EP1799884B1 - Procede de preparation d'un substrat non conducteur pour electrodeposition - Google Patents
Procede de preparation d'un substrat non conducteur pour electrodeposition Download PDFInfo
- Publication number
- EP1799884B1 EP1799884B1 EP05758554.9A EP05758554A EP1799884B1 EP 1799884 B1 EP1799884 B1 EP 1799884B1 EP 05758554 A EP05758554 A EP 05758554A EP 1799884 B1 EP1799884 B1 EP 1799884B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- copper
- carbon
- solution
- dispersion
- printed circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009713 electroplating Methods 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title 1
- 239000000758 substrate Substances 0.000 title 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 57
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 48
- 229910052799 carbon Inorganic materials 0.000 claims description 47
- 229910052802 copper Inorganic materials 0.000 claims description 47
- 239000010949 copper Substances 0.000 claims description 47
- 239000006185 dispersion Substances 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 25
- 238000007747 plating Methods 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 16
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 14
- -1 alkyl imidazoles Chemical class 0.000 claims description 14
- 239000004094 surface-active agent Substances 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 11
- 238000006386 neutralization reaction Methods 0.000 claims description 11
- 230000007797 corrosion Effects 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 7
- 239000003112 inhibitor Substances 0.000 claims description 7
- 229920003169 water-soluble polymer Polymers 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 3
- 239000000243 solution Substances 0.000 description 24
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 20
- 238000000576 coating method Methods 0.000 description 20
- 239000007788 liquid Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000006229 carbon black Substances 0.000 description 14
- 235000019241 carbon black Nutrition 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000007654 immersion Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 150000002978 peroxides Chemical class 0.000 description 7
- ZNBNBTIDJSKEAM-UHFFFAOYSA-N 4-[7-hydroxy-2-[5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-2-methyl-3-propanoyloxypentanoic acid Chemical compound C1C(O)C(C)C(C(C)C(OC(=O)CC)C(C)C(O)=O)OC11OC(C)(C2OC(C)(CC2)C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CC1 ZNBNBTIDJSKEAM-UHFFFAOYSA-N 0.000 description 6
- 229910000378 hydroxylammonium sulfate Inorganic materials 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000003945 anionic surfactant Substances 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 125000001475 halogen functional group Chemical group 0.000 description 3
- 238000007431 microscopic evaluation Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 241000557626 Corvus corax Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- CBECDWUDYQOTSW-UHFFFAOYSA-N 2-ethylbut-3-enal Chemical compound CCC(C=C)C=O CBECDWUDYQOTSW-UHFFFAOYSA-N 0.000 description 1
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical compound OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- JTHNLKXLWOXOQK-UHFFFAOYSA-N n-propyl vinyl ketone Natural products CCCC(=O)C=C JTHNLKXLWOXOQK-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- ZDCHZHDOCCIZIY-UHFFFAOYSA-N phthalic acid;propane-1,2,3-triol Chemical class OCC(O)CO.OC(=O)C1=CC=CC=C1C(O)=O ZDCHZHDOCCIZIY-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical class O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/423—Plated through-holes or plated via connections characterised by electroplating method
- H05K3/424—Plated through-holes or plated via connections characterised by electroplating method by direct electroplating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/032—Materials
- H05K2201/0323—Carbon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0055—After-treatment, e.g. cleaning or desmearing of holes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
- H05K3/383—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by microetching
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/425—Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
- H05K3/427—Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
Definitions
- the present invention relates to a process for enhancing the electroplating of non-conductive surfaces, such as the through holes of a printed circuit board (PCB).
- the invention comprises an improved process for plating non-conductive surfaces without the need for electroless plating.
- the improved process is particularly suitable for plating surfaces, such as printed circuit boards, which comprise both non-conductive and conductive (metallic) surfaces.
- Printed circuit boards are generally composed of a non-conductive layer, such as an epoxy resin/glass fiber mixture, which is positioned between copper or nickel plates or foils, or other conductive metal layers. There can also be a multiplicity of these alternating layers. Commonly, holes are drilled through the PCB to establish a connection between the conductive metal layers at specific points in the board. The holes are then metallized to form a connection between the conductive materials, usually by plating.
- a non-conductive layer such as an epoxy resin/glass fiber mixture
- the through holes are usually first provided with a layer of electroless copper in a process which requires several steps, including, desmear, pre-activation, activation with a palladium/tin activator, application of an accelerator, electroless copper deposition and one or more rinses, before electroplating could be effected.
- the need for application of electroless copper can be avoided, it has been found, by the deposition of carbon on the through holes or other non-conductive surfaces which are to be electroplated. In this way, the long process time, complex chemistry requiring constant monitoring, and sensitivity of electroless baths can be avoided.
- the expensive waste treatment often required with electroless copper and palladium/tin activators can be eliminated.
- the use of a carbon deposition process may have several drawbacks. After carbon deposition, it takes several minutes before the non-conductive surface being plated is completely covered by the electroplated metal. This is especially significant where the surface to be plated is a through hole. Electroplating after treatment with carbon begins adjacent to the outer conductive surfaces (i.e., the copper foil) of the PCB and extends inward towards the center of the hole. This occurs from both sides of the through hole and the plating meets in the center and completes the connection.
- the outer conductive surfaces i.e., the copper foil
- This invention proposes a modification to one of the standard process steps in the copper plating cycle, namely the neutralization step in the desmear cycle.
- the modified neutralization step proposed accomplishes both the required neutralization function as well as the application of a thin sacrificial coating to the copper surfaces prior to the application of carbon.
- the sacrificial coating allows the subsequent removal of carbon from the copper surfaces to be achieved more reliably with less microetching. Thus, an improvement is provided without unwanted expansion of the process cycle.
- This invention proposes a process for plating surfaces comprised of metallic areas and non-conductive areas, said process comprising contacting the surfaces to be plated with the following solutions:
- Water rinses are interspersed after steps a, b, c, f and g.
- a preferred embodiment of the present invention relates to the preparation of a PCB through hole for the deposition of an electroplated layer of copper or other conductive metal (such as nickel, gold, silver, etc.) so as to form a connection between conductive metal layers which are sandwiched with non-conductive layers.
- an electroplated layer of copper or other conductive metal such as nickel, gold, silver, etc.
- this description will be written in terms of electroplating (or metalizing) the through holes of printed circuit boards, it will be understood that such is for ease of description only, and that the disclosed process is equally applicable to the preparation of various non-conductive surfaces for deposition of an electroplated metal layer on plastics applications.
- Printed circuit boards are generally comprised of two or more plates or foils of nickel or copper, which are separated from each other by a layer of non-conducting material.
- the non-conducting layers are typically comprised of an organic material such as an epoxy resin which has been reinforced with glass fiber.
- the non-conducting layer may also be comprised of thermosetting resins, thermoplastic resins, and mixtures thereof, with or without reinforcing materials such as fiberglass and fillers.
- Suitable thermoplastic resins include the acetyl resins; acrylics, such as methyl acrylate; cellulosic resins, such as ethyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose nitrate, and the like; chlorinated polyethers; nylon, polyethylene; polypropylene, polystyrene, styrene blends, such as acrylonitrile styrene co-polymers; polycarbonates; polychlorotrifluorethylene; and vinyl polymers and co-polymers, such as vinyl acetate, vinyl alcohol, vinyl butyral, vinyl chloride, vinyl chloride-acetate co-polymer, vinylidene chloride and vinyl formal.
- thermosetting resins include alkyl phthalate; furane; melamine-formaldehyde; phenol formaldehyde and phenol-furfural co-polymer, alone or compounded with butadiene acrylonitrile co-polymers; polyacrylic esters; silicones; urea formaldehydes; epoxy resins, polyimides, alkyl resins, glycerol phthalates; polyesters; and the like.
- Through holes are formed in printed circuit boards in order to establish connection between the metal plates at certain points in the board to produce the desired electrical pattern. This is usually accomplished by drilling holes at the desired locations through the copper plates and the non-conducting layers, and then connecting the separate metal plates by metallizing the through holes (i.e., coating the inner surface of the through hole with a conductive metal).
- the hole diameters of PCBs generally range from about 0.15 millimeters to about 10.0 millimeters, more typically from about 0.3 millimeters to about 1.0 millimeters.
- a typical desmear solution comprises an alkaline solution of permanganate ions, usually provided by sodium or potassium permanganate at concentrations of from about 25 g/l to about 170 g/l.
- a solvent or swellant can be used to soften or swell the resin of the non-conductive surfaces and thereby enhance the ability of the desmear solution to etch those surfaces.
- the desmear solution is used at elevated temperatures of from about 100°F to about 180°F, and contact times ranging from 2 minutes to 30 minutes.
- the neutralizer/sacrificial coating solution comprises an aqueous solution of (i) hydrogen peroxide, (ii) acid and (iii) corrosion inhibitor.
- the concentration of hydrogen peroxide may range from about 2 g/l to about 60 g/l but is preferably from about 3 g/l to about 30 g/l.
- the acid can be any acid which is stable in combination with the hydrogen peroxide but is preferably a mineral acid and is most preferably sulfuric acid. If sulfuric acid is used, concentration will preferably range from about 30 to about 200 g/l.
- the corrosion inhibitor(s) are preferably selected from the group consisting of alkyl imidazoles, alkyl triazoles, aromatic imidazoles, aromatic triazoles and mixtures of the foregoing compounds. Most preferably the corrosion inhibitor(s) are selected from the group consisting of benzotriazole, hydroxy benzotriazole and mixtures of the foregoing compounds.
- the concentration of corrosion inhibitor(s) should preferably range from about 0.5g/l to about 20 g/l.
- the neutralizer/sacrificial coating solution may also comprise surfactants, water soluble polymers, halide ions and other additives known in the art. In this regard, reference is made to U.S. Patent No. 6,146,701 , the teachings of which are incorporated herein by reference in their entirety.
- the part to be plated is neutralized and the sacrificial coating is applied by contacting the part with the neutralizer/sacrificial coating solution via immersion, spray or flood.
- the contact time may vary from 0.5 to 10 minutes and the operating temperature may range from 70 to 150°F.
- the part is then rinsed in water and proceeds through the typical carbon based plating cycle.
- the printed circuit board is precleaned in order to place it in condition for receiving the liquid carbon black dispersion of this invention.
- the PCB is placed in a cleaner/conditioner bath for several minutes at a temperature of about 130 degree F. to remove grease and other impurities from the hole wall surfaces.
- One preferred Cleaner/Conditioner, Blackhole Conditioner is sold by MacDermid Incorporated of Waterbury, Conn.
- the printed circuit board is rinsed to remove any residual cleaner/conditioner from the board.
- the cleaner/conditioner should be alkaline so as not to remove the sacrificial layer. It should be recognized that none of the above-mentioned hole drilling or pre-cleaning operations is a critical feature of the present invention. Any and all conventional equivalents to these operations may be used instead.
- the carbon deposition process involves the application of a liquid carbon dispersion to the cleaned printed circuit board.
- This dispersion contains three principal ingredients, namely carbon, one or more surfactants capable of dispersing the carbon, and a liquid dispersing medium such as water.
- the preferred methods of applying the dispersion to the PCB include immersion, spraying or other methods of applying chemicals used in the printed circuit board industry. A single working bath is sufficient for applying this carbon black dispersion; however, more than one bath may be used for rework or other purposes.
- the three primary ingredients, and any other preferred ingredients are mixed together to form a stable dispersion. This may be accomplished by subjecting a concentrated form of the dispersion to ball milling, colloidal milling, high-shear milling, ultrasonic techniques or other like procedures to thoroughly mix the ingredients. The dispersion can then be later diluted with more water to the desired concentration for the working bath.
- the preferred method of mixing is ball milling a concentrated form of the dispersion in a container having glass mineral or plastic beads therein for at least about 1 hour. The mixing can continue for up to about 24 hours. This thorough mixing allows for the carbon particles to be intimately coated or wetted with the surfactant.
- the mixed concentrate is then mixed with water or some other liquid dispersing medium to the desired concentration.
- the working bath is preferably kept agitated during both the diluting and applying steps to aid in maintaining dispersion stability.
- the particle diameter of the carbon particles should average no more than about 3 microns while in the dispersion. It is desirable to have this average particle diameter of carbon as small as possible to obtain desired plating characteristics, such as substantially even plating and no plating pullaways.
- the average particle diameter of the carbon particles is preferably from about 0.05 microns to about 3.0 microns, more preferably between about 0.08 microns and about 1.0 microns when in the dispersion.
- the term "average particle diameter" as used herein refers to the average mean diameter of the particles (the average by number).
- the average mean diameter in the dispersion may be determined through the use of either a NiComp Model 370 submicron particle sizer (Version 3.0) or a HIAC PA-720 automatic particle size analyzer (both available from the HIAC/ROYCO Instrument Division of Pacific Scientific of Menlo Park, Calif.). It is also important to maintain the size distribution of the carbon particles to a relatively narrow distribution.
- carbon blacks which are initially acidic or neutral, i.e. those which have a pH of between about 1 and about 7.5 and more preferably between about 2 and about 4 when slurried with water.
- the carbon black particles which are preferred are also very porous and generally have as their surface area from about 45 to about 1100, and preferably about 300 to about 600, square meters per gram, as measured by the BET method (method of Brunauer-Emmert-Teller).
- carbon blacks suitable for use in this invention are Cabot XC-72R Conductive, Cabot Monarch 800, Cabot Monarch 1300, all available from Cabot Corporation of Boston, Mass.
- Other suitable carbon blacks include Columbian T-10189, Columbian Conductiex 975 Conductive, Columbian CC-40,220, and Columbian Raven 3500, all available from Columbian Carbon Company of New York, N.Y.
- Cabot Monarch 1300 and Columbian Raven 3500 are the two most preferred carbon blacks because of their ease of dispersion and low pH.
- Suitable graphites include Showa-Denko UFG available from Showa-Denko K.K., 13-9 Shiba Daimon 1-Chrome, Minato-Ku, Tokyo, 105 Japan, Nippon Graphite AUP available from Nippon Graphite Industries, Ishiyama, Japan, and Asbury Micro 850, available from Asbury Graphite Mills of Asbury, N.J.
- a surfactant capable of dispersing the carbon in the liquid dispersing medium is employed in the dispersion.
- One or more surfactants is added to the dispersion to enhance the wetting ability and stability of the carbon and to permit maximum penetration by the carbon within the pores and fibers of the non-conducting layer of the PCB.
- Suitable surfactants include anionic, nonionic and cationic surfactants (or combinations thereof such as amphoteric surfactants).
- the surfactant should be soluble, stable and preferably non-foaming in the liquid carbon dispersion. In general, for a polar continuous phase as in water, the surfactant should preferably have a high HLB number (8-18).
- the preferred type of surfactant will depend mainly on the pH of the dispersion.
- the total dispersion is alkaline (i.e. has an overall pH in the basic range) so as not to disturb the sacrificial layer.
- an anionic or nonionic surfactant include sodium or potassium salts of naphthalene sulfonic acid such as DARVAN No. 1, commercially available from Eastern Color and Chemical, PETRO AA and PETRO ULF, commercially available from Petro Chemical Co., Inc., and AEROSOL OT, commercially available from American Cyanamid.
- Preferred anionic surfactants include neutralized phosphate ester-type surfactants such as MAPHOS 55,56,8135, 60A and L6, commercially available from BASF Chemical Co.
- the most preferable anionic surfactant for a liquid carbon black dispersion is MAPHOS 56.
- Suitable nonionic surfactants include ethoxylated nonyl phenols such as the POLY-TERGENT B-series from Olin Corporation or alkozylated linear alcohol's such as the POLY-TERGENT SL-series, also from Olin Corporation.
- carbon is present in the dispersion in an mount of less than about 15% by weight of the dispersion, preferably less than about 5% by weight, most preferably weight, most preferably less than 2% by weight, particularly when the form of carbon is carbon black. It has been found that the use of higher concentrations of carbon blacks may provide undesirable plating characteristics.
- the solids content i.e. all of the ingredients other than the liquid dispersing medium
- the liquid dispersion of carbon is typically placed in a vessel and the printed circuit board is immersed in, sprayed with or otherwise contacted with the liquid dispersion.
- the temperature of the liquid dispersion in an immersion bath should be maintained at between about 15 degree C. and about 35 degree C. and preferably between about 20 degree C. and about 30 degree C. during immersion.
- the period of immersion advantageously ranges from about 15 seconds to about 10 minutes, more preferably from about 30 seconds to 5 minutes.
- the immersed board is then removed from the bath of the liquid carbon-containing dispersion and is preferably contacted with compressed air to unplug any through holes that may still retain plugs of the dispersion.
- excess basic liquid carbon-containing dispersion is removed from the face of the copper plates.
- substantially all (i.e. over about 90% by weight) of the water (or other liquid dispersing medium) in the applied dispersion is removed and a dried deposit containing carbon is left on the surfaces of the non-conducting material.
- This may be accomplished by several methods such as by evaporation at room temperature, by a vacuum, or by heating the board for a short time at an elevated temperature. Heating at an elevated temperature is the preferred method. Heating is generally carried out for between about 5 and about 45 minutes at a temperature of from about 75 degree C. to about 120 degree C., more preferably from about 80 degree to 98 degree C. To insure complete coverage of the hole walls, the procedure of immersing the board in the liquid carbon dispersion and then drying may be repeated one or more times.
- the resulting PCB is often completely coated with the carbon dispersion.
- the dispersion is not only coated on the drilled hole surfaces, as desired, but also coats the copper plate or foil surfaces, which is disadvantageous. Thus prior to any further processing, the carbon should be removed from the copper plate or foil surface.
- the part is dipped in a mild acid microetch solution in order to remove the unwanted carbon from the metallic (copper) surfaces.
- a mild acid microetch solution A variety of acids including hydrochloric acid, sulfuric acid, acetic acid, citric acid, tartaric acid and the like may be used.
- the concentration of the acid may range from 0.5% to 50% by weight, preferably from 1% to 10% by weight, with water and the chosen oxidizer essentially making up the remainder.
- the oxidizer is either hydrogen peroxide or a persulfate.
- Application of the acid microetch solution can be by any conventional means such as by immersion or spray.
- the parts are ready for the standard electroplating process as subsequently indicated.
- a standard soak cleaner as is typically used in electroplating processes, may be employed at this point prior to electroplating.
- the thusly treated printed wiring board is then immersed in a suitable electroplating bath for applying a copper coating on the hole walls of the non-conducting layer.
- a suitable electroplating bath for applying a copper coating on the hole walls of the non-conducting layer.
- the present invention contemplates the use of any and all electroplating operations conventionally employed in applying a metal layer to the through hole walls of a PCB. Therefore this claimed invention is not limited to any particular electroplating bath parameters.
- a typical copper electroplating bath is comprised of copper, copper sulfate, sulfuric acid and chloride ion in aqueous solution.
- the electroplating bath is normally agitated and preferably maintained at a temperature of between about 20 degree C. and about 25 degree C.
- the electroplating bath is provided with anodes, generally constructed of copper, and the printed circuit board to the plated is connected as a cathode to the electroplating circuit.
- a current is then impressed across the electroplating circuit for a period of between about 60 and about 90 minutes in order to effect copper plating on the hole walls of the non-conducting layer positioned between the two plates of copper. This copper plating of the hole wall provides a current path between the copper layers of the printed circuit board.
- Other suitable electroplating conditions may be employed, if desired.
- Other electroplating bath compositions containing other copper salts or other metal salts such as salts of nickel, gold, silver and the like may be employed, if desired.
- the printed circuit board is removed from the copper electroplating bath and then washed and dried to provide a board which is further processed by applying photoresist compounds and the like, as is known in the art for the preparation of printed circuit boards.
- the invention is further illustrated with reference to the following examples.
- Double-sided boards (copper foil is laminated to opposite sides of an epoxy resin/fiberglass composite) were mechanically scrubbed and processed through the following sequence for the indicated time. All procedures were performed by immersion in a beaker without any special impingement.
- Example 1 demonstrates that application of sacrificial layer improves carbon removal in the direct metallization process. Copper removal by microetch can be decreased by 50 % or more while maintaining a clean surface.
- Double-sided printed circuit boards with through holes are processed according to the sequences in the example 1. All boards were laminated, exposed and developed followed by Cu-Sn plating. All panels were carefully inspected to observe any blisters, halos or dry film lifting caused by poor dry film adhesion.
- Four kinds of dry films, AQUA MER® DI 200, AQUA MER® DI 300, AQUA MER® MP 420 and AQUA MER® PR 100 were used for the test. The dry film adhesion evaluation is described in table 3. Table 3.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
Claims (5)
- Procédé de placage d'objets comprenant des zones métalliques et des zones non conductrices, ledit procédé comprenant la mise en contact de l'objet avec :a. une solution d'ébeurrage comprenant des ions de permanganate ;b. une solution de neutralisation comprenant (i) un acide, (ii) un peroxyde d'hydrogène, et (iii) un inhibiteur de corrosion ;c. une solution de conditionnement comprenant un matériau sélectionné dans le groupe constitué d'agents tensio-actifs et de polymères solubles dans l'eau ;d. une dispersion aqueuse de particules de carbone comprenant (i) un matériau sélectionné dans le groupe constitué d'agents tensio-actifs et de polymères solubles dans l'eau et de (ii) particules de carbone ;e. un processus de séchage ;f. une solution de microdécapant ;g. une solution d'électrodéposition de cuivre avec un potentiel électrique appliqué.
- Procédé selon la revendication 1, dans lequel l'inhibiteur de corrosion est sélectionné dans le groupe constitué d'imidazoles d'alkyle, de triazoles d'alkyle, d'imidazoles aromatiques, de triazoles aromatiques et une combinaison des composés précités.
- Procédé selon la revendication 1, dans lequel l'objet est une carte de circuits imprimés.
- Procédé selon la revendication 1, dans lequel les zones métalliques comprennent du cuivre et dans lequel les zones non conductrices comprennent un matériau résineux ou polymérique.
- Procédé selon la revendication 2, dans lequel l'objet est une carte de circuits imprimés.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/964,212 US7214304B2 (en) | 2004-10-13 | 2004-10-13 | Process for preparing a non-conductive substrate for electroplating |
PCT/US2005/020635 WO2006043994A2 (fr) | 2004-10-13 | 2005-06-10 | Procede de preparation d'un substrat non conducteur pour electrodeposition |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1799884A2 EP1799884A2 (fr) | 2007-06-27 |
EP1799884A4 EP1799884A4 (fr) | 2007-10-03 |
EP1799884B1 true EP1799884B1 (fr) | 2017-01-18 |
Family
ID=36144169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05758554.9A Active EP1799884B1 (fr) | 2004-10-13 | 2005-06-10 | Procede de preparation d'un substrat non conducteur pour electrodeposition |
Country Status (6)
Country | Link |
---|---|
US (1) | US7214304B2 (fr) |
EP (1) | EP1799884B1 (fr) |
JP (1) | JP2008516088A (fr) |
CN (1) | CN101040065B (fr) |
ES (1) | ES2612210T3 (fr) |
WO (1) | WO2006043994A2 (fr) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006114130A1 (fr) * | 2005-04-26 | 2006-11-02 | Agilent Technologies, Inc. | Enzymes comprenant des acides aminés modifiés |
US8771804B2 (en) * | 2005-08-31 | 2014-07-08 | Lam Research Corporation | Processes and systems for engineering a copper surface for selective metal deposition |
US20100034965A1 (en) | 2008-08-06 | 2010-02-11 | Retallick Richard C | Direct Metallization Process |
CN102036489B (zh) * | 2010-11-26 | 2012-10-03 | 深南电路有限公司 | 高精度非金属加金属化边pcb板的加工方法 |
US20130186764A1 (en) * | 2012-01-19 | 2013-07-25 | Kesheng Feng | Low Etch Process for Direct Metallization |
ES2925233T3 (es) * | 2013-05-14 | 2022-10-14 | Prc Desoto Int Inc | Composiciones de recubrimiento de conversión a base de permanganato |
CN104519664B (zh) * | 2013-09-27 | 2018-04-17 | 北大方正集团有限公司 | 印制电路板的清洗方法和印制电路板 |
JP2015078443A (ja) * | 2015-01-14 | 2015-04-23 | 上村工業株式会社 | 電気銅めっき用前処理剤、電気銅めっきの前処理方法及び電気銅めっき方法 |
CN106319603A (zh) * | 2016-08-29 | 2017-01-11 | 苏州铱诺化学材料有限公司 | 一种黑孔整孔剂配方 |
US10986738B2 (en) * | 2018-05-08 | 2021-04-20 | Macdermid Enthone Inc. | Carbon-based direct plating process |
CN110856348A (zh) * | 2019-10-09 | 2020-02-28 | 广东利尔化学有限公司 | 一种用于pcb除胶后处理中和还原剂 |
CN111041535A (zh) * | 2019-12-25 | 2020-04-21 | 浙江振有电子股份有限公司 | 一种连续移动式电镀通孔双面板的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4724005A (en) * | 1985-11-29 | 1988-02-09 | Olin Hunt Specialty Products Inc. | Liquid carbon black dispersion |
US4964959A (en) * | 1990-04-12 | 1990-10-23 | Olin Hunt Specialty Products Inc. | Process for preparing a nonconductive substrate for electroplating |
US5139642A (en) * | 1991-05-01 | 1992-08-18 | Olin Corporation | Process for preparing a nonconductive substrate for electroplating |
US5626736A (en) * | 1996-01-19 | 1997-05-06 | Shipley Company, L.L.C. | Electroplating process |
US5674372A (en) * | 1996-09-24 | 1997-10-07 | Mac Dermid, Incorporated | Process for preparing a non-conductive substrate for electroplating |
US6565731B1 (en) * | 1997-06-03 | 2003-05-20 | Shipley Company, L.L.C. | Electroplating process |
US6146701A (en) * | 1997-06-12 | 2000-11-14 | Macdermid, Incorporated | Process for improving the adhension of polymeric materials to metal surfaces |
GB0105718D0 (en) * | 2001-03-08 | 2001-04-25 | Shipley Co Llc | Compositions containing heterocyclic nitrogen compounds and glycols for texturing resinous material and desmearing and removing resinous material |
-
2004
- 2004-10-13 US US10/964,212 patent/US7214304B2/en active Active
-
2005
- 2005-06-10 EP EP05758554.9A patent/EP1799884B1/fr active Active
- 2005-06-10 WO PCT/US2005/020635 patent/WO2006043994A2/fr active Application Filing
- 2005-06-10 JP JP2007536679A patent/JP2008516088A/ja active Pending
- 2005-06-10 ES ES05758554.9T patent/ES2612210T3/es active Active
- 2005-06-10 CN CN200580034493XA patent/CN101040065B/zh active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP1799884A2 (fr) | 2007-06-27 |
WO2006043994A2 (fr) | 2006-04-27 |
CN101040065A (zh) | 2007-09-19 |
US20060076245A1 (en) | 2006-04-13 |
WO2006043994A3 (fr) | 2006-09-28 |
US7214304B2 (en) | 2007-05-08 |
CN101040065B (zh) | 2010-08-18 |
ES2612210T3 (es) | 2017-05-12 |
JP2008516088A (ja) | 2008-05-15 |
EP1799884A4 (fr) | 2007-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1799884B1 (fr) | Procede de preparation d'un substrat non conducteur pour electrodeposition | |
USRE37765E1 (en) | Process for preparing a nonconductive substrate for electroplating | |
US5015339A (en) | Process for preparing nonconductive substrates | |
EP0244535B1 (fr) | Procédé de dépôt chimique | |
US4622108A (en) | Process for preparing the through hole walls of a printed wiring board for electroplating | |
US4897164A (en) | Process for preparing the through hole walls of a printed wiring board for electroplating | |
US4874477A (en) | Process for preparing the through hole walls of a printed wiring board for electroplating | |
US5143592A (en) | Process for preparing nonconductive substrates | |
US5536386A (en) | Process for preparing a non-conductive substrate for electroplating | |
US5110355A (en) | Process for preparing nonconductive substrates | |
JP7161597B2 (ja) | 炭素系ダイレクトめっきプロセス | |
US4994153A (en) | Process for preparing nonconductive substrates | |
US5759378A (en) | Process for preparing a non-conductive substrate for electroplating | |
US5674372A (en) | Process for preparing a non-conductive substrate for electroplating | |
US20100034965A1 (en) | Direct Metallization Process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070302 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE ES FR GB IT |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20070905 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160811 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005051190 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2612210 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170512 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005051190 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20171019 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005051190 Country of ref document: DE Representative=s name: PAGE, WHITE & FARRER GERMANY LLP, DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230703 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240521 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240522 Year of fee payment: 20 Ref country code: FR Payment date: 20240521 Year of fee payment: 20 |