure unit 210.
- the mechanical pressure actuator 230 then applies more work to the liquefied metal in order to increase the pressure applied to the liquefied metal to a second level that is greater than the first pressure level applied to the liquefied metal by the mechanical pressure actuator 230.
- the controller 215 controls an mechanical actuator 260 that creates physical work 240 that is applied to the mechanical pressure actuator 235.
- controller 215 controls the amount of applied work 240 accordance with the techniques and teachings herein described chose results in an increase in the pressure of the liquefied metal 250 in the mold in increasing oscillating pressure steps.
- the actuator comprises a solenoid, but this is merely an example embodiment that is not intended to limit scope of the claims appended hereto.
- Fig. 13 further illustrates that, according to yet another alternative embodiment, the work created by the mechanical actuator 260 is applied to a pressure ram 241.
- the pressure ram 241 conveys the physical work directly to the liquefied metal contained within the mold itself.
- the quantity and placement of such pressure rams 241 is typically established by empirical experimentation so as to determine the most effective resultant component created in the mold.
- the measure is the most effective resultant component is typically driven by the density of the solidified metal throughout various regions within the resultant component.
- Fig. 14 is a pictorial illustration of an alternative example embodiment of a molding machine that includes the gate valve for isolating liquefied metal in the mold from the crucible.
- the mechanical pressure actuator 235 does not include a gate mechanism.
- this alternative embodiment provides a gate valve 280 that is used to isolate the liquefied metal 250 in the mold from the liquefied metal 245 in the crucible. Control of the gate valve 280 is accomplished by the controller 215 and a sequencer that enables isolation prior to application of work to the mechanical pressure actuator 235 as heretofore described.
- a solenoid 285 is used to actuate the gate valve 280.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Claims (5)
- Méthode de moulage sous pression par impulsions comprenant:- liquéfaction d'un métal dans un creuset où le creuset est disposé dans une chambre de creuset;- appliquer une pression différentielle sur le métal liquéfié de manière à pousser le métal liquéfié dans un moule en augmentant la pression dans la chambre de creuset pour atteindre une pression de solidification,- permettre au métal liquéfié dans le moule de solidifier en augmentant la pression sur le métal liquéfié dans le moule par phases de pression oscillante et croissante comme des impulsions de pression post-compression, caractérisé en ce que- la pression sur le métal liquéfié est augmentée en appliquant une pression gazeuse au premier niveau sur le métal liquéfié dans le moule, où ce premier niveau de pression est supérieur à la pression différentielle appliquée à l'origine sur le métal liquéfié;- réduire la pression gazeuse à un niveau qui est toujours supérieur à la pression différentielle appliquée à l'origine; et- augmenter la pression gazeuse à un deuxième niveau qui est supérieur au premier niveau de pression gazeuse et ces cycles de réduction et d'augmentation de la pression sur le métal liquéfié sont appliqués jusqu'à la solidification du métal.
- Méthode de moulage sous pression par impulsions selon la revendication 1, caractérisée en ce que la pression oscillante comme des impulsions de pression est appliquée dans la chambre de creuset.
- Méthode de moulage sous pression par impulsions avec contre-pression, consistant à augmenter la pression dans une chambre de creuset et dans une chambre de moulage à une pression initiale, maintenir la pression dans la chambre de moulage pendant une période de temps jusqu'à ce que le métal liquéfié s'écoule dans le moule, appliquer une pression additionnelle pendant la même période de temps à la chambre de creuset jusqu'à ce que le moule se remplit avec du métal liquéfié, et réduire la pression appliquée au métal liquéfié dans le moule à un premier niveau de pression réduite, qui est supérieur the initial pressure; augmenter la pression appliquée au métal liquéfié à un niveau qui est supérieur à la pression du flux, caractérisé en ce que le temps pour réduire la pression à la première pression réduite est plus long que le temps consacré à augmenter la pression la première pression réduite et et ce temps de montée raccourci résulte en une action d'impulsions sur le métal liquéfié où la pression est augmentée à un rythme plus rapide (c'est-à-dire delta pression sur delta temps) et ensuite est et ensuite est diminuée et ces cycles de réduction et d'augmentation de la pression sur le métal liquéfié sont appliqués jusqu'à l'achèvement de la pression de solidification.
- Méthode de moulage sous pression à vide incluant l'application d'une pression par impulsions où une pression négative ou un vide est appliqué sur une chambre de moulage, en tirant le métal liquéfié dans un moule situé dans la chambre de moulage où le métal liquéfié, une fois tiré dans le moule se trouve à un niveau de pression sous vide, et la pression négative est maintenue pour une certaine période de temps permettant au métal liquéfié de s'installer dans le moule, et une augmentation rapide de la pression appliquée au métal liquéfié jusqu'à un premier niveau de pression positif afin d'éviter que le métal liquéfié se retire en arrière dans le creuset, caractérisé en ce que ce premier niveau de pression est supérieur à la pression initiale appliquée sur le métal liquéfié; réduire cette pression à un niveau de pression plus bas qui est encore supérieur à la pression appliquée à l'origine sur le métal liquéfié; ensuite augmenter la pression appliquée au métal liquéfié à un deuxième niveau qui est supérieur au premier niveau de pression; où l'importance de la pente de l'augmentation de pression est typiquement, mais pas nécessairement supérieure à pente de la réduction de la pression, accentuant de ce fait les impulsions données sur le métal liquéfié, et ces cycles de réduction et d'augmentation de la pression sont appliqués jusqu'à l'achèvement de la solidification du métal.
- Méthode de moulage sous pression par impulsions comprenant:- liquéfaction d'un métal dans un creuset;- appliquer de la pression différentielle sur le métal liquéfié de manière à pousser le métal liquéfié dans un moule;- augmenter la pression appliquée sir métal liquéfié dans le moule en utilisant des moyens mécaniques pour atteindre une pression de solidification,
caractérisé en ce que la méthode comprend en outre:- isoler le métal liquéfié dans le creuset du métal liquéfié dans le moule par un mécanisme de vannage;- appliquer une pression mécanique sur le métal liquéfié dans le moule au premier niveau, qui est supérieur à la pression différentielle appliquée à l'origine utilisée pour pousser le métal liquéfié dans le moule;- réduire la pression mécanique à un niveau plus bas, où le niveau réduit est encore supérieur la pression différentielle appliquée à l'origine; et- augmenter la pression mécanique à un deuxième niveau qui est supérieur au premier niveau de pression mécanique appliqué sur le métal liquéfié, et- ces cycles de réduction et d'augmentation de la pression sont appliqués jusqu'à l'achèvement de la solidification du métal.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76206906P | 2006-01-24 | 2006-01-24 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1810765A2 EP1810765A2 (fr) | 2007-07-25 |
EP1810765A3 EP1810765A3 (fr) | 2008-05-21 |
EP1810765B1 true EP1810765B1 (fr) | 2015-09-09 |
Family
ID=38002041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07001379.2A Active EP1810765B1 (fr) | 2006-01-24 | 2007-01-23 | Procédé pour moulage de pression pulsée |
Country Status (2)
Country | Link |
---|---|
US (1) | US20160067774A1 (fr) |
EP (1) | EP1810765B1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106563786A (zh) * | 2016-10-30 | 2017-04-19 | 山西汾西重工有限责任公司 | 一种颗粒增强铝基复合材料的差压浇注铸造方法 |
CN109513900A (zh) * | 2018-12-13 | 2019-03-26 | 中北大学 | 铸锭件电磁泵低压铸造工艺及零件电磁泵低压铸造工艺 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0361837A2 (fr) * | 1988-09-30 | 1990-04-04 | Ube Industries, Ltd. | Procédé et dispositif de réglage d'une coulée sous pression en contrôlant le mouvement d'un piston de cylindre |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2340156A2 (fr) * | 1976-02-03 | 1977-09-02 | Pechiney Aluminium | Procede et dispositif de moulage sous basse pression |
US4585050A (en) * | 1981-01-05 | 1986-04-29 | Etude Et Developpement En Metallurgie, E.D.E.M., S.A.R.L. | Process for automatic regulation of a casting cycle |
US4714102A (en) * | 1986-01-11 | 1987-12-22 | Toshiba Machine Co., Ltd. | Casting method and an apparatus therefor |
JP2849508B2 (ja) * | 1992-08-11 | 1999-01-20 | 友和産業株式会社 | 軽比重金属の高差圧超細密鋳造方法 |
JPH07164128A (ja) * | 1993-12-10 | 1995-06-27 | Ube Ind Ltd | 加圧鋳造方法および装置 |
WO1999046072A1 (fr) * | 1998-03-11 | 1999-09-16 | Gut Giesserei Umwelt Technik Gmbh | Dispositif de coulage et procede de coulage avec compression ulterieure |
EP0951959A1 (fr) * | 1998-04-22 | 1999-10-27 | SPEEDform GmbH | Appareil pour couler de matériaux métalliques |
MXPA01007527A (es) * | 1999-01-28 | 2003-03-27 | Disa Ind As | Metodo y aparato de moldeo. |
US6779588B1 (en) * | 2001-10-29 | 2004-08-24 | Hayes Lemmerz International, Inc. | Method for filling a mold |
US7279128B2 (en) * | 2002-09-13 | 2007-10-09 | Hi T.E.Q., Inc. | Molten metal pressure pour furnace and metering valve |
US20070215308A1 (en) * | 2004-05-18 | 2007-09-20 | Nagayoshi Matsubara | Vertical Casting Apparatus and Vertical Casting Method |
KR100986402B1 (ko) * | 2008-04-10 | 2010-10-11 | 현대자동차주식회사 | 저압주조 금형의 냉각장치 |
-
2007
- 2007-01-23 EP EP07001379.2A patent/EP1810765B1/fr active Active
- 2007-01-24 US US11/698,309 patent/US20160067774A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0361837A2 (fr) * | 1988-09-30 | 1990-04-04 | Ube Industries, Ltd. | Procédé et dispositif de réglage d'une coulée sous pression en contrôlant le mouvement d'un piston de cylindre |
Also Published As
Publication number | Publication date |
---|---|
EP1810765A2 (fr) | 2007-07-25 |
US20160067774A1 (en) | 2016-03-10 |
EP1810765A3 (fr) | 2008-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0802840B1 (fr) | Procede d'injection de metal en fusion dans la cavite d'un moule | |
CN101274361B (zh) | 低速真空压挤铸造工艺 | |
JPH02155557A (ja) | 加圧鋳造装置 | |
CN1947893A (zh) | 铝合金轮毂的制造方法 | |
KR20150131384A (ko) | 주조장치 | |
CA2599108A1 (fr) | Methode et appareil de fabrication de produits en aluminium moules sous pression | |
CN210387546U (zh) | 一种机械振动与超声波振动协同作用的铸造装置 | |
CN102198498A (zh) | 铸造装置及铸造方法 | |
EP1900456A1 (fr) | Disposition pour la fabrication de pieces coulées | |
EP3170582A1 (fr) | Procédé et appareil de moulage d'objets en aluminium, alliages d'aluminium, alliages légers, laiton et matières analogues | |
EP1810765B1 (fr) | Procédé pour moulage de pression pulsée | |
EP1518620B1 (fr) | Coulée par gravité | |
US4958675A (en) | Method for casting metal alloys with low melting temperatures | |
US6880614B2 (en) | Vertical injection machine using three chambers | |
JP3043751B1 (ja) | 金属成形方法及び金属成形装置 | |
CN2787336Y (zh) | 一种金属压铸成型的辅助装置 | |
RU2657668C2 (ru) | Способ управления процессом кристаллизации алюминиевых сплавов при литье под давлением | |
JPH08318359A (ja) | 加圧鋳造方法および装置 | |
JPH0780043B2 (ja) | シリンダの位置制御方法 | |
JPH04270056A (ja) | 低圧鋳造方法及びその装置 | |
JPS61227012A (ja) | 射出成形方法 | |
KR100311737B1 (ko) | 다이 캐스팅공정의 시작품 제작을 위한 진동가압 석고주조장치 및 그 석고주조방법 | |
JP2704471B2 (ja) | 加圧鋳造における加圧ストローク制御方法 | |
JPH06190534A (ja) | 加圧鋳造法および装置 | |
US3605861A (en) | Modifying cast structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20081121 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20090723 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150310 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 747699 Country of ref document: AT Kind code of ref document: T Effective date: 20150915 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007042975 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151210 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160109 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160127 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602007042975 Country of ref document: DE Representative=s name: HERNANDEZ, YORCK, DIPL.-ING., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20160127 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007042975 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160123 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160123 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602007042975 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 747699 Country of ref document: AT Kind code of ref document: T Effective date: 20170123 Ref country code: AT Ref legal event code: UEP Ref document number: 747699 Country of ref document: AT Kind code of ref document: T Effective date: 20150909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170123 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160127 Year of fee payment: 10 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170123 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150909 |