JP2008514844A - Method and apparatus for compressing gaseous media - Google Patents

Method and apparatus for compressing gaseous media Download PDF

Info

Publication number
JP2008514844A
JP2008514844A JP2007532789A JP2007532789A JP2008514844A JP 2008514844 A JP2008514844 A JP 2008514844A JP 2007532789 A JP2007532789 A JP 2007532789A JP 2007532789 A JP2007532789 A JP 2007532789A JP 2008514844 A JP2008514844 A JP 2008514844A
Authority
JP
Japan
Prior art keywords
liquid
gaseous medium
compression
compressed
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007532789A
Other languages
Japanese (ja)
Other versions
JP4986161B2 (en
Inventor
アドラー、ロベルト
ジーベルト、ゲオルグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of JP2008514844A publication Critical patent/JP2008514844A/en
Application granted granted Critical
Publication of JP4986161B2 publication Critical patent/JP4986161B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped
    • F04F1/10Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped of multiple type, e.g. with two or more units in parallel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/077Ionic Liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Manufacture Of Iron (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

A method and device for compressing a gaseous medium, specifically hydrogen, is disclosed. Compression of the gaseous medium takes place by way of a fluid, where a fluid is used in which the gaseous medium is not soluble and/or can be separated residue-free from the gaseous medium. An ionic fluid, a high-boiling hydraulic oil, or a fluid which has a very low vapor pressure is used as the fluid.

Description

本発明は、ガス状媒体、特に気体水素を圧縮するための方法に関する。   The present invention relates to a method for compressing gaseous media, in particular gaseous hydrogen.

本発明はまた、ガス状媒体、特に気体水素を圧縮するための装置にも関する。   The invention also relates to an apparatus for compressing gaseous media, in particular gaseous hydrogen.

この種のガス状媒体の圧縮方法並びに装置においては、ピストン式圧縮機又はピストン式圧縮システムが利用されている。ピストン式圧縮機は、圧縮すべきガス状媒体をピストン駆動(作動)用媒体、例えば油圧作動液から隔離するために適切なシール機構を必要とする。   In this kind of gaseous medium compression method and apparatus, a piston compressor or a piston compression system is used. Piston compressors require a suitable sealing mechanism to isolate the gaseous medium to be compressed from the piston drive (actuation) medium, eg hydraulic fluid.

特に気体水素や天然ガス又は高純度気体を圧縮する場合は勿論、しかるべき根拠により圧縮対象のガス状媒体がピストン駆動用媒体で汚染されることを阻止する必要がある場合及び/又は汚染が望ましくない場合には、圧縮機のシリンダとピストン及びそれらの相対摺動間隙をシールするダイナミックシール機構の精密な嵌合が不可欠である。しかしながら、通常、これらの精密嵌合機構の製造コスト及び保守整備コストは相応に高額である。更に、この種の応用分野ではダイアフラム式圧縮機や注油不要のピストン式圧縮機などの高コストの圧縮機械を考慮に入れなければならないことが多い。   Especially when compressing gaseous hydrogen, natural gas or high-purity gas, it is necessary to prevent the gaseous medium to be compressed from being contaminated with the piston drive medium and / or contamination is desirable. If not, precise fitting of a dynamic seal mechanism that seals the compressor cylinder and piston and their relative sliding gaps is essential. However, the manufacturing costs and maintenance costs of these precision fitting mechanisms are usually relatively high. In addition, this type of application often has to take into account high-cost compression machines such as diaphragm compressors or piston compressors that do not require lubrication.

この種の圧縮方法並びに圧縮装置は、例えば天然ガス充填補給スタンドで実施されているように、天然ガスの圧縮に利用されている。   This type of compression method and apparatus is used for compressing natural gas, for example as practiced at a natural gas replenishment stand.

本発明が解決しようとする課題は、ガス状媒体、特に気体水素を圧縮する目的に適った冒頭に述べた種類の圧縮方法及び装置において、前述の欠点を回避することのできる方法と装置を提供することにある。   The problem to be solved by the present invention is to provide a method and apparatus of the kind mentioned above, which is suitable for the purpose of compressing gaseous media, in particular gaseous hydrogen, and which can avoid the aforementioned drawbacks. There is to do.

本発明によるガス状媒体の圧縮方法によれば、上述の課題は、ガス状媒体の圧縮を液体によって行い、この液体として、ガス状媒体を溶解しない液体及び/又はガス状媒体から残らず分離可能な液体を用いることによって解決される。   According to the method for compressing a gaseous medium according to the present invention, the above-mentioned problem is that the gaseous medium is compressed with a liquid, and this liquid can be separated from the liquid that does not dissolve the gaseous medium and / or from the gaseous medium. It is solved by using a simple liquid.

また、上述の課題を解決するための本発明によるガス状媒体の圧縮装置は、
a)1つ又は複数のシリンダ(Z1、Z2)と、
b)圧縮すべきガス状媒体をシリンダ(Z1、Z2)に供給し、或いは該シリンダから取り出すための供給導管(1、1’、1”)及び取出導管(2、2’、2”)と、
c)個々のシリンダ(Z1、Z2)に接続され、ガス状媒体の圧縮に用いる液体(D)をシリンダ(Z1、Z2)に導入し、或いは該シリンダから導出するための液体導管(3、5)と、
d)シリンダ(Z1、Z2)内の液体(D)の量を変化させる手段と、
を備え、
e)前記液体(D)が、圧縮すべきガス状媒体を溶解しない性質及び/又はガス状媒体から残らず分離可能な性質を有する液体であることを特徴とする。
Moreover, the compression apparatus of the gaseous medium by this invention for solving the above-mentioned subject is
a) one or more cylinders (Z1, Z2);
b) a supply conduit (1, 1 ′, 1 ″) and an extraction conduit (2, 2 ′, 2 ″) for supplying or removing the gaseous medium to be compressed to or from the cylinder (Z1, Z2); ,
c) Liquid conduits (3, 5) connected to the individual cylinders (Z1, Z2) for introducing the liquid (D) used for compressing the gaseous medium into or out of the cylinder (Z1, Z2) )When,
d) means for changing the amount of the liquid (D) in the cylinders (Z1, Z2);
With
e) The liquid (D) is a liquid having the property of not dissolving the gaseous medium to be compressed and / or the property of being separable from the gaseous medium.

本発明によれば、ガス状媒体を圧縮するに際して、ピストン形圧縮機をはじめとしてあらゆるピストン形式の圧縮機構を排除することが可能である。即ち、本発明においては、圧縮対象のガス状媒体の圧縮は、該ガス状媒体を収容したシリンダ内部で液体の体積を変化させることによって果たされる。従来から用いられてきた固体材料からなるピストンやプランジャは、シリンダ内に導入される非圧縮性流体である液体の柱、即ち液柱によって置き換えられる。シリンダ内における液柱の液面の上下動により、ピストンの上下動と同等の態様で圧縮対象のガス状媒体がシリンダ内に吸込まれ、シリンダ内で圧縮される。   According to the present invention, when compressing a gaseous medium, it is possible to eliminate all piston-type compression mechanisms including a piston-type compressor. That is, in the present invention, the compression of the gaseous medium to be compressed is achieved by changing the volume of the liquid inside the cylinder containing the gaseous medium. Conventionally used pistons and plungers made of a solid material are replaced by a liquid column that is an incompressible fluid introduced into a cylinder, that is, a liquid column. Due to the vertical movement of the liquid level of the liquid column in the cylinder, the gaseous medium to be compressed is sucked into the cylinder and compressed in the cylinder in a manner equivalent to the vertical movement of the piston.

圧縮に用いる液体としては、該液体による混入汚染を回避しなければならない高純度ガス状媒体の圧縮をも可能とするため、圧縮対象のガス状媒体が溶解せず、また該ガス状媒体から残らず分離し得るような液体を選択することが好ましい。   As the liquid used for the compression, it is possible to compress a high-purity gaseous medium that must avoid contamination by the liquid, so that the gaseous medium to be compressed is not dissolved and remains from the gaseous medium. It is preferable to select a liquid that can be separated.

本発明の好適な一実施形態においては、圧縮用の液体として、イオン性液体、難沸騰性油圧作動液、飽和蒸気圧が極めて低い液体(例えば真空ポンプ油、溶融塩、低融点金属など)、又はガス溶解度が10−4mol/L bar未満の液体が用いられる。 In a preferred embodiment of the present invention, as the compression liquid, an ionic liquid, a hardly-boiling hydraulic fluid, a liquid having a very low saturated vapor pressure (for example, vacuum pump oil, molten salt, low melting point metal, etc.), Alternatively, a liquid having a gas solubility of less than 10 −4 mol / L bar is used.

イオン性液体は融点が100℃と−90℃の間にある低融点の有機塩類であり、この場合、公知のイオン性液体の多くは室温において既に液体の形で存在する。従来の分子状液体とは異なり、イオン性液体は完全にイオン性であり、従って新規で特異な特性を示す。イオン性液体はアニオン及び/又はカチオンの構造を変えることにより、またそれらの特性の組み合わせを変えることにより、所要の技術的課題に比較的良好に適合させることができる。この理由から、この種の液体はしばしば「デザイナー溶媒」とも呼ばれる。これに対して従来の分子状液体では、構造の変化が可能なだけである。   Ionic liquids are low melting point organic salts having a melting point between 100 ° C. and −90 ° C. In this case, many of the known ionic liquids already exist in liquid form at room temperature. Unlike conventional molecular liquids, ionic liquids are completely ionic and thus exhibit new and unique properties. Ionic liquids can be relatively well adapted to the required technical challenges by changing the structure of the anions and / or cations and also by changing their combination of properties. For this reason, this type of liquid is often referred to as a “designer solvent”. In contrast, conventional molecular liquids can only undergo structural changes.

従来の分子状液体に対して、イオン性液体は測定可能レベルに達しない極めて低い飽和蒸気圧しか示さないという利点もある。これは、イオン性液体は分解温度に達しない限り高真空下においても微量の蒸発すらしないことを意味する。従って、イオン性液体は分解温度未満では大気中に気化拡散することができないため、非可燃性であって環境汚染も生じないという特性がもたらされる。   Compared to conventional molecular liquids, ionic liquids also have the advantage of exhibiting very low saturated vapor pressures that do not reach measurable levels. This means that the ionic liquid will not even evaporate a trace amount even under high vacuum unless the decomposition temperature is reached. Therefore, since the ionic liquid cannot be vaporized and diffused into the atmosphere below the decomposition temperature, it is nonflammable and does not cause environmental pollution.

既に述べたように、公知のイオン性液体の融点は、定義に従って100℃未満である。いわゆる液化領域(融点と熱分解温度との間の領域)は、通常400℃以上に達する。   As already mentioned, the melting point of known ionic liquids is less than 100 ° C. according to the definition. The so-called liquefaction zone (the zone between the melting point and the thermal decomposition temperature) usually reaches 400 ° C. or higher.

加えて、イオン性液体は高い熱安定性を示す。分解温度はしばしば400℃を上回る。イオン性液体の場合、密度ならびに他の液体との混合挙動は、双方のイオンの選択によって影響を受ける。即ち調節が可能である。更にイオン性液体は導電性であり、そのため危険性を招く帯電現象を防止することができるという利点も有している。   In addition, ionic liquids exhibit high thermal stability. The decomposition temperature is often above 400 ° C. In the case of ionic liquids, the density as well as the mixing behavior with other liquids is affected by the choice of both ions. That is, adjustment is possible. Furthermore, the ionic liquid is electrically conductive, and therefore has an advantage that a charging phenomenon that causes danger can be prevented.

本発明において、イオン性液体は圧縮対象のガス状媒体から残らず完全に分離することが可能であるので、圧縮装置の設備コスト及び保守整備コストを比較的低額に抑制することができるという利点が得られる。   In the present invention, since the ionic liquid can be completely separated from the gaseous medium to be compressed, there is an advantage that the equipment cost and maintenance cost of the compression device can be suppressed relatively low. can get.

イオン性液体は、既に述べたように有意の飽和蒸気圧を示さないので、圧縮後のガス状媒体にイオン性液体成分が随伴する可能性は皆無である。   As already mentioned, ionic liquids do not exhibit significant saturation vapor pressure, so there is no possibility that ionic liquid components will accompany the compressed gaseous medium.

ガス溶解性の大きな液体の場合には、液体供給用の駆動ポンプに好ましくないキャビテーションが発生し、また通常は圧縮装置設備配管系内に設置されている中間的な液体貯蔵容器中へのガス状媒体の望ましくない随伴が生じる。ガス溶解度が10−4mol/L bar未満の液体を使用することにより、これらの問題を回避することができる。その結果、液体供給用の駆動ポンプの寿命が長くなる。更に圧縮用液体へのガス状媒体の随伴が無いので、随伴ガスの分離に伴って生じるような保安上の問題も回避される。 In the case of liquids with high gas solubility, undesired cavitation occurs in the drive pump for supplying the liquid, and the gas in the intermediate liquid storage container usually installed in the piping system of the compressor equipment An undesirable entrainment of the medium occurs. By using a liquid with a gas solubility of less than 10 −4 mol / L bar, these problems can be avoided. As a result, the life of the liquid supply drive pump is prolonged. Further, since there is no accompanying gaseous medium to the compressing liquid, security problems such as those associated with the separation of the accompanying gas are avoided.

本発明の圧縮方法及び装置とその発展形態について、添付図面に示す実施例に基づいて詳述すれば以下の通りである。   The compression method and apparatus of the present invention and its development will be described in detail with reference to the embodiments shown in the accompanying drawings.

図1は本発明に係る圧縮方法を実施するための一実施形態による圧縮装置の構成を示しており、本実施形態では2基のシリンダZ1とZ2内で圧縮が行われる。但し、圧縮を2基ではなく1基だけのシリンダ内で行ってもよく、あるいは2基よりも多数基のシリンダ内で行うことも可能であることは述べるまでもない。   FIG. 1 shows a configuration of a compression apparatus according to an embodiment for carrying out a compression method according to the present invention. In this embodiment, compression is performed in two cylinders Z1 and Z2. However, it goes without saying that compression may be performed in a single cylinder instead of two, or in a larger number of cylinders than two.

シリンダZ1及びZ2には、供給導管1、1’及び1”を通じて圧縮対象のガス状媒体が供給される。個々のシリンダに通じる各供給導管には、吸込弁a又はbが介装されている。圧縮操作が行われた後、圧縮後のガス状媒体はシリンダz1、z2からそれぞれ取出導管2’、2”を通じて取り出され、これらの取出導管にも同様に弁c又はdが介装されている。   The cylinders Z1 and Z2 are supplied with a gaseous medium to be compressed through supply conduits 1, 1 ′ and 1 ″. A suction valve a or b is interposed in each supply conduit leading to the individual cylinder. After the compression operation has been carried out, the compressed gaseous medium is taken out from the cylinders z1, z2 through the extraction conduits 2 ′, 2 ″, respectively, and valves c or d are likewise provided in these extraction conduits. Yes.

シリンダZ1、Z2から取り出される圧縮後のガス状媒体に随伴液体(この随伴液体については更に後述する)が存在する場合には、各取出導管の下流に設けられた気液分離器A内で液体が完全に分離され、圧縮されたガス状媒体のみが最下流の取出導管2を通じて別の用途及び/又は中間貯蔵タンクに送り出される。   When an accompanying liquid (this accompanying liquid will be further described later) is present in the compressed gaseous medium taken out from the cylinders Z1 and Z2, the liquid is separated in the gas-liquid separator A provided downstream of each extraction conduit. Are completely separated and only the compressed gaseous medium is sent to another application and / or intermediate storage tank through the most downstream extraction conduit 2.

シリンダZ1、Z2内には、ガス状媒体の圧縮操作に用いられる液体Dが導入されている。この目的で、シリンダZ1、Z2には、電動機Mによって回転駆動される液圧ポンプXの給排ポートが液体導管3、4又は5,6を介して接続されている。   A liquid D used for compressing the gaseous medium is introduced into the cylinders Z1 and Z2. For this purpose, supply and discharge ports of a hydraulic pump X that is rotationally driven by an electric motor M are connected to the cylinders Z1 and Z2 via liquid conduits 3, 4 or 5,6.

液圧ポンプXが一方の回転方向に駆動されると、シリンダZ1とZ2内の液体Dのレベルが変化し、一方のシリンダ内に圧縮対象のガス状媒体が吸込まれると同時に他方のシリンダ内ではガス状媒体の圧縮が行われる。この場合、液圧ポンプXには回転斜板カムで吐出量が可変制御されるアキシャルピストンポンプを使用することが好ましく、その場合は電動機Mを一定方向に回転させたまま回転斜板カムの簡単な斜板角変更によって液体Dの給排量及び/又は給排方向を変更することができる。   When the hydraulic pump X is driven in one rotational direction, the level of the liquid D in the cylinders Z1 and Z2 changes, and the gaseous medium to be compressed is sucked into one cylinder and at the same time in the other cylinder Then, compression of the gaseous medium is performed. In this case, it is preferable to use an axial piston pump whose discharge amount is variably controlled by the rotary swash plate cam as the hydraulic pump X. In this case, the rotary swash plate cam can be simply used while the electric motor M is rotated in a fixed direction. By changing the swash plate angle, the supply / discharge amount and / or supply / discharge direction of the liquid D can be changed.

更に本発明によれば、圧縮操作時に発生する熱(圧縮熱)の少なくとも部分的な冷却を液体Dを通して行うことができるという従来技術よりも優れた利点を備えている。この目的で、図示するように熱交換器K1、K2が冷却器として設けられており、これらの熱交換器を通じて圧縮操作時に発生する熱を例えば周囲環境及び/又は他の適宜な流体に排出することができる。液体Dを通して冷却器、即ち熱交換器K1、K2により圧縮熱を完全に排出できるように構成すると、1段階の等温的な圧縮を実現することができる。   Furthermore, according to the present invention, there is an advantage over the prior art that at least partial cooling of the heat (compression heat) generated during the compression operation can be performed through the liquid D. For this purpose, heat exchangers K1 and K2 are provided as coolers as shown in the figure, and heat generated during the compression operation is discharged through these heat exchangers to, for example, the surrounding environment and / or other appropriate fluids. be able to. If it is configured that the heat of compression can be completely discharged by the coolers, that is, the heat exchangers K1 and K2 through the liquid D, one-stage isothermal compression can be realized.

冷却器として機能する個々の熱交換器K1、K2と液圧ポンプXとの間には、弁e又はgが介装されている。これらの弁はいわゆるストップ弁で、閉鎖時には液圧ポンプXにシリンダ側からの系内圧力が一切作用しないように機能する。   A valve e or g is interposed between the individual heat exchangers K1 and K2 functioning as a cooler and the hydraulic pump X. These valves are so-called stop valves and function so that the system pressure from the cylinder side does not act on the hydraulic pump X when closed.

本発明の更に有利な発展形態として、シリンダZ1、Z2内に熱交換器E1、E2を配置することができる。   As a further advantageous development of the invention, the heat exchangers E1, E2 can be arranged in the cylinders Z1, Z2.

従来技術による圧縮機のシリンダ構造では、シリンダ内に褶動可能なピストンが配置されているため熱交換器の内蔵は許容されず、従ってシリンダ内腔の冷却は外部から行うしかない。そのため、圧縮時に発生する熱は、従来法では圧縮機シリンダ外部のジャッケトにより冷却媒体(空気、水、冷却剤など)へ伝導されて排出される。このため、通常は等温的な圧縮は実行できず、従って圧縮エネルギーは相応に高くなる。   In the cylinder structure of the compressor according to the prior art, since a piston capable of swinging is disposed in the cylinder, it is not allowed to incorporate a heat exchanger, and therefore, the cylinder lumen can only be cooled from the outside. Therefore, in the conventional method, heat generated during compression is conducted to a cooling medium (air, water, coolant, etc.) by a jacket outside the compressor cylinder and discharged. For this reason, usually isothermal compression cannot be carried out, so that the compression energy is correspondingly high.

上述の本発明の有利な実施形態による構成の圧縮装置では、シリンダの内部冷却を実現でき、それにより従来技術における上述の欠点を回避することが可能である。   With the above-described compression device according to the preferred embodiment of the present invention, it is possible to achieve internal cooling of the cylinder, thereby avoiding the above-mentioned drawbacks in the prior art.

この場合の熱交換器の概念は、任意構造の熱交換器(以下、アクティブ熱交換器と称する)及び蓄熱器(以下、パッシブ熱交換器と称する)と理解することができる。   The concept of the heat exchanger in this case can be understood as a heat exchanger having an arbitrary structure (hereinafter referred to as an active heat exchanger) and a heat accumulator (hereinafter referred to as a passive heat exchanger).

アクティブ熱交換器の場合には、圧縮に際して発生する熱は適切な冷却媒体を用いて排出されるのに対し、パッシブ熱交換器の場合には、係る熱は圧縮装置のシリンダ内部空間内に留まっている。実は後者の場合にも、圧縮熱は圧縮対象のガス状媒体を通じて除去されるのであるが、ガス状媒体に伝えられた圧縮熱は前述のたように液体Dに伝達される。パッシブ熱交換器(蓄熱器)としては、冷却フィン、ひれ等、及び/又は金属製の球、円盤等のような充填物を使用することができる。   In the case of an active heat exchanger, the heat generated during compression is discharged using an appropriate cooling medium, whereas in the case of a passive heat exchanger, such heat remains in the cylinder internal space of the compressor. ing. Actually, also in the latter case, the compression heat is removed through the gaseous medium to be compressed, but the compression heat transmitted to the gaseous medium is transmitted to the liquid D as described above. As the passive heat exchanger (heat accumulator), a filler such as a cooling fin, a fin, and / or a metal ball, a disk, or the like can be used.

従って、上述の本発明の有利な実施形態によれば、必要な圧縮エネルギーの著しい低減と、ほぼ等温的な圧縮とが可能になる。更にガス出口温度の低下と、圧縮装置の弁に加わる熱負荷の低下も効果的に果たすことができる。   Thus, the advantageous embodiments of the present invention described above allow a significant reduction in the required compression energy and a substantially isothermal compression. Further, it is possible to effectively reduce the gas outlet temperature and the heat load applied to the valve of the compressor.

シリンダZ1、Z2から取り出され、分離器A内で圧縮後のガス状媒体から分離された液体分は、逆止弁iが介装されている導管9を通じて必要に応じて介装された中間貯蔵容器Sに送り込まれる。この中間貯蔵容器に蓄えられた液体は、導管7、8によりそれぞれストップ弁としての逆止弁f、hを介して液圧ポンプの給排ポートへ通じる導管4、6に導入可能であり、液圧ポンプによる液体Dの給排操作に応じてシリンダZ1、Z2へ戻される。   The liquid component taken out from the cylinders Z1 and Z2 and separated from the gaseous medium after being compressed in the separator A is intermediately stored as necessary through a conduit 9 in which a check valve i is interposed. It is fed into the container S. The liquid stored in the intermediate storage container can be introduced into the conduits 4 and 6 that lead to the supply / discharge ports of the hydraulic pump via the check valves f and h as stop valves by the conduits 7 and 8, respectively. The liquid D is returned to the cylinders Z1 and Z2 according to the supply / discharge operation of the liquid D by the pressure pump.

本発明のガス状媒体の圧縮方法における更に別の有利な一発展形態では、圧縮すべきガス状媒体の吸込行程中にその後の圧縮に用いられる液体の補給が必要に応じて行われる。   In a further advantageous development of the method for compressing a gaseous medium according to the invention, replenishment of the liquid used for the subsequent compression is carried out as required during the suction stroke of the gaseous medium to be compressed.

即ち、特に圧縮操作に用いる液体の給排用駆動ポンプ、即ち液圧ポンプXにおいては、その作動に伴ってドレンへ漏洩する不可避的な液体Dの損失が生じることが多い。このため、係る損失を補償する目的で、液圧ポンプによる両シリンダ間の給排系内の液体量が少なくなった場合には新たな液体を系内に追加供給して補給することが必要になる。この場合、液体の補給に際して圧縮側及び吸込側の各シリンダ系で相互干渉作用が起こらないように留意しなければならない。また、この圧縮用液体の給排系の駆動に必要なエネルギーの大きさは圧縮行程の目標圧力や圧縮比に応じて定まるが、液体の補給によってその最大エネルギーが(不必要に)増大しないように留意する必要もある。   That is, particularly in the liquid supply / discharge drive pump used for the compression operation, that is, the hydraulic pump X, inevitable loss of the liquid D leaking to the drain is often caused by the operation. For this reason, in order to compensate for the loss, when the amount of liquid in the supply / discharge system between both cylinders by the hydraulic pump decreases, it is necessary to supply and replenish new liquid to the system. Become. In this case, care must be taken not to cause mutual interference between the cylinder systems on the compression side and the suction side when replenishing the liquid. The amount of energy required for driving the compression liquid supply / discharge system is determined according to the target pressure and compression ratio of the compression stroke, but the maximum energy is not (unnecessarily) increased by replenishing the liquid. It is also necessary to pay attention to.

本実施形態では、本発明によるガス状媒体の圧縮を行うに際して、係る留意点を踏まえて圧縮用液体の安定した補給を可能としている。   In the present embodiment, when the gaseous medium according to the present invention is compressed, the liquid for compression can be stably replenished in consideration of such considerations.

この場合、原則として圧縮に必要な液体を補給する時点は、両シリンダ間の液体給排系における実際の動力消費量又は消費電力に応じて定められ、好ましくは消費電力が最小となる時点付近で液体の補給が行われる。この時点では、液体給排用駆動ポンプ、即ち液体ポンプXに充分な出力の余裕があり、従ってこの余裕出力を液体の補給に有効利用することが可能である。   In this case, in principle, the time point at which the liquid necessary for compression is replenished is determined according to the actual power consumption or power consumption in the liquid supply / discharge system between both cylinders, and preferably around the time point at which power consumption is minimized. Liquid replenishment is performed. At this time, the liquid supply / discharge drive pump, that is, the liquid pump X has a sufficient output margin. Therefore, the margin output can be effectively used for liquid supply.

補給液体Dは、図示しない液体容器から補給ポンプPを備えた導管10を通じてシリンダZ1、Z2内に導入されるが、この補給液体の導入は、ガス状媒体の圧縮行程を終えて吸込行程中にあるほうのシリンダに対して行うことが好ましい。但し、この場合、補給が圧縮と吸込の行程の転換点付近で行われないように注意する必要がある。これは、行程の転換点付近で補給を行うと、液体Dが場合によってはシリンダZ1又はZ2から取出導管2’、2”を介して逸出する恐れがあり、その結果として、シリンダZ1又はZ2から取り出される圧縮後のガス状媒体をそれに随伴する液体から分離するための気液分離器Aの容積を相応に大形化しなければならないという不都合を招くからである。また、吸込行程中に限定して液体の補給を行うようにすることにより、補給ポンプPの消費電力も最小限に抑えることが可能となる。   The replenishment liquid D is introduced into the cylinders Z1 and Z2 from the liquid container (not shown) through the conduit 10 having the replenishment pump P. This replenishment liquid is introduced during the suction stroke after the compression stroke of the gaseous medium is completed. It is preferred to do this for one cylinder. In this case, however, care must be taken so that replenishment is not performed near the turning point between the compression and suction strokes. This is because when the liquid is replenished near the turning point of the stroke, the liquid D may escape from the cylinder Z1 or Z2 via the extraction conduits 2 ′ and 2 ″ as a result, and as a result, the cylinder Z1 or Z2 This is because the volume of the gas-liquid separator A for separating the compressed gaseous medium taken out from the liquid from the accompanying liquid must be increased accordingly, and only during the suction stroke. By replenishing the liquid, the power consumption of the replenishment pump P can be minimized.

両シリンダ間の液体給排系における液体D損失の検知は、シリンダZ1及びZ2内の液体レベルを計測器によって常時監視し、予め設定された基準レベルとの偏差を自動測定することによって行われ、通常、基準レベルの値は圧縮プロセスのスタートアップ時に決定される。   The detection of the liquid D loss in the liquid supply / discharge system between both cylinders is performed by constantly monitoring the liquid level in the cylinders Z1 and Z2 by a measuring instrument and automatically measuring a deviation from a preset reference level, Usually, the reference level value is determined at the start-up of the compression process.

本発明のガス状媒体の圧縮方法による更に別の好適な実施形態では液体Dが電場に曝される。このための装置として、少なくとも一方のシリンダ内に電場を発生する電極を配置することができる。   In yet another preferred embodiment of the gaseous medium compression method of the present invention, the liquid D is exposed to an electric field. As an apparatus for this purpose, an electrode for generating an electric field can be arranged in at least one of the cylinders.

即ち、液体Dとして特にイオン性液体を使用する場合、イオン性液体は他の流体(気体又は液体、蒸気など)に直接触れると境界面で混和と2相混合物の形成を生起する。本発明による場合、例えばシリンダ内のイオン性液体と圧縮対象のガス状媒体との境界面にそのような2相混合物が生じる可能性がある。   That is, when an ionic liquid is used as the liquid D, when the ionic liquid directly touches another fluid (gas, liquid, vapor, etc.), it causes mixing and formation of a two-phase mixture at the interface. In the case of the present invention, such a two-phase mixture may occur at the interface between the ionic liquid in the cylinder and the gaseous medium to be compressed, for example.

イオン性液体と圧縮対象のガス状媒体との分離を確実にして信頼性のあるものとするためには、両者間に充分な密度差があることと、適切な重力場(この場合は重力加速度によって生ずる)が必要不可欠である。それによりシリンダ内の逆加速度の最大値が定義される。これは、地球の重力場では7m/s2という最大加速度が実現されるということになる。しかしながら、この程度の加速度では、生成した2相混合物を再び完全に分離させるには不充分であることが稀ではない。 In order to ensure reliable separation of the ionic liquid from the gaseous medium to be compressed, there must be a sufficient density difference between them and an appropriate gravitational field (in this case, gravitational acceleration). Caused by) is essential. Thereby, the maximum value of the reverse acceleration in the cylinder is defined. This means that a maximum acceleration of 7 m / s 2 is achieved in the Earth's gravitational field. However, it is not uncommon for this degree of acceleration to be sufficient to completely separate the resulting two-phase mixture again.

そこで本発明の圧縮方法では、その発展形態として液体を電場に曝し、電場によって重力やコリオリの力等の自然の力場の強度を補うことにより2相混合物の完全分離を可能にするものである。   Therefore, in the compression method of the present invention, as a development form, the liquid is exposed to an electric field, and the strength of a natural force field such as gravity or Coriolis force is supplemented by the electric field, thereby enabling complete separation of the two-phase mixture. .

適切な双極子モーメント及び/又は適切な導電性を示すことのできるイオン性液体ではいずれの場合にもこの発展形態を活用することが可能である。   It is possible to take advantage of this development in any case for ionic liquids that can exhibit a suitable dipole moment and / or a suitable conductivity.

電場を用いてイオン性液体に影響を及ぼすことにより、本発明のようにガス状媒体の圧縮にピストンを使用しない方式の圧縮の転換点における行程の加速度を、気体と液体との相の混合を生じる恐れを増すことなく高めることが可能になる。更に、イオン性液体と圧縮対象のガス状媒体との密度差が比較的小さい場合でも、イオン性液体を2相混合物から確実且つ充分な信頼性で分離することが可能になる。図示の実施形態以外にも、本発明の方法及び装置において単一又は3基以上のシリンダを備た変形形態も実現可能である。シリンダが単一の場合には、圧縮後のガス状媒体を一定の圧縮圧力で連続的に取り出すことはできないが、2基以上のシリンダを設けた場合には、各シリンダの動作周期の位相を等角度的に配分して圧縮後のガス状媒体を所望の一定圧力で取り出すようにすることが可能である。   By using an electric field to affect the ionic liquid, the acceleration of the stroke at the turning point of compression in which the piston is not used for compressing the gaseous medium as in the present invention, the mixing of the phase of the gas and the liquid is performed. It is possible to increase without increasing the risk of occurrence. Furthermore, even when the density difference between the ionic liquid and the gaseous medium to be compressed is relatively small, the ionic liquid can be reliably and sufficiently separated from the two-phase mixture. In addition to the illustrated embodiment, variations of the method and apparatus of the present invention with single or more than three cylinders are possible. When a single cylinder is used, the compressed gaseous medium cannot be continuously taken out at a constant compression pressure. However, when two or more cylinders are provided, the phase of the operation cycle of each cylinder is changed. It is possible to take out the gaseous medium after compression at a desired constant pressure by equiangular distribution.

本発明によれば、圧縮系内にピストン等の動的な固体部品やダイナミックシール機構等の摺動摩耗部品が一切不要であるため、設備コストは著しく節減される。加えて、従来のピストン形圧縮機に比べて保守整備の時間間隔を長くすることができるため、保守整備コストも低減される。   According to the present invention, since no dynamic solid parts such as pistons or sliding wear parts such as dynamic seal mechanisms are required in the compression system, the equipment cost is significantly reduced. In addition, since the maintenance interval can be extended as compared with the conventional piston compressor, the maintenance cost is also reduced.

本発明は、ガス状媒体を現時点で実現可能な1,000barの圧力にまで圧縮するのに好適である。但し、原理上は更に高い任意の圧力も達成可能であることを強調しておきたい。更に本発明によれば、単に1段のみの圧縮段で最高圧力にまで圧縮することが可能になる。しかも圧縮ガスの取出流量は液体ポンプの吐出量調整により任意に変えることができる。特に高純度ガス状媒体の圧縮に関して本発明はその種のガス状媒体をも極めて高い圧力にまで圧縮することをコスト的に有利な態様で可能にするものである。   The present invention is suitable for compressing gaseous media to a pressure of 1,000 bar that is currently feasible. However, it should be emphasized that in principle any higher pressure can be achieved. Furthermore, according to the present invention, it is possible to compress to the maximum pressure with only one compression stage. In addition, the flow rate of the compressed gas can be arbitrarily changed by adjusting the discharge amount of the liquid pump. In particular with regard to the compression of high purity gaseous media, the present invention allows such gaseous media to be compressed to very high pressures in a cost-effective manner.

Claims (16)

ガス状媒体、特に気体水素を圧縮するに際し、ガス状媒体の圧縮(Z1、Z2)を液体(D)によって行い、この液体(D)として、ガス状媒体を溶解しない液体及び/又はガス状媒体から残らず分離可能な液体を用いることを特徴とするガス状媒体の圧縮方法。   When compressing a gaseous medium, in particular gaseous hydrogen, the gaseous medium is compressed (Z1, Z2) with the liquid (D), and the liquid (D) does not dissolve the gaseous medium and / or the gaseous medium. A method for compressing a gaseous medium, characterized in that a separable liquid is used. 液体(D)として、イオン性液体、難沸騰性油圧作動液、飽和蒸気圧が極めて低い液体又はガス溶解度が10−4mol/L bar未満の液体を用いることを特徴とする請求項1に記載の方法。 The liquid (D) is an ionic liquid, a hardly-boiling hydraulic fluid, a liquid having a very low saturated vapor pressure, or a liquid having a gas solubility of less than 10 −4 mol / L bar. the method of. 液体(D)を通して圧縮熱の少なくとも一部を排出することを特徴とする請求項1又は2に記載の方法。   3. A method according to claim 1 or 2, characterized in that at least part of the compression heat is discharged through the liquid (D). 圧縮後のガス状媒体(2’、2”)に随伴する前記液体をこの圧縮後のガス状媒体(2’、2”)から分離(A)することを特徴とする請求項1〜3のいずれか1項に記載の方法。   The liquid according to the compressed gaseous medium (2 ', 2 ") is separated (A) from the compressed gaseous medium (2', 2"). The method according to any one of the above. 圧縮後のガス状媒体(2’、2”)から分離された液体(9、8)を直接又は中間貯蔵(S)を介して再び圧縮(Z1、Z2)に還流することを特徴とする請求項4に記載の方法。   The liquid (9, 8) separated from the compressed gaseous medium (2 ′, 2 ″) is returned to the compression (Z1, Z2) again directly or via intermediate storage (S). Item 5. The method according to Item 4. 圧縮(Z1、Z2)によってガス状媒体をほぼ1,000分の1に圧縮することを特徴とする請求項1〜5のいずれか1項に記載の方法。   6. The method according to claim 1, wherein the gaseous medium is compressed approximately 1,000 times by compression (Z1, Z2). 圧縮すべきガス状媒体の吸込行程中にその後の圧縮(Z1、Z2)に用いる液体(D)の補給を行うことを特徴とする請求項1〜6のいずれか1項に記載の方法。   7. The method according to claim 1, wherein the liquid (D) used for the subsequent compression (Z1, Z2) is supplied during the suction stroke of the gaseous medium to be compressed. 液体(D)を電場に曝すことを特徴とする請求項1〜7のいずれか1項に記載の方法。   The method according to claim 1, wherein the liquid (D) is exposed to an electric field. ガス状媒体、特に気体水素を圧縮する装置であって、
a)1つ又は複数のシリンダ(Z1、Z2)と、
b)圧縮すべきガス状媒体をシリンダ(Z1、Z2)に供給し、或いは該シリンダから取り出すための供給導管(1、1’、1”)及び取出導管(2、2’、2”)と、
c)個々のシリンダ(Z1、Z2)に接続され、ガス状媒体の圧縮に用いる液体(D)をシリンダ(Z1、Z2)に導入し、或いは該シリンダから導出するための液体導管(3、5)と、
d)シリンダ(Z1、Z2)内の液体(D)の量を変化させる手段と、
を備え、
e)前記液体(D)が、圧縮すべきガス状媒体を溶解しない性質及び/又はガス状媒体から残らず分離可能な性質を有する液体であることを特徴とするガス状媒体の圧縮装置。
A device for compressing gaseous media, in particular gaseous hydrogen,
a) one or more cylinders (Z1, Z2);
b) a supply conduit (1, 1 ′, 1 ″) and an extraction conduit (2, 2 ′, 2 ″) for supplying or removing the gaseous medium to be compressed to or from the cylinder (Z1, Z2); ,
c) Liquid conduits (3, 5) connected to the individual cylinders (Z1, Z2) for introducing the liquid (D) used for compressing the gaseous medium into or out of the cylinder (Z1, Z2) )When,
d) means for changing the amount of the liquid (D) in the cylinders (Z1, Z2);
With
e) The gaseous medium compression apparatus, wherein the liquid (D) is a liquid having a property of not dissolving the gaseous medium to be compressed and / or a property of being separable from the gaseous medium.
シリンダ(Z1、Z2)内の液体の量を変化させる手段が、液体ポンプ、油圧ポンプ、アキシャルピストンポンプ、摺動プランジャポンプ、又は歯車ポンプからなることを特徴とする請求項9に記載の装置。   Device according to claim 9, characterized in that the means for changing the amount of liquid in the cylinder (Z1, Z2) comprises a liquid pump, a hydraulic pump, an axial piston pump, a sliding plunger pump or a gear pump. 個々のシリンダ(Z1、Z2)に接続された液体導管(3、5)に圧縮熱排出用の熱交換器(K1、K2)が設けられていることを特徴とする請求項9又は10に記載の装置。   11. A heat exchanger (K1, K2) for exhausting compression heat is provided in the liquid conduits (3, 5) connected to the individual cylinders (Z1, Z2). Equipment. 圧縮後のガス状媒体の取出導管(2、2’、2”)に圧縮後のガス状媒体(2、2’、2”)に随伴する液体を分離するための分離器(A)が接続されていることを特徴とする請求項9〜11のいずれか1項に記載の装置。   A separator (A) for separating the liquid accompanying the gaseous medium after compression (2, 2 ′, 2 ″) is connected to the compressed gas medium outlet conduit (2, 2 ′, 2 ″). The device according to claim 9, wherein the device is a device. 分離器(A)が液体流(9、8)に関して少なくとも1つのシリンダ(Z1、Z2)に連通するように設けられていることを特徴とする請求項12に記載の装置。   13. A device according to claim 12, characterized in that the separator (A) is provided in communication with at least one cylinder (Z1, Z2) with respect to the liquid stream (9, 8). 分離器(A)に液体貯蔵容器(S)が付設されていることを特徴とする請求項12又は13に記載の装置。   14. A device according to claim 12 or 13, characterized in that the separator (A) is provided with a liquid storage container (S). シリンダ(Z1、Z2)の内部に熱交換器(E1、E2)が配置されていることを特徴とする請求項9〜14のいずれか1項に記載の装置。   Device according to any one of claims 9 to 14, characterized in that heat exchangers (E1, E2) are arranged inside the cylinders (Z1, Z2). シリンダ(Z1、Z2)内に電場を発生させる手段が更に設けられていることを特徴とする請求項9〜15のいずれか1項に記載の装置。   16. The device according to any one of claims 9 to 15, further comprising means for generating an electric field in the cylinder (Z1, Z2).
JP2007532789A 2004-09-24 2005-08-02 Method and apparatus for compressing gaseous media Expired - Fee Related JP4986161B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004046316A DE102004046316A1 (en) 2004-09-24 2004-09-24 Method and apparatus for compressing a gaseous medium
DE102004046316.6 2004-09-24
PCT/EP2005/008370 WO2006034748A1 (en) 2004-09-24 2005-08-02 Method and device for compressing a gaseous medium

Publications (2)

Publication Number Publication Date
JP2008514844A true JP2008514844A (en) 2008-05-08
JP4986161B2 JP4986161B2 (en) 2012-07-25

Family

ID=34978927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007532789A Expired - Fee Related JP4986161B2 (en) 2004-09-24 2005-08-02 Method and apparatus for compressing gaseous media

Country Status (11)

Country Link
US (1) US20070258828A1 (en)
EP (1) EP1792087B1 (en)
JP (1) JP4986161B2 (en)
KR (1) KR20070057813A (en)
CN (1) CN101023272B (en)
AT (1) ATE530772T1 (en)
AU (1) AU2005289219A1 (en)
CA (1) CA2581280A1 (en)
DE (1) DE102004046316A1 (en)
WO (1) WO2006034748A1 (en)
ZA (1) ZA200702362B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513576A (en) * 2008-12-23 2012-06-14 テキサコ ディベラップメント コーポレイション Variable volume hydrogen storage
JP2012527865A (en) * 2009-05-22 2012-11-08 ジェネラル コンプレッション インコーポレイテッド Compression and / or expansion device
JP2012241717A (en) * 2011-05-13 2012-12-10 Linde Ag Method and apparatus for compressing gaseous medium
JP2013010075A (en) * 2011-06-29 2013-01-17 Nitto Seiko Co Ltd Gas injection device and gas-liquid contact device
JP2013515945A (en) * 2009-12-24 2013-05-09 ジェネラル コンプレッション インコーポレイテッド Method and apparatus for optimizing heat transfer in compression and / or expansion devices
JP2018538475A (en) * 2015-11-25 2018-12-27 イソカレント エナジー インコーポレーテッド Variable pressure vessel
KR20230016747A (en) * 2021-07-26 2023-02-03 한국기계연구원 Overheat protectable hydrogen charging system and method for charging hydrogen using the same

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005007100A1 (en) * 2005-02-16 2006-08-17 Solvent Innovation Gmbh Process or working machine with ionic liquid as operating fluid
AT501793A1 (en) * 2005-05-06 2006-11-15 Linde Ag LIQUID FOR COMPRISING A GASIFIED MEDIUM AND USE THEREOF
DE102006014314A1 (en) * 2006-03-28 2007-10-04 Linde Ag Piston-less compressor operating method, involves moving fluid column up and down in cylinder of piston-less compressor, and allowing overcharging of portions of fluid e.g. expensive ionic fluid, in discharge pipe during compression cycle
DE102006040785A1 (en) * 2006-08-31 2008-03-06 Linde Ag Pistonless compressor
DE102006042918A1 (en) 2006-09-13 2008-03-27 Linde Ag Pistonless compressor
DE102006060147B4 (en) * 2006-12-18 2009-05-14 Andreas Hofer Hochdrucktechnik Gmbh Fluid-working machine
DE102006060061A1 (en) * 2006-12-19 2008-06-26 Linde Ag Sealing by ionic liquids
WO2009034421A1 (en) * 2007-09-13 2009-03-19 Ecole polytechnique fédérale de Lausanne (EPFL) A multistage hydro-pneumatic motor-compressor
DE102007049458B4 (en) * 2007-10-16 2017-04-13 Man Truck & Bus Ag Compressed gas system and method for storing a gas
DE102008032825B3 (en) * 2008-07-11 2010-01-14 Siemens Aktiengesellschaft Jet pump and method for its operation
FR2945327A1 (en) * 2009-05-07 2010-11-12 Ecoren METHOD AND EQUIPMENT FOR MECHANICAL ENERGY TRANSMISSION BY COMPRESSION AND / OR QUASI-ISOTHERMAL DETENTION OF A GAS
DE102009020925A1 (en) * 2009-05-12 2010-11-18 Linde Aktiengesellschaft Compressor with piston dummy
US9611868B2 (en) 2010-04-09 2017-04-04 Shipstone Corporation System and method for energy storage and retrieval
JP5756849B2 (en) 2010-04-09 2015-07-29 ダニエル・ジョン・ケンウェイ System and method for storing and extracting energy
DE102011007639A1 (en) 2010-04-23 2011-10-27 Basf Se Mechanical processing of workpieces with a high pressure jet comprising a liquid composition, which contains an ionic liquid
DE102013205027A1 (en) 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Sealing device and turbo compressor with such a sealing device
ITRM20130313A1 (en) * 2013-05-30 2014-12-01 Gia E Lo Sviluppo Economico Sostenibile Enea HYDRODYNAMIC COMPRESSOR FOR COMBUSTIBLE AND DETONING GASES
CN103308446B (en) * 2013-05-31 2016-01-20 重庆大学 Based on the fluid compressible system safety testing device of corrugated tube
US10801482B2 (en) 2014-12-08 2020-10-13 Saudi Arabian Oil Company Multiphase production boost method and system
CN104728083B (en) * 2015-01-23 2017-06-23 西南科技大学 A kind of compressor
FR3042236B1 (en) * 2015-10-08 2019-09-06 Ortec Expansion METHOD AND DEVICE FOR PUMPING A PRODUCT BY SUCTION.
KR101668672B1 (en) 2016-08-01 2016-10-24 최상배 Liquid pressed gas compressor having pressure-volume converting device and torque converting device
DE102016220345A1 (en) 2016-10-18 2018-04-19 Bayerische Motoren Werke Aktiengesellschaft Pressure vessel system and resource supply system for a motor vehicle
CN106761986B (en) * 2016-12-27 2019-01-15 北京交通大学 A kind of device and its application method of the conversion of gas at normal temperature energy
DE102017006335A1 (en) * 2017-07-04 2019-01-10 Linde Aktiengesellschaft ionic liquid with dry lubricant
DE102017007921A1 (en) * 2017-08-22 2019-02-28 Linde Aktiengesellschaft Method for operating a compressor and compressor
PL240516B1 (en) * 2018-01-09 2022-04-19 Dobrianski Jurij Steam engine
DE102018003356A1 (en) * 2018-04-19 2019-10-24 Michael Semakin compressor
DE102019129495B3 (en) * 2019-10-31 2021-04-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Compressor arrangement, heat pump arrangement and method for operating the compressor arrangement
EP4061983A1 (en) 2019-11-21 2022-09-28 EEG Elements Energy GmbH Electrolysis device
CN111561430A (en) * 2020-04-23 2020-08-21 北京航空航天大学 Isothermal expansion device based on gas dissolution and gas-liquid conversion and use method
DE102020207827A1 (en) 2020-06-24 2021-12-30 Argo Gmbh Filling device for filling storage containers with compressed hydrogen, filling station having the same and method for filling a storage container
CN112442405A (en) * 2020-12-15 2021-03-05 苏州金宏气体股份有限公司 Ionic liquid composition as hydraulic hydrogenation working medium
CN112408318B (en) * 2020-12-15 2022-09-23 苏州金宏气体股份有限公司 Ionic liquid composition for compressing hydrogen
DE102021204586A1 (en) 2021-05-06 2022-11-10 Robert Bosch Gesellschaft mit beschränkter Haftung Device for compressing a gas and method for filling a tank with such a device
CN113623036A (en) * 2021-09-14 2021-11-09 西安热工研究院有限公司 System and method for raising steam pressure
CN113757072A (en) * 2021-10-27 2021-12-07 郑立 Ionic liquid hydrogen compressor and using method thereof
GB2613202A (en) * 2021-11-29 2023-05-31 Catagen Ltd Method of compressing hydrogen gas, hydrogen gas compressor system and hydrogen gas storage unit
US20240125337A1 (en) * 2022-10-14 2024-04-18 Steelhead Composites, Inc. Ionic liquid accumulator system for delivering gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243105A (en) * 1975-10-02 1977-04-04 Kido Kensetsu Kogyo Kk Comoressed air generator
JPS604800U (en) * 1983-06-23 1985-01-14 石井 助 hydraulic air compressor
JPH09144657A (en) * 1995-11-23 1997-06-03 Mitsubishi Heavy Ind Ltd Air compressing device
DE19848234A1 (en) * 1998-10-20 2000-04-27 Huels Infracor Gmbh Compression of potentially explosive gases through injection of liquid into a common vessel
US6183206B1 (en) * 1999-05-10 2001-02-06 The United States Of America As Represented By The Secretary Of The Air Force Magnetohydrodynamically-driven compressor
WO2003019016A1 (en) * 2001-08-23 2003-03-06 Neogas, Inc. Method and apparatus for filling a storage vessel with compressed gas

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087208A (en) * 1976-06-08 1978-05-02 Mitsubishi Jukogyo Kabushiki Kaisha Method for compressing mixed gas consisting of combustible gas and air
US4515516A (en) * 1981-09-30 1985-05-07 Champion, Perrine & Associates Method and apparatus for compressing gases
CA1226253A (en) 1984-03-28 1987-09-01 Ben Cowan Liquid piston compression systems for compressing steam
US5073090A (en) * 1990-02-12 1991-12-17 Cassidy Joseph C Fluid piston compressor
US5169295A (en) * 1991-09-17 1992-12-08 Tren.Fuels, Inc. Method and apparatus for compressing gases with a liquid system
US5584664A (en) * 1994-06-13 1996-12-17 Elliott; Alvin B. Hydraulic gas compressor and method for use
RU2158623C1 (en) * 1999-06-16 2000-11-10 Цегельский Валерий Григорьевич Method of compression and supply under pressure of hydrocarbon-containing gaseous media (versions)
US6371145B1 (en) * 2000-08-04 2002-04-16 Dresser-Rand Company System and method for compressing a fluid
US6619930B2 (en) * 2001-01-11 2003-09-16 Mandus Group, Ltd. Method and apparatus for pressurizing gas
KR100398309B1 (en) * 2001-02-20 2003-09-19 한국과학기술원 Micropump actuated by the movement of liquid drop induced by continuous electrowetting
CN1451887A (en) * 2002-04-19 2003-10-29 杨志强 Hydraulic gas compressor
US7488159B2 (en) * 2004-06-25 2009-02-10 Air Products And Chemicals, Inc. Zero-clearance ultra-high-pressure gas compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243105A (en) * 1975-10-02 1977-04-04 Kido Kensetsu Kogyo Kk Comoressed air generator
JPS604800U (en) * 1983-06-23 1985-01-14 石井 助 hydraulic air compressor
JPH09144657A (en) * 1995-11-23 1997-06-03 Mitsubishi Heavy Ind Ltd Air compressing device
DE19848234A1 (en) * 1998-10-20 2000-04-27 Huels Infracor Gmbh Compression of potentially explosive gases through injection of liquid into a common vessel
US6183206B1 (en) * 1999-05-10 2001-02-06 The United States Of America As Represented By The Secretary Of The Air Force Magnetohydrodynamically-driven compressor
WO2003019016A1 (en) * 2001-08-23 2003-03-06 Neogas, Inc. Method and apparatus for filling a storage vessel with compressed gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513576A (en) * 2008-12-23 2012-06-14 テキサコ ディベラップメント コーポレイション Variable volume hydrogen storage
JP2012527865A (en) * 2009-05-22 2012-11-08 ジェネラル コンプレッション インコーポレイテッド Compression and / or expansion device
JP2013515945A (en) * 2009-12-24 2013-05-09 ジェネラル コンプレッション インコーポレイテッド Method and apparatus for optimizing heat transfer in compression and / or expansion devices
JP2012241717A (en) * 2011-05-13 2012-12-10 Linde Ag Method and apparatus for compressing gaseous medium
JP2013010075A (en) * 2011-06-29 2013-01-17 Nitto Seiko Co Ltd Gas injection device and gas-liquid contact device
JP2018538475A (en) * 2015-11-25 2018-12-27 イソカレント エナジー インコーポレーテッド Variable pressure vessel
KR20230016747A (en) * 2021-07-26 2023-02-03 한국기계연구원 Overheat protectable hydrogen charging system and method for charging hydrogen using the same
KR102561244B1 (en) * 2021-07-26 2023-08-01 한국기계연구원 Overheat protectable hydrogen charging system and method for charging hydrogen using the same

Also Published As

Publication number Publication date
CN101023272A (en) 2007-08-22
DE102004046316A1 (en) 2006-03-30
ATE530772T1 (en) 2011-11-15
JP4986161B2 (en) 2012-07-25
CA2581280A1 (en) 2006-04-06
ZA200702362B (en) 2008-08-27
KR20070057813A (en) 2007-06-07
CN101023272B (en) 2012-06-27
US20070258828A1 (en) 2007-11-08
AU2005289219A1 (en) 2006-04-06
EP1792087A1 (en) 2007-06-06
EP1792087B1 (en) 2011-10-26
WO2006034748A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4986161B2 (en) Method and apparatus for compressing gaseous media
CN101506597B (en) Refrigeration cycle device and fluid machine used for the same
CN104121717B (en) Ultra-low temperature refrigerating device
CN103939343A (en) Rolling piston refrigeration compressor with low backpressure
US20100326124A1 (en) Expander-integrated compressor and refrigeration cycle apparatus using the same
CN102889191A (en) Plunger pump used for pumping ultralow-temperature liquid nitrogen
JP6197049B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2009299584A (en) Screw compression apparatus
JP2016061249A (en) Ultrahigh-pressure generation device
CN104165474B (en) Ultra-low temperature refrigerating device
US8834133B2 (en) Pumping device for fluids located at the bottom of a drilled well
CN106368926B (en) A kind of multi-stage air compressor
CN206035813U (en) Rotary compressor and have its refrigeration cycle device
CN204226640U (en) For the seal arrangement of High Temperature High Pressure rotating machinery
JP6799792B2 (en) Fluid machinery and refrigeration cycle equipment
JP7398289B2 (en) Reciprocating expander and Rankine cycle device
EP2025937B1 (en) Reciprocating pump
CN106194735A (en) Rotary compressor and there is its refrigerating circulatory device
TWI527684B (en) Air compression system and cooling structure thereof
CN103174641A (en) Integrated fully-sealed type refrigeration gear pump
JPH10253177A (en) Compressor for transition critical refrigerating cycle
JP2007024439A (en) Refrigeration cycle device
CN101806301A (en) Scroll compressor
CN205245598U (en) A overlapping low -temperature level unit sled piece for inflammable and explosive medium
CN103423165A (en) Vertical type totally closed double-stage screw rod refrigerating compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110630

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110729

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110805

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110829

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120419

R150 Certificate of patent or registration of utility model

Ref document number: 4986161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees