EP1809787A2 - Systeme de commande de pression dans un appareil de depot de substrat photovoltaique - Google Patents

Systeme de commande de pression dans un appareil de depot de substrat photovoltaique

Info

Publication number
EP1809787A2
EP1809787A2 EP05851547A EP05851547A EP1809787A2 EP 1809787 A2 EP1809787 A2 EP 1809787A2 EP 05851547 A EP05851547 A EP 05851547A EP 05851547 A EP05851547 A EP 05851547A EP 1809787 A2 EP1809787 A2 EP 1809787A2
Authority
EP
European Patent Office
Prior art keywords
reaction chamber
isolation zone
reaction
substrate
isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05851547A
Other languages
German (de)
English (en)
Inventor
John R. Tuttle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daystar Technologies Inc
Original Assignee
Daystar Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daystar Technologies Inc filed Critical Daystar Technologies Inc
Priority claimed from PCT/US2005/040932 external-priority patent/WO2006053218A2/fr
Publication of EP1809787A2 publication Critical patent/EP1809787A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/206Particular processes or apparatus for continuous treatment of the devices, e.g. roll-to roll processes, multi-chamber deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to the production of photovoltaic cells and more specifically to a pressure control and isolation system for the uninterrupted transfer of a photovoltaic work piece from one reaction chamber to another.
  • PV Photovoltaic
  • PV cells offer an alternative to non-renewable energy sources.
  • relatively efficient PV cells can be manufactured in the laboratory, it has proven difficult to enlarge the process to a commercial scale with consistent repeatability and efficiency critical for commercial viability.
  • the lack of an efficient thin-film manufacturing process has contributed to the failure of PV cells to effectively replace alternate energy sources in the market.
  • a typical process consists of a series of individual batch processing chambers each specifically designed for the formation of various layers in the cell.
  • One drawback to this process is that the substrate is transferred from vacuum to air and back to vacuum several times.
  • An alternate system uses a series of individual batch processing chambers coupled with a roll-to-roll continuous process for each chamber. The major drawback in this process is the discontinuity of the system and the need to break vacuum.
  • One aspect of a PV cell manufacturing apparatus must be that a product piece, or substrate, will be able to travel from one reaction chamber to another reaction chamber without the loss of vacuum. Also, while enabling the substrate to travel between two reaction chambers, the apparatus must not allow reactants in one reaction chamber to contaminate another reaction chamber. This concern is not trivial because the chemical composition of a p-type absorber is so similar to the chemical composition to the n-type junction in a PV cell, that even a very low level of cross contamination between two reaction chambers could have very significant effects of cell performance. Therefore, a manufacturing apparatus with the ability to prevent cross contamination between two reaction chambers is required.
  • ROCHDOCS ⁇ 397586 ⁇ 1 - 2 - than the deposition compartments does not contemplate the use of a pure gas in concert with a differential pumping arrangement to control the pressure in a reaction chamber.
  • this invention does not teach the construction of an orifice that will restrict flow .of gas from a reaction chamber to an isolation zone.
  • Coleman teach a continuous manufacturing process.
  • U.S. Patent 5,343,012 to Hardy discloses a method for controlling the temperature of a substrate upon which a thin film structure is to be fabricated.
  • this invention does not disclose the transporting of a substrate from one deposition chamber to a second deposition chamber.
  • U.S. Patent 6,554,950 to van Mast discloses a method and apparatus for removal of surface contaminants from substrates in vacuum applications.
  • this invention does not disclose either the use of differential pumping to control pressure in a reaction chamber, nor does it disclose the use of differential pumping to transfer a substrate from one reaction chamber to a second reaction chamber.
  • U.S. Patent 6,270,861 issued to Mashburn on Aug. 7, 2001 discloses an apparatus for forming thin films in a deposition chamber where differential pumping is used to prevent the interaction of two distinct atmospheres.
  • this invention does not contemplate the concept of a vacuum barrier existing between two reaction chambers each of a pressure higher than the barrier.
  • U.S. Patent 5,849,162 to Bartolomei discloses a device and process for a more effective sputtering process. While the apparatus utilizes differential pumping and a plurality of stations wherein a substrate may have a layer deposited upon it, the invention does not use isolation zones necessary to form reaction chambers each of independent temperature and pressure.
  • U.S. Patent 4,851,095 to Scobey discloses a deposition apparatus for a continuous substrate through a plurality of reaction stations.
  • the invention does not contemplate the need for different pressures and temperatures for each reaction chamber nor a vacuum isolation zone between them.
  • This invention is an apparatus for the production of photovoltaic (PV) cells with at least one differential pumping mechanism that provides a vacuum isolation zone in communication with at least one reaction chamber and where the reaction chamber contains a mechanism for controlling the influx of a pure gas to the reaction chamber.
  • the isolation zone is placed between two sequential reaction chambers, but this is not a necessary condition of the invention.
  • Acting in concert with the differential pumping mechanism is an instrument for controlling the influx of a pure gas into the connected reaction chamber thereby maintaining a near vacuum in that reaction chamber, but the pressure in the isolation zone is always lower than the reaction chamber.
  • an orifice at the isolation zone/reaction chamber interface that is sufficiently large enough to allow the substrate to pass from chamber to chamber without interrupting the process while, at the same time, minimize the flow of gas from the reaction chamber into the isolation zone.
  • These orifices are roughly the same size as the pallet that proceeds through them, but slightly larger to account for imprecision of the pallet placement and potential thermal expansion.
  • This invention further comprises a method for pressure control in a plurality of independent deposition and reaction chambers comprising controlling the influx of a gas into the reaction chambers, feeding a substrate through orifices at the inlet and outlet of the reaction chambers, establishing an isolation zone of lower pressure adjacent to and in communication with the reaction chambers and removing the gas exiting the reaction chamber to prevent cross contamination into an adjacent reaction chamber.
  • the advantage of this apparatus is the isolation of the reaction chambers to prevent cross contamination while, at the same time, it allows a substrate to pass uninterrupted from one chamber to another.
  • a pallet or number of pallets may exit one reaction chamber and be temporary situated in an isolation zone while minimizing adverse effects to the substrate and then enter the next subsequent reaction chamber at some later time.
  • the pallets may be organized in a train like fashion such that all reaction chambers are operational simultaneously on different pallets.
  • This invention also makes possible a continuous, or "roll-to-roll", substrate design moving continuously through a series of reaction chambers, each separated by a pressure controlled isolation zone.
  • a differential pump or a series of differential pumps, is attached to the isolation zone. This pump may continuously run or be cycled to maintain a vacuum, while the addition of inert gas to the reaction chamber gives that chamber some pressure greater than a complete vacuum as necessary for the reaction.
  • the pressure and temperature may be monitored by an array of sensors and analyzed by a controlling device, such as a computer, which may autonomously control the environmental characteristics of the reaction chambers.
  • One object of this invention is to provide a pressure isolation apparatus for allowing a substrate to pass through a series of reaction chambers, each of which deposits a thin chemical layer for the production of a photovoltaic cell while substantially maintaining the deposition and/or reaction conditions necessary in each reaction chamber.
  • Another object of this invention enables the transfer a substrate from one reaction chamber to the next subsequent chamber, or to the outside atmosphere, without subjecting the substrate to large temperature and pressure changes during the transfer.
  • a third object of the present invention is to transfer a substrate from a reaction chamber to the next subsequent reaction chamber without allowing cross contamination between the two reaction chambers.
  • FIG. 1 is a schematic diagram of a single isolation zone between two reaction chambers
  • FIG. Ia is a diagram of a vacuum pump apparatus with an associated collection facility
  • FIG. 2 is a perspective view of one potential embodiment showing the possible shape of the isolation zone
  • FIG. 3 is a schematic diagram of a single isolation zone with the vacuum pump apparatus installed internally in the isolation zone;
  • FIG. 4 is schematic diagram of a single isolation zone connected to a single reaction chamber and a removal area for completed substrates.
  • FIG. 1 An embodiment of the current invention is depicted in FIG. 1 and comprises an enclosed isolation zone 100 that is attached to at least one reaction chamber 102 but, in most cases, the enclosed isolation zone 100 is attached between two reaction chambers 102.
  • the physical shape of the isolation zone 100 may be any shape, such as cube or rectangular, and may be determined by the size of the pallet, work piece, or other substrate transportation device 104. Obviously, the shape of the isolation zone 100 may be driven by optimizing performance in a vacuum, therefore a cylindrical, as depicted in FIG. 2, or spherical shape may be necessary to support drawing a vacuum in the area of 10 "7 torr.
  • the size of the enclosed isolation zone 100 may also be determined by the reaction requirements of the photovoltaic production process.
  • a reaction chamber 102 On at least one end of the isolation zone is a reaction chamber 102, which includes an apparatus 106 for the deposition of a chemical or alloy on a substrate. Common methods for the deposition include evaporation, sputtering and other techniques known to those skilled in the art. Regardless of the deposition method, it is considered likely that the pressures in the reaction chambers will be exceedingly low, typically in the range of 10 "6 - 10 "3 torr.
  • the isolation zone 100 is accompanied by a pump 108 whereby the suction side 110 of this pump is attached to the isolation zone wall 111 by a connecting device 112, or may be permanently attached to the isolation zone wall 111 which will enable the pressure of the isolation zone to be continuously less than the pressures of the adjacent reaction chambers 102, approximately 10 "7 torr.
  • the pump 108 may be installed internally within the isolation zone 100 with the pump discharge 114 being connected to the isolation zone wall 111 from the inside. It is also contemplated that a number of pumps 108 in series may be necessary to achieve sufficient vacuum. None in this invention precludes the use of a single differential pump for a plurality of isolation zones; however this may likely cause a different ⁇ P across each reaction chamber/isolation zone interface 116, which may be undesirable.
  • an orifice is placed on both inlet 117 and outlet 118 of the isolation zone 100 at the reaction chamber/isolation zone interface 115, 116.
  • the differential pump 108 would evacuate both the isolation zone 100 as well as the reaction chambers 102, 103 to an equally low vacuum.
  • the reaction chambers 102, 103 must be "pressurized" by an external pressure source to counter the vacuuming effect of the pump 108. In one embodiment, this is achieved through the introduction of a pure gas 125, 126, such as argon, nitrogen, or oxygen, into the reaction chambers 102, 103 via a gas inlet 134, 135.
  • a pure gas 125, 126 such as argon, nitrogen, or oxygen
  • FIG. 1 displays a pure gas storage tank 123, 124 attached to each gas inlet 134, 135.
  • This embodiment reflects the possibility that the processes occurring in two different reaction chambers may require the pure gas in one reaction chamber 125 to be different from the pure gas 126 in another reaction chamber for optimal photovoltaic results.
  • this invention does not preclude the use of a single pure gas tank to be used for all reaction chambers.
  • gases may also be used for pressure control, but this may depend upon factors such as the process in- the reaction chamber, the potential for contamination of the substrate and the required pressure and temperature of the process.
  • a collection tank 150 may be attached to the outlet of the pump 114 to collect the pure gas for later use or proper disposal.
  • the orifice 117, 118 In order to maintain a pressure in the reaction chamber 102, 103 that is greater than the isolation zone 100, the orifice 117, 118 must be able to limit the loss of pure gas 125, 126 in the reaction chamber 102, 103 to the isolation zone 100 due to the differential pressure across the isolation zone/reaction chamber boundaries 115, 116.
  • the orifice must therefore be limited in size and configuration to limit this loss.
  • FIG. 1 represents only a segment of what may be a large deposition apparatus, an orifice 119 is also attached to the inlet and outlet of each reaction chamber.
  • the orifice is only marginally larger than the substrate 104 itself.
  • the operation of the orifice in a "roll-to-roll” process would be most effective since the substrate itself would continuously inhibit the outward flow of gas from the reaction chamber to the isolation zone.
  • the orifice 117, 118 is opened only when the pallet 104 enters or leaves a reaction chamber to totally prevent the loss of gas and subsequent depressurization.
  • temperature and pressure sensors 127, 128 are placed in the reaction chambers and are in electrical communication, as represented by dashed line 132 with a controlling device 130, which may be a computer, and continuously monitor reaction chamber temperature and pressure.
  • the controlling 130 device compares these values with the temperature and pressure of the isolation zone 100, which is also measured by a sensor 129 that is in electrical communication, as represented by dashed line 136 with the controlling device 130.
  • the controlling device 130 may control either the flow rate of the pure gas 125, 126 into the reaction chambers through the electrical control of solenoid or throttle valves 131, 133 which are located between the pure gas inlets 134, 135 and the pure gas storage tanks 123, 124.
  • ⁇ P may be controlled through the control of the vacuum pump 108 instead of pure gas flow rate, or some combination of pump and pure gas flow rate control.
  • isolation zones need not solely exist between two reaction chambers.
  • isolation zones may be only in communication with one reaction chamber in order to prevent contamination between a reaction chamber and the outside atmosphere as depicted in FIG. 4.
  • an isolation zone 100 serves as a terminus where the substrate 104 is either complete or must be transferred to another apparatus for further development.
  • an access point 401 is provided for substrate 104 removal.
  • An isolation chamber such as this would be ideal for prevention of impurities in the air reaching into the reaction chamber, which will likely be at or near vacuum levels.
  • the ⁇ P across this isolation zone is much more significant than the ⁇ P across any reaction chamber/isolation zone interface.
  • the ⁇ P between the atmosphere and an isolation zone may be 1000 times greater than the ⁇ P between an isolation zone and a reaction chamber. Because of this large ⁇ P, a simple access point 401 between the isolation zone and the outside atmosphere may be insufficient. Therefore, the access point may not be continuously open like the other orifices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

L'invention concerne un appareil permettant de déposer des couches minces sur un substrat afin de produire des photopiles dans lesquelles les chambres de réaction individuelles sont séparées les unes des autres par des zones d'isolation basse pression qui empêchent une contamination croisée des chambres de réaction adjacentes, et commandent les niveaux de pression dans chaque chambre de réaction tout en permettant simultanément le transfert ininterrompu d'un substrat d'une chambre de réaction à la suivante sans obstruction mécanique quelconque.
EP05851547A 2004-11-10 2005-11-10 Systeme de commande de pression dans un appareil de depot de substrat photovoltaique Withdrawn EP1809787A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US62684304P 2004-11-10 2004-11-10
US27253605P 2005-11-09 2005-11-09
PCT/US2005/040932 WO2006053218A2 (fr) 2004-11-10 2005-11-10 Systeme de commande de pression dans un appareil de depot de substrat photovoltaique

Publications (1)

Publication Number Publication Date
EP1809787A2 true EP1809787A2 (fr) 2007-07-25

Family

ID=38171501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05851547A Withdrawn EP1809787A2 (fr) 2004-11-10 2005-11-10 Systeme de commande de pression dans un appareil de depot de substrat photovoltaique

Country Status (3)

Country Link
EP (1) EP1809787A2 (fr)
JP (1) JP2008520107A (fr)
CA (1) CA2586969A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089733A1 (fr) * 2010-12-29 2012-07-05 Oc Oerlikon Balzers Ag Appareil de traitement sous vide
JP2012195461A (ja) * 2011-03-16 2012-10-11 Nitto Denko Corp 太陽電池セルの製法および製造装置と太陽電池モジュールの製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006053218A2 *

Also Published As

Publication number Publication date
CA2586969A1 (fr) 2006-05-18
JP2008520107A (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
US20060096536A1 (en) Pressure control system in a photovoltaic substrate deposition apparatus
CN101233260A (zh) 光伏衬底沉积中的压力控制系统
FI95421B (fi) Puolijohteen, kuten piikiekon, prosessoinnissa käytettävä laitteisto ja menetelmä
CN104040732A (zh) 钝化结晶硅太阳能电池的先进平台
KR100430021B1 (ko) 퇴적 막 형성 장치
AU2008271675A1 (en) Treatment system for flat substrates
CN101767717A (zh) 传送基板至二个或多个的工艺模块的方法
CN104795463B (zh) 一种生产异质结太阳能电池的pecvd设备及工作方法
CN101866981A (zh) 制造太阳能电池的薄膜沉积处理组件、系统及清洗方法
CN101851748A (zh) 全自动大型平板pecvd氮化硅覆膜制备系统
CN102180447A (zh) 用于回收碲化镉(CdTe)的系统和方法
US20090060687A1 (en) Transfer chamber with rolling diaphragm
EP1809787A2 (fr) Systeme de commande de pression dans un appareil de depot de substrat photovoltaique
CN102220567A (zh) 一种平板pecvd氮化硅覆膜系统
CN101990585A (zh) 成膜装置
US20120017831A1 (en) Chemical vapor deposition method and system for semiconductor devices
CN101755330A (zh) 具有线性源的群集工具
CN201655831U (zh) 一种平板pecvd氮化硅覆膜系统
CN201678731U (zh) 一种平板pecvd氮化硅覆膜的系统
KR101139421B1 (ko) 스퍼터링 시스템
KR20110009553A (ko) 스퍼터링 시스템
CN201648518U (zh) 一种平板pecvd氮化硅覆膜系统
CN100380592C (zh) 薄膜形成装置、薄膜形成方法和薄膜形成系统
Takano et al. Production technologies of film solar cell
Thornton et al. In-line sputtering system for depositing CuInSe2/CdS heterojunctions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060710

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

R17D Deferred search report published (corrected)

Effective date: 20071129

DAX Request for extension of the european patent (deleted)
R17P Request for examination filed (corrected)

Effective date: 20060710

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090603