EP1792087B1 - Method and device for compressing a gaseous medium - Google Patents

Method and device for compressing a gaseous medium Download PDF

Info

Publication number
EP1792087B1
EP1792087B1 EP05768562A EP05768562A EP1792087B1 EP 1792087 B1 EP1792087 B1 EP 1792087B1 EP 05768562 A EP05768562 A EP 05768562A EP 05768562 A EP05768562 A EP 05768562A EP 1792087 B1 EP1792087 B1 EP 1792087B1
Authority
EP
European Patent Office
Prior art keywords
liquid
gaseous medium
cylinders
compression
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05768562A
Other languages
German (de)
French (fr)
Other versions
EP1792087A1 (en
Inventor
Robert Adler
Georg Siebert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1792087A1 publication Critical patent/EP1792087A1/en
Application granted granted Critical
Publication of EP1792087B1 publication Critical patent/EP1792087B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped
    • F04F1/10Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped of multiple type, e.g. with two or more units in parallel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/077Ionic Liquids

Definitions

  • the invention relates to a method and an apparatus for compressing a gaseous medium, in particular hydrogen, wherein the compression of the gaseous medium by a liquid in which the gaseous medium does not dissolve and / or which is separated from the gaseous medium without residue takes place.
  • a generic method and a generic device for compressing a gaseous medium are, for example, in the German patent application 19848234 disclosed. Such compaction methods and apparatus are also referred to as “pistonless compaction” and “pistonless compactor”, respectively.
  • Such compaction methods and apparatus are also referred to as “pistonless compaction” and “pistonless compactor”, respectively.
  • in the compression of hydrogen natural gas and high purity media or if contamination of the medium to be compressed by the drive medium must be prevented and / or undesirable - as is usually the case in the compression by conventional compression methods - come for certain reasons, come generic Methods and devices for use.
  • US-A 4566860 It is proposed to use ionic liquids as a working medium for piston-less compressors.
  • Object of the present invention is to provide a generic method and a generic device for compressing a gaseous medium, in particular of hydrogen, indicate that or avoid the aforementioned disadvantages.
  • the device according to the invention for compressing a gaseous medium is characterized in that means for generating an electric field in the cylinder or cylinders are arranged within the cylinder or cylinders.
  • the liquid is now exposed to an electric field.
  • means for generating an electric field in the cylinder or cylinders are to be provided on the device side.
  • an enhancement of natural force fields such as gravity, Coreoliskraft, etc., can be achieved by an electric field.
  • an ionic liquid a high-boiling hydraulic oil or liquids having a very low vapor pressure, such as vacuum pump oils, molten salts and metals low melting point, or liquids having a gas solubility of less than 10 -4 mol / l bar used.
  • Ionic liquids are low-melting, organic salts with melting points between 100 and -90 ° C, with most of the known ionic liquids already in liquid form at room temperature. In contrast to conventional molecular liquids, ionic liquids are entirely ionic and therefore exhibit new and unusual properties. Ionic liquids are comparatively good in varying properties of given technical problems by varying the structure of anion and / or cation and by varying their combinations customizable. For this reason, they are often referred to as so-called "Designer Solvents". With conventional molecular liquids, however, only a variation of the structure is possible.
  • ionic liquids In contrast to conventional molecular liquids, ionic liquids also have the advantage that they have no measurable vapor pressure. This means that, as long as their decomposition temperature is not reached, they do not evaporate in the slightest traces, even in a high vacuum. As a result, the properties of inconvenience and environmental friendliness, as ionic liquids can not escape into the atmosphere.
  • the melting points of known ionic liquids are by definition below 100 ° C.
  • the so-called liquidus range - this is the range between melting point and thermal decomposition - is usually 400 ° C or more.
  • ionic liquids have a high thermal stability. Often their decomposition points are above 400 ° C. Density and mixing behavior with other liquids can be influenced or adjusted by the choice of ions for ionic liquids. Furthermore, ionic liquids have the advantage that they are electrically conductive and thus can prevent electrical charges - which represent a danger pterotial. Ionic liquids have the advantage that their complete separation from the compressed medium with a comparatively small amount of equipment is possible.
  • the figure shows a possible embodiment of the invention, in which the compression takes place in two separate cylinders Z1 and Z2.
  • the compression can also be realized only in one or in more than two cylinders.
  • the gaseous medium to be compressed is supplied to the cylinders Z1 and Z2 via the lines 1, 1 'and 1 ", inlet valves a and b are arranged in the aforesaid lines, and after compression the compressed gaseous medium from the cylinders Z1 and Z2 is transferred the discharge lines 2 'and 2 ", in which also valves c and d are arranged, deducted.
  • the compressed gaseous medium is in a separation device A of the cylinders Z1 and Z2 possibly entrained liquid, which will be discussed in more detail below, freed and then fed via line 2 its further use and / or intermediate storage.
  • a suitable liquid D which serves for the compression of the gaseous medium, is provided inside the cylinders Z1 and Z2.
  • the cylinders Z1 and Z2 are connected via the lines 3 to 6 and the hydraulic pump X, which is driven by an electric motor M.
  • the liquid levels D in the cylinders Z1 and Z2 are varied such that one of the cylinders sucks the medium to be compressed, while at the same time or substantially simultaneously takes place in the other cylinder, a compression of the gaseous medium.
  • an axial piston pump with Taumels cheiben facedung used which can be changed by a simple adjustment of the swash plate flow rate and / or counselri rect.
  • the invention also has the advantage over the prior art that an at least partial removal of the (compression) heat produced during the compression can take place via the liquid D.
  • heat exchangers or coolers K1 and K2 are provided, via which the heat generated in the cylinders Z1 and Z2 during compression can be dissipated, for example, to the environment and / or another suitable medium.
  • the device according to the invention can be arranged in the cylinders Z1 and Z2 heat exchangers E1 and E2.
  • heat exchanger here are any constructions of heat exchangers - hereinafter referred to as “active heat exchanger” - and heat storage - hereinafter referred to as “passive heat exchanger” - to understand.
  • the aforementioned advantageous embodiment of the device according to the invention thus enables a substantial reduction of the required compression energy and thus an approximately isothermal compression. Furthermore, lower gas outlet temperatures can be realized and a reduction of the thermal load of the compressor valves can be achieved.
  • the liquid separated from the compressed medium in the separating device A and originating from the cylinders Z1 and Z2 is fed via line 9, in which a shut-off valve e is arranged, to an intermediate storage container S to be optionally provided.
  • the liquid can be supplied to the cylinders Z1 and / or Z2 via the lines 7 and 8 as well as the two shut-off valves f and h in accordance with the requirements in the cylinders Z1 and Z2.
  • the dosing of liquid required for the compression takes place during a suction cycle.
  • the time for the make-up of liquid required for the compression should be based on the current power consumption of the system; Preferably, the dosing of liquid should be done during or near a performance minimum. At this time, the system or the drive pump has sufficient power reserves that can be used for the dosing of the liquid.
  • the liquid to be replenished D is passed during a suction cycle via the line 10, which has a feed pump P, in the corresponding cylinder Z1 and Z2.
  • the make-up does not take place immediately in the vicinity of the reversal point, since then there is the danger that liquid D u. U. from the corresponding cylinder Z1 or Z2 via the pressure line 2 'and 2 "exits.
  • the separation device A- which serves to separate from the cylinders Z1 and Z2 entrained liquid, are dimensioned correspondingly larger
  • a liquid feed during the suction cycle minimizes the energy requirement of the feed pump P.
  • the liquid loss is detected by measuring the deviations of the liquid levels in the cylinders Z1 and Z2 from a reference value which is normally determined at the beginning of the compression process.
  • the invention is suitable for compression of gaseous media to pressures of 1000 bar, which is currently feasible. It should be emphasized, however, that in principle also arbitrarily higher pressures can be achieved.
  • the invention further enables compression to maximum pressure with only a single compression stage. Furthermore, the flow rate can be varied as desired.
  • the invention provides a cost effective way to compress such media to very high pressures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Manufacture Of Iron (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method and device for compressing a gaseous medium, specifically hydrogen, is disclosed. Compression of the gaseous medium takes place by way of a fluid, where a fluid is used in which the gaseous medium is not soluble and/or can be separated residue-free from the gaseous medium. An ionic fluid, a high-boiling hydraulic oil, or a fluid which has a very low vapor pressure is used as the fluid.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Verdichten eines gasförmigen Mediums, insbesondere von Wasserstoff, wobei die Verdichtung des gasförmigen Mediums durch eine Flüssigkeit, in der sich das gasförmige Medium nicht löst und/oder die von dem gasförmigen Medium rückstandsfrei trennbar ist, erfolgt.The invention relates to a method and an apparatus for compressing a gaseous medium, in particular hydrogen, wherein the compression of the gaseous medium by a liquid in which the gaseous medium does not dissolve and / or which is separated from the gaseous medium without residue takes place.

Ein gattungsgemäßes Verfahren sowie eine gattungsgemäße Vorrichtung zum Verdichten eines gasförmigen Mediums sind bspw. in der deutschen Patentanmeldung 19848234 offenbart. Derartige Verdichtungsverfahren und -vorrichtungen werden auch als "kolbenlose Verdichtung" bzw. "kolbenloser Verdichter" bezeichnet. Insbesondere bei der Verdichtung von Wasserstoff, Erdgas und hochreinen Medien oder wenn aus bestimmten Gründen eine Kontaminierungen des zu verdichtenden Mediums durch das Antriebsmedium verhindert werden muss und/oder unerwünscht ist - wie dies üblicherweise bei der Verdichtung mittels herkömmlicher Verdichtungsmethoden der Fall ist -, kommen gattungsgemäße Verfahren und Vorrichtungen zur Anwendung. In der US-A 4566860 wird vorgeschlagen, ionische Flüssigkeiten als Arbeitsmedium für kolbenlose Verdichter zu verwenden.A generic method and a generic device for compressing a gaseous medium are, for example, in the German patent application 19848234 disclosed. Such compaction methods and apparatus are also referred to as "pistonless compaction" and "pistonless compactor", respectively. In particular, in the compression of hydrogen, natural gas and high purity media or if contamination of the medium to be compressed by the drive medium must be prevented and / or undesirable - as is usually the case in the compression by conventional compression methods - come for certain reasons, come generic Methods and devices for use. In the US-A 4566860 It is proposed to use ionic liquids as a working medium for piston-less compressors.

Insbesondere dann, wenn ionische Flüssigkeiten in direkten Kontakt mit anderen Medien (Gasen, Flüssigkeiten, etc.) kommen, kann es an der Trennfläche zu einer Vermischung und Bildung eines Zweiphasengemisches kommen. Bei kolbenlosen Verdichtern kann ein derartiges Zweiphasengemisch bspw. innerhalb des bzw. der Zylinder an der Trennfläche zwischen ionischer Flüssigkeit und dem zu verdichtenden Medium entstehen. Für eine saubere und zuverlässige Trennung von ionischer Flüssigkeit und zu verdichtendem Medium sind ein ausreichender Dichteunterschied und ein entsprechendes Gravitationsfeld, das üblicherweise durch die Erdbeschleunigung erzeugt wird, erforderlich. Dadurch wird die maximale Umkehrbeschleunigung innerhalb des Zylinders definiert. Im irdischen Gravitationsfeld hat dies zur Folge, dass eine maximale Beschleunigung von 7 m/s2 realisierbar ist. Eine derartige Beschleunigung ist jedoch oftmals nicht ausreichend, um das entstandene Zweiphasengemisch wieder vollständig zu trennen. Des Weiteren ist bei kolbenlosen Verdichtern bisher nur eine Kühlung des Zylinderraumes von außen realisierbar. Daher kann die Verdichtung im Regelfall nicht isotherm ausgeführt werden, was eine entsprechend hohe Verdichtungsenergie zur Folge hat.In particular, when ionic liquids come into direct contact with other media (gases, liquids, etc.), mixing and formation of a two-phase mixture may occur at the interface. In piston-less compressors, such a two-phase mixture may, for example, arise within the cylinder or cylinders at the interface between ionic liquid and the medium to be compressed. For a clean and reliable separation of ionic liquid and medium to be compacted, a sufficient difference in density and a corresponding gravitational field, which is usually generated by the gravitational acceleration, are required. This defines the maximum reversing acceleration within the cylinder. In the earthly gravitational field, this has the consequence that a maximum acceleration of 7 m / s 2 is feasible. However, such an acceleration is often not sufficient to completely separate the resulting two-phase mixture again. Furthermore, only a cooling of the cylinder chamber from the outside can be realized in piston-less compressors so far. Therefore, the compaction can not be carried out isothermally as a rule, resulting in a correspondingly high compaction energy.

Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren sowie eine gattungsgemäße Vorrichtung zum Verdichten eines gasförmigen Mediums, insbesondere von Wasserstoff, anzugeben, das bzw. die die vorgenannten Nachteile vermeiden.Object of the present invention is to provide a generic method and a generic device for compressing a gaseous medium, in particular of hydrogen, indicate that or avoid the aforementioned disadvantages.

Verfahrensseitig wird diese Aufgabe dadurch gelöst, dass die Flüssigkeit einem elektrischen Feld ausgesetzt wird.The method, this object is achieved in that the liquid is exposed to an electric field.

Die erfindungsgemäße Vorrichtung zum Verdichten eines gasförmigen Mediums ist dadurch gekennzeichnet, dass innerhalb des oder der Zylinder Mittel zum Erzeugen eines elektrischen Feldes in dem oder den Zylindern angeordnet sind.The device according to the invention for compressing a gaseous medium is characterized in that means for generating an electric field in the cylinder or cylinders are arranged within the cylinder or cylinders.

Erfindungsgemäß wird die Flüssigkeit nunmehr einem elektrischen Feld ausgesetzt. Hierzu sind vorrichtungsseitig Mittel zum Erzeugen eines elektrischen Feldes in dem oder den Zylindern vorzusehen. Dadurch kann eine Verstärkung natürlicher Kraftfelder, wie Gravitation, Coreoliskraft, etc., durch ein elektrisches Feld erreicht werden. Mittels der erfindungsgemäßen Verfahrensweise bzw. Vorrichtung kann somit ein entstandenes Zweiphasengemisch wieder vollständig getrennt werden bzw. die Bildung eines Zweiphasengemisches wirkungsvoll verhindert werden.According to the invention, the liquid is now exposed to an electric field. For this purpose, means for generating an electric field in the cylinder or cylinders are to be provided on the device side. Thus, an enhancement of natural force fields, such as gravity, Coreoliskraft, etc., can be achieved by an electric field. By means of the procedure or device according to the invention, a resulting two-phase mixture can thus be completely separated again or the formation of a two-phase mixture can be effectively prevented.

In vorteilhafter Weise werden als Flüssigkeit eine ionische Flüssigkeit, ein schwer siedendes Hydrauliköl oder Flüssigkeiten, die einen sehr niedrigen Dampfdruck aufweisen, wie beispielsweise Vakuumpumpenöle, Salzschmelzen und Metalle mit niedrigem Schmelzpunkt, oder Flüssigkeiten, die eine Gaslöslichkeit von weniger als 10-4 mol/l bar aufweisen, verwendet.Advantageously, as the liquid, an ionic liquid, a high-boiling hydraulic oil or liquids having a very low vapor pressure, such as vacuum pump oils, molten salts and metals low melting point, or liquids having a gas solubility of less than 10 -4 mol / l bar used.

Ionische Flüssigkeiten sind niederschmelzende, organische Salze mit Schmelzpunkten zwischen 100 und -90 °C, wobei die meisten der bekannten ionischen Flüssigkeiten bereits bei Raumtemperatur in flüssiger Form vorliegen. Im Gegensatz zu herkömmlichen, molekularen Flüssigkeiten sind ionische Flüssigkeiten zur Gänze ionisch und zeigen deshalb neue und ungewöhnfiche Eigenschaften Ionische Flüssigkeiten sind durch die Variation der Struktur von Anion und/oder Kation sowie durch die Variation von deren Kombinationen in ihren Eigenschaften an gegebene technische Problemstellungen vergleichsweise gut anpassbar. Aus diesem Grund werden sie oftmals auch als so genannte "Designer Solvents" bezeichnet. Bei herkömmlichen, molekularen Flüssigkeiten ist hingegen lediglich eine Variation der Struktur möglich.Ionic liquids are low-melting, organic salts with melting points between 100 and -90 ° C, with most of the known ionic liquids already in liquid form at room temperature. In contrast to conventional molecular liquids, ionic liquids are entirely ionic and therefore exhibit new and unusual properties. Ionic liquids are comparatively good in varying properties of given technical problems by varying the structure of anion and / or cation and by varying their combinations customizable. For this reason, they are often referred to as so-called "Designer Solvents". With conventional molecular liquids, however, only a variation of the structure is possible.

Im Gegensatz zu konventionellen, molekularen Flüssigkeiten haben ionische Flüssigkeiten darüber hinaus den Vorteil, dass sie keinen messbaren Dampfdruck besitzen. Dies bedeutet, dass sie - solange ihre Zersetzungstemperatur nicht erreicht wird - selbst im Hochvakuum nicht in geringsten Spuren verdampfen. Daraus resultieren die Eigenschaften Unbrenribarkeit und Umweltfreundlichkeit, da ionische Flüssigkeiten folglich nicht in die Atmosphäre gelangen können.In contrast to conventional molecular liquids, ionic liquids also have the advantage that they have no measurable vapor pressure. This means that, as long as their decomposition temperature is not reached, they do not evaporate in the slightest traces, even in a high vacuum. As a result, the properties of inconvenience and environmental friendliness, as ionic liquids can not escape into the atmosphere.

Wie bereits erwähnt, liegen die Schmelzpunkte bekannter ionischer Flüssigkeiten definitionsgemäß unterhalb von 100 °C. Der so genannte Liquidus-Bereich - dies ist der Bereich zwischen Schmelzpunkt und thermischer Zersetzung - beträgt im Regelfall 400 °C oder mehr.As already mentioned, the melting points of known ionic liquids are by definition below 100 ° C. The so-called liquidus range - this is the range between melting point and thermal decomposition - is usually 400 ° C or more.

Darüber hinaus weisen ionische Flüssigkeiten eine hohe thermische Stabilität auf. Oftmals liegen ihre Zersetzungspunkte oberhalb von 400 °C. Die Dichte und das Mischungsverhalten mit anderen Flüssigkeiten können bei ionischen Flüssigkeiten durch die Wahl der Ionen beeinflusst bzw. eingestellt werden Ionische Flüssigkeiten haben des Weiteren den Vorteil, dass sie elektrisch leitend sind und dadurch elektrische Aufladungen - die ein Gefahrenpoteritial darstellen - verhindern können. Ionische Flüssigkeiten besitzen den Vorteil, dass ihre vollständige Abtrennung aus dem verdichteten Medium mit einem vergleichsweise geringen apparativen Aufwand möglich ist.In addition, ionic liquids have a high thermal stability. Often their decomposition points are above 400 ° C. Density and mixing behavior with other liquids can be influenced or adjusted by the choice of ions for ionic liquids. Furthermore, ionic liquids have the advantage that they are electrically conductive and thus can prevent electrical charges - which represent a danger pterotial. Ionic liquids have the advantage that their complete separation from the compressed medium with a comparatively small amount of equipment is possible.

Eine Verschleppung der ionischen Flüssigkeit durch das verdichtete Medium ist nunmehr nicht mehr möglich, da ionische Flüssigkeiten - wie vorstehend erwähnt - keinen Dampfdruck aufweisen..A carryover of the ionic liquid by the compressed medium is now no longer possible, since ionic liquids - as mentioned above - have no vapor pressure.

Bei Flüssigkeiten mit großer Gaslöslichkeit kommt es zum einen zu unerwünschten Kavitationen der Antriebspumpe(n) und zum anderen zu einer unerwünschten Gasverschleppung in den im Regelfall vorzusehenden Flüssigkeits(zwischen)speicherbehälter. Durch die Verwendung einer Flüssigkeit, die eine Gaslöslichkeit von weniger als 10-4 mol/l bar aufweist, lassen sich diese Probleme vermeiden. Daraus resultiert eine Verlängerung der Lebensdauer der verwendeten Antriebspumpe; ferner werden die mit der Gasbildung bzw. -verschleppung einhergehenden sicherheitstechnischen Probleme vermieden.For liquids with high gas solubility occurs on the one hand to undesirable cavitations of the drive pump (s) and on the other to an undesirable Gasverschleppung in the rule to be provided liquid (between) storage container. By using a liquid having a gas solubility of less than 10 -4 mol / l bar, these problems can be avoided. This results in an extension of the service life of the drive pump used; Furthermore, the associated with the gas formation or Verschleppung safety problems are avoided.

Das erfindungsgemäße Verfahren, die erfindungsgemäße Vorrichtung sowie weitere Ausgestaltungen des- bzw. derselben seien nachfolgend anh and des in der Figur dargestellten Ausführungsbeispieles näher erläutert.The method according to the invention, the device according to the invention and further embodiments of the same are explained in more detail below with reference to the exemplary embodiment illustrated in the FIGURE.

Die Figur zeigt eine mögliche Ausführungsform der Erfindung, bei der die Verdichtung in zwei getrennten Zylindern Z1 und Z2 erfolgt. Alternativ dazu kann die Verdichtung jedoch auch lediglich in einem oder auch in mehr als zwei Zylindern realisiert werden.The figure shows a possible embodiment of the invention, in which the compression takes place in two separate cylinders Z1 and Z2. Alternatively, however, the compression can also be realized only in one or in more than two cylinders.

Den Zylinder Z1 und Z2 wird über die Leitungen 1,1' und 1" das zu verdichtende, gasförmige Medium zugeführt. In den vorgenannten Leitungen sind Eintrittsventile a und b angeordnet. Nach erfolgter Verdichtung wird das verdichtete gasförmige Medium aus den Zylindern Z1 und Z2 über die Abführleitungen 2' und 2", in denen ebenfalls Ventile c und d angeordnet sind, abgezogen.The gaseous medium to be compressed is supplied to the cylinders Z1 and Z2 via the lines 1, 1 'and 1 ", inlet valves a and b are arranged in the aforesaid lines, and after compression the compressed gaseous medium from the cylinders Z1 and Z2 is transferred the discharge lines 2 'and 2 ", in which also valves c and d are arranged, deducted.

Das verdichtete gasförmige Medium wird in einer Abtrennvorrichtung A von aus den Zylindern Z1 und Z2 ggf. mitgeführter Flüssigkeit, auf die im Folgenden noch näher eingegangen werden wird, befreit und anschließend über Leitung 2 seiner weiteren Verwendung und/oder Zwischenspeicherung zugeführt.The compressed gaseous medium is in a separation device A of the cylinders Z1 and Z2 possibly entrained liquid, which will be discussed in more detail below, freed and then fed via line 2 its further use and / or intermediate storage.

Innerhalb der Zylinder Z1 und Z2 ist eine geeignete Flüssigkeit D, die der Verdichtung des gasförmigen Mediums dient, vorgesehen. Die Zylinder Z1 und Z2 sind über die Leitungen 3 bis 6 sowie die Hyd raulikpumpe X, die von einem elektrischen Motor M angetrieben wird, verbunden.Inside the cylinders Z1 and Z2, a suitable liquid D, which serves for the compression of the gaseous medium, is provided. The cylinders Z1 and Z2 are connected via the lines 3 to 6 and the hydraulic pump X, which is driven by an electric motor M.

Mittels der Hydraulikpumpe X werden die Flüssigkeitsstände D in den Zylindern Z1 und Z2 derart variiert, dass einer der Zylinder das zu verdichtende Medium ansaugt, während zeitgleich bzw. im Wesentlichen zeitgleich in dem anderen Zylinder eine Verdichtung des gasförmigen Mediums erfolgt. Hierbei kommt vorzugsweise eine Axialkolbenpumpe mit Taumels cheibensteuerung zum Einsatz, wobei durch eine einfache Verstellung der Taumelscheibe Fördermenge und/oder Förderri chtung verändert werden können.By means of the hydraulic pump X, the liquid levels D in the cylinders Z1 and Z2 are varied such that one of the cylinders sucks the medium to be compressed, while at the same time or substantially simultaneously takes place in the other cylinder, a compression of the gaseous medium. Here is preferably an axial piston pump with Taumels cheibensteuerung used, which can be changed by a simple adjustment of the swash plate flow rate and / or Förderri rect.

Die Erfindung besitzt gegenüber dem Stand der Technik ferner den Vorteil, dass über die Flüssigkeit D eine zumindest teilweise Abführung der bei der Verdichtung entstehenden (Verdichtungs)Wärme erfolgen kann. Hierzu sind, wie in der Figur dargestellt, Wärmetauscher bzw. Kühler K1 und K2 vorgesehen, über die die in den Zylindern Z1 und Z2 bei der Verdichtung entstehende Wärme beispielsweise an die Umgebung und/oder ein anderes geeignetes Medium abgeführt werden kann. Bei einer vollständigen Abführung der Verdichtungswärme über die Flüssigkeit D sowie die Wärmetauscher bzw. Kühler K1 und K2 kann eine isotherme, einstufige Verdichtung realisiert werden.The invention also has the advantage over the prior art that an at least partial removal of the (compression) heat produced during the compression can take place via the liquid D. For this purpose, as shown in the figure, heat exchangers or coolers K1 and K2 are provided, via which the heat generated in the cylinders Z1 and Z2 during compression can be dissipated, for example, to the environment and / or another suitable medium. With a complete removal of the heat of compression via the liquid D and the heat exchangers or coolers K1 and K2, an isothermal, one-stage compression can be realized.

Zwischen den Kühlem K1 und K2 und der Hydraulikpumpe X sind Ventile e bzw. g angeordnet; diese so genannten Stillstandsventile bewirken, dass im Stillstand an der Hydraulikpumpe X kein Anlagendruck anliegt.Between the cooling K1 and K2 and the hydraulic pump X valves e and g are arranged; cause these so-called standstill valves that at standstill on the hydraulic pump X no system pressure is applied.

Entsprechend einer vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung können in den Zylindern Z1 und Z2 Wärmetauscher E1 bzw. E2 angeordnet sein.According to an advantageous embodiment of the device according to the invention can be arranged in the cylinders Z1 and Z2 heat exchangers E1 and E2.

Bei den zum Stand der Technik zählenden Verdichter- bzw. Zylinderkonstruktionen ist eine Kühlung des Zylinderraurnes lediglich von außen realisierbar, da der innerhalb des Zylinders bewegbare Kolben das Vorsehen eines Wärmetauschers nicht erlaubt. Die bei der Verdichtung entstehende Wärme wird daher bisher vom Verdichter- bzw. Zylinderaußenmantel an das Kühlmedium (Luft, Wasser, Kühlmittel, etc.) abgegeben. Aufgrund dieser Tatsache kann die Verdichtung im Regelfall nicht isotherm ausgeführt werden, was eine entsprechend hohe Verdichtungsenergie zur Folge hat.In the prior art counting compressor or cylinder designs, a cooling of the Zylinderraurnes can be realized only from the outside, since the movable piston inside the cylinder does not allow the provision of a heat exchanger. The resulting heat during compression is therefore far from the compressor or Cylinder outer shell delivered to the cooling medium (air, water, coolant, etc.). Due to this fact, the compression can usually not be carried out isothermally, resulting in a correspondingly high compression energy result.

Mittels der vorgenannten, vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung lässt sich nunmehr eine Innenkühlung realisieren, was zur Folge hat, dass die vorbeschriebenen Nachteile des Standes der Technik vermieden werden können.By means of the aforementioned, advantageous embodiment of the device according to the invention, an internal cooling can now be realized, with the result that the above-described disadvantages of the prior art can be avoided.

Unter dem Begriff "Wärmetauscher" seien hierbei beliebige Konstruktionen von Wärmetauschern - nachfolgend als "aktiver Wärmetauscher" bezeichnet - und Wärmespeichern - nachfolgend als "passiver Wärmetauscher" bezeichnet - zu verstehen.The term "heat exchanger" here are any constructions of heat exchangers - hereinafter referred to as "active heat exchanger" - and heat storage - hereinafter referred to as "passive heat exchanger" - to understand.

Während bei einem aktiven Wärmetauscher die bei der Verdi chtung anfallende Wärme mittels eines geeigneten Kühlmediums abgeführt wird, verble ibt sie bei einem passiven Wärmetauscher innerhalb des Verdichter bzw. Zylinderraum es. Im letzten Fall wird die Verdichtungswärme zwar ebenfalls dem zu verdichtendem Medium entzogen, dann aber an die Flüssigkeit D, die die Verdichtungswärme - wie vorstehend erläutert abführt - abgegeben. Als passive Wärmetauscher bzw. Wärmespeicher können Kühlrippen, Flossen, etc., und/oder Füllmittel, wie metallisches Kugeln, Scheiben, etc., zur Anwendung kommen.While in an active heat exchanger resulting in the Verdi rectifying heat is dissipated by means of a suitable cooling medium, it remains ibt it in a passive heat exchanger within the compressor or cylinder chamber. In the latter case, the heat of compression is indeed also withdrawn from the medium to be compressed, but then to the liquid D, which discharges the heat of compression - as explained above - discharged. As a passive heat exchanger or heat storage cooling fins, fins, etc., and / or fillers, such as metallic balls, discs, etc., are used.

Die vorgenannte, vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung ermöglicht somit eine wesentliche Verringerung der erforderlichen Verdichtungsenergie und damit eine annähernd isotherme Verdichtung. Des Weiteren lassen sich niedrigere Gasaustrittstemperaturen realisieren und eine Verringerung der thermischen Beanspruchung der Verdichterventile erzielen.The aforementioned advantageous embodiment of the device according to the invention thus enables a substantial reduction of the required compression energy and thus an approximately isothermal compression. Furthermore, lower gas outlet temperatures can be realized and a reduction of the thermal load of the compressor valves can be achieved.

Die in der Abtrennvorrichtung A von dem verdichteten Medium abgetrennte, aus den Zylindern Z1 und Z2 stammende Flüssigkeit wird über Leitung 9, in, der ein Absperrventil e angeordnet ist, einem optional vorzusehenden Zwischenspeicherbehälter S zugeführt. Aus diesem kann die Flüssigkeit entsprechend dem Bedarf in den Zylindern Z1 und Z2 über die Leitungen 7 und 8 sowie die beiden Absperrventile f und h den Zylindern Z1 und/oder Z2 zugeführt werden.The liquid separated from the compressed medium in the separating device A and originating from the cylinders Z1 and Z2 is fed via line 9, in which a shut-off valve e is arranged, to an intermediate storage container S to be optionally provided. For this, the liquid can be supplied to the cylinders Z1 and / or Z2 via the lines 7 and 8 as well as the two shut-off valves f and h in accordance with the requirements in the cylinders Z1 and Z2.

Entsprechend einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens zum Verdichten eines gasförmigen Mediums erfolgt das Nachspeisen von für die Verdichtung benötigter Flüssigkeit während eines Saugtaktes.According to a further advantageous embodiment of the method according to the invention for compressing a gaseous medium, the dosing of liquid required for the compression takes place during a suction cycle.

Insbesondere an der für die Verdichtung erforderlichen Antriebs- bzw. Hydraulikpumpe X kommt es zu einem Verlust an Flüssigkeit D. Um diese Verluste auszugleichen, ist es daher erforderlich bei Unterschreiten einer Flüssigkeitsmindestmeng e neue Flüssigkeit in das System nach- bzw. einzuspeisen. Dabei ist darauf zu achten, dass es während der Flüssigkeitseinspeisung zu keiner Wechselwirkung mit der Druck- und Saugseite kommt. Des Weiteren ist darauf zu achten, dass der gewüns chte oder maximale Energiebedarf des Systems, der durch den Verdichtungsvorgang zu definieren ist, nicht (unnötig) erhöht wird.In particular, at the required for the compression drive or hydraulic pump X there is a loss of liquid D. To compensate for these losses, it is therefore necessary to fall below a Mindestsmindestmeng e new liquid in the system nach- or feed. It is important to ensure that there is no interaction with the pressure and suction side during the liquid feed. Furthermore, care must be taken that the desired or maximum energy demand of the system, which is to be defined by the compaction process, is not (unnecessarily) increased.

Die vorbeschriebene Ausgestaltung des erfindungsgemäßen Verfahrens zum Verdichten eines gasförmigen Mediums schafft eine Möglichkeit der Flüssigkeitseinspeisung, bei der die vorbeschriebenen Vorgaben eingehalten werden können.The above-described embodiment of the method according to the invention for compressing a gaseous medium creates a possibility of liquid feed, in which the above-described requirements can be met.

Grundsätzlich sollte sich der Zeitpunkt für die Nachspeisung von für die Verdichtung benötigter Flüssigkeit an der aktuellen Leistungsaufnahme des Systems orientieren; vorzugsweise sollte das Nachspeisen von Flüssigkeit während oder in der Nähe eines Leistungsminimums erfolgen. Zu diesem Zeitpunkt verfügt das System bzw. die Antriebspumpe über ausreichende Leistungsreserven, die für das Nachspeisen der Flüssigkeit genutzt werden können.In principle, the time for the make-up of liquid required for the compression should be based on the current power consumption of the system; Preferably, the dosing of liquid should be done during or near a performance minimum. At this time, the system or the drive pump has sufficient power reserves that can be used for the dosing of the liquid.

Vorzugsweise wird die nachzufüllende Flüssigkeit D während eines Saugtaktes über die Leitung 10, die eine Zuspeisepumpe P aufweist, in den entsprechenden Zylinder Z1 bzw. Z2 geleitet. Hierbei ist jedoch darauf zu achten, dass die Nachspeisung nicht unmittelbar in der Nähe des Umkehrpunktes erfolgt, da dann die Gefahr besteht, dass Flüssigkeit D u. U. aus dem entsprechenden Zylinder Z1 bzw. Z2 über die Druckleitung 2' bzw. 2" austritt. Dies hätte zur Folge, dass die Abtrennvorrichtung A-, die der Abtrennung von aus den Zylindern Z1 und Z2 mitgeführter Flüssigkeit dient, entsprechend größer dimensioniert werden müsste. Auch minimiert eine Flüssigkeitseinspeisung während des Saugtaktes den Energiebedarf der Zuspeisepumpe P.Preferably, the liquid to be replenished D is passed during a suction cycle via the line 10, which has a feed pump P, in the corresponding cylinder Z1 and Z2. However, care should be taken here that the make-up does not take place immediately in the vicinity of the reversal point, since then there is the danger that liquid D u. U. from the corresponding cylinder Z1 or Z2 via the pressure line 2 'and 2 "exits.This would mean that the separation device A-, which serves to separate from the cylinders Z1 and Z2 entrained liquid, are dimensioned correspondingly larger Also, a liquid feed during the suction cycle minimizes the energy requirement of the feed pump P.

Die Detektion des Flüssigkeitsveriustes erfolgt über eine Messung der Abweichungen der Flüssigkeitsniveaus in den Zylindern Z1 und Z2 von einem Referenzwert, der im Regelfall zu Beginn des Verdichtungsprozesses ermittelt wird.The liquid loss is detected by measuring the deviations of the liquid levels in the cylinders Z1 and Z2 from a reference value which is normally determined at the beginning of the compression process.

Die Beeinflussung von ionischen Flüssigkeiten mittels eines elektrischen Feldes ermöglicht eine Erhöhung der Beschleunigung in den Umkehrpunkten des kolbenlosen Verdichters, ohne dass es dabei zu einem erhöhten Risiko der Phasenvermischung kommt. Des Weiteren ist eine saubere und zuverlässige Abtrennung von ionischen Flüssigkeiten aus einem Zweiphasengemisch auch dann möglich, wenn die Dichteunterschiede zwischen der ionischen Flüssigkeit und dem zu verdichtenden Medium vergleichsweise gering sind.Neben der anhand der Figur erläuterten Ausführungsform der Erfindung sind Ausgestaltungen des erfindungsgemäßen Verfahrens sowie der erfindungsgemäßen Vorrichtung realisierbar, bei der lediglich ein Zylinder oder drei und mehr Zylinder vorgesehen sind. Während mit lediglich einem Zylinder keine hinsichtlich des Verdichtungsdruckes kontinuierliche Abgabe des verdichteten Mediums möglich ist, ist eine derartige, oftmals gewünschte Abgabe des verdichteten Mediums bei zwei oder mehr Zylindern möglich.The influence of ionic liquids by means of an electric field makes it possible to increase the acceleration in the reversal points of the pistonless compressor, without there being an increased risk of phase mixing. Furthermore, a clean and reliable separation of ionic liquids from a two-phase mixture is also possible if the density differences between the ionic liquid and the medium to be compressed are comparatively low. In addition to the embodiment of the invention explained with reference to the FIGURE, embodiments of the method according to the invention and the Device according to the invention can be realized, in which only one cylinder or three and more cylinders are provided. While with only one cylinder no continuous discharge of the compressed medium with regard to the compression pressure is possible, such, often desired delivery of the compressed medium is possible with two or more cylinders.

Durch den Entfall fester Kolben sowie dynamischer Dichtungssysteme kommt es zu einer erheblichen Einsparung an Investitionskosten. Zusätzlich verringern sich die Wartungskosten, da sich die Wartungsintervalle, verglichen mit denjenigen herkömmlicher Verdichter, verlängern.The elimination of solid pistons and dynamic sealing systems results in a considerable saving in investment costs. In addition, maintenance costs are reduced because maintenance intervals are longer than those of conventional compressors.

Die Erfindung eignet sich für eine Verdichtung von gasförmigen Medien bis auf Drücke von zur Zeit realisierbaren 1000 bar. Es sei jedoch betont, dass im Prinzip auch beliebig höhere Drücke erreichbar sind. Die Erfindung ermöglicht ferner eine Verdichtung auf Höchstdruck mit lediglich einer einzigen Verdichtungsstufe. Des Weiteren kann die Fördermenge beliebig variiert werden. Insbesondere im Hinblick auf die Verdichtung hochreiner Medien schafft die Erfindung eine kostengünstige Möglichkeit, derartige Medien auch auf sehr hohe Drücke zu verdichten.The invention is suitable for compression of gaseous media to pressures of 1000 bar, which is currently feasible. It should be emphasized, however, that in principle also arbitrarily higher pressures can be achieved. The invention further enables compression to maximum pressure with only a single compression stage. Furthermore, the flow rate can be varied as desired. In particular, with regard to the compression of high purity media, the invention provides a cost effective way to compress such media to very high pressures.

Claims (15)

  1. Method for compressing a gaseous medium, in particular hydrogen, with the compression (Z1, Z2) of the gaseous medium proceeding by a liquid (D) in which the gaseous medium does not dissolve and/or which can be separated from the gaseous medium in a residue-free manner, characterized in that the liquid (D) is exposed to an electric field in order to separate the mixture formed at the interface between the liquid (D) and the gaseous medium again.
  2. Method according to Claim 1, characterized in that, as liquid (D), use is made of an ionic liquid, a high-boiling hydraulic oil, a liquid which has a very low vapor pressure, or a liquid which has a gas solubility of less than 10-4 mol/l bar.
  3. Method according to Claim 1 or 2, characterized in that the heat of compression is removed at least in part via the liquid (D).
  4. Method according to one of the preceding Claims 1 to 3, characterized in that the liquid entrained by the compressed medium (2', 2") is separated off (A) from the compressed medium (2', 2").
  5. Method according to Claim 4, characterized in that the liquid (9, 8) separated off from the compressed medium (2', 2") is recycled back to the compression (Z1, Z2), with the liquid separated off being able to be stored temporarily (S) before the recycling.
  6. Method according to one of the preceding Claims 1 to 5, characterized in that the compression (Z1, Z2) makes possible compression of the gaseous medium by a factor of 1000.
  7. Method according to one of the preceding Claims 1 to 6, characterized in that the replenishment of liquid (D) required for the compression (Z1, Z2) proceeds during a suction stroke.
  8. Device for compressing a gaseous medium, in particular hydrogen, comprising
    a) one or more cylinders (Z1, Z2),
    b) feed lines (1, 1', 1") and discharge lines (2, 2', 2") which serve for feeding and discharging the gaseous medium to be compressed into or out of the cylinders (Z1, Z2),
    c) per cylinder (Z1, Z2), at least one liquid line (3, 5) which serves for feeding and discharging the liquid (D) compressing the gaseous medium into the cylinder (Z1, Z2), and
    d) means for changing the amount of liquid (D) in the cylinder or cylinders (Z1, Z2),
    e) with the liquid being a liquid (D) in which the gaseous medium to be compressed does not dissolve and/or which can be separated from the gaseous medium in a residue-free manner,
    characterized in that means for generating an electric field in the cylinder or cylinders are arranged within the cylinder or cylinders (Z1, Z2).
  9. Device according to Claim 8, characterized in that the means for changing the amount of liquid in the cylinder or cylinders (Z1, Z2) is constructed as a liquid pump, hydraulic pump, axial reciprocating pump, vane pump or gear pump.
  10. Device according to Claim 8 or 9, characterized in that one heat exchanger (K1, K2) which serves for removing the heat of compression is assigned to the liquid lines (3, 5) provided per cylinder (Z1, Z2).
  11. Device according to one of the preceding Claims 8 to 10, characterized in that at least one separation device (A) is arranged in the discharge line or lines (2, 2', 2") of the compressed gaseous medium, with the separation device (A) serving for separating off the liquid entrained by the compressed medium (2', 2").
  12. Device according to Claim 11, characterized in that the separation device (A) is or can be flow-connected (9, 8) to at least one of the cylinders (Z1, Z2).
  13. Device according to Claim 11 or 12, characterized in that a liquid storage device (S) is assigned to the separation device (A).
  14. Device according to one of the preceding Claims 8 to 13, characterized in that means for generating an electrical field in the cylinder or cylinders (Z1, Z2) are provided.
  15. Device according to one of the preceding Claims 8 to 14, characterized in that a heat exchanger (E1, E2) is arranged within the cylinder or cylinders (Z1, Z2).
EP05768562A 2004-09-24 2005-08-02 Method and device for compressing a gaseous medium Not-in-force EP1792087B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004046316A DE102004046316A1 (en) 2004-09-24 2004-09-24 Method and apparatus for compressing a gaseous medium
PCT/EP2005/008370 WO2006034748A1 (en) 2004-09-24 2005-08-02 Method and device for compressing a gaseous medium

Publications (2)

Publication Number Publication Date
EP1792087A1 EP1792087A1 (en) 2007-06-06
EP1792087B1 true EP1792087B1 (en) 2011-10-26

Family

ID=34978927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05768562A Not-in-force EP1792087B1 (en) 2004-09-24 2005-08-02 Method and device for compressing a gaseous medium

Country Status (11)

Country Link
US (1) US20070258828A1 (en)
EP (1) EP1792087B1 (en)
JP (1) JP4986161B2 (en)
KR (1) KR20070057813A (en)
CN (1) CN101023272B (en)
AT (1) ATE530772T1 (en)
AU (1) AU2005289219A1 (en)
CA (1) CA2581280A1 (en)
DE (1) DE102004046316A1 (en)
WO (1) WO2006034748A1 (en)
ZA (1) ZA200702362B (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005007100A1 (en) * 2005-02-16 2006-08-17 Solvent Innovation Gmbh Process or working machine with ionic liquid as operating fluid
AT501793A1 (en) * 2005-05-06 2006-11-15 Linde Ag LIQUID FOR COMPRISING A GASIFIED MEDIUM AND USE THEREOF
DE102006014314A1 (en) * 2006-03-28 2007-10-04 Linde Ag Piston-less compressor operating method, involves moving fluid column up and down in cylinder of piston-less compressor, and allowing overcharging of portions of fluid e.g. expensive ionic fluid, in discharge pipe during compression cycle
DE102006040785A1 (en) * 2006-08-31 2008-03-06 Linde Ag Pistonless compressor
DE102006042918A1 (en) * 2006-09-13 2008-03-27 Linde Ag Pistonless compressor
DE102006060147B4 (en) * 2006-12-18 2009-05-14 Andreas Hofer Hochdrucktechnik Gmbh Fluid-working machine
DE102006060061A1 (en) * 2006-12-19 2008-06-26 Linde Ag Sealing by ionic liquids
WO2009034421A1 (en) * 2007-09-13 2009-03-19 Ecole polytechnique fédérale de Lausanne (EPFL) A multistage hydro-pneumatic motor-compressor
DE102007049458B4 (en) * 2007-10-16 2017-04-13 Man Truck & Bus Ag Compressed gas system and method for storing a gas
DE102008032825B3 (en) * 2008-07-11 2010-01-14 Siemens Aktiengesellschaft Jet pump and method for its operation
US8061392B2 (en) * 2008-12-23 2011-11-22 Texaco Inc. Variable volume hydrogen storage
FR2945327A1 (en) * 2009-05-07 2010-11-12 Ecoren METHOD AND EQUIPMENT FOR MECHANICAL ENERGY TRANSMISSION BY COMPRESSION AND / OR QUASI-ISOTHERMAL DETENTION OF A GAS
DE102009020925A1 (en) * 2009-05-12 2010-11-18 Linde Aktiengesellschaft Compressor with piston dummy
EP2433000A2 (en) * 2009-05-22 2012-03-28 General Compression Inc. Compressor and/or expander device
JP5892945B2 (en) * 2009-12-24 2016-03-23 ジェネラル コンプレッション インコーポレイテッド System and method for optimizing the efficiency of hydraulic actuation systems
US8667788B2 (en) 2010-04-09 2014-03-11 Shipstone Corporation System and method for energy storage and retrieval
US9611868B2 (en) 2010-04-09 2017-04-04 Shipstone Corporation System and method for energy storage and retrieval
DE102011007639A1 (en) 2010-04-23 2011-10-27 Basf Se Mechanical processing of workpieces with a high pressure jet comprising a liquid composition, which contains an ionic liquid
DE102011101504A1 (en) * 2011-05-13 2012-11-15 Linde Ag Method for compressing water-saturated gaseous medium e.g. hydrogen, to be used as fuel in vehicle, involves subjecting compressed medium to water separation, where compressed medium is cooled before entering into separators
JP5766045B2 (en) * 2011-06-29 2015-08-19 日東精工株式会社 Gas injection device and gas-liquid contact device
DE102013205027A1 (en) 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Sealing device and turbo compressor with such a sealing device
ITRM20130313A1 (en) * 2013-05-30 2014-12-01 Gia E Lo Sviluppo Economico Sostenibile Enea HYDRODYNAMIC COMPRESSOR FOR COMBUSTIBLE AND DETONING GASES
CN103308446B (en) * 2013-05-31 2016-01-20 重庆大学 Based on the fluid compressible system safety testing device of corrugated tube
US10801482B2 (en) * 2014-12-08 2020-10-13 Saudi Arabian Oil Company Multiphase production boost method and system
CN104728083B (en) * 2015-01-23 2017-06-23 西南科技大学 A kind of compressor
FR3042236B1 (en) * 2015-10-08 2019-09-06 Ortec Expansion METHOD AND DEVICE FOR PUMPING A PRODUCT BY SUCTION.
JP6890588B2 (en) * 2015-11-25 2021-06-18 イソカレント エナジー インコーポレーテッド Variable pressure vessel
KR101668672B1 (en) 2016-08-01 2016-10-24 최상배 Liquid pressed gas compressor having pressure-volume converting device and torque converting device
DE102016220345A1 (en) 2016-10-18 2018-04-19 Bayerische Motoren Werke Aktiengesellschaft Pressure vessel system and resource supply system for a motor vehicle
CN106761986B (en) * 2016-12-27 2019-01-15 北京交通大学 A kind of device and its application method of the conversion of gas at normal temperature energy
DE102017006335A1 (en) * 2017-07-04 2019-01-10 Linde Aktiengesellschaft ionic liquid with dry lubricant
DE102017007921A1 (en) * 2017-08-22 2019-02-28 Linde Aktiengesellschaft Method for operating a compressor and compressor
PL240516B1 (en) * 2018-01-09 2022-04-19 Dobrianski Jurij Steam engine
DE102018003356A1 (en) * 2018-04-19 2019-10-24 Michael Semakin compressor
DE102019129495B3 (en) * 2019-10-31 2021-04-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Compressor arrangement, heat pump arrangement and method for operating the compressor arrangement
EP4061983A1 (en) 2019-11-21 2022-09-28 EEG Elements Energy GmbH Electrolysis device
CN111561430A (en) * 2020-04-23 2020-08-21 北京航空航天大学 Isothermal expansion device based on gas dissolution and gas-liquid conversion and use method
DE102020207827A1 (en) 2020-06-24 2021-12-30 Argo Gmbh Filling device for filling storage containers with compressed hydrogen, filling station having the same and method for filling a storage container
CN112442405A (en) * 2020-12-15 2021-03-05 苏州金宏气体股份有限公司 Ionic liquid composition as hydraulic hydrogenation working medium
CN112408318B (en) * 2020-12-15 2022-09-23 苏州金宏气体股份有限公司 Ionic liquid composition for compressing hydrogen
DE102021204586A1 (en) 2021-05-06 2022-11-10 Robert Bosch Gesellschaft mit beschränkter Haftung Device for compressing a gas and method for filling a tank with such a device
KR102561244B1 (en) * 2021-07-26 2023-08-01 한국기계연구원 Overheat protectable hydrogen charging system and method for charging hydrogen using the same
CN113623036A (en) * 2021-09-14 2021-11-09 西安热工研究院有限公司 System and method for raising steam pressure
GB2613202A (en) * 2021-11-29 2023-05-31 Catagen Ltd Method of compressing hydrogen gas, hydrogen gas compressor system and hydrogen gas storage unit
WO2024081660A1 (en) * 2022-10-14 2024-04-18 Steelhead Composites, Inc. Ionic liquid accumulator system for delivering gas

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243105A (en) * 1975-10-02 1977-04-04 Kido Kensetsu Kogyo Kk Comoressed air generator
US4087208A (en) * 1976-06-08 1978-05-02 Mitsubishi Jukogyo Kabushiki Kaisha Method for compressing mixed gas consisting of combustible gas and air
US4515516A (en) * 1981-09-30 1985-05-07 Champion, Perrine & Associates Method and apparatus for compressing gases
JPS604800U (en) * 1983-06-23 1985-01-14 石井 助 hydraulic air compressor
CA1226253A (en) 1984-03-28 1987-09-01 Ben Cowan Liquid piston compression systems for compressing steam
US5073090A (en) * 1990-02-12 1991-12-17 Cassidy Joseph C Fluid piston compressor
US5169295A (en) * 1991-09-17 1992-12-08 Tren.Fuels, Inc. Method and apparatus for compressing gases with a liquid system
US5584664A (en) * 1994-06-13 1996-12-17 Elliott; Alvin B. Hydraulic gas compressor and method for use
JPH09144657A (en) * 1995-11-23 1997-06-03 Mitsubishi Heavy Ind Ltd Air compressing device
DE19848234A1 (en) * 1998-10-20 2000-04-27 Huels Infracor Gmbh Compression of potentially explosive gases through injection of liquid into a common vessel
US6183206B1 (en) * 1999-05-10 2001-02-06 The United States Of America As Represented By The Secretary Of The Air Force Magnetohydrodynamically-driven compressor
RU2158623C1 (en) * 1999-06-16 2000-11-10 Цегельский Валерий Григорьевич Method of compression and supply under pressure of hydrocarbon-containing gaseous media (versions)
US6371145B1 (en) * 2000-08-04 2002-04-16 Dresser-Rand Company System and method for compressing a fluid
US6619930B2 (en) * 2001-01-11 2003-09-16 Mandus Group, Ltd. Method and apparatus for pressurizing gas
KR100398309B1 (en) * 2001-02-20 2003-09-19 한국과학기술원 Micropump actuated by the movement of liquid drop induced by continuous electrowetting
US6652243B2 (en) * 2001-08-23 2003-11-25 Neogas Inc. Method and apparatus for filling a storage vessel with compressed gas
CN1451887A (en) * 2002-04-19 2003-10-29 杨志强 Hydraulic gas compressor
US7488159B2 (en) * 2004-06-25 2009-02-10 Air Products And Chemicals, Inc. Zero-clearance ultra-high-pressure gas compressor

Also Published As

Publication number Publication date
DE102004046316A1 (en) 2006-03-30
CN101023272B (en) 2012-06-27
US20070258828A1 (en) 2007-11-08
ZA200702362B (en) 2008-08-27
ATE530772T1 (en) 2011-11-15
JP4986161B2 (en) 2012-07-25
CN101023272A (en) 2007-08-22
CA2581280A1 (en) 2006-04-06
JP2008514844A (en) 2008-05-08
WO2006034748A1 (en) 2006-04-06
AU2005289219A1 (en) 2006-04-06
EP1792087A1 (en) 2007-06-06
KR20070057813A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
EP1792087B1 (en) Method and device for compressing a gaseous medium
EP2061974B1 (en) Pistonless compressor
DE19530662A1 (en) Screw vacuum pump
EP1203158A1 (en) Method and compressor module for compressing a gas stream
EP3601797B1 (en) Reciprocating compressor with an extended control range
DE202016004933U1 (en) Lubrication system for an electric compressor
DE102016010669A1 (en) Motor-pump device
DE102011101504A1 (en) Method for compressing water-saturated gaseous medium e.g. hydrogen, to be used as fuel in vehicle, involves subjecting compressed medium to water separation, where compressed medium is cooled before entering into separators
DE60220888T2 (en) SYSTEM FOR THE PRODUCTION AND DISTRIBUTION OF COMPRESSED AIR
WO2006045712A1 (en) Device for generating highly compressed gas
EP0659621A1 (en) Pressure limiting device
DE102004046341A1 (en) Method for compressing a natural gas stream
LV11437B (en) Filterig device for refining dirty liquids,especially utilized oils
DE102005016114A1 (en) Highly compressed gas production device for use in gas e.g. methane fueling system, has multi-stage compressor, and vortex tubes connected at end of respective compressor stages by take-off pipes
DE19848234A1 (en) Compression of potentially explosive gases through injection of liquid into a common vessel
DE102008027283A1 (en) Device for making dry ice pellets for cleaning surfaces, e.g. in precision engineering, comprises a carbon dioxide pressing cylinder with a compressed air-driven piston and a die connected to a jet nozzle
DE102007040090A1 (en) Compacting an oxygen-containing medium
DE102011086441A1 (en) Method for compressing a gaseous or gaseous and liquid constituent fluid and device for compressing a gaseous or gaseous and liquid constituent fluid
DE4310100C2 (en) Method and device for compressing a gaseous medium
DE19858507B4 (en) Process for the extraction of contaminants from fillings using supercritical fluids
EP1522430A1 (en) Method and device to increase the pressure of gases
WO2018033255A1 (en) Method, apparatus and system for separating water from an ionic liquid
DE102011088986A1 (en) Apparatus and method for processing a mixture of gas, oil and water
EP2990646A1 (en) Vehicle and compressor assembly
WO2023222480A1 (en) Gas compression system and method for recovering hydrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

17Q First examination report despatched

Effective date: 20101014

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005012077

Country of ref document: DE

Effective date: 20111229

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111026

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120127

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005012077

Country of ref document: DE

Effective date: 20120727

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20120831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120206

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050802

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180612

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180823

Year of fee payment: 14

Ref country code: DE

Payment date: 20180717

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180725

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005012077

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 530772

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190802