EP1805340B1 - Creep-resistant, martensitically hardenable, heat-treated steel - Google Patents

Creep-resistant, martensitically hardenable, heat-treated steel Download PDF

Info

Publication number
EP1805340B1
EP1805340B1 EP05795177A EP05795177A EP1805340B1 EP 1805340 B1 EP1805340 B1 EP 1805340B1 EP 05795177 A EP05795177 A EP 05795177A EP 05795177 A EP05795177 A EP 05795177A EP 1805340 B1 EP1805340 B1 EP 1805340B1
Authority
EP
European Patent Office
Prior art keywords
weight
heat
creep
ductility
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05795177A
Other languages
German (de)
French (fr)
Other versions
EP1805340A1 (en
Inventor
Mohamed Youssef Nazmy
Markus Staubli
Andreas KÜNZLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1805340A1 publication Critical patent/EP1805340A1/en
Application granted granted Critical
Publication of EP1805340B1 publication Critical patent/EP1805340B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Definitions

  • the invention relates to martensitic-hardenable steels with increased nitrogen contents, which are characterized by a very good combination of properties, in particular by a high resistance to creep and good ductility.
  • Martensite-hardenable steels based on 9-12% chromium are widely used materials in power plant technology. It is known that the addition of chromium in the abovementioned range not only provides good resistance to atmospheric corrosion but also complete through-hardenability of thick-walled forgings, for example as monobloc rotors or as rotor disks in gas and steam turbines. Proven alloys of this type usually contain about 0.08 to 0.2% carbon, which in solution allows the setting of a hard martensitic structure.
  • a good combination of heat resistance and ductility of martensitic steels is made possible by a tempering treatment in which Forming a particle-stabilized subgrain structure by the precipitation of carbon in the form of carbides with simultaneous recovery of the dislocation substructure.
  • the tempering behavior and the resulting properties can be effectively influenced by the choice and proportionate tuning of specific carbide formers such as Mo, W, V, Nb and Ta.
  • Strengths above 850 MPa for 9-12% chromium steels can be adjusted by keeping the tempering temperature low, typically in the range 600 to 650 ° C.
  • the use of low tempering temperatures leads to high transition temperatures from the brittle to the ductile state (above 0 ° C), with which the material exhibits brittle fracture behavior at room temperature.
  • Significantly improved ductilities can be achieved if the tempered strength is lowered below 700 MPa. This is achieved by raising the tempering temperature to over 700 ° C.
  • the use of increased tempering temperatures has the advantage that the set structural states are stable for longer times at elevated temperatures.
  • a typical representative who has found widespread use in steam power plants, in particular as rotor steel, is the German steel X20CrMoV12.1 known under DIN.
  • the ductility at a strength level of 850 MPa can be significantly improved by alloying nickel.
  • nickel by alloying about 2 to 3% nickel, even after a tempering treatment at temperatures of 600 to 650 ° C, the transition temperature from brittle to ductile state is still below 0 ° C, resulting in a significantly improved overall combination of strength and ductility.
  • Such alloys are therefore widely used where significantly higher demands are placed on both strength and ductility, typically as disk materials for gas turbine rotors.
  • a typical representative of such alloys, which in the gas turbine technology, in particular as a material for rotor disks width Has found use is known under DIN German steel X12CrNiMo12.
  • EP 0 931 845 A1 a nickel-containing 12% chromium steel similar in structure to the German steel X12CrNiMo12, in which the element molybdenum is reduced compared to the known steel X12 CrNiMo12, but an increased content of tungsten was added.
  • DE 198 32 430 A1 is a further optimization of the X12CrNiMo12 similar steel with the name M152 disclosed in which by the addition of rare earth elements, the embrittlement tendency in the temperature range between 425 and 500 ° C is limited.
  • EP 0 866 145 A2 describes a new class of martensitic chromium steels with nitrogen contents in the range 0.12 to 0.25%.
  • the entire structure of the structure is determined by the Formation of Sonderitriden, in particular controlled by Vanadiumnitriden, which can be distributed by the forging treatment, by the austenitization, by a controlled cooling treatment or by a tempering treatment in a variety of ways.
  • the high ductility setting in this patent application is aimed at by the distribution and morphology of the nitrides, but especially by limiting grain coarsening during forging and solution heat treatment. This is achieved in the cited document by an increased volume fraction as well as by a high particle coarsening resistance of sparingly soluble nitrides, so that a dense dispersion of nitrides is still capable of effectively limiting grain growth even at austenitizing temperatures of 1150 to 1200 ° C.
  • nitrides are only one factor for achieving maximum ductility.
  • Another factor is the effect of dissolved substitution elements such as nickel and manganese.
  • Manganese is known from carbon steels to be embrittling rather than promoting ductility. In particular, it causes embrittlement when the alloy is subjected to long-term annealing at temperatures in the range of 350 to 500 ° C. It is also known that nickel in carbon steels improves ductility but tends to lower high temperature hot strength as well. This is related to reduced carbide stability in nickel-containing steels.
  • a martensitic-hardenable tempering steel having the following chemical composition is known (in% by weight): 9 to 12 Cr, 0.001 to 0.25 Mn, 2 to 7 Ni, 0.001 to 8 Co, at least one of W and Mo in the sum between 0.5 and 4, 0.5 to 0.8, at least one of Nb, Ta, Zr Hf in the Sum between 0.001 to 0.1, 0.001 to 0.05 Ti, 0.001 to 0.15 Si, 0.01 to 0.1 C, 0.12 to 0.18 N, max. 0.025 P, max. 0.015 S, max. 0.01 Al, max. 0.0012 Sb, max. 0.007 Sn, max.
  • V / N 0.012 As, balance Fe and common impurities, and the proviso that the weight ratio of vanadium to nitrogen V / N ranges between 3.5 and 4.2.
  • These alloys are characterized by a very good combination of impact energy at room temperature and heat resistance at 550 ° C, especially at higher Cr contents.
  • the relatively high N content increases the creep rupture strength.
  • V and N are in the specified range in nearly stoichiometric proportions. This achieves optimum solubility and coarsening resistance of the vanadium nitrides.
  • the high solubility is required to dissolve as much of the precipitation hardening vanadium nitride as possible, while a high resistance to coarsening of the nitrides is needed in order to have the finest possible fine structure in the EP 1 158 067 A1 To achieve the described heat treatment.
  • the invention has for its object to provide a martensitic-hardenable tempering steel with high ductility in the temperature range between 350 and 500 ° C and good creep resistance in the temperature range up to 550 ° C.
  • Core of the invention is a martensitic-hardenable tempering steel having the following composition (in wt .-%): 8.5 to 9.5 Cr, 0.15 to 0.25 Mn, 2 to 2.7 Ni, 0.5 to 2.5 Mo, 0.4 to 0.8 V, 0.02 to 0.04 Nb , 0.001 to 0.15 Si, 0.06 to 0.1 C, 0.11 to 0.15 N, maximum 0.007 P, maximum 0.005 S, maximum 0.01 Al, balance iron and common impurities, and the requirement that the weight ratio of vanadium to nitrogen V / N in the range between 4.3 and 5.5.
  • the advantage of the invention is that in the said alloy, a compensation structure is set, which is characterized by a tough matrix and the presence of heat-resistant nitrides, at the same time a tendency to embrittlement in the range between 350 and 500 ° C is suppressed.
  • the toughness of the base matrix is adjusted by the presence of substitution elements, preferably nickel.
  • the contents of the substitution elements are determined so as to allow optimum unfolding of both martensite hardening and particle hardening by means of special nitrides, preferably vanadium nitrides, to provide high creep strength coupled with good ductility.
  • the embrittlement tendency of the inventive steel in the temperature range of 350 to 500 ° C due to precipitation of the ⁇ 'Cr phase is suppressed by the low compared to the prior art, the Cr content and moderate N content.
  • a weight content of 8.5 to 9.5% chromium allows a reasonable hardenability of thick-walled components and ensures sufficient oxidation resistance up to a temperature of 550 ° C.
  • a weight fraction below 8.5% impairs the through-hardenability. Contents above 9.5% lead to the accelerated formation of the ⁇ 'Cr phase during the tempering process, which leads to embrittlement of the material.
  • the range to be specified should be between 0.15 and 0.25% for manganese and between 0.001 and 0.15% for silicon, taking into account the possibilities of ladle metallurgy.
  • Nickel is used as an austenite stabilizing element to suppress delta ferrite. In addition, it is said to improve ductility as a dissolved element in the ferritic matrix. Nickel contents between 2 to 2.7 wt .-% are optimal, since on the one hand, the nickel is homogeneously dissolved in the matrix, on the other hand, there is still no increased proportion of retained austenite or tempering austenite in the tempered martensite.
  • This element improves creep strength by solid solution hardening as a partially dissolved element and precipitation hardening during a long-term stress.
  • an excessively high proportion of this element leads to embrittlement during a long-term aging, which is due to the excretion and coarsening of the sigma phase.
  • the maximum proportion of Mo must be limited to 2.5%.
  • a preferred range is about 1.4 to 1.6%.
  • microstructural forms are optimal when the elements vanadium and nitrogen are alloyed in a slightly more than stoichiometric V / N ratio.
  • a slightly more than stoichiometric ratio also increases the stability of the vanadium nitride over that of the chromium nitride.
  • a V / N ratio in the range between 4.3 to 5.5 is preferred.
  • the specific content of nitrogen and vanadium nitrides depends on the optimum volume fraction of the vanadium nitrides, which are to remain as insoluble primary nitrides during the solution annealing.
  • niobium is a preferred element among the special nitride formers.
  • the preferred range is 0.02 to 0.04% by weight.
  • the grain coarsening resistance in solution annealing is increased and the stability of primary and excrete V8N, C) nitrides is increased by partial substitution of V.
  • these elements together with silicon and manganese, these elements increase the embrittlement of long-term aging in the range between 350 and 500 ° C. These elements should therefore be limited to the minimum tolerable levels.
  • This element is a strong nitride former, which already sets nitrogen in the melt and thus strongly affects the effectiveness of the added nitrogen.
  • the aluminum nitrides formed in the melt are very coarse and reduce the ductility. Aluminum must therefore be limited to a weight fraction of 0.01%.
  • Table 1 shows the chemical composition (in% by weight) of a preferred alloy according to the invention (DM13) and of comparative alloys: Table 1: Chemical composition DM13A-2 St13TNiEL alloy Type "D" C 12:08 12:12 12:04 Cr 9.0 11.5 11.2 Mn 12:19 Max. 0.25 12:05 Ni 2.4 2.3 3:06 Co 4:02 Not a word 1.4 1.5 1.83 V 0.6 12:25 0.61 Nb 12:04 12:03 Si 12:13 12:25 ⁇ 00:02 N 0117 0035 0156 al 0008 ⁇ 00:02 P Max. 0.025 0004 S Max. 0.015 0002 V / N 5.13 7.24 3.91
  • Table 2 contains experimental data for determining the notched impact energy at room temperature: Table 2: Notch energy for various differently treated alloys alloy conditions Notch energy in J DM13A-2 Initial state after the above heat treatment 76 Outsourced at 400 ° C / 1032h 90 Outsourced at 480 ° C / 1032h 58 St13TNiEL Initial state after the above heat treatment > 40 (required) Alloy "D" Initial state after the above heat treatment 106 Outsourced at 300 ° C / 5000h 57 Outsourced at 380 ° C / 5000h 36 Outsourced at 450 ° C / 5000h 21 Outsourced at 500 ° C / 5000h 54
  • the alloy according to the invention is distinguished by a high heat resistance at 550 ° C., as well as by a high ductility and a good modulus of elasticity.
  • the voltage for 1% creep at 550 ° C for the alloys DM13A-2 and St13TNiEL is shown as a function of time.
  • the advantage of the alloy according to the invention comes into play at high removal times.
  • the invention is not limited to the embodiment described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Steel (AREA)
  • Paints Or Removers (AREA)

Abstract

A maraging heat-treatment steel includes 8.5 to 9.5% by weight of Cr, 0.15 to 0.25% by weight of Mn, 2 to 2.7% by weight of Ni, 0.5 to 2.5% by weight of Mo, 0.4 to 0.8% by weight of V, 0.001 to 0.15% by weight of Si, 0.06 to 0.1% by weight of C, 0.11 to 0.15% by weight of N, 0.02 to 0.04% by weight of Nb, maximum 0.007% by weight of P, maximum 0.005% by weight of S, maximum 0.01% by weight of Al, iron and standard impurities, wherein a weight ratio of vanadium to nitrogen V/N is in a range between 4.3 and 5.5.

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf martensitisch-härtbare Stähle mit erhöhten Stickstoffgehalten, welche sich durch eine sehr gute Eigenschaftskombination, insbesondere durch einen hohen Widerstand gegen Kriechen und eine gute Duktilität, auszeichnen.The invention relates to martensitic-hardenable steels with increased nitrogen contents, which are characterized by a very good combination of properties, in particular by a high resistance to creep and good ductility.

Stand der TechnikState of the art

Martensitisch-härtbare Stähle auf der Basis 9-12 % Chrom sind weitverbreitete Werkstoffe der Kraftwerkstechnik. Es ist bekannt, dass die Zugabe von Chrom im obengenannten Bereich nicht nur eine gute Beständigkeit gegen atmosphärische Korrosion, sondern auch die vollständige Durchhärtbarkeit von dickwandigen Schmiedestücken ermöglicht, so wie sie etwa als Monoblockrotoren oder als Rotorscheiben in Gas- und Dampfturbinen Anwendung finden. Bewährte Legierungen dieser Art enthalten gewöhnlich etwa 0.08 bis 0.2 % Kohlenstoff, welcher in Lösung die Einstellung einer harten martensitischen Struktur ermöglicht. Eine gute Kombination von Warmfestigkeit und Duktilität martensitischer Stähle wird durch eine Anlassbehandlung ermöglicht, in welcher sich durch die Ausscheidung von Kohlenstoff in Form von Karbiden unter gleichzeitiger Erholung der Versetzungssubstruktur eine teilchenstabilisierte Subkornstruktur bildet. Das Anlassverhalten und die hieraus resultierenden Eigenschaften können wirksam durch die Wahl und das mengenanteilsmässige Abstimmen spezieller Karbidbildner wie zum Beispiel Mo, W, V, Nb und Ta beeinflusst werden.Martensite-hardenable steels based on 9-12% chromium are widely used materials in power plant technology. It is known that the addition of chromium in the abovementioned range not only provides good resistance to atmospheric corrosion but also complete through-hardenability of thick-walled forgings, for example as monobloc rotors or as rotor disks in gas and steam turbines. Proven alloys of this type usually contain about 0.08 to 0.2% carbon, which in solution allows the setting of a hard martensitic structure. A good combination of heat resistance and ductility of martensitic steels is made possible by a tempering treatment in which Forming a particle-stabilized subgrain structure by the precipitation of carbon in the form of carbides with simultaneous recovery of the dislocation substructure. The tempering behavior and the resulting properties can be effectively influenced by the choice and proportionate tuning of specific carbide formers such as Mo, W, V, Nb and Ta.

Festigkeiten über 850 MPa von 9-12 % Chromstählen können eingestellt werden, indem die Anlasstemperatur tief, typischer Weise im Bereich 600 bis 650 °C, gehalten wird. Die Anwendung tiefer Anlasstemperaturen führt jedoch zu hohen Übergangstemperaturen vom spröden in den duktilen Zustand (über 0 °C), womit der Werkstoff bei Raumtemperatur sprödes Bruchverhalten entfaltet. Deutlich verbesserte Duktilitäten können erreicht werden, wenn die vergütete Festigkeit unter 700 MPa abgesenkt wird. Dies wird durch ein Anheben der Anlasstemperatur auf über 700 °C erreicht. Die Anwendung erhöhter Anlasstemperaturen hat dabei den Vorteil, dass die eingestellten Gefügezustände bei erhöhten Temperaturen über längere Zeiten stabil sind. Ein typischer Vertreter, welcher in Dampfkraftwerken, insbesondere als Rotorstahl breite Verwendung gefunden hat, ist der unter DIN bekannte deutsche Stahl X20CrMoV12.1.Strengths above 850 MPa for 9-12% chromium steels can be adjusted by keeping the tempering temperature low, typically in the range 600 to 650 ° C. However, the use of low tempering temperatures leads to high transition temperatures from the brittle to the ductile state (above 0 ° C), with which the material exhibits brittle fracture behavior at room temperature. Significantly improved ductilities can be achieved if the tempered strength is lowered below 700 MPa. This is achieved by raising the tempering temperature to over 700 ° C. The use of increased tempering temperatures has the advantage that the set structural states are stable for longer times at elevated temperatures. A typical representative who has found widespread use in steam power plants, in particular as rotor steel, is the German steel X20CrMoV12.1 known under DIN.

Es ist ferner bekannt, dass die Duktilität auf einem Festigkeitsniveau von 850 MPa durch das Zulegieren von Nickel deutlich verbessert werden kann. So ist etwa bekannt, dass durch das Zulegieren von etwa 2 bis 3 % Nickel selbst nach einer Anlassbehandlung bei Temperaturen von 600 bis 650 °C die Übergangstemperatur vom spröden in den duktilen Zustand noch unter 0 °C liegt, womit sich insgesamt eine deutliche verbesserte Kombination von Festigkeit und Duktilität einstellen lässt. Solche Legierungen finden daher dort eine breite Verwendung, wo deutlich höhere Anforderungen an sowohl Festigkeit wie auch Duktilität gestellt werden, typischer Weise als Scheibenwerkstoffe für Gasturbinenrotoren. Ein typischer Vertreter derartiger Legierungen, welcher in der Gasturbinentechnik, insbesondere als Werkstoff für Rotorscheiben breite Verwendung gefunden hat, ist der unter DIN bekannte deutsche Stahl X12CrNiMo12.It is also known that the ductility at a strength level of 850 MPa can be significantly improved by alloying nickel. For example, it is known that by alloying about 2 to 3% nickel, even after a tempering treatment at temperatures of 600 to 650 ° C, the transition temperature from brittle to ductile state is still below 0 ° C, resulting in a significantly improved overall combination of strength and ductility. Such alloys are therefore widely used where significantly higher demands are placed on both strength and ductility, typically as disk materials for gas turbine rotors. A typical representative of such alloys, which in the gas turbine technology, in particular as a material for rotor disks width Has found use is known under DIN German steel X12CrNiMo12.

In der vergangenen Zeit wurden verschiedene Anstrengungen unternommen, um spezielle Eigenschaften dieser Stähle zu verbessern. So wird beispielsweise in der Veröffentlichung von Kern et al.: High Temperature Forged Components for Advanced Steam Power Plants, in Materials for Advanced Power Engineering 1998, Proceedings of the 6th Liege Conference, ed. by J. Lecomte-Becker et. al ., die Entwicklung neuartiger Rotorstähle für Dampfturbinenanwendungen beschrieben. In derartigen Legierungen wurden die Gehalte an Cr, Mo, W unter Berücksichtigung von etwa 0.03 bis 0.07 % N, 0.03 bis 0.07 % Nb und/oder 50 bis 100 ppm B weiter optimiert, um die Kriech- und Zeitstandfestigkeiten für Anwendungen bei 600 °C zu verbessern.In recent years, various efforts have been made to improve specific properties of these steels. For example, in the publication of Kern et al .: High Temperature Forged Components for Advanced Steam Power Plants, Materials for Advanced Power Engineering 1998, Proceedings of the 6th Liege Conference, ed. By J. Lecomte-Becker et. al , describing the development of novel rotor steels for steam turbine applications. In such alloys, the contents of Cr, Mo, W were further optimized, taking into account about 0.03 to 0.07% N, 0.03 to 0.07% Nb and / or 50 to 100 ppm B, to creep and creep strengths for 600 ° C applications to improve.

Speziell für Gasturbinenanwendungen wurden auf der anderen Seite Anstrengungen unternommen, um entweder die Zeitstandfestigkeiten im Bereich von 450 bis 500°C auf hohem Duktilitätsniveau zu verbessern oder die Versprödungsneigung bei Temperaturen zwischen 425 und 500 °C zu reduzieren. So beschreibt die europäische Patentanmeldung EP 0 931 845 A1 einen in der Konstitution dem deutschen Stahl X12CrNiMo12 ähnlichen, nickelhaltigen 12 % Chromstahl, in welchem das Element Molybdän gegenüber dem bekannten Stahl X12 CrNiMo12 reduziert, jedoch ein erhöhter Gehalt an Wolfram zulegiert wurde. In DE 198 32 430 A1 ist eine weitere Optimierung eines dem X12CrNiMo12 artgleichen Stahls mit der Bezeichnung M152 offenbart, bei welchem durch die Zugabe von Seltenerd-Elementen die Versprödungsneigung im Temperaturbereich zwischen 425 und 500° C begrenzt wird.On the other hand, especially for gas turbine applications, efforts have been made either to improve the creep rupture strengths in the range of 450 to 500 ° C at high ductility level or to reduce the embrittlement tendency at temperatures between 425 and 500 ° C. This is how the European patent application describes EP 0 931 845 A1 a nickel-containing 12% chromium steel similar in structure to the German steel X12CrNiMo12, in which the element molybdenum is reduced compared to the known steel X12 CrNiMo12, but an increased content of tungsten was added. In DE 198 32 430 A1 is a further optimization of the X12CrNiMo12 similar steel with the name M152 disclosed in which by the addition of rare earth elements, the embrittlement tendency in the temperature range between 425 and 500 ° C is limited.

Ein möglicher Ansatz zur Verbesserung der Warmfestigkeit bei gleichzeitig hoher Duktilität wurde mit der Entwicklung von Stählen mit erhöhten Stickstoffgehalten vorgeschlagen. In EP 0 866 145 A2 wird eine neue Klasse von martensitischen Chromstählen mit Stickstoffgehalten im Bereich zwischen 0.12 bis 0.25 % beschrieben. Bei dieser Stahlklasse wird die gesamte Gefügeausbildung durch die Bildung von Sondernitriden, insbesondere von Vanadiumnitriden gesteuert, welche durch die Schmiedebehandlung, durch die Austenitisierung, durch eine kontrollierte Abkühlbehandlung oder durch eine Anlassbehandlung in vielfältiger Weise verteilt werden können. Während die Festigkeit über die Härtungswirkung der Nitride erzielt wird, wird die Einstellung einer hohen Duktilität in dieser Patentanmeldung durch die Verteilung und Morphologie der Nitride, vor allem aber durch die Begrenzung der Kornvergröberung während des Schmiedens und während der Lösungsglühbehandlung angestrebt. Dies wird in der genannten Druckschrift durch einen sowohl erhöhten Volumenanteil wie auch durch einen hohen Teilchenvergröberungswiderstand schwerlöslicher Nitride erreicht, so dass eine dichte Dispersion von Nitriden das Kornwachstum selbst bei Austenitisierungstemperaturen von 1150 bis 1200 °C noch wirksam zu begrenzen vermag. Der wesentliche Nutzen der in EP 0 866 145 A2 aufgeführten Legierungen liegt in der Möglichkeit, die Kombination aus Festigkeit und Duktilität allein durch die Ausbildung von Nitriden hinsichtlich Verteilung und Morphologie durch eine geeignete Definition der Wärmebehandlung optimal zu beeinflussen.One possible approach to improving the high temperature strength and high ductility has been proposed with the development of steels with increased nitrogen contents. In EP 0 866 145 A2 describes a new class of martensitic chromium steels with nitrogen contents in the range 0.12 to 0.25%. In this class of steel, the entire structure of the structure is determined by the Formation of Sonderitriden, in particular controlled by Vanadiumnitriden, which can be distributed by the forging treatment, by the austenitization, by a controlled cooling treatment or by a tempering treatment in a variety of ways. While strength is achieved through the hardening effect of the nitrides, the high ductility setting in this patent application is aimed at by the distribution and morphology of the nitrides, but especially by limiting grain coarsening during forging and solution heat treatment. This is achieved in the cited document by an increased volume fraction as well as by a high particle coarsening resistance of sparingly soluble nitrides, so that a dense dispersion of nitrides is still capable of effectively limiting grain growth even at austenitizing temperatures of 1150 to 1200 ° C. The essential benefit of in EP 0 866 145 A2 The alloys listed above have the possibility of optimally influencing the combination of strength and ductility solely by the formation of nitrides with regard to distribution and morphology by a suitable definition of the heat treatment.

Ein optimierter Ausbildungszustand von Nitriden ist jedoch nur ein Faktor zur Erreichung einer maximalen Duktilität. Ein weiterer Einflussfaktor ist durch die Wirkung von gelösten Substitutionselementen wie Nickel und Mangan zu erwarten. Von Mangan ist von den Kohlenstoffstählen her bekannt, dass dieses Element eher versprödend als duktilitätsfördernd wirkt. Insbesondere bewirkt es eine Versprödung, wenn die Legierung einer langzeitigen Glühung bei Temperaturen im Bereich 350 bis 500 °C ausgesetzt wird. Es ist ferner bekannt, dass Nickel in Kohlenstoffstählen die Duktilität verbessert, tendenziell aber auch die Warmfestigkeit bei hohen Temperaturen senkt. Dies wird mit einer reduzierten Karbidstabilität in nickelhaltigen Stählen in Beziehung gesetzt.However, an optimized formation state of nitrides is only one factor for achieving maximum ductility. Another factor is the effect of dissolved substitution elements such as nickel and manganese. Manganese is known from carbon steels to be embrittling rather than promoting ductility. In particular, it causes embrittlement when the alloy is subjected to long-term annealing at temperatures in the range of 350 to 500 ° C. It is also known that nickel in carbon steels improves ductility but tends to lower high temperature hot strength as well. This is related to reduced carbide stability in nickel-containing steels.

Aus EP 1 158 067 A1 ist ein martensitisch-härtbarer Vergütungsstahl mit folgender chemischer Zusammensetzung bekannt (Angaben in Gew.- %): 9 bis 12 Cr, 0.001 bis 0.25 Mn, 2 bis 7 Ni, 0.001 bis 8 Co, mindestens eines aus W und Mo in der Summe zwischen 0.5 und 4, 0.5 bis 0.8, mindestens eines aus Nb, Ta, Zr Hf in der Summe zwischen 0.001 bis 0.1, 0.001 bis 0.05 Ti, 0.001 bis 0.15 Si, 0.01 bis 0.1 C, 0.12 bis 0.18 N, max. 0.025 P, max. 0.015 S, max. 0.01 Al, max. 0.0012 Sb, max. 0.007 Sn, max. 0.012 As, Rest Fe und übliche Verunreinigungen, und der Massgabe, dass das Gewichtsverhältnis von Vanadium zu Stickstoff V/N im Bereich zwischen 3.5 und 4.2 liegt. Diese Legierungen zeichnen sich durch eine sehr gute Kombination von Kerbschlagarbeit bei Raumtemperatur und Warmfestigkeit bei 550 °C aus, insbesondere auch bei höheren Cr-Gehalten. Durch den relativ hohen N-Gehalt wird die Zeitstandfestigkeit erhöht. V und N liegen in dem angegebenen Bereich in nahezu stöchiometrischen Proportionen vor. Damit wird ein Optimum an Löslichkeit und Widerstand gegen Vergröberung der Vanadiumnitride erzielt. Die hohe Löslichkeit wird benötigt, um möglichst viel der ausscheidungshärtenden Vanadiumnitride in Lösung zu bringen, während ein hoher Widerstand gegen Vergröberung der Nitride gebraucht wird, um eine möglichst feinkörnige Struktur bei der in EP 1 158 067 A1 beschriebenen Wärmebehandlung erreichen zu können.Out EP 1 158 067 A1 a martensitic-hardenable tempering steel having the following chemical composition is known (in% by weight): 9 to 12 Cr, 0.001 to 0.25 Mn, 2 to 7 Ni, 0.001 to 8 Co, at least one of W and Mo in the sum between 0.5 and 4, 0.5 to 0.8, at least one of Nb, Ta, Zr Hf in the Sum between 0.001 to 0.1, 0.001 to 0.05 Ti, 0.001 to 0.15 Si, 0.01 to 0.1 C, 0.12 to 0.18 N, max. 0.025 P, max. 0.015 S, max. 0.01 Al, max. 0.0012 Sb, max. 0.007 Sn, max. 0.012 As, balance Fe and common impurities, and the proviso that the weight ratio of vanadium to nitrogen V / N ranges between 3.5 and 4.2. These alloys are characterized by a very good combination of impact energy at room temperature and heat resistance at 550 ° C, especially at higher Cr contents. The relatively high N content increases the creep rupture strength. V and N are in the specified range in nearly stoichiometric proportions. This achieves optimum solubility and coarsening resistance of the vanadium nitrides. The high solubility is required to dissolve as much of the precipitation hardening vanadium nitride as possible, while a high resistance to coarsening of the nitrides is needed in order to have the finest possible fine structure in the EP 1 158 067 A1 To achieve the described heat treatment.

Es ist bekannt, dass sich bei Stählen mit ca. 12 % Chrom und einem erhöhten Anteil an N nachteilig im Temperaturbereich von etwa 425 bis 500 °C die α'Cr-Phase ausscheidet, welche zur Versprödung des Stahles führt. Zwar werden durch diese Ausscheidungen die Festigkeitseigenschaften erhöht, aber die Werte für Duktilität, Kerbschlagzähigkeit und Korrosionsbeständigkeit sinken. Damit sind derartige Stähle für den Einsatz in Verdichtern oder Turbinen im Kraftwerksbereich nur bedingt einsetzbar. Die Bildung von VN in derartigen Stählen verstärkt noch die Neigung zur Ausscheidung der α'Cr-Phase und damit die Versprödungsneigung im genannten Temperaturbereich.It is known that in steels with about 12% chromium and an increased proportion of N adversely affects the α'Cr phase in the temperature range of about 425 to 500 ° C, which leads to embrittlement of the steel. Although these precipitates increase the strength properties, the ductility, notched impact strength and corrosion resistance values decrease. Thus, such steels are only of limited use for use in compressors or turbines in the power plant area. The formation of VN in such steels further enhances the tendency to precipitate the α'Cr phase and hence the embrittlement tendency in said temperature range.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, einen martensitisch-härtbaren Vergütungsstahl mit hoher Duktilität im Temperaturbereich zwischen 350 und 500 °C und guter Kriechfestigkeit im Temperaturbereich bis 550 °C zu schaffen.The invention has for its object to provide a martensitic-hardenable tempering steel with high ductility in the temperature range between 350 and 500 ° C and good creep resistance in the temperature range up to 550 ° C.

Kern der Erfindung ist ein martensitisch-härtbarer Vergütungsstahl mit folgender Zusammensetzung (Angaben in Gew.-%): 8.5 bis 9.5 Cr, 0.15 bis 0.25 Mn, 2 bis 2.7 Ni, 0.5 bis 2.5 Mo, 0.4 bis 0.8 V, 0.02 bis 0.04 Nb, 0.001 bis 0.15 Si, 0.06 bis 0.1 C, 0.11 bis 0.15 N, maximal 0.007 P, maximal 0.005 S, maximal 0.01 Al, Rest Eisen und übliche Verunreinigungen, und der Massgabe, dass das Gewichtsverhältnis von Vanadium zu Stickstoff V/N im Bereich zwischen 4.3 und 5.5 liegt.Core of the invention is a martensitic-hardenable tempering steel having the following composition (in wt .-%): 8.5 to 9.5 Cr, 0.15 to 0.25 Mn, 2 to 2.7 Ni, 0.5 to 2.5 Mo, 0.4 to 0.8 V, 0.02 to 0.04 Nb , 0.001 to 0.15 Si, 0.06 to 0.1 C, 0.11 to 0.15 N, maximum 0.007 P, maximum 0.005 S, maximum 0.01 Al, balance iron and common impurities, and the requirement that the weight ratio of vanadium to nitrogen V / N in the range between 4.3 and 5.5.

Bevorzugte Bereiche für die einzelnen Legierungselemente der erfindungsgemässen Zusammensetzung sind in den Unteransprüchen enthalten.Preferred ranges for the individual alloying elements of the inventive composition are contained in the subclaims.

Der Vorteil der Erfindung besteht darin, dass bei der genannten Legierung ein Vergütungsgefüge eingestellt wird, das sich durch eine zähe Grundmatrix und durch die Anwesenheit warmfestigkeitsbringender Nitride auszeichnet, wobei gleichzeitig eine Versprödungsneigung im Bereich zwischen 350 und 500 °C unterdrückt wird. Die Zähigkeit der Grundmatrix wird durch die Anwesenheit von Substitionselementen, vorzugsweise durch Nickel, eingestellt. Die Gehalte der Substitutionselemente sind so bestimmt, dass sie eine optimale Entfaltung von sowohl der Martensithärtung wie auch der Teilchenhärtung durch Sondernitride, vorzugsweise Vanadiumnitride, zur Einstellung einer hohen Kriechfestigkeit bei gleichzeitig guter Duktilität ermöglichen. Die Versprödungsneigung des erfindungsgemässen Stahles im Temperaturbereich von 350 bis 500 °C infolge Ausscheidung der α'Cr-Phase wird dabei durch den im Vergleich zum bekannten Stand der Technik geringen Cr-Gehalt und moderaten N-Gehalt unterdrückt.The advantage of the invention is that in the said alloy, a compensation structure is set, which is characterized by a tough matrix and the presence of heat-resistant nitrides, at the same time a tendency to embrittlement in the range between 350 and 500 ° C is suppressed. The toughness of the base matrix is adjusted by the presence of substitution elements, preferably nickel. The contents of the substitution elements are determined so as to allow optimum unfolding of both martensite hardening and particle hardening by means of special nitrides, preferably vanadium nitrides, to provide high creep strength coupled with good ductility. The embrittlement tendency of the inventive steel in the temperature range of 350 to 500 ° C due to precipitation of the α'Cr phase is suppressed by the low compared to the prior art, the Cr content and moderate N content.

Nachfolgend werden die bevorzugten Mengen in Gewichtsprozenten für jedes Element und die Gründe für die gewählten erfindungsgemässen Legierungsbereiche in ihrem Zusammenhang mit den hieraus resultierenden Möglichkeiten der Wärmebehandlungen aufgezeigt.Hereinafter, the preferred amounts in weight percent for each element and the reasons for the selected according to the invention Alloy areas shown in their context with the resulting possibilities of heat treatments.

Chrom:Chrome:

Ein Gewichtsanteil von 8.5 bis 9.5 % Chrom ermöglicht eine vertretbare Durchhärtbarkeit dickwandiger Bauteile und stellt eine hinreichende Oxidationsbeständigkeit bis zu einer Temperatur von 550 °C sicher. Ein Gewichtsanteil unter 8.5 % beeinträchtigt die Durchvergütbarkeit. Gehalte oberhalb 9.5 % führen zur beschleunigten Bildung der α'Cr-Phase während des Anlassvorgangs, welche zur Versprödung des Materials führt.A weight content of 8.5 to 9.5% chromium allows a reasonable hardenability of thick-walled components and ensures sufficient oxidation resistance up to a temperature of 550 ° C. A weight fraction below 8.5% impairs the through-hardenability. Contents above 9.5% lead to the accelerated formation of the α'Cr phase during the tempering process, which leads to embrittlement of the material.

Mangan und Silizium:Manganese and silicon:

Diese Elemente fördern die Anlassversprödung und müssen daher auf kleinste Gehalte begrenzt werden. Der zu spezifierende Bereich sollte unter Berücksichtigung der pfannenmetallurgischen Möglichkeiten im Bereich zwischen 0.15 und 0.25 % für Mangan und zwischen 0.001 und 0.15 % für Silizium liegen.These elements promote temper embrittlement and must therefore be limited to the smallest amounts. The range to be specified should be between 0.15 and 0.25% for manganese and between 0.001 and 0.15% for silicon, taking into account the possibilities of ladle metallurgy.

Nickel:Nickel:

Nickel wird als austenitstabilisierendes Element zur Unterdrückung von Delta-Ferrit eingesetzt. Darüber hinaus soll es als ein gelöstes Element in der ferritischen Matrix die Duktilität verbessern. Nickelgehalte zwischen 2 bis 2.7 Gew.-% sind optimal, da einerseits das Nickel homogen in der Matrix gelöst ist, andererseits noch kein erhöhter Anteil von Restaustenit beziehungsweise Anlassaustenit im vergüteten Martensit vorliegt.Nickel is used as an austenite stabilizing element to suppress delta ferrite. In addition, it is said to improve ductility as a dissolved element in the ferritic matrix. Nickel contents between 2 to 2.7 wt .-% are optimal, since on the one hand, the nickel is homogeneously dissolved in the matrix, on the other hand, there is still no increased proportion of retained austenite or tempering austenite in the tempered martensite.

Molybdän:Molybdenum:

Dieses Element verbessert die Kriechfestigkeit durch Mischkristallhärtung als partiell gelöstes Element und durch Ausscheidungshärtung während einer Langzeitbeanspruchung. Ein übermässig hoher Anteil dieses Elementes führt jedoch zu Versprödung während einer Langzeitauslagerung, welcher durch die Ausscheidung und Vergröberung der Sigma-Phase gegeben ist. Aus diesem Grund muss der maximale Anteil von Mo auf 2.5 % begrenzt werden. Ein bevorzugter Bereich liegt bei ca. 1.4 bis 1.6 %.This element improves creep strength by solid solution hardening as a partially dissolved element and precipitation hardening during a long-term stress. However, an excessively high proportion of this element leads to embrittlement during a long-term aging, which is due to the excretion and coarsening of the sigma phase. For this Reason, the maximum proportion of Mo must be limited to 2.5%. A preferred range is about 1.4 to 1.6%.

Vanadium und Stickstoff:Vanadium and nitrogen:

Diese beiden Elemente zusammen kontrollieren massgeblich die Korngrössenausbildung und die Ausscheidungshärtung. Die Gefügeausbildungsformen sind dann optimal, wenn die Elemente Vanadium und Stickstoff in einem leicht überstöchiometrischem V/N-Verhältnis zulegiert sind. Ein leicht überstöchiometrisches Verhältnis erhöht auch die Stabilität des Vanadiumnitrids gegenüber der des Chromnitrids. Insgesamt bevorzugt wird ein V/N Verhältnis im Bereich zwischen 4.3 bis 5.5. Der konkrete Gehalt an Stickstoff und Vanadiumnitriden richtet sich nach dem optimalen Volumenanteil der Vanadiumnitride, welche während der Lösungsglühung als unlösliche Primärnitride zurückbleiben sollen. Je grösser der Gesamtanteil von Vanadium und Stickstoff ist, umso grösser derjenige Anteil der Vanadiumnitride, welcher nicht mehr in Lösung geht und umso grösser die Kornfeinungswirkung. Der positive Einfluss der Kornfeinung auf die Duktilität ist jedoch begrenzt, da mit zunehmendem Volumenanteil von Primämitriden die Primärnitride selbst die Duktilität begrenzen. Da VN auch die Neigung zur Bildung der spröden α'Cr-Phase erhöht, sollte der bevorzugte Gehalt an Stickstoff im Bereich von 0.11 bis 0.12 Gew.- % und derjenige von Vanadium im Bereich zwischen 0.5 und 0.6 Gew.- % liegen. Denkbar sind Bereichen von 0.11 bis 0.15 Gew.- % für N und 0.4-0.8 Gew.- % V.Together, these two elements significantly control grain size formation and precipitation hardening. The microstructural forms are optimal when the elements vanadium and nitrogen are alloyed in a slightly more than stoichiometric V / N ratio. A slightly more than stoichiometric ratio also increases the stability of the vanadium nitride over that of the chromium nitride. Overall, a V / N ratio in the range between 4.3 to 5.5 is preferred. The specific content of nitrogen and vanadium nitrides depends on the optimum volume fraction of the vanadium nitrides, which are to remain as insoluble primary nitrides during the solution annealing. The greater the total amount of vanadium and nitrogen, the greater the proportion of vanadium nitrides which no longer dissolve and the greater the grain refining effect. However, the positive effect of grain refining on ductility is limited because with increasing volume fraction of primary nitrides, the primary nitrides themselves limit ductility. Since VN also increases the tendency to form the brittle α'Cr phase, the preferred content of nitrogen should be in the range of 0.11 to 0.12% by weight and that of vanadium should be in the range of 0.5 to 0.6% by weight. Conceivable ranges are 0.11 to 0.15% by weight for N and 0.4-0.8% by weight V.

Niob:Niobium:

Neben Vanadium ist Niob ein bevorzugtes Element unter den Sondemitridbildnern. Der bevorzugte Bereich liegt bei 0.02 bis 0.04 Gew.- %. In diesen kleinen Beimengungen wird der Kornvergröberungswiderstand beim Lösungsglühen erhöht und die Stabilität von primären und auszuscheidenden V8N,C)-Nitriden durch partielle Substitution von V erhöht.Besides vanadium, niobium is a preferred element among the special nitride formers. The preferred range is 0.02 to 0.04% by weight. In these small admixtures, the grain coarsening resistance in solution annealing is increased and the stability of primary and excrete V8N, C) nitrides is increased by partial substitution of V.

Phosphor und Schwefel:Phosphorus and sulfur:

Diese Elemente verstärken zusammen mit Silizium und Mangan die Anlassversprödung bei Langzeitauslagerungen im Bereich zwischen 350 und 500°C. Diese Elemente sollten daher auf minimal tolerierbare Anteile begrenzt werden.Together with silicon and manganese, these elements increase the embrittlement of long-term aging in the range between 350 and 500 ° C. These elements should therefore be limited to the minimum tolerable levels.

Aluminium:Aluminum:

Dieses Element ist ein starker Nitridbildner, welcher Stickstoff schon in der Schmelze abbindet und damit die Wirksamkeit des zulegierten Stickstoffs stark beeinträchtigt. Die in der Schmelze gebildeten Aluminiumnitride sind sehr grob und senken die Duktilität. Aluminium muss daher auf einen Gewichtsanteil von 0.01 % begrenzt werden.This element is a strong nitride former, which already sets nitrogen in the melt and thus strongly affects the effectiveness of the added nitrogen. The aluminum nitrides formed in the melt are very coarse and reduce the ductility. Aluminum must therefore be limited to a weight fraction of 0.01%.

Kohlenstoff:Carbon:

Kohlenstoff bildet beim Anlassen Chromkarbide, welche für eine verbesserte Kriechfestigkeit förderlich sind. Bei zu hohen Kohlenstoffgehalten führt der hieraus resultierende erhöhte Volumenanteil von Karbiden jedoch zu einer Duktilitätsminderung, welche insbesondere durch die Karbidvergröberung während einer Langzeitauslagerung zum Tragen kommt. Der Kohlenstoffgehalt sollte daher nach oben auf 0.1 % begrenzt werden. Nachteilig ist auch die Tatsache, dass Kohlenstoff die Aufhärtung beim Schweissen verstärkt. Der besonders bevorzugte Kohlenstoffgehalt liegt im Bereich zwischen 0.06 und 0.08 Gew.- %.Carbon forms chromium carbides on tempering, which are conducive to improved creep resistance. At too high carbon contents, however, the resulting increased volume fraction of carbides leads to a ductility reduction, which comes into play in particular by the carbide coarsening during long-term storage. The carbon content should therefore be limited upwards to 0.1%. Another disadvantage is the fact that carbon increases the hardening during welding. The most preferred carbon content is in the range of 0.06 to 0.08% by weight.

Kurze Beschreibung der ZeichnungShort description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Die einzige Figur zeigt die Abhängigkeit der Spannung von der Zeit für das Erreichen einer Kriechdehnung von 1 % bei 550 °C für eine erfindungsgemässe Legierung und eine aus dem Stand der Technik bekannte Legierung.In the drawing, an embodiment of the invention is shown. The sole figure shows the dependence of the voltage on time for achieving a creep strain of 1% at 550 ° C for an alloy according to the invention and an alloy known from the prior art.

Wege zur Ausführung der ErfindungWays to carry out the invention

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Fig. 1 näher erläutert.The invention will be explained in more detail with reference to embodiments and FIG. 1.

Tabelle 1 gibt die chemische Zusammensetzung (in Gew.- %) einer bevorzugten erfindungsgemässen Legierung (DM13) und von Vergleichslegierungen wieder: Tabelle 1: Chemische Zusammensetzung DM13A-2 St13TNiEL Legierung
Typ "D"
C 0.08 0.12 0.04 Cr 9.0 11.5 11.2 Mn 0.19 Max. 0.25 0.05 Ni 2.4 2.3 3.06 Co 4.02 Mo 1.4 1.5 1.83 V 0.6 0.25 0.61 Nb 0.04 0.03 Si 0.13 0.25 <0.02 N 0.117 0.035 0.156 Al 0.008 <0.02 P Max. 0.025 0.004 S Max. 0.015 0.002 V/N 5.13 7.24 3.91
Table 1 shows the chemical composition (in% by weight) of a preferred alloy according to the invention (DM13) and of comparative alloys: Table 1: Chemical composition DM13A-2 St13TNiEL alloy
Type "D"
C 12:08 12:12 12:04 Cr 9.0 11.5 11.2 Mn 12:19 Max. 0.25 12:05 Ni 2.4 2.3 3:06 Co 4:02 Not a word 1.4 1.5 1.83 V 0.6 12:25 0.61 Nb 12:04 12:03 Si 12:13 12:25 <00:02 N 0117 0035 0156 al 0008 <00:02 P Max. 0.025 0004 S Max. 0.015 0002 V / N 5.13 7.24 3.91

Es wurden 10 kg Schmelzen in einem Induktionsofen erschmolzen und anschliessend geschmiedete Flachstäbe mit den Abmessungen 20mmx80mm hergestellt. Die folgenden Wärmebehandlungen wurden durchgeführt:

  • DM13A-2:
    1100°C/3h/schnelle Luftabkühlung (Ventilator) + 640°C/5h/Luftabkühlung
  • St13TNiEL:
    1050-1080 °C/>0.5h/Öl + 630-650 °C/>2h/Luftabkühlung
  • Legierung "D":
    1180°C/2h/Luftabkühlung + 640°C/2h/Luftabkühlung + 600°C/1h/Ofenabkühlung
10 kg of melt were melted in an induction furnace and then forged flat bars with dimensions of 20mmx80mm were produced. The following heat treatments were performed:
  • DM13A-2:
    1100 ° C / 3h / fast air cooling (fan) + 640 ° C / 5h / air cooling
  • St13TNiEL:
    1050-1080 ° C /> 0.5h / oil + 630-650 ° C /> 2h / air cooling
  • Alloy "D":
    1180 ° C / 2h / air cooling + 640 ° C / 2h / air cooling + 600 ° C / 1h / furnace cooling

In Tabelle 2 sind experimentelle Daten zur Ermittlung der Kerbschlagenergie bei Raumtemperatur enthalten: Tabelle 2: Kerbschlagenergie für verschiedene unterschiedlich behandelte Legierungen Legierung Bedingungen Kerbschlagenergie in J DM13A-2 Ausgangszustand nach obiger Wärmebehandlung 76 Ausgelagert bei 400°C/1032h 90 Ausgelagert bei 480°C/1032h 58 St13TNiEL Ausgangszustand nach obiger Wärmbehandlung >40 (gefordert) Legierung "D" Ausgangszustand nach obiger Wärmebehandlung 106 Ausgelagert bei 300°C/5000h 57 Ausgelagert bei 380°C/5000h 36 Ausgelagert bei 450°C/5000h 21 Ausgelagert bei 500°C/5000h 54 Table 2 contains experimental data for determining the notched impact energy at room temperature: Table 2: Notch energy for various differently treated alloys alloy conditions Notch energy in J DM13A-2 Initial state after the above heat treatment 76 Outsourced at 400 ° C / 1032h 90 Outsourced at 480 ° C / 1032h 58 St13TNiEL Initial state after the above heat treatment > 40 (required) Alloy "D" Initial state after the above heat treatment 106 Outsourced at 300 ° C / 5000h 57 Outsourced at 380 ° C / 5000h 36 Outsourced at 450 ° C / 5000h 21 Outsourced at 500 ° C / 5000h 54

Man erkennt deutlich die Reduktion der Kerbschlagarbeit bei der Legierung "D" nach einer Auslagerung der Proben im Bereich zwischen 300 und 500°C. Dies ist in der Ausscheidung der α'Cr-Phase begründet. Bei der erfindungsgemässen Legierung DM13A-2 ist die Neigung zur Ausscheidung dieser Phase dagegen verringert, so dass auch die Versprödung im genannten Temperaturbereich geringer ausfällt.It can be clearly seen the reduction of impact energy in the alloy "D" after a swapping of the samples in the range between 300 and 500 ° C. This is due to the excretion of the α'Cr phase. In the case of the alloy DM13A-2 according to the invention, the tendency to precipitate this phase is opposed reduced, so that the embrittlement in the temperature range is lower.

Zugversuche bei Raumtemperatur und bei 550°C der oben beschriebenen wärmebehandelten Proben (Ausgangszustand) brachten die in Tabelle 3 enthaltenen Ergebnisse: Legierung T in °C Streckgren. in MPa Zugfest in MPa Dehnung in % Einschnür. in % E-Mod. in GPa DM13A-2 20 928 1036 14.4 64 212 550 600 637 19.9 75.3 155 St13TNiEL 20 852 985 550 470 530 Legierung 20 975 1068 15.2 67 "D" 550 714 750 15.0 72 Tensile tests at room temperature and 550 ° C of the heat-treated samples described above (initial state) gave the results shown in Table 3: alloy T in ° C Streckgren. in MPa Tensile in MPa Elongation in% Necking. in % E-Mod. in GPa DM13A-2 20 928 1036 14.4 64 212 550 600 637 19.9 75.3 155 St13TNiEL 20 852 985 550 470 530 alloy 20 975 1068 15.2 67 "D" 550 714 750 15.0 72

Die erfindungsgemässe Legierung zeichnet sich sowohl durch eine hohe Warmfestigkeit bei 550 °C aus, als auch durch eine hohe Duktilität und einen guten E-Modul.The alloy according to the invention is distinguished by a high heat resistance at 550 ° C., as well as by a high ductility and a good modulus of elasticity.

In der einzigen Figur ist in Abhängigkeit von der Zeit die Spannung für 1 % Kriechdehnung bei 550 °C für die Legierungen DM13A-2 und St13TNiEL dargestellt. Der Vorteil der erfindungsgemässen Legierung kommt bei hohen Auslagerungszeiten zum Tragen.
Selbstverständlich ist die Erfindung nicht auf das beschriebene Ausführungsbeispiel beschränkt.
In the single figure, the voltage for 1% creep at 550 ° C for the alloys DM13A-2 and St13TNiEL is shown as a function of time. The advantage of the alloy according to the invention comes into play at high removal times.
Of course, the invention is not limited to the embodiment described.

Claims (8)

  1. Maraging heat-treatment steel, characterized by the following chemical composition (details in % by weight): 8.5 to 9.5 Cr, 0.15 to 0.25 Mn, 2 to 2.7 Ni, 0.5 to 2.5 Mo, 0.4 to 0.8 V, 0.001 to 0.15 Si, 0.06 to 0.1 C, 0.11 to 0.15 N, 0.2 to 0.4 Nb, max 0.007 P, max 0.005 S, max 0.01 Al, remainder iron and standard impurities, with the proviso that the vanadium to nitrogen weight ratio V/N is in the range between 4.3 and 5.5.
  2. Maraging heat-treatment steel according to Claim 1, characterized by 8.5 to 9% Cr by weight.
  3. Maraging heat-treatment steel according to Claim 1, characterized by 0.2% by weight Mn.
  4. Maraging heat-treatment steel according to Claim 1, characterized by 2.3 to 2.6% by weight Ni.
  5. Maraging heat-treatment steel according to Claim 1, characterized by 1.4 to 1.6% Mo by weight.
  6. Maraging heat-treatment steel according to Claim 1, characterized by 0.5 to 0.6% by weight V.
  7. Maraging heat-treatment steel according to Claim 1, characterized by 0.11 to 0.12% N by weight.
  8. Maraging heat-treatment steel according to Claim 1, characterized by 0.06 to 0.08% C by weight.
EP05795177A 2004-10-29 2005-10-14 Creep-resistant, martensitically hardenable, heat-treated steel Not-in-force EP1805340B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH17922004 2004-10-29
PCT/EP2005/055252 WO2006045708A1 (en) 2004-10-29 2005-10-14 Creep-resistant, martensitically hardenable, heat-treated steel

Publications (2)

Publication Number Publication Date
EP1805340A1 EP1805340A1 (en) 2007-07-11
EP1805340B1 true EP1805340B1 (en) 2008-08-27

Family

ID=34974056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05795177A Not-in-force EP1805340B1 (en) 2004-10-29 2005-10-14 Creep-resistant, martensitically hardenable, heat-treated steel

Country Status (8)

Country Link
US (1) US7686898B2 (en)
EP (1) EP1805340B1 (en)
JP (1) JP2008518103A (en)
CN (1) CN100480414C (en)
AT (1) ATE406466T1 (en)
DE (1) DE502005005216D1 (en)
ES (1) ES2313422T3 (en)
WO (1) WO2006045708A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2240619B1 (en) 2007-03-29 2017-01-25 General Electric Technology GmbH Creep resistant steel
EP2116626B1 (en) * 2008-02-25 2010-12-22 ALSTOM Technology Ltd Creep-Resistant Steel
US20100037994A1 (en) * 2008-08-14 2010-02-18 Gopal Das Method of processing maraging steel
JP6128935B2 (en) * 2012-05-22 2017-05-17 キヤノン株式会社 Substrate for liquid discharge head and liquid discharge head
CN102912248A (en) * 2012-10-13 2013-02-06 山东理工大学 High-toughness wear resistant martensitic stainless steel and production method thereof
CN104789894A (en) * 2015-04-04 2015-07-22 王文姣 Heat treatment method of high-strength automobile bumper and high-strength automobile bumper
GB2546809B (en) * 2016-02-01 2018-05-09 Rolls Royce Plc Low cobalt hard facing alloy
GB2546808B (en) * 2016-02-01 2018-09-12 Rolls Royce Plc Low cobalt hard facing alloy

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI47908C (en) 1970-04-20 1974-04-10 Ovako Oy Low carbon, high strength, well weldable structural steel
JPS5548572B2 (en) * 1973-08-15 1980-12-06
JPH01230713A (en) * 1988-03-08 1989-09-14 Nippon Steel Corp Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JPH0794687B2 (en) * 1989-03-29 1995-10-11 新日本製鐵株式会社 Method for producing HT80 steel excellent in high weldability, stress corrosion cracking resistance and low temperature toughness
EP0411515B1 (en) 1989-07-31 1993-09-08 Mitsubishi Jukogyo Kabushiki Kaisha High strength heat-resistant low alloy steels
JP3293022B2 (en) 1994-09-21 2002-06-17 新日本製鐵株式会社 Steel for welded structure for natural gas-fired chimneys and chimneys with excellent gas cutting properties
JPH08218154A (en) * 1995-02-14 1996-08-27 Nippon Steel Corp High strength ferritic heat resistant steel excellent in intermetallic compound precipitating embrittlement resistance
JPH08225833A (en) * 1995-02-16 1996-09-03 Nippon Steel Corp Production of martensitic heat resistant steel excellent in high temperature creep strength
JP3306572B2 (en) * 1995-08-25 2002-07-24 新日本製鐵株式会社 Chimney / flue steel with excellent perforation resistance and rust adhesion
US6045630A (en) * 1997-02-25 2000-04-04 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
DE19712020A1 (en) * 1997-03-21 1998-09-24 Abb Research Ltd Fully martensitic steel alloy
US5906791A (en) * 1997-07-28 1999-05-25 General Electric Company Steel alloys
US5820817A (en) * 1997-07-28 1998-10-13 General Electric Company Steel alloy
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
JPH11209851A (en) * 1998-01-27 1999-08-03 Mitsubishi Heavy Ind Ltd Gas turbine disk material
JP4203143B2 (en) * 1998-02-13 2008-12-24 新日本製鐵株式会社 Corrosion-resistant steel and anti-corrosion well pipe with excellent carbon dioxide corrosion resistance
AU768461B2 (en) 1999-04-08 2003-12-11 Jfe Steel Corporation Corrosion resistant steel materials
EP1104816A4 (en) 1999-06-04 2005-01-26 Jfe Steel Corp High-tension steel material with excellent suitability for welding with high-energy-density heat source and welded structure thereof
JP3716684B2 (en) * 1999-09-27 2005-11-16 株式会社日立製作所 High strength martensitic steel
JP2001262273A (en) 2000-03-21 2001-09-26 Nippon Steel Corp Weather resistant steel tube excellent in weldability
JP3518515B2 (en) 2000-03-30 2004-04-12 住友金属工業株式会社 Low / medium Cr heat resistant steel
DE10025808A1 (en) * 2000-05-24 2001-11-29 Alstom Power Nv Martensitic hardenable tempering steel with improved heat resistance and ductility

Also Published As

Publication number Publication date
US20070193661A1 (en) 2007-08-23
EP1805340A1 (en) 2007-07-11
WO2006045708A1 (en) 2006-05-04
ATE406466T1 (en) 2008-09-15
US7686898B2 (en) 2010-03-30
DE502005005216D1 (en) 2008-10-09
CN101048525A (en) 2007-10-03
CN100480414C (en) 2009-04-22
ES2313422T3 (en) 2009-03-01
JP2008518103A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
EP1158067B1 (en) Martensitic hardenable heat treatable steel with improved thermal resistance and ductility
EP1805340B1 (en) Creep-resistant, martensitically hardenable, heat-treated steel
DE3650515T2 (en) High-strength heat-resistant ferritic steel with a high chromium content
DE69915742T2 (en) steel alloys
DE69010234T2 (en) High-strength steel with a high chromium content and with very good toughness and oxidation resistance properties.
DE69706224T2 (en) Heat resistant steel and steam turbine rotor
EP0866145B1 (en) Heat treatment method for completely martensitic steel alloy
DE69508876T2 (en) Temperature-resistant ferritic steel with a high chromium content
DE69821493T2 (en) Use of heat-resistant cast steel for components of turbine housings
DE60115232T2 (en) STEEL ALLOY, TOOL FOR PLASTIC DIE CASTING AND TOOTH-CURRENT COATING FOR PLASTIC DIE CASTING TOOLS
DE1301586B (en) Austenitic precipitation hardenable steel alloy and process for its heat treatment
DE2800444C2 (en) Use of a Cr-Mo steel
EP1249511A1 (en) High speed steel with good high temperature strength manufactured by powder metallurgy
EP2240619B1 (en) Creep resistant steel
DE3522115A1 (en) HEAT-RESISTANT 12 CR STEEL AND TURBINE PARTS MADE OF IT
EP1215299B1 (en) Phase transformation controlled and nitride precipitation hardened heat treated steel
EP2116626B1 (en) Creep-Resistant Steel
EP3847284B1 (en) Hot-rolled flat steel product and method for the production thereof
EP0897018B1 (en) Duplex stainless steel with high tensile strength and good corrosion properties
DE60126646T2 (en) STEEL ALLOY, HOLDER AND BRACKET PARTS FOR PLASTIC TOOLS AND GUARANTEED COVERS FOR HOLDER AND HOLDER PARTS
EP1321535B1 (en) Material with high ballistic protection
EP0733719B1 (en) Iron base alloy for use at high temperature
DE3522114A1 (en) Heat-resistant 12-Cr steel, and turbine components made from this
DE69501344T2 (en) Heat resistant steel
EP2478988A1 (en) Filler material for welding based on iron

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005005216

Country of ref document: DE

Date of ref document: 20081009

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2313422

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

26N No opposition filed

Effective date: 20090528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081014

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081128

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101029

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101030

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111005

Year of fee payment: 7

Ref country code: GB

Payment date: 20110930

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111020

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121014

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121014

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005005216

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121014

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121015