EP1791138B1 - Process for degaussing using alternating current pulses in a conductive loop - Google Patents

Process for degaussing using alternating current pulses in a conductive loop Download PDF

Info

Publication number
EP1791138B1
EP1791138B1 EP06405403A EP06405403A EP1791138B1 EP 1791138 B1 EP1791138 B1 EP 1791138B1 EP 06405403 A EP06405403 A EP 06405403A EP 06405403 A EP06405403 A EP 06405403A EP 1791138 B1 EP1791138 B1 EP 1791138B1
Authority
EP
European Patent Office
Prior art keywords
conductor
current
alternating
demagnetization
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP06405403A
Other languages
German (de)
French (fr)
Other versions
EP1791138A1 (en
Inventor
Albert Maurer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35809764&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1791138(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP1791138A1 publication Critical patent/EP1791138A1/en
Application granted granted Critical
Publication of EP1791138B1 publication Critical patent/EP1791138B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/006Methods and devices for demagnetising of magnetic bodies, e.g. workpieces, sheet material

Definitions

  • the present invention describes a method for the reproducible capacitor-free demagnetization of objects with residual magnetism by means of at least one low-frequency and frequency-modulated alternating-current pulse of variable amplitude and AC pulse width in a conductor, whereby a magnetic field pulse is generated near the ladder.
  • the objects may be ferromagnetic pieces of different size and weight.
  • the residual magnetism may result from the influence of an external magnetic field or may have been impressed on an object in a targeted manner.
  • phase shift disappears only when the inverter supplies an AC voltage with resonant frequency. Then the impedance, ie the AC resistance of the resonant circuit is minimal and the maximum current and thus the maximum inducible magnetic field within the degaussing coil occur.
  • a phase detector is used to detect the phase shift between the voltage and the current. For this purpose, the current signal is determined via the voltage which drops across a resistor in the resonant circuit. Due to the phase information, an oscillator can set the used inverter specifically to the resonance frequency. When the described setting of the resonant frequency has occurred, the AC amplitude can be ramped down by the inverter, thereby completing the demagnetization process.
  • the phase detector is omitted and the frequency of the AC pulse is traversed over a range smaller to greater than the resonant frequency.
  • the resonance frequency is reached in any case for a short time, whereby the maximum possible alternating magnetic field occurs.
  • an electronic control must be used that allows adjustment of the AC pulse frequency. If the resonant frequency is to be tracked regulated, in addition to an electronic component which performs the control of the AC pulse frequency, in addition a component must make the detection of the resonant frequency. It is thus a complicated electronic structure needed to provide the AC pulse to generate the largest possible magnetic alternating field pulse. Since fixed coils are used, the geometric dimensions of the objects to be demagnetized are limited, since they must be brought into the vicinity of the coils.
  • the most accurate and tight winding of the power cable in a coil has the disadvantage that the cables are strongly heated at high currents and can lead to altered demagnetization curves in continuous operation.
  • the capacitors used also change their properties with greater heat generation, which has effects on the resonant circuit.
  • a transport road is described, on which the objects are transported between a stationary long coil or two stationary coils of a resonant circuit, where the objects dwell for a desired time.
  • the demagnetization is also done here by an AC pulse which is controllable in frequency and amplitude and whose AC pulse amplitude is automatically reduced from a maximum value to zero.
  • the objects are in a homogeneous alternating magnetic field during the demagnetization process, whose field strength is reduced by the alternating current pulse amplitude.
  • an inverter ensures the control of the current, which flows through the resonant circuit consisting of the two demagnetization coils and capacitors.
  • the tuning of the AC pulse frequency to the resonant frequency of the resonant circuit is tuned to achieve the maximum current flow in the resonant circuit.
  • a disadvantage is that the size of the demagnetizable objects is determined by the diameter of the demagnetization coils. Likewise, the weight of the objects is limited by the carrying capacity of the transport road. Thus, a complete demagnetization of a large object, such as a turbine, as a whole is nearly impossible, unless one provides a suitable transport line and coils of suitable diameter. But since the entire demagnetization apparatus is so large and bulky that it must be permanently installed in a workshop, the disassembly and transport of very large object to demagnetizer would be very tedious.
  • US-A-4,607,310 discloses a method for capacitor-free demagnetization of a magnetic read / write head by means of an AC pulse having adjustable AC pulse frequency of variable amplitude and AC pulse width. Due to the software-controlled control of voltage, frequency and decay behavior (see Sp. 1, Z. 38-43), it should be possible to generate a non-exponential decay curve and an AC frequency greater than 1 Hz (see Figures 2a and 2b). about 10 Hz).
  • GB-A-1 164 786 discloses a method for capacitor-free demagnetization of a cathode ray tube (or its shadow mask) and US-A-5,995,358 discloses a similar method of demagnetizing a magnetic support plate. Both methods use an AC source of constant frequency, only length and possibly phase of the pulses are modulated.
  • US-A-2703052 discloses a method for demagnetization of hulls, in which an unspecified electric current is sent through a cable wound around the hull.
  • the present invention has for its object to provide a method which allows small to very large and heavy objects to be demagnetized on site flexibly and without disassembly reproducible. Thus, longer downtime of equipment in which objects are to be eliminated with residual magnetism, avoidable.
  • the objects do not necessarily have to be moved away for demagnetization.
  • the present method does not require transportation of the objects with residual magnetism through transport roads or otherwise, which can lead to complications before and during demagnetization.
  • the dimensions of the demagnetizable objects are not limited by a prefabricated, possibly specially made, demagnetization coil. Due to the few components required and the absence of bulky structures, the process is portable and can be applied in a small space isolated.
  • the present method is without capacitors and thus without an electronic resonant circuit, so that no Resonance frequency detection and Resonanfrequenzeingnagnagnagnagnagnagnagnagnagnagnagnagnagnagnagnagan by other electronic components is needed.
  • the present method solves the task at selectable low frequencies from 1 Hz to work, which can not be achieved with the use of capacitors, or only with high demands on the capacitors.
  • the avoidance of capacitors allows the AC pulse to superimpose a constant DC component, which can impress the object with a desired residual magnetism. This is not possible with a resonant circuit solution because the capacitor blocks and charges DC current.
  • alternating magnetic fields are used, which are generated by at least one AC pulse 1 with adjustable AC pulse width 2.
  • the alternating current pulse 1 is a chain of demagnetizing 5 alternating polarity with controllable Entmagnetisierimpulsamplituden 6.
  • the polarity change of Demagnetisierimpulse 5 is done with an adjustable Kirstromimpulsfre frequency 4.
  • the AC pulse frequency 4 determines the penetration depth of the resulting magnetic field in the material to be demagnetized.
  • Low AC pulse frequencies 4 of a few Hertz lead to large penetration depths.
  • In the present invention operates with AC pulse frequencies 4 greater than 1 Hz.
  • the demagnetizing pulse amplitudes 6 are continuously reduced to zero with a controllable decrement.
  • the envelope of the demagnetizing pulse amplitudes 6 will be referred to below as the demagnetizing curve 7. Measurements have shown that it is advantageous for the demagnetization curve 7 to drop as flat as possible and thus slowly.
  • the AC pulse width 2 is usually selected so that about 100 AC pulse periods are passed through in a demagnetization process.
  • the alternating current impulse is chosen 4 frequency, whereby the AC pulse width 2 and thus the total time of complete demagnetization is determined.
  • the alternating demagnetizing pulse amplitudes 6 are reproducibly controlled to an amplitude less than one-thousandth of the AC pulse amplitude maximum 3.
  • An inverter 20 generates in the current controller 24 described herein, the low-frequency AC pulses 1 with the requirements described above.
  • This inverter 20 is composed of transistors in a bridge circuit which operates with pulse width modulation.
  • IGBTs Insulated Gate Bipolar Transistors
  • IGBTs Insulated Gate Bipolar Transistors
  • MOSFETs complementary metal-oxide-semiconductor
  • the rectangular pulses generated in the inverter 20 of frequencies greater than 3 kHz are generated by transistors that show no holding current effect.
  • the high fundamental frequency of the inverter 20, which is used for pulse width modulation, allows the control of AC pulses 1 from zero Hz (ie DC) to the power frequency (50Hz or 60 Hz) with high precision.
  • the current controller 24 includes a current sensor 22, which can read the currently flowing current, even at low Demagnetisierimpulsamplituden 6, whereby a closed current control loop is controlled.
  • the signals of the current sensor 22 are replaced by a Programming and readout unit 23 fed back into the inverter 20.
  • the control of small Demagnetisierimpulsamplituden 6 is to achieve less than one-thousandth of the AC pulse amplitude maximum 3.
  • the inverter internal circuit also ensures that the current zero is traversed absolutely linearly with each polarity change, which is essential for complete demagnetization.
  • the high inverter internal frequency is in terms of the immission limits, mainly with inductive load at the inverter, in a range in which a lower power loss occurs in the generation of the AC pulses 1, as at lower frequencies. This makes using an inverter 20 more effective than using other sources of power.
  • the current control 24 and thus the demagnetization curve 7 to be traveled, the demagnetizing pulse amplitudes 6 and the alternating current pulse frequency 4 can be programmed via the programming and readout unit 23. This allows the parameters of the AC pulse 1 to be set by connecting a computer to the current controller 24 or by manual programming of the programming and reading unit 23.
  • a flexible and fully insulated unshielded conductor of sufficient length in the form of a known stranded cable between an input 27 and an output 28 of the current controller 24 is connected. Care must be taken to ensure that the cable is designed for the maximum voltage of the demagnetization and the AC pulse amplitude maximum 3. Because of high currents and voltages, it is important that the conductor be securely attached to the current controller 24 and not accidentally come off.
  • One possibility consists in a screw connection, wherein the plugs of the conductor, as well as the Connecting sockets (27, 28) of the current control 24 have threads.
  • a conductor monitor 26 is used. This measures the ohmic resistance between input 27 and output 28 of the current controller 24 in the unloaded state, from which it can be seen whether the conductor is correctly connected to input 27 and output 28 of the current controller 24 and whether the cable is in order. Only when the conductor is connected correctly, ie an ohmic resistance is measurable, the AC pulse 1 can be triggered by the current controller 24.
  • the conductor After the conductor has been tested by the conductor monitor 26 and connected to the current controller 24, it is brought close to the object 30 to be demagnetized, so that the object 30 is positioned in the magnetic field resulting from the subsequent current flow.
  • One possibility is to form the flexible conductor into a conductor loop 29 whose shape is variable. In order to be sure that the magnetic field penetrates the object 30, the conductor loop 29 can be laid around the object 30 in at least one loop. In advantageous embodiments of the conductor, this is chosen so long that it can be placed in several loops around the object 30 or formally wound. When forming multiple loops around the object 30 this forms the Portersch leifenkern.
  • a collection of objects 30 may be demagnetized in a demagnetization process, when the objects are filled, for example, in a bulk container, which is enclosed by the conductor loop 29 with an arbitrary number of windings.
  • This current flow monitor 25 thus provides a measured value which indicates whether the current has flowed through the conductor.
  • the temperature determination from the measured resistance value allows the protection of the conductor from excessive temperatures.
  • a direct current source 21 in the current controller 24 can add the DC component 9 already at the beginning of the AC pulse 1 or start up in the course of the decaying demagnetizing curve 7. Such a, the AC pulse 1 superimposed DC component 9 is used to compensate for the static earth magnetic field. In addition, by superimposing a DC component on the treated object 30, a desired magnetization can be impressed.
  • inverters 20 it is possible to reduce the demagnetization voltage resulting in the AC pulse and thus reduce the demagnetizing pulse amplitude.
  • said inverters 20 have a function called controlled engine shutdown. The reproducibility of the demagnetization is not necessarily given when reducing the demagnetization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)
  • Magnetic Treatment Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

Reproducible, capacitor-free demagnetization of ferromagnetic objects (30) involves using a low-frequency and frequency-modulated alternating current impulse produced by a current control (24), of variable amplitude and alternating current impulse width, in a conductor which may be connected in a capacitor-free manner between the input (27) and an output (28) of the current control. Reproducible, capacitor-free demagnetization of objects with a residual magnetism involves: (1) using a low-frequency and frequency-modulated alternating current impulse produced by a current control, of variable amplitude and alternating current impulse width, in a conductor which may be connected in a capacitor-free manner between the input and an output of the current control; and (2) producing a magnetic field impulse in the conductor which is flexible, completely insulated, unshielded and plastically deformable, and while forming a conductor loop (29) in any shape, is applied around an object to be demagnetized. The ends of the conductor loop are connected to the input and the output of the current control in a capacitor-free. The alternating current impulse of individual, alternatingly poled and symmetrical demagnetization impulses with controlled demagnetization impulse amplitude and alternating current impulse frequency of greater than 1 Hz is fed in, where the temporal course of the demagnetization impulse amplitudes is emulated by a demagnetization curve decaying in a non-exponential manner. The ratio of the smallest demagnetization impulse amplitude to the alternating current impulse amplitude maximum lies >=1:1000, and the conductor loop is removed after completion of the demagnetization of an object. An independent claim is included for a device for the reproducible, capacitor-free demagnetization of object with a residual magnetism.

Description

Technisches GebietTechnical area

Die vorliegende Erfindung beschreibt ein Verfahren zum reproduzierbaren kondensatorfreien Entmagnetisieren von Objekten mit Restmagnetismus mittels mindestens einem niederfrequenten und frequenzmodulierten Wechselstromimpuls variabler Amplitude und Wechselstromimpulsbreite in einem Leiter, wodurch ein Magnetfeldimpuls in Leiternähe erzeugt wird.The present invention describes a method for the reproducible capacitor-free demagnetization of objects with residual magnetism by means of at least one low-frequency and frequency-modulated alternating-current pulse of variable amplitude and AC pulse width in a conductor, whereby a magnetic field pulse is generated near the ladder.

Die Objekte können ferromagnetische Teile unterschiedlicher Grösse und unterschiedlichen Gewichts sein. Dabei kann der Restmagnetismus während der Herstellung oder Behandlung durch den Einfluss eines äusseren Magnetfeldes resultieren oder aber gezielt einem Objekt eingeprägt worden sein.The objects may be ferromagnetic pieces of different size and weight. During the production or treatment, the residual magnetism may result from the influence of an external magnetic field or may have been impressed on an object in a targeted manner.

Stand der TechnikState of the art

Zur Entmagnetisierung von ferromagnetischen Objekten sind mehrere Verfahren bekannt. Schon früh wurde die Entladung eines aufgeladenen Kondensators eines Schwingkreises zur Entmagnetisierung ausgenutzt, wobei das bei der oszillierenden Entladung des Kondensators auftretende magnetische Wechselfeld auf Objekte in der Nähe der Entmagnetisierungsspule des Schwingkreises benutzt wird. Der Nachteil dieser Kondensatorentladungsmethode liegt in der fehlenden Reproduzierbarkeit des magnetischen Wechselfeldes und in dem sehr schnell abklingenden Stromimpuls. Je nach Induktion der verwendeten Spule und der anderen verwendeten Bauteile resultiert ein variierender Wechselfeldimpuls, auf den kein Einfluss mehr genommen werden kann, da er von den Parametern des Schwingkreises beeinflusst wird und nicht von aussen gesteuert wird.For demagnetization of ferromagnetic objects, several methods are known. Early on, the discharge of a charged capacitor of a resonant circuit was exploited for demagnetization, wherein the occurring during the oscillating discharge of the capacitor alternating magnetic field is used on objects in the vicinity of the degaussing coil of the resonant circuit. The disadvantage of this capacitor discharge method lies in the lack of reproducibility of the alternating magnetic field and in the very rapidly decaying current pulse. Depending on the induction of the coil used and the other components used, a varying alternating field pulse results, to which no influence can be taken more, since it is influenced by the parameters of the resonant circuit and is not controlled from the outside.

In US4384313 wird ein weiterentwickeltes Verfahren zum Entmagnetisieren beschrieben, dass wiederum einen Schwingkreis benutzt, an welchen kontrollierte Wechselspannungsimpulse angelegt werden. Der besagte Schwingkreis wird über einen aufwändigen elektronischen Aufbau gesteuert, indem ein Gleichrichter die Netzspannung gleichrichtet und durch die Gleichspannung einen Inverter versorgt, der den Schwingkreis aus einem oder mehreren Kondensatoren und der Entmagnetisierungsspule mit einer Wechselspannung variabler Frequenz und Amplitude versorgt. Da es sich um einen Schwingkreis handelt ist die verwendete Frequenz des Wechselstromes, der das magnetische Wechselfeld induziert von grosser Wichtigkeit. Der maximale Stromfluss innerhalb des Schwingkreises und damit innerhalb der Entmagnetisierspule kann nur dann erreicht werden, wenn die Phasenverschiebung zwischen angelegter Spannung und fliessendem Strom im Schwingkreis gleich Null ist. Diese Phasenverschiebung verschwindet nur dann, wenn der Inverter eine Wechselspannung mit Resonanzfrequenz liefert. Dann ist die Impedanz, also der Wechselstromwiderstand des Schwingkreises minimal und der maximale Strom und damit das maximal induzierbare Magnetfeld innerhalb der Entmagnetisierungsspule treten auf. Zur Detektion des Phasenunterschiedes wird ein Phasendetektor eingesetzt, um die Phasenverschiebung zwischen der Spannung und dem Strom zu detektieren. Dazu wird das Stromsignal über die Spannung, die über einem Widerstand im Schwingkreis abfällt, ermittelt. Durch die Phaseninformation kann ein Oszillator den benutzten Inverter gezielt auf die Resonanzfrequenz einstellen. Wenn die beschriebene Einstellung der Resonanzfrequenz stattgefunden hat kann die Wechselstromamplitude vom Inverter heruntergefahren werden, wodurch der Entmagnetisierungsvorgang beendet wird.In US4384313 A further developed method for demagnetization is described, which in turn uses a resonant circuit to which controlled AC pulses are applied. The said resonant circuit is controlled via a complex electronic structure in that a rectifier rectifies the mains voltage and supplies an inverter through the DC voltage, which supplies the resonant circuit from one or more capacitors and the demagnetizing coil with an alternating voltage of variable frequency and amplitude. Since this is a resonant circuit, the frequency of the alternating current used, which induces the alternating magnetic field, is of great importance. The maximum current flow within the resonant circuit and thus within the demagnetizing coil can only be achieved if the phase shift between the applied voltage and the flowing current in the resonant circuit is zero. This phase shift disappears only when the inverter supplies an AC voltage with resonant frequency. Then the impedance, ie the AC resistance of the resonant circuit is minimal and the maximum current and thus the maximum inducible magnetic field within the degaussing coil occur. To detect the phase difference, a phase detector is used to detect the phase shift between the voltage and the current. For this purpose, the current signal is determined via the voltage which drops across a resistor in the resonant circuit. Due to the phase information, an oscillator can set the used inverter specifically to the resonance frequency. When the described setting of the resonant frequency has occurred, the AC amplitude can be ramped down by the inverter, thereby completing the demagnetization process.

In einer einfacheren Ausführungsform wird der Phasendetektor weggelassen und die Frequenz des Wechselstromimpulses wird über einen Bereich kleiner bis grösser der Resonanzfrequenz verfahren. Dabei wird die Resonanzfrequenz auf jeden Fall kurzzeitig erreicht, womit das maximal mögliche magnetische Wechselfeld auftritt.In a simpler embodiment, the phase detector is omitted and the frequency of the AC pulse is traversed over a range smaller to greater than the resonant frequency. The resonance frequency is reached in any case for a short time, whereby the maximum possible alternating magnetic field occurs.

Da ein Wechselstromimpuls zur Entmagnetisierung in einem Schwingkreis benutzt wird, dessen Induktivität durch die zu entmagnetisierenden Objekte verändert wird, muss eine elektronische Steuerung benutzt werden, die eine Einstellung der Wechselimpulsfrequenz erlaubt. Wenn die Resonanzfrequenz geregelt nachgeführt werden soll, muss neben einem elektronischen Bauteil, welches die Steuerung der Wechselstromimpulsfrequenz vornimmt, zusätzlich noch ein Bauteil die Detektion der Resonanzfrequenz vornehmen. Es ist damit ein komplizierter elektronischer Aufbau nötig, um den Wechselstromimpuls zur Erzeugung eines möglichst grossen magnetischen Wechselfeldimpulses bereit zu stellen.
Da fixe Spulen benutzt werden sind die geometrischen Abmessungen der zu entmagnetisierenden Objekte begrenzt, da diese in die Nähe der Spulen gebracht werden müssen. Die möglichst exakte und dichte Wicklung der Stromkabel in einer Spule hat den Nachteil, dass die Kabel bei hohen Strömen stark aufgeheizt werden und im Dauerbetrieb zu veränderten Entmagnetisierungskurven führen können. Auch die benutzten Kondensatoren ändern ihre Eigenschaften bei grösserer Wärmeentwicklung, was sich auf Eigenschaften des Schwingkreises auswirkt.
Since an AC pulse is used for demagnetization in a resonant circuit whose inductance is changed by the objects to be demagnetized, an electronic control must be used that allows adjustment of the AC pulse frequency. If the resonant frequency is to be tracked regulated, in addition to an electronic component which performs the control of the AC pulse frequency, in addition a component must make the detection of the resonant frequency. It is thus a complicated electronic structure needed to provide the AC pulse to generate the largest possible magnetic alternating field pulse.
Since fixed coils are used, the geometric dimensions of the objects to be demagnetized are limited, since they must be brought into the vicinity of the coils. The most accurate and tight winding of the power cable in a coil has the disadvantage that the cables are strongly heated at high currents and can lead to altered demagnetization curves in continuous operation. The capacitors used also change their properties with greater heat generation, which has effects on the resonant circuit.

Um einen Einblick zu bekommen, wie die zu entmagnetisierenden Objekte relativ zum Magnetfeld angeordnet werden, wird auf EP1465217 verwiesen. Dort wird eine Transportstrasse beschrieben, auf welcher die Objekte zwischen eine stationäre lange Spule oder zwei stationäre Spulen eines Schwingkreises transportiert werden, wo die Objekte für eine gewünschte Zeit verweilen. Die Entmagnetisierung erfolgt auch hier durch einen Wechselstromimpuls der in Frequenz und Amplitude steuerbar ist und dessen Wechselstromimpulsamplitude von einem Maximalwert automatisch auf Null reduziert wird. Die Objekte befinden sich während des Entmagnetisierungsvorganges in einem homogenen magnetischen Wechselfeld, dessen Feldstärke durch die Wechselstromimpulsamplitude reduziert wird. Auch hier sorgt ein Inverter für die Steuerung des Stromes, der durch den Schwingkreis, bestehend aus den beiden Entmagnetisierungsspulen und Kondensatoren, fliesst.To get an insight on how the objects to be demagnetized are arranged relative to the magnetic field becomes EP1465217 directed. There, a transport road is described, on which the objects are transported between a stationary long coil or two stationary coils of a resonant circuit, where the objects dwell for a desired time. The demagnetization is also done here by an AC pulse which is controllable in frequency and amplitude and whose AC pulse amplitude is automatically reduced from a maximum value to zero. The objects are in a homogeneous alternating magnetic field during the demagnetization process, whose field strength is reduced by the alternating current pulse amplitude. Here, too, an inverter ensures the control of the current, which flows through the resonant circuit consisting of the two demagnetization coils and capacitors.

Da auch hier ein Schwingkreis verwendet wird, ist die Abstimmung der Wechselstromimpulsfrequenz auf die Resonanzfrequenz des Schwingkreises abzustimmen, um den maximalen Stromfluss im Schwingkreis zu erreichen.
Nachteilig wirkt sich aus, das die Grösse der entmagnetisierbaren Objekte durch den Durchmesser der Entmagnetisierungsspulen bestimmt ist. Ebenso ist das Gewicht der Objekte durch die Tragfähigkeit der Transportstrasse begrenzt. Damit ist eine komplette Entmagnetisierung eines grossen Gegenstandes, wie beispielsweise einer Turbine, als Ganzes nahezu unmöglich, es sei denn man stellt eine geeignete Transportstrasse und Spulen geeigneten Durchmessers bereit. Da aber schon die gesamte Entmagnetisierungsapparatur so gross und sperrig ist, dass sie fest in einer Werkhalle installiert werden muss, wäre schon die Demontage und der Transport sehr grosser Objekt zur Entmagnetisiervorrichtung sehr mühsam.
Since a resonant circuit is also used here, the tuning of the AC pulse frequency to the resonant frequency of the resonant circuit is tuned to achieve the maximum current flow in the resonant circuit.
A disadvantage is that the size of the demagnetizable objects is determined by the diameter of the demagnetization coils. Likewise, the weight of the objects is limited by the carrying capacity of the transport road. Thus, a complete demagnetization of a large object, such as a turbine, as a whole is nearly impossible, unless one provides a suitable transport line and coils of suitable diameter. But since the entire demagnetization apparatus is so large and bulky that it must be permanently installed in a workshop, the disassembly and transport of very large object to demagnetizer would be very tedious.

Auch in US4360854 wird eine Vorrichtung beschrieben, in welcher die zu entmagnetisierenden Objekte durch Spulen grossen Durchmessers bewegt werden müssen, damit die Entmagnetisierung stattfinden kann. Trotz grosser Abmessungen der Spulen ist es hier nicht möglich grosse Objekte als Ganzes und in einem Schritt zu entmagnetisieren. Die Grösse der Apparatur macht einen mobilen Einsatz der Entmagnetisierung unmöglich. Die zu entmagnetisierenden Objekte müssen zur Entmagnetisierungsvorrichtung transportiert werden, um dort auf beweglichen Transportwagen liegend durch das Magnetfeld der Spulen bewegt zu werden. Hier werden ebenfalls besondere Anforderungen an die Transportwagen gestellt, die für grosse Gewichte ausgelegt sein müssen. Die beschriebene Vorrichtung verlangt zwingend die Demontage von zu entmagnetisierenden Bauteilen, damit diese durch das Magnetfeld geführt werden können. Die Maschinen und Vorrichtungen, in denen sich Objekte mit Restmagnetismus befinden sind darum für eine längere Zeit stillzulegen, damit die Demontage, die Entmagnetisierung und die erneute Montage stattfinden können.Also in US4360854 a device is described in which the objects to be demagnetized must be moved by coils of large diameter, so that the demagnetization can take place. Despite the large dimensions of the coils, it is not possible here to demagnetize large objects as a whole and in one step. The size of the apparatus makes a mobile use of demagnetization impossible. The objects to be demagnetized must be transported to the demagnetizer to be moved there on moving trolley by the magnetic field of the coils. Here are also special requirements placed on the trolley, which must be designed for large weights. The device described requires mandatory disassembly of demagnetizing components so that they can be guided by the magnetic field. The machines and devices in which there are objects with residual magnetism are therefore shut down for a long time, so that the dismantling, demagnetization and reassembly can take place.

US-A-4 607 310 offenbart ein Verfahren zum kondensatorfreien Entmagnetisieren eines magnetischer Schreib-/Lesekopfes mittels eines Wechselstromimpulses mit einstellbarer Wechselstromimpulsfrequenz variabler Amplitude und Wechselstromimpulsbreite. Aufgrund der softwaregesteuerten Kontrolle von Spannung, Frequenz und Abklingverhalten (vgl. Sp. 1, Z. 38-43) sollte es möglich sein, eine nicht exponentiell abfallende Entmagnetisierungskurve und eine Wechselstromfrequenz von größer als 1 Hz (vgl. Abb. 2a und 2b: ca. 10 Hz) zu erzeugen. US-A-4,607,310 discloses a method for capacitor-free demagnetization of a magnetic read / write head by means of an AC pulse having adjustable AC pulse frequency of variable amplitude and AC pulse width. Due to the software-controlled control of voltage, frequency and decay behavior (see Sp. 1, Z. 38-43), it should be possible to generate a non-exponential decay curve and an AC frequency greater than 1 Hz (see Figures 2a and 2b). about 10 Hz).

GB-A-1 164 786 offenbart ein Verfahren zur kondensatorfreien Entmagnetisierung einer Kathodenstrahlröhre (bzw. deren Schattenmaske) und US-A-5 995 358 offenbart ein ähnliches Verfahren zur Entmagnetisierung einer magnetischen Halteplatte. Beide Verfahren benutzen eine Wechselstromquelle konstanter Frequenz, nur Länge und eventuell Phasenlage der Pulse werden moduliert. GB-A-1 164 786 discloses a method for capacitor-free demagnetization of a cathode ray tube (or its shadow mask) and US-A-5,995,358 discloses a similar method of demagnetizing a magnetic support plate. Both methods use an AC source of constant frequency, only length and possibly phase of the pulses are modulated.

Diesen drei vorveröffentlichten Entmagnetisierungsverfahren ist gemeinsam, dass die Anwendungen eine permanente Entmagnetisierungsmöglichkeit und somit den stationären Verbleib der Entmagnetisierungsspule beim zu entmagnetisierenden Objekt erfordern.What these three previously published demagnetization methods have in common is that the applications require a permanent demagnetization option and thus the stationary whereabouts of the demagnetization coil in the object to be demagnetized.

US-A-2703052 offenbart ein Verfahren zur Entmagnetisierung von Schiffskörpern, bei dem ein nicht näher definierter elektrischer Strom durch ein um den Schiffskörper gewickeltes Kabel geschickt wird. US-A-2703052 discloses a method for demagnetization of hulls, in which an unspecified electric current is sent through a cable wound around the hull.

Darstellung der ErfindungPresentation of the invention

Die vorliegende Erfindung hat sich zur Aufgabe gestellt ein Verfahren bereit zu stellen, welches es erlaubt kleine bis sehr grosse und schwere Objekte, vor Ort flexibel und ohne Demontage reproduzierbar zu entmagnetisieren. Damit sind längere Stillstandzeiten von Apparaturen, in denen sich Objekte mit zu beseitigendem Restmagnetismus befinden, vermeidbar. Die Objekte müssen also nicht zwingend zum Entmagnetisieren wegbewegt werden. Das vorliegende Verfahren benötigt keine Transportmöglichkeit der Objekte mit Restmagnetismus durch Transportstrassen oder anderes, was zu Komplikationen vor und während der Entmagnetisierung führen kann. Auch die Abmessungen der entmagnetisierbaren Objekte sind nicht durch eine vorgefertigte, eventuell speziell angefertigte, Entmagnetisierungsspule begrenzt. Auf Grund der wenigen benötigten Bauteile und den Verzicht auf sperrige Aufbauten ist das Verfahren transportabel und kann auf kleinem Raum ortsungebunden angewendet werden.The present invention has for its object to provide a method which allows small to very large and heavy objects to be demagnetized on site flexibly and without disassembly reproducible. Thus, longer downtime of equipment in which objects are to be eliminated with residual magnetism, avoidable. The objects do not necessarily have to be moved away for demagnetization. The present method does not require transportation of the objects with residual magnetism through transport roads or otherwise, which can lead to complications before and during demagnetization. The dimensions of the demagnetizable objects are not limited by a prefabricated, possibly specially made, demagnetization coil. Due to the few components required and the absence of bulky structures, the process is portable and can be applied in a small space isolated.

Das vorliegende Verfahren kommt ohne Kondensatoren und damit ohne einen elektronischen Schwingkreis aus, so dass keine Resonanzfrequenzdetektion und Resonanfrequenzeinstellung durch weitere elektronische Bauteile nötig wird. Im Unterschied zu den Schwingkreis-Lösungen, löst das vorliegende Verfahren die Aufgabe bei wählbaren tiefen Frequenzen ab 1 Hz zu arbeiten, die mit Einsatz von Kondensatoren nicht, oder nur mit hohen Anforderungen an die Kondensatoren zu erreichen sind. Die Vermeidung von Kondensatoren erlaubt es dem Wechselstromimpuls einen konstanten Gleichstromanteil zu überlagern, der dem Objekt einen gewünschten Restmagnetismus einprägen kann. Dies ist mit einer Schwingkreis-Lösung nicht möglich, da der Kondensator Gleichstrom sperrt und aufgeladen wird.The present method is without capacitors and thus without an electronic resonant circuit, so that no Resonance frequency detection and Resonanfrequenzeinstellung by other electronic components is needed. In contrast to the resonant circuit solutions, the present method solves the task at selectable low frequencies from 1 Hz to work, which can not be achieved with the use of capacitors, or only with high demands on the capacitors. The avoidance of capacitors allows the AC pulse to superimpose a constant DC component, which can impress the object with a desired residual magnetism. This is not possible with a resonant circuit solution because the capacitor blocks and charges DC current.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Das Verfahren und die Vorrichtung zur Lösung der oben beschriebenen Aufgabe wird nachfolgend im Zusammenhang mit den Zeichnungen beschrieben.

  • Figur 1 zeigt einen benutzten Wechselstromimpuls im I/t Diagramm, wobei aus Gründen der Übersicht nur etwa 20 Perioden aufgezeichnet sind. Figur 2 zeigt zusätzlich einen Wechselstromimpuls dem ein Gleichstromanteil additiv überlagert ist.
  • Figur 3 zeigt die Stromsteuerung mit einigen Details und den Anschluss des Leiters unter Bildung einiger Schlaufen um ein Objekt in einer schematischen Darstellung.
The method and apparatus for achieving the object described above will be described below in conjunction with the drawings.
  • FIG. 1 shows a used AC pulse in the I / t diagram, for reasons of clarity, only about 20 periods are recorded. FIG. 2 additionally shows an AC pulse to which a DC component is additively superimposed.
  • FIG. 3 shows the current control with some details and the connection of the conductor to form some loops around an object in a schematic representation.

Beschreibungdescription

Zur Entmagnetisierung von Bauteilen verschiedener Dicke werden magnetische Wechselfelder eingesetzt, die durch mindestens einen Wechselstromimpuls 1 mit einstellbarer Wechselstromimpulsbreite 2 erzeugt werden. Wie in Figur 1 dargestellt besteht der Wechselstromimpuls 1 aus einer Kette von Entmagnetisierimpulsen 5 alternierender Polung mit steuerbaren Entmagnetisierimpulsamplituden 6. Der Polaritätswechsel der Entmagnetisierimpulse 5 geschieht mit einer einstellbaren Wechselstromimpulsfre quenz 4. Die Wechselstromimpulsfrequenz 4 bestimmt die Eindringtiefe des resultierenden Magnetfeldes in den zu entmagnetisierenden Werkstoff. Dabei führen tiefe Wechselstromimpulsfrequenzen 4 von wenigen Hertz zu grossen Eindringtiefen. In der vorliegenden Erfindung wird mit Wechselstromimpulsfrequenzen 4 grösser als 1 Hz gearbeitet. Ausgehend von einem Wechselstromimpulsamplitudenmaximum 3 werden die Entmagnetisierimpulsamplituden 6 kontinuierlich mit einem steuerbaren Dekrement gegen Null herabgesetzt. Die Einhüllende der Entmagnetisierimpulsamplituden 6 wird im Folgenden Entmagnetisierkurve 7 genannt. Messungen haben ergeben, dass es vorteilhaft ist, das die Entmagnetisierkurve 7 möglichst flach und damit langsam abfällt. Die Wechselstromimpulsbreite 2 wird üblicherweise so gewählt, dass etwa 100 Wechselstromimpulsperioden bei einem Entmagnetisiervorgang durchlaufen werden. Je nach benötigter Eindringtiefe des Magnetfeldes wird die Wechselstromimpu Isfrequenz 4 gewählt, wodurch die Wechselstromimpulsbreite 2 und damit die Gesamtzeit der vollständigen Entmagnetisierung bestimmt wird.For demagnetization of components of different thickness alternating magnetic fields are used, which are generated by at least one AC pulse 1 with adjustable AC pulse width 2. As in FIG. 1 the alternating current pulse 1 is a chain of demagnetizing 5 alternating polarity with controllable Entmagnetisierimpulsamplituden 6. The polarity change of Demagnetisierimpulse 5 is done with an adjustable Wechselstromimpulsfre frequency 4. The AC pulse frequency 4 determines the penetration depth of the resulting magnetic field in the material to be demagnetized. Low AC pulse frequencies 4 of a few Hertz lead to large penetration depths. In the present invention operates with AC pulse frequencies 4 greater than 1 Hz. Starting from an AC pulse amplitude maximum 3, the demagnetizing pulse amplitudes 6 are continuously reduced to zero with a controllable decrement. The envelope of the demagnetizing pulse amplitudes 6 will be referred to below as the demagnetizing curve 7. Measurements have shown that it is advantageous for the demagnetization curve 7 to drop as flat as possible and thus slowly. The AC pulse width 2 is usually selected so that about 100 AC pulse periods are passed through in a demagnetization process. Depending on the required depth of penetration of the magnetic field, the alternating current impulse is chosen 4 frequency, whereby the AC pulse width 2 and thus the total time of complete demagnetization is determined.

Zur vollständigen und reproduzierbaren Entmagnetisierung werden sehr hohe Anforderungen an die Form des Wechselstromimpulses 1 gestellt. Zum einen ist es unbedingt erforderlich, dass der Stromnullpunkt bei jedem Polaritätswechsel nach jedem einzelnen Entmagnetisierimpuls 5 linear und ohne Singularitäten durchfahren wird. Zum zweiten muss eine hohe Symmetrie der Entmagnetisierimpulse 5 erreicht werden.
Drittens ist die genaue und reproduzierbare Steuerung kleiner Entmagnetisierimpulsamplituden 6 im bereits stark abgeklungenen Bereich der Entmagnetisierkurve 7 sehr wichtig. Es muss also eine hohe Stromauflösung erreicht werden. In der vorliegenden Erfindung werden die alternierenden Entmagnetisierimpulsamplituden 6 bis zu einer Amplitude von weniger als einem Tausendstel des Wechselstromimpulsamplitudenmaximums 3 reproduzierbar gesteuert.
For complete and reproducible demagnetization very high demands are placed on the shape of the AC pulse 1. On the one hand, it is absolutely necessary for the current zero point to pass through each time after each polarity change after each individual demagnetization pulse 5 linearly and without singularities becomes. Secondly, a high degree of symmetry of the demagnetizing pulses 5 must be achieved.
Third, accurate and reproducible control of small demagnetizing pulse amplitudes 6 in the already severely decayed region of the demagnetizing curve 7 is very important. So it must be achieved a high current resolution. In the present invention, the alternating demagnetizing pulse amplitudes 6 are reproducibly controlled to an amplitude less than one-thousandth of the AC pulse amplitude maximum 3.

Die beschriebenen Anforderungen an die Form der Entmagnetisierkurve 7 werden durch eine im Folgenden näher beschriebenen Stromsteuerung 24 erreicht.
Ein Inverter 20 erzeugt in der hier beschriebenen Stromsteuerung 24 die niederfrequenten Wechselstromimpulse 1 mit den oben beschriebenen Anforderungen. Dieser Inverter 20 ist aus Transistoren in einer Brückenschaltung aufgebaut, die mit Pulsbreitenmodulation arbeitet. Heutzutage werden IGBT (Insulated Gate Bipolar Transistor) verwendet, da diese über eine hohe Sperrspannung verfügen und hohe Ströme schalten können. Für die interne Schaltung des Inverters 20 sind aber auch andere Schaltungskonzepte (beispielsweise mit MOSFETS) denk- und ausführbar.
The requirements described for the shape of the demagnetization curve 7 are achieved by a current controller 24 described in more detail below.
An inverter 20 generates in the current controller 24 described herein, the low-frequency AC pulses 1 with the requirements described above. This inverter 20 is composed of transistors in a bridge circuit which operates with pulse width modulation. Today, IGBTs (Insulated Gate Bipolar Transistors) are used because they have a high blocking voltage and can switch high currents. For the internal circuit of the inverter 20 but also other circuit concepts (for example, with MOSFETs) are thinkable and executable.

Die im Inverter 20 erzeugten rechteckförmigen Impulse von Frequenzen grösser als 3 kHz werden von Transistoren erzeugt, die keinen Haltestromeffekt zeigen. Die hohe Grundfrequenz des Inverters 20, die zur Impulsbreitenmodulation eingesetzt wird, erlaubt die Regelung von Wechselstromimpulsen 1 von Null Hz (also Gleichstrom) bis zur Netzfrequenz (50Hz bzw. 60 Hz) mit hoher Präzision. Die Stromsteuerung 24 beinhaltet einen Stromsensor 22, der den aktuell fliessenden Strom, auch bei geringen Entmagnetisierimpulsamplituden 6 auslesen kann, wodurch ein geschlossener Stromregelkreis gesteuert wird. Die Signale des Stromsensors 22 werden durch eine Programmier- und Ausleseeinheit 23 wieder in den Inverter 20 eingespeist. Damit ist die Steuerung kleiner Entmagnetisierimpulsamplituden 6 bis zu weniger als einem Tausendstel des Wechselstromimpulsamplitudenmaximums 3 zu erreichen. Die Inverterinterne Schaltung sorgt ausserdem dafür, dass der Stromnullpunkt bei jedem Polaritätswechsel absolut linear durchgefahren wird, was für eine vollständige Entmagnetisierung essentiell ist.The rectangular pulses generated in the inverter 20 of frequencies greater than 3 kHz are generated by transistors that show no holding current effect. The high fundamental frequency of the inverter 20, which is used for pulse width modulation, allows the control of AC pulses 1 from zero Hz (ie DC) to the power frequency (50Hz or 60 Hz) with high precision. The current controller 24 includes a current sensor 22, which can read the currently flowing current, even at low Demagnetisierimpulsamplituden 6, whereby a closed current control loop is controlled. The signals of the current sensor 22 are replaced by a Programming and readout unit 23 fed back into the inverter 20. Thus, the control of small Demagnetisierimpulsamplituden 6 is to achieve less than one-thousandth of the AC pulse amplitude maximum 3. The inverter internal circuit also ensures that the current zero is traversed absolutely linearly with each polarity change, which is essential for complete demagnetization.

Die hohe Inverter-interne Frequenz liegt bezüglich der Immissions-Grenzwerte, bei hauptsächlich induktiver Last am Inverter, in einem Bereich, in dem ein geringerer Leistungsverlust bei der Erzeugung der Wechselstromimpulse 1 auftritt, als bei tieferen Frequenzen. Dies macht die Benutzung eines Inverters 20 effektiver als die Benutzung von anderen Stromquellen. Die Stromsteuerung 24 und damit die zu durchfahrende Entmagnetisierkurve 7, die Entmagnetisierimpulsamplituden 6 und die Wechselstromimpulsfrequenz 4 sind über die Programmier- und Ausleseeinheit 23 programmierbar. Diese erlaubt es die Parameter des Wechselstromimpulses 1 durch Anschluss eines Computers an die Stromsteuerung 24 oder durch manuelle Programmierung der Programmier- und Ausleseeinheit 23 einzustellen.The high inverter internal frequency is in terms of the immission limits, mainly with inductive load at the inverter, in a range in which a lower power loss occurs in the generation of the AC pulses 1, as at lower frequencies. This makes using an inverter 20 more effective than using other sources of power. The current control 24 and thus the demagnetization curve 7 to be traveled, the demagnetizing pulse amplitudes 6 and the alternating current pulse frequency 4 can be programmed via the programming and readout unit 23. This allows the parameters of the AC pulse 1 to be set by connecting a computer to the current controller 24 or by manual programming of the programming and reading unit 23.

Zur Entmagnetisierung wird ein flexibler und vollständig isolierter ungeschirmter Leiter ausreichender Länge in Form eines bekannten Litzenkabels zwischen einem Eingang 27 und einem Ausgang 28 der Stromsteuerung 24 angeschlossen. Dabei ist darauf zu achten, dass das Kabel für die Höchstspannung der Entmagnetisierung und das Wechselstromimpulsamplitudenmaximum 3 ausgelegt ist. Da mit hohen Strömen und Spannungen gearbeitet wird, ist es wichtig, dass der Leiter sicher an der Stromsteuerung 24 befestigt wird und sich nicht versehentlich ablösen kann. Eine Möglichkeit besteht in einer Schraubverbindung, wobei die Stecker des Leiters, sowie die Anschlussbuchsen (27, 28) der Stromsteuerung 24 Gewinde aufweisen.For demagnetization, a flexible and fully insulated unshielded conductor of sufficient length in the form of a known stranded cable between an input 27 and an output 28 of the current controller 24 is connected. Care must be taken to ensure that the cable is designed for the maximum voltage of the demagnetization and the AC pulse amplitude maximum 3. Because of high currents and voltages, it is important that the conductor be securely attached to the current controller 24 and not accidentally come off. One possibility consists in a screw connection, wherein the plugs of the conductor, as well as the Connecting sockets (27, 28) of the current control 24 have threads.

Um sicher zu sein, dass der Leiter korrekt verkabelt ist und ein Wechselstromimpuls 1 fliessen kann, wird eine Leiterüberwachung 26 benutzt. Diese misst den ohmschen Widerstand zwischen Eingang 27 und Ausgang 28 der Stromsteuerung 24 im unbelasteten Zustand, woraus ersichtlich wird, ob der Leiter korrekt mit Eingang 27 und Ausgang 28 der Stromsteuerung 24 verbunden ist und ob das Kabel in Ordnung ist. Erst wenn der Leiter korrekt angeschlossen ist, also ein ohmscher Widerstand messbar ist, kann der Wechselstromimpuls 1 von der Stromsteuerung 24 ausgelöst werden.To be sure that the conductor is correctly wired and an AC pulse 1 can flow, a conductor monitor 26 is used. This measures the ohmic resistance between input 27 and output 28 of the current controller 24 in the unloaded state, from which it can be seen whether the conductor is correctly connected to input 27 and output 28 of the current controller 24 and whether the cable is in order. Only when the conductor is connected correctly, ie an ohmic resistance is measurable, the AC pulse 1 can be triggered by the current controller 24.

Nachdem der Leiter von der Leiterüberwachung 26 geprüft mit der Stromsteuerung 24 verbunden wurde wird er in die Nähe des zu entmagnetisierenden Objektes 30 gebracht, so dass das Objekt 30 in dem, durch den späteren Stromfluss resultierenden Magnetfeld positioniert ist. Eine Möglichkeit besteht darin, den flexiblen Leiter zu einer Leiterschleife 29 zu formen, deren Form variabel ist. Um sicher zu sein, dass das Magnetfeld das Objekt 30 durchdringt, kann die Leiterschleife 29 in mindestens einer Schlaufe um das Objekt 30 gelegt werden. In vorteilhaften Ausgestaltungsformen des Leiters, wird dieser so lang gewählt, dass er in mehreren Schlaufen um das Objekt 30 gelegt oder förmlich gewickelt werden kann. Bei Bildung von Mehrfachschlaufen um das Objekt 30 bildet dieses den Leitersch leifenkern.After the conductor has been tested by the conductor monitor 26 and connected to the current controller 24, it is brought close to the object 30 to be demagnetized, so that the object 30 is positioned in the magnetic field resulting from the subsequent current flow. One possibility is to form the flexible conductor into a conductor loop 29 whose shape is variable. In order to be sure that the magnetic field penetrates the object 30, the conductor loop 29 can be laid around the object 30 in at least one loop. In advantageous embodiments of the conductor, this is chosen so long that it can be placed in several loops around the object 30 or formally wound. When forming multiple loops around the object 30 this forms the Leitersch leifenkern.

Auch eine Ansammlung von Objekten 30 kann bei einem Entmagnetisiervorgang entmagnetisiert werden, wenn die Objekte beispielsweise in einen Schüttgutcontainer gefüllt werden, der von der Leiterschleife 29 mit einer beliebigen Anzahl an Wicklungen umschlossen wird.Also, a collection of objects 30 may be demagnetized in a demagnetization process, when the objects are filled, for example, in a bulk container, which is enclosed by the conductor loop 29 with an arbitrary number of windings.

Beim Fluss des Wechselstromimpulses 1 durch den Leiter bildet sich ein magnetisches Wechselfeld aus, welches durch die Art der Schlaufenbildung des Leiters zu einer statistischen, willkürlichen Feldlinienverteilung führt. Durch den auftretenden teilweise sehr hohen Stromfluss, erwärmt sich der Leiter. Diesen Effekt kann man optional zur Stromflussüberwachung 25 ausnutzen. Durch die Stromflussüberwachung 25 kann festgestellt werden, ob der Wechselstromimpuls 1 tatsächlich durch den Leiter geflossen ist. Diese Stromflussüberwachung 25 wird mit Hilfe eines Widerstandsmessgerätes durchgeführt, welches während des Entmagnetisiervorganges den momentanen Ohmschen Widerstand des Leiters ausliest und an die Programmier- und Ausleseeinheit 23 weitergibt. Durch die hohen Stromamplituden von mehr als 100 A während der Entmagnetisierimpulse 5 erhöht sich die Temperatur des Leiters, was einen erhöhten Ohmschen Widerstand zur Folge hat. Diese Stromflussüberwachung 25 liefert damit einen Messwert, der angibt, ob der Strom durch den Leiter geflossen ist. Darüber hinaus erlaubt die Temperaturbestimmung aus dem gemessenen Widerstandswert den Schutz des Leiters vor zu hohen Temperaturen.During the flow of the alternating current pulse 1 through the conductor, an alternating magnetic field is formed, which leads to a random, arbitrary field line distribution due to the type of looping of the conductor. Due to the sometimes very high current flow, the conductor heats up. This effect can optionally be used for current flow monitoring 25. By the current flow monitor 25 can be determined whether the AC pulse 1 has actually flowed through the conductor. This current flow monitoring 25 is carried out with the aid of a resistance measuring device which reads out the instantaneous ohmic resistance of the conductor during the demagnetization process and forwards it to the programming and readout unit 23. Due to the high current amplitudes of more than 100 A during demagnetizing pulses 5, the temperature of the conductor increases, which results in an increased ohmic resistance. This current flow monitor 25 thus provides a measured value which indicates whether the current has flowed through the conductor. In addition, the temperature determination from the measured resistance value allows the protection of the conductor from excessive temperatures.

Durch die Nutzung eines kondensatorfreien Stromkreises für den Fluss von Wechselstromimpulsen 1 durch eine flexible Leiterschleife, ist es möglich dem Wechselfeld einen definierten, konstanten und kleinen Gleichstromanteil additiv zu überlagern. Eine Gleichstromquelle 21 in der Stromsteuerung 24 kann den Gleichstromanteil 9 bereits mit Beginn des Wechselstromimpulses 1 addieren oder im Verlauf der abklingenden Entmagnetisierkurve 7 hochfahren. Ein solcher, dem Wechselstromimpuls 1 überlagerter Gleichstromanteil 9 dient dazu das statische Erdmagnetfeld zu kompensieren. Zusätzlich kann durch die Überlagerung eines Gleichstromanteils dem behandelten Objekt 30 eine gewünschte Magnetisierung eingeprägt werden.By using a capacitor-free circuit for the flow of AC pulses 1 through a flexible conductor loop, it is possible the additive field to add a defined, constant and small DC component additively superimposed. A direct current source 21 in the current controller 24 can add the DC component 9 already at the beginning of the AC pulse 1 or start up in the course of the decaying demagnetizing curve 7. Such a, the AC pulse 1 superimposed DC component 9 is used to compensate for the static earth magnetic field. In addition, by superimposing a DC component on the treated object 30, a desired magnetization can be impressed.

Vor allem bei einfachen und günstigen Invertern 20 besteht die Möglichkeit die Entmagnetisierspannung, aus der der Wechselstromimpuls resultiert, herunter zu fahren und damit die Entmagnetisierimpulsamplitude zu verringern. Für diesen Zweck besitzen besagte Inverter 20 eine Funktion die geregelte Motorabschaltung genannt wird. Die Reproduzierbarkeit der Entmagnetisierung ist bei Verringerung der Entmagnetisierspannung nicht unbedingt gegeben.Especially with simple and cheap inverters 20, it is possible to reduce the demagnetization voltage resulting in the AC pulse and thus reduce the demagnetizing pulse amplitude. For this purpose, said inverters 20 have a function called controlled engine shutdown. The reproducibility of the demagnetization is not necessarily given when reducing the demagnetization.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1.1.
WechselstromimpulsAC pulse
2.Second
Wechselstromimpulsbreite (Einhüllende bis 0)AC pulse width (envelope to 0)
3.Third
WechselstromimpulsamplitudenmaximumAC pulse amplitude maximum
4.4th
WechselstromimpulsfrequenzAC pulse frequency
5.5th
EntmagnetisierimpulsEntmagnetisierimpuls
6.6th
EntmagnetisierimpulsamplitudeEntmagnetisierimpulsamplitude
7.7th
EntmagnetisierkurveEntmagnetisierkurve
9.9th
GleichstromanteilDC component
10.10th
Entmagnetisierkurve mit Gleichstromanteil ≠ 0Demagnetization curve with DC component ≠ 0
20.20th
Inverterinverter
21.21st
GleichstromquelleDC power source
22.22nd
Stromsensorcurrent sensor
23.23rd
Programmier- und AusleseeinheitProgramming and reading unit
24.24th
Stromsteuerungcurrent control
25.25th
StromflussüberwachungCurrent flow monitoring
26.26th
Leiterüberwachungconductor monitoring
27.27th
Eingang der StromsteuerungInput of the current control
28.28th
Ausgang der StromsteuerungOutput of the current control
29.29th
Leitersch leifeLadder speed
30.30th
Objektobject

Claims (12)

  1. A method for the reproducible capacitorless demagnetisation of objects with residual magnetism by means of at least one alternating-current pulse (1), produced by a current control (24), with settable alternating-current pulse frequency (4) of variable amplitude and alternating-current pulse width (2) in a conductor which can be connected between an input (27) and an output (28) of the current control (24) in a capacitorless manner, as a result of which a magnetic field pulse is generated in the region of the conductor, characterised in that
    the conductor is flexible, completely insulated, unshielded and deformable and is laid with the formation of a conductor loop (29) in any desired shape around an object (30) to be demagnetised, whereupon
    the ends of the conductor loop (29) are connected to the input (27) and the output (28) of the current control (24) in a capacitorless manner
    and whereupon the alternating-current pulse (1) is fed in from individual, alternatingly poled and symmetrical demagnetising pulses (5) with controlled demagnetising pulse amplitude (6) and alternating-current pulse frequency (4) greater than 1 Hz, wherein the temporal progression of the demagnetising pulse amplitudes (6) is reproduced from a non-exponentially falling demagnetising curve (7), wherein the ratio of smallest demagnetising pulse amplitude (6) to the alternating-current pulse amplitude maximum (3) is at least 1:1000 and the conductor loop (29) is removed after the completion of the demagnetisation of an object (30).
  2. The method according to Claim 1, characterised in that the conductor loop (29) is laid with any desired number of windings around the object (30) to be demagnetised with the formation of at least one loop, wherein the object (30) is used as a conductor loop core (30).
  3. The method according to Claim 1, characterised in that the conductor loop (29) is laid with any desired number of windings around a bulk container filled with objects (30) to be demagnetised with the formation of at least one loop, as a result of which a plurality of objects (30) can be demagnetised in a demagnetising procedure.
  4. The method according to any one of Claims 1 to 3, characterised in that the alternating-current pulse width (2) extends over at least 100 periods of the alternating-current pulse frequency (4), wherein the demagnetising pulse amplitudes (6) are reduced along the demagnetisation curve (7) to zero.
  5. The method according to any one of the preceding claims, characterised in that a controlled constant direct-current component (9) is additively laid over the alternating-current pulse (1), which direct-current component is still present after passing through the demagnetisation curve (7) to a demagnetising pulse amplitude (6) of zero and as a result a magnetic field is imparted into the treated object (30).
  6. The method according to any one of the preceding claims, characterised in that a conductor monitoring (26) upstream of the flow of the alternating-current pulse (1) measures and evaluates the ohmic resistance between input (27) and output (28) of the current control (24), whereupon the demagnetising procedure is only started in the case of a finite ohmic resistance.
  7. The method according to any one of the preceding claims, characterised in that a current-flow monitoring (25) reads the ohmic resistance of the conductor during the passing through of the demagnetisation curve (7).
  8. The method according to Claim 7, characterised in that the temperature of the conductor during the demagnetisation is determined from the result of the current-flow monitoring (25).
  9. The method according to any one of the preceding claims, characterised in that the demagnetising pulse amplitudes (6) and thus the demagnetisation curve (7) proceeds by means of a reduction of the demagnetising voltage at the inverter (20) by means of a regulated motor shutdown.
  10. A device for the reproducible capacitorless demagnetisation of objects with residual magnetism, comprising a programmable current control (24) with which alternating-current pulses (1) with settable alternating-current pulse frequency (4) of variable amplitude and alternating-current pulse width (2) can be generated, a conductor which can be connected between an input (27) and an output (28) of the current control (24), and for the application of the method according to at least one of the Claims 1 to 9, characterised in that the conductor is a flexible commercially available cable which is completely insulated, unshielded and can be deformed to form a conductor loop (29) of any desired shape and can be laid with any desired number of windings around an object (30) to be demagnetised.
  11. The device according to Claim 10, characterised in that the programmable current control (24) has a current-flow monitoring (25) which reads the ohmic resistance of the conductor during the passing through of the demagnetisation curve (7).
  12. The device according to Claim 11, characterised in that the temperature of the conductor during the demagnetisation can be determined from the result of the current-flow monitoring (25).
EP06405403A 2005-11-24 2006-09-26 Process for degaussing using alternating current pulses in a conductive loop Revoked EP1791138B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH18752005 2005-11-24

Publications (2)

Publication Number Publication Date
EP1791138A1 EP1791138A1 (en) 2007-05-30
EP1791138B1 true EP1791138B1 (en) 2010-08-04

Family

ID=35809764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06405403A Revoked EP1791138B1 (en) 2005-11-24 2006-09-26 Process for degaussing using alternating current pulses in a conductive loop

Country Status (4)

Country Link
US (1) US20070115603A1 (en)
EP (1) EP1791138B1 (en)
AT (1) ATE476745T1 (en)
DE (1) DE502006007578D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611300B2 (en) 2020-11-25 2023-03-21 Delta Electronics, Inc. Current sensing correction method and driving system using same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH707443A2 (en) * 2013-01-14 2014-07-15 Albert Maurer Demagnetizing.
US9704637B2 (en) 2013-07-15 2017-07-11 Texas Instruments Incorporated Method and apparatus for demagnetizing transformer cores in closed loop magnetic current sensors
CN104376961B (en) * 2013-08-16 2017-03-01 西门子公司 Degaussing circuit, magnetic modulating system and residual current device
CN103456457B (en) * 2013-08-20 2015-10-28 江苏科技大学 High-strength steel narrow gap welding groove demagnetizing method
CH708509A2 (en) 2013-09-06 2015-03-13 Albert Maurer Eliminating anhysteretischem magnetism in ferromagnetic bodies.
EP2974820B1 (en) * 2014-07-17 2017-04-12 Ewm Ag Arc welding device, system and method for de-magnetising a metal pipe
AT516564A1 (en) 2014-12-09 2016-06-15 Omicron Electronics Gmbh Degaussing device and method for demagnetizing a converter core
DE102018007179A1 (en) 2017-09-22 2019-03-28 Albert Maurer Device for demagnetizing long-configured components and method for demagnetizing such components
DE102018108037A1 (en) 2018-04-05 2019-10-10 Marek Rohner Device and method for demagnetizing objects
CN109254253B (en) * 2018-10-19 2020-11-10 国网江苏省电力有限公司电力科学研究院 Device for evaluating and demagnetizing residual magnetism of power transformer and control method
DE102018131564B4 (en) * 2018-12-10 2024-02-08 Stl Systems Ag Degaussing and signature measurement system
US11887763B2 (en) * 2019-01-02 2024-01-30 Northrop Grumman Systems Corporation Degaussing a magnetized structure
CN109889055A (en) * 2019-03-20 2019-06-14 苏州工业园区海沃科技有限公司 A kind of power transformer low frequency demagnetization power supply
CH717381B1 (en) * 2020-05-04 2022-10-31 Maurer Albert Electronic switching device for degaussing ferromagnetic bodies.
CN114664513A (en) * 2022-04-02 2022-06-24 重庆钢铁股份有限公司 Demagnetization method of residual magnetism of generator turbine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703052A (en) * 1942-07-01 1955-03-01 James B Glennon Magnetically controlled firing mechanism for marine mines
GB1164786A (en) * 1968-02-08 1969-09-24 Standard Telephones Cables Ltd Degaussing Circuit
JPH0736716B2 (en) * 1983-10-18 1995-04-19 株式会社明電舍 How to pick up a motor
US4607310A (en) * 1985-05-13 1986-08-19 Magnetic Peripherals Inc. Adjustable degausser
FR2754104B1 (en) * 1996-10-01 1998-10-30 Braillon Magnetique Sa DEMAGNETIZATION PROCESS FOR ELECTRO-PERMANENT DEVICES
EP1465217A1 (en) * 2003-04-02 2004-10-06 Albert Maurer Process and apparatus for demagnetising objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611300B2 (en) 2020-11-25 2023-03-21 Delta Electronics, Inc. Current sensing correction method and driving system using same

Also Published As

Publication number Publication date
US20070115603A1 (en) 2007-05-24
ATE476745T1 (en) 2010-08-15
DE502006007578D1 (en) 2010-09-16
EP1791138A1 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
EP1791138B1 (en) Process for degaussing using alternating current pulses in a conductive loop
DE2656111C3 (en) Eddy current tester
DE102011107721B4 (en) Method and device for measuring electrical currents using a current transformer
EP1398644B1 (en) Device and method for testing a transformer
DE3706659C2 (en)
EP2558875B1 (en) Method and apparatus for detecting a magnetic characteristic variable in a core
DE1473696B2 (en) DEVICE FOR NON-DESTRUCTIVE MATERIAL TESTING
EP0039019B1 (en) Equipment for the continuous contactless control of the structural condition of a cold-drawn band
EP2136217A1 (en) Electricity sensor assembly for measuring flows in a primary conductor
EP2215490B1 (en) Method for detection of interlaminar sheet short circuits in the stator sheet core of electromachines
DE202020107211U1 (en) Distributed degaussing coil system and shielding device
DE2061018A1 (en) Process for recording spin resonance spectra and a suitable spin resonance spectrometer
DE102018127378B3 (en) Method, measuring device and data carrier with measurement data for determining the inductance of an electrical component
DE102015122812B4 (en) Method for magnetizing a built-in workpiece made of hard magnetic material and Aufmagnetisieranordnung
DE112020007090T5 (en) MAGNETIC PARTICLE IMAGING DEVICE
EP3388803A1 (en) Determination of the temperature of the windings in a motor winding
Pohl Rise of flux due to impact excitation: retardation by eddy currents in solid parts
EP3095121B1 (en) Inductor
DE1920626A1 (en) Side pool detector system for NMR flow meters and method for measuring the flow of a paramagnetic fluid
DE19754351C1 (en) Method of measuring the temp. of a coil with an associated inductance and temp. dependent capacitance
DE1152188B (en) Method and device for measuring the amount of weak magnetic fields, in particular the earth's field, by means of nuclear induction
DE7638775U1 (en) Eddy current tester
DE3732064A1 (en) METHOD AND SYSTEM FOR MEASURING AC MAGNETIC PROPERTIES
DE1213912B (en) Method and device for measuring weak magnetic fields using nuclear induction
AT501640B1 (en) POWER RECORDING WITH OSCILLATOR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071120

17Q First examination report despatched

Effective date: 20071227

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHNEIDER FELDMANN AG PATENT- UND MARKENANWAELTE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006007578

Country of ref document: DE

Date of ref document: 20100916

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100804

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101104

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101204

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101206

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: MAURER, ALBERT

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101105

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: VALLON GMBH

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502006007578

Country of ref document: DE

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110205

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100804

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 476745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110926

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APAL Date of receipt of statement of grounds of an appeal modified

Free format text: ORIGINAL CODE: EPIDOSCNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: VALLON GMBH

Effective date: 20110427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006007578

Country of ref document: DE

Representative=s name: MEPAT PATENTANWAELTE, DR. MEHL-MIKUS, GOY, DR., DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180911

Year of fee payment: 13

Ref country code: FR

Payment date: 20180813

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180926

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502006007578

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502006007578

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181221

Year of fee payment: 13

27W Patent revoked

Effective date: 20181130

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20181130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 476745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181130