EP1786360A1 - Katheterballonsysteme und verfahren - Google Patents

Katheterballonsysteme und verfahren

Info

Publication number
EP1786360A1
EP1786360A1 EP05773685A EP05773685A EP1786360A1 EP 1786360 A1 EP1786360 A1 EP 1786360A1 EP 05773685 A EP05773685 A EP 05773685A EP 05773685 A EP05773685 A EP 05773685A EP 1786360 A1 EP1786360 A1 EP 1786360A1
Authority
EP
European Patent Office
Prior art keywords
stent
balloon
branch
vessel
side sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05773685A
Other languages
English (en)
French (fr)
Inventor
Michael Khenansho
Eric Williams
Daryush Mirzaee
Michael Schwartz
Charles J. Davidson
Gil M. Vardi
Amnon Yadin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Stent Technologies Inc
Original Assignee
Advanced Stent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/893,278 external-priority patent/US20050060027A1/en
Application filed by Advanced Stent Technologies Inc filed Critical Advanced Stent Technologies Inc
Publication of EP1786360A1 publication Critical patent/EP1786360A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/856Single tubular stent with a side portal passage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/821Ostial stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91583Adjacent bands being connected to each other by a bridge, whereby at least one of its ends is connected along the length of a strut between two consecutive apices within a band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0015Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1045Balloon catheters with special features or adapted for special applications for treating bifurcations, e.g. balloons in y-configuration, separate balloons or special features of the catheter for treating bifurcations

Definitions

  • the present invention relates to the field of medical balloon catheters and, more particularly, to systems for delivering a stent at or near a bifurcation of a body lumen.
  • Balloon catheters with or without stents, are used to treat strictures, stenoses, or narrowings in various parts of the human body.
  • Devices of numerous designs have been utilized for angioplasty, stents and grafts or combination stent/grafts.
  • Varied catheter designs have been developed for the dilatation of stenoses and to deliver prostheses to treatment sites within the body lumen.
  • Illustrative procedures involving balloon catheters include percutaneous transluminal angioplasty (PTA) and percutaneous transluminal coronary angioplasty (PTCA), which may be used to reduce arterial build-up such as caused by the accumulation of atherosclerotic plaque.
  • PTA percutaneous transluminal angioplasty
  • PTCA percutaneous transluminal coronary angioplasty
  • These procedures involve passing a balloon catheter over a guide wire to a stenosis with the aid of a guide catheter.
  • the guide wire extends from a remote incision to the site of the stenosis, and typically across the lesion.
  • the balloon catheter is passed over the guidewire, and ultimately positioned across the lesion.
  • the balloon catheter is positioned appropriately across the lesion, (e.g., under fluoroscopic guidance), the balloon is inflated, which breaks the plaque of the stenosis and causes the arterial cross section to increase. Then the balloon is deflated and withdrawn over the guidewire into the guide catheter, and from the body of the patient.
  • a stent or other prosthesis must be implanted to provide support for the artery.
  • a balloon catheter which carries a stent on its balloon is deployed at the site of the stenosis.
  • the balloon and accompanying prosthesis are positioned at the location of the stenosis, and the balloon is inflated to circumferentially expand and thereby implant the prosthesis. Thereafter, the balloon is deflated and the catheter and the guidewire are withdrawn from the patient.
  • Administering PTCA and/or implanting a stent at a bifurcation in a body lumen poses further challenges for the effective treatment of stenoses in the lumen. For example, dilating a main vessel at a bifurcation may cause narrowing of the adjacent branch vessel.
  • attempts to simultaneously dilate both branches of the bifurcated vessel have been pursued. These attempts include deploying more than one balloon, more than one prosthesis, a bifurcated prosthesis, or some combination of the foregoing.
  • bifurcated assembly requires accurate placement of the assembly.
  • Deploying multiple stents requires positioning a main body within the main vessel adjacent the bifurcation, and then attempting to position another stent separately into the branch vessel of the body lumen.
  • Alternatives to that include deploying a dedicated bifurcated stent including a tubular body or trunk and two tubular legs extending from the trunk. Examples of bifurcated stents are shown in U.S. Patent No. 5,723,004 to Dereume et al., U.S. Patent No. 4,994,071 to MacGregor, and U.S. Patent No. 5,755,734 to Richter et al.
  • FIG. 6 is a cross-sectional side view of the stent delivery system of FIG. 1 with a stent mounted thereon and shown in the expanded condition.
  • FIG. 8 is a perspective view of a balloon constructed according to an alternative embodiment of the present invention.
  • FIG. 14 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention.
  • FIG. 15 is an enlarged view of a portion of the stent of FIG. 14.
  • FIG. 19 is a view of an expandable branch portion of the stent of FIG. 18 . in the expanded condition.
  • FIG. 21 is a schematic view of the stent of an alternative construction in the expanded state implemented at a blood vessel bifurcation.
  • FIG. 22 is a perspective view of an alternative stent delivery system for inserting a stent in accordance with another system and method of the present invention.
  • Second branch portion 30 includes an inflation lumen that branches off from first branch portion 27 proximally from the balloon 26 and extends substantially adjacent elongate inflatable portion 28.
  • the distal end of second branch portion 30 is attached to first branch portion 27 at a location distally from the balloon 26.
  • the distal end of branch portion 30 is fixedly attached distally of balloon 26 in order to prevent at least the second inflatable portion 32 from moving around the first branch portion 27, although in alternate embodiments it may be removably attached.
  • first inflatable portion 28 is generally cylindrical and extends coaxially along main vessel branch portion 18.
  • Second inflatable portion 32 may have a shape and size adapted to extend into the branch vessel as shown and described herein.
  • portion 32 may have a generally offset configuration and may be positioned adjacent or in abutting relation with respect to elongate inflatable portion 28.
  • balloon branch portions 27 and 30 have a common inflation lumen 34.
  • Inflation lumen 34 can be conventional, and extend from a portion of the stent delivery system which always remains outside of the patient (not pictured). Inflation lumen 34 extends distally into each of first and second branch portions 27 and 30 and thus, inflation lumen 34 is in fluid communication with the interiors of first inflatable portion 28 and second inflatable portion 32.
  • inflation lumen 34 is used to supply pressurized inflation fluid to first inflatable portion 28 and second inflatable portion 32 when it is desired to inflate balloon 26.
  • Inflation lumen 34 is also used to drain inflation fluid from first inflatable portion 28 and second inflatable portion 32 when it is desired to deflate the balloon.
  • an optional side sheath 20 is illustrated which does not include an inflatable balloon. Although in alternative embodiments side sheath 20 could include an inflatable portion, as described in further detail herein. Side sheath 20 is exterior to and distinct from inflation lumen 34 and thus is also not in fluid communication with the interior of balloon 26 as shown. As shown in the embodiment of FIGS. 1-2, side sheath 20 preferably extends distally of balloon 26, and may include a proximal open end 37 at any point along the length of the stent delivery system and a distal open end 39. Side sheath 20 can be of the type as described in U.S. Patent No. 6,325,826 to Vardi, et al., for example, and in operation the side sheath 20 can extend through a branch access hole of the stent (see, e.g., FIG. 4).
  • first guidewire 36 is threaded into the distal open end of the main guidewire lumen 22 and the delivery system is tracked to a position at or near bifurcation 40, as depicted in FIG. 3.
  • Second guidewire 38 (FIG. 5) is then threaded into stent delivery system 10 from the proximal end of the delivery system. More specifically, second guidewire 38 is threaded into the open proximal end 37 of side sheath 20, and may extend therefrom through the open distal end 39 of side sheath 20, as depicted in FIG. 5.
  • pressurized fluid is supplied to first and second inflatable portions 28 and 32, respectively, of balloon 26 to dilate the body lumen and expand a stent mounted thereon (FIG. 6).
  • the inflatable portion 28 expands the main body of the stent and inflatable portion 32 expands the side (opening) and expandable branch structure of the stent, as discussed in more detail with reference to
  • first and second inflatable portions 28 and 32 when first and second inflatable portions 28 and 32 are expanded, they simultaneously or sequentially, depending upon the configuration of the inflation lumen, cause the stent 50 to expand in the main vessel 42 and the branch portion 52 of stent 50 to be pushed or extended into the branch vessel 44.
  • the second inflatable portion 32 Upon inflation of the balloon 26, the second inflatable portion 32 expands and extends the branch portion 52 toward the branch vessel to open and support the entrance or ostium of the side branch artery. This would occur simultaneously when the balloons share a common inflation lumen but could be sequentially inflated if separate inflation lumens are used.
  • a bifurcated balloon is depicted, as shown, more than two inflatable portions or more than two balloons may be utilized with the present invention.
  • the first and second branch portions 27 and 30 have a longitudinal axis A.
  • the longitudinal axies are substantially parallel with each other.
  • the term "substantially parallel” is intended to encompass deviations from a purely parallel relationship which may be caused by flexure of the branch portions 27 and 30, or other components, experienced during insertion, travel, and deployment within a body lumen.
  • FIG. 7 is an enlarged perspective view of the second balloon or auxiliary inflatable portion 32 of bifurcated balloon 26, which is referred to in the previous embodiments depicted in FIGS. 1-6.
  • the central portion 33 of the auxiliary inflatable side portion 32 extends in a generally equidistant manner from the longitudinal axis A, and at an angle of up to about 90° relative to longitudinal axis A, but other angles are contemplated.
  • the auxiliary inflatable side portion 32 can have a generically spherical central portion 33 which is connected to a proximal shaft 41, as well a distal shaft 43.
  • the components of the auxiliary inflatable side portion 32 may be sized appropriately, as will be readily apparent to those skilled in the art.
  • FIG.9 illustrates yet a further embodiment of a second balloon or auxiliary inflatable side portion 232 of bifurcated balloon 26 constructed according to the principles of the present invention.
  • the central portion 232 is offset relative to the longitudinal axis A and preferably extends toward and/or into the branch vessel 44.
  • the central portion 232 may extend at an angle of up to about 90° relative to longitudinal axis A, but other angles are contemplated.
  • the auxiliary inflatable side portion 232 of balloon 26 comprises an offset central bulbous or generally spherical portion 233, with a proximal shaft portion 241 and distal shaft portion 243 connected thereto via a proximal transition section 241 ⁇ and distal transition 243 ⁇ , respectively.
  • the various components of the auxiliary inflatable side portion 232 of balloon 26 can be sized as appropriate, and as readily determined by those skilled in the art.
  • the auxiliary inflatable side portion 232 of balloon 26 can be configured such that the central offset portion 233 is provided with a radius of curvature R which is on the order of about .50-3.0mm.
  • FIG. 10 illustrates yet another alternative embodiment for a second balloon or auxiliary inflatable side portion 332 of bifurcated balloon member 26.
  • the central portion 332 is offset relative to the longitudinal axis A and preferably extends toward and/or into the branch vessel 44 (not shown).
  • the central portion 332 may extend at an angle of up to about 90° relative to longitudinal axis A, but other angles are contemplated.
  • the auxiliary inflatable side portion 332 is configured such that it comprises a generally offset elliptical and cylindrical central section 333, with proximal shaft portions 341 and distal shaft portions 343 connected thereto via proximal transition section 341 ⁇ and distal transition portion 343 ⁇ , respectively.
  • the auxiliary inflatable side portion 332 can be configured such that it is provided with first and second diameters such that the ratio D 2 /Di is on the order of about 0.25-4.0mm. According to further, non-limiting examples, the auxiliary inflatable side portion 332 can be configured such that it is provided with a first diameter Di which has dimensions on the order of about 1.5-6.0mm and, preferably about 2.7-2.9mm, and a second diameter D 2 which has dimensions on the order of about 1.5-6.0mm, and preferably about 2.1-2.3mm.
  • FIG. 11 illustrates yet another alternative embodiment of a second balloon or auxiliary inflatable side portion 432 of bifurcated balloon 26.
  • the central portion 432 is offset relative to the longitudinal axis A and preferably extends toward and/or into the branch vessel 44 (not shown).
  • the central portion 432 may extend at an angle of up to about 90° relative to longitudinal axis A, but other angles are contemplated.
  • the auxiliary inflatable side portion 432 is configured such that it comprises an offset generally cylindrical central section 433 having a proximal shaft portion 441 and a distal shaft portion 443 connected thereto via proximal transition shaft portion 441 ⁇ and distal transition portion 443 ⁇ , respectively.
  • the various constituent components of the balloon 432 can be configured with relative dimensions which can be ascertained by those skilled in the art. According to exemplary, non- limiting examples, the balloon 432 can be configured such that it is provided with an offset generally cylindrical central section 433 having a diameter D which is on the order of about 1.5-6.0mm.
  • branch portion 530 comprises support struts 570 and an expandable ring 572.
  • Branch portion 530 defines at least one side opening 574.
  • the dimensions of the cell defining side opening 574 are such that the side opening 574 (prior to expansion of the stent) is larger than other openings in stent body 514. The presence of side opening 574
  • 3639586vl -15- is generally configured to accommodate a side sheath therethrough and allow a physician to access a branch vessel during or after a procedure, hi a particular embodiment, as shown in FIG. 12, side opening 574 is surrounded by expandable ring 572 of continuous material, hi alternative embodiments, expandable ring 572 comprises unattached portions, or one portion that only partially covers side opening 574.
  • a series of support struts 570 connect expandable ring 572 with struts 524 and connectors 526. Support struts 570 preferably comprise patterns in a folded or wrap-around configuration that at least partially straighten out during expansion, allowing expandable ring 572 to protrude into the branch vessel.
  • branch portion 530 is extended into the branch vessel, causing expandable ring 574 to at least partially cover the inner surface of the branch vessel.
  • the stent coverage in a portion the branch vessel includes the full circumference of the inner branch vessel wall, hi alternative embodiments, partial coverage or several sections of coverage are present.
  • FIGS. 14-16 another embodiment of a stent 679 is shown having a main stent body 614 and another embodiment of a branch portion 630.
  • FIGS. 14 and 15 show stent 679 in the unexpanded condition where branch portion 630 has not been deployed.
  • FIG. 28 shows the stent 679 in the expanded configuration where the branch portion 630 has been expanded.
  • main stent body 614 includes a main stent pattern having generally repeatable ring 628 and connector 626 pattern.
  • Branch portion 630 and the surrounding midsection 680 interrupt the repeatable ring 628 and connector 626 pattern of stent 679.
  • a structural support member 684 may be provided as a transition between the main stent body 614 and branch portion 630.
  • structural support member 684 may be elliptical to accommodate branch vessels extending at an angle to the main vessel, hi alternate embodiment, other shapes of support members 684 can be used to accommodate the vasculature.
  • the structural support member 684 may include a continuous ring.
  • structural support member 684 is a full, non-expandable ring and it does not expand radially beyond a particular circumference.
  • two concentric rings inner ring 686 and outer ring 688, are positioned within structural support member 684 and surround a generally circular branch opening 634 to provide access to the side branch vessel when stent 679 is in the unexpanded condition.
  • Rings 686 and 688 are interconnected by a plurality of inner connectors 690.
  • Outer ring 688 is connected to structural support member 684 by a plurality of outer connectors 692.
  • Rings 686 and 688 are generally curvilinear members.
  • rings 686, 688 can be defined by undulation petals, prongs, or peaks 694.
  • each ring 686, 688 have the same number of undulation peaks 694, but the inner ring may be more closely or tightly arranged, as shown, hi another preferred embodiment, each ring 686, 688 has eight pedals or undulation peaks 694, although in alternate embodiments each ring can have any number of undulation peaks, and the number of peaks need not be equal for each ring.
  • the undulation peaks 694 generally include a pair of strut portions 696 interconnected by curved portions 698, and the strut portions themselves are connected to adjacent strut portions by another curved portion.
  • outer connectors 692 extend between structural support member 684 and outer ring 688, and each outer connector 692 is attached at one end to approximately the middle of a strut portion 696 of outer ring 688 and the structural support member 684 at the other end. As shown, outer connectors 692 may also have an undulated shape, although in alternate embodiments outer connectors 692 may have
  • outer connectors 692 may be evenly or symmetrically spaced about the structural support member 684.
  • the inner ring 686 is attached to the outer ring 688 by a plurality of inner connectors 690 and, in a preferred embodiment; eight inner connectors 690 connect the rings.
  • Inner connectors 690 extend from curved portion 698 of outer ring 688 to curved portion of inner ring 686.
  • inner connectors 690 have simple curved shape.
  • Other qualities, configurations, sizes and arrangements of connectors, rings and spacing can be used depending upon the desired results. Varying the connectors can provide for different amounts of flexibility and coverage.
  • the type of configuration of rings and connectors shown addresses the need for radial and longitudinal expansion of branch portion 630, as well as branch vessel coverage. Other configurations and arrangements for the branch portion can be used in accordance with the invention.
  • the stent pattern surrounding branch portion 630 may be modified with a different pattern to accommodate branch portion 630, as can all of the aforementioned embodiments.
  • the rings 628 in the midsection 680 may be configured and dimensioned to be denser to provide sufficient coverage and flexibility to composite for the area occupied by branch portion 630.
  • stent 679 is shown in the expanded configuration, with branch portion 630 deployed.
  • the inner and outer rings 686, 688 shift about the longitudinal branch axis 683 and expand laterally away from the main stent body 614 and into the branch vessel to form a branch coverage portion.
  • the outer connectors 692 can move outwardly and the inner connectors 690 can straighten to a position substantially parallel to longitudinal branch axis 681.
  • the expanded rings 686, 688 have substantially the same expanded diameter, although in alternate embodiments rings 686, 688 could also have different diameters to accommodate a tapered vessel, if, for example a tapered balloon is used.
  • the branch portion 630 can be extended at different angles to the longitudinal axis 681 of the stent depending upon the geometry of the branch vessel being
  • the branch portion 630 may preferably extend into the branch vessel about 1.5 - 3 mm.
  • FIG. 17 another embodiment in the form of a stent 789 is shown having a main stent body 714 and another embodiment of a branch portion 730.
  • Stent 789 is substantially similar to stent 679, except 789 has a discontinuous support member 704 surrounding a two concentric ring 786, 788 structure.
  • Support member 704 has a generally elliptical shape and includes a plurality of discontinuities 706 along the perimeter.
  • the configuration of the discontinuous support member facilitates additional flexibility of the branch portion during expansion and generally provides for accommodating a greater range of branch vessel geometries.
  • structural support member 784 may be elliptical to accommodate branch vessels extending at an angle to the main vessel.
  • Stent 899 comprises a main stent body 814 and another embodiment of a branch portion 830.
  • Stent 899 is substantially similar to stent 879, except stent 899 has a branch portion 830 including a support member 808 surrounding three concentric rings 810, 812, 814 instead if two.
  • stent 899 when stent 899 is expanded the three concentric ring structure of this embodiment facilitates additional branch wall support because a generally more dense pattern is created in branch portion 830 with the addition of another concentric ring.
  • the branch portion protrudes into the branch vessel when the stent is fully expanded.
  • the branch portion upon expansion can extend into the branch vessel in different lengths depending upon the application.
  • the amount of extension may vary in a range between about 0.1 -10.0 mm. In one preferred embodiment, the length of extension is 1-3 mm. In another preferred embodiment, the length of extension is approximately 2 mm. In alternative embodiments, the amount of extension into the branch vessel may be variable for different circumferential segments of the branch portion. As shown in each of the embodiments, the branch portion is approximately 2.5 mm in width and about 2.5 - 3.0 mm in length. However, the branch
  • 3639586vl -19- portion can be dimensioned to accommodate varying size branch vessels.
  • the branch portion can be formed of any tubular shape to accommodate the branch vessel, including, oval or circular, for example.
  • the stent in all of the above embodiments, it should be understood that it is within the scope of the present invention to provide the stent with a configuration such that the proximal end of the stent is expandable to a greater or lesser degree than the distal end of the stent.
  • the stent when expanded, may be constructed such that its outer diameter at the proximal end thereof is greater than the outer diameter at the distal end of the stent.
  • stent 912 has a generally curved or radial profile along the distal perimeter 945 of branch portion 930 as it extends into branch vessel 44.
  • the generally curved or radial profile is due to the particular geometry of branch portion 930 of stent 912.
  • stent 1029 has a generally tapered, straight or linear profile along the distal perimeter 1047 of the branch portion 1030 of the stent as it extends into branch vessel 44.
  • the generally straight or linear profile in FIG. 21 is a result of the particular geometry of branch portion 1030 of stent 1029.
  • the linear profile is at a right angle with respect to the axis of branch vessel 44. In alternative embodiments, however, the linear profile may be at any angle with respect to the axis of branch vessel 44.
  • One advantageous feature of the linear profile along the distal perimeter of branch portion 1030 shown in FIG. 21 is that if a second stent 51 were to be used in branch vessel 44, the linear profile facilitates better alignment with the second stent and permits coverage of a larger surface area of the branch vessel wall. For example, if a second stent 51 were to be used in combination with stent 912 of FIG.
  • gaps may exist between the two stents at the interface between the radial distal perimeter 945 and an abutting straight or linear edge of a second stent, whereas a close abutting interface may be achieved with stent 1029 of FIG. 21.
  • the balloon delivery systems and deployment methods of the previously described embodiments may be used with any of the aforementioned stent configurations.
  • the balloon configured to extend or expand the branch portion of the stent is located on the side sheath of the delivery system, such as the system 1138 depicted in FIG. 22.
  • the system is a two-balloon system.
  • the second balloon is located such that the side sheath 1141 extends distally beyond the second balloon 1140.
  • the second balloon 1140 can be positioned within a stent in a manner similar to that previously described herein and is preferably located radially within the stent prior to inflation.
  • the side sheath 1141 may have an inflation lumen and a lumen for receiving a guidewire 1142 for locating the branch vessel 44.
  • the second balloon 1140 may have a lumen for receiving a guidewire for locating the branch vessel.
  • the second balloon may be located at any position along the length of the main balloon. For example, it can be located between proximal and distal ends of the stent, more particularly it can be located on the middle 1/3 of the stent.
  • the second or auxiliary balloon 1140 can have the same shape or geometry as any of the previously described embodiments contained herein, such as those depicted in connection with FIGS. 6-11.
  • proximal and distal shaft portions 41, 43, 141, 143, 241, 243, 341, 343, 441 and 443 of the balloon constructions illustrated in FIGS. 7-11 can be shaft portions of the side sheath 1141.
  • any of the previously described stent configurations may also be used in combination with the system 1138.
  • FIGS. 23-26 illustrations of the steps of one alternative example of a method for employing a stent according to the invention are shown.
  • the method is depicted utilizing stent 1212.
  • a catheter system 1220 is positioned proximal to a bifurcation, using any known method.
  • a branch guidewire 1222 is then advanced through an opening in the stent and into the branch vessel 44, as shown in FIG. 24.
  • the opening may be a designated side branch opening, such as an opening formed by the
  • Branch portion 1230 is adjacent the opening. As shown in FIG. 25, if the side sheath 1224 is attached to the main catheter 1220, the main catheter 1220 is advanced along with the side sheath 1224. Alternatively, if the side sheath 1224 is separate from to the main catheter 120, the second catheter or side sheath 1224 is then advanced independently through the opening in the stent and into the branch vessel. Branch portion 1230 is positioned over a portion of the lumen of the branch vessel 44 as the side sheath 1224 is inserted into branch vessel 44. Referring to FIG.
  • a first balloon 1226 located on main catheter 1220 is then expanded, causing expansion of the stent body, and a second balloon 1228 located on the side sheath 1224 is also expanded, causing branch portion 1230 to be pushed outward with respect to the stent body, thus providing stent coverage of at least a portion of the branch vessel 44.
  • the balloons are then deflated and the catheter system and guidewires are then removed.
  • a stent with a branch portion 30 such as the one described above is for localizing drug delivery.
  • restenosis including in-stent restenosis, is a common problem associated with medical procedures involving the vasculature.
  • Pharmaceutical agents have been found to be helpful in treating and/ or preventing restenosis, and these are best delivered locally to the site of potential or actual restenosis, rather than systemically.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
EP05773685A 2004-07-19 2005-07-19 Katheterballonsysteme und verfahren Withdrawn EP1786360A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/893,278 US20050060027A1 (en) 1999-01-13 2004-07-19 Catheter balloon systems and methods
PCT/US2005/025556 WO2006014631A1 (en) 2004-07-19 2005-07-19 Catheter balloon systems and methods

Publications (1)

Publication Number Publication Date
EP1786360A1 true EP1786360A1 (de) 2007-05-23

Family

ID=35106949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05773685A Withdrawn EP1786360A1 (de) 2004-07-19 2005-07-19 Katheterballonsysteme und verfahren

Country Status (4)

Country Link
EP (1) EP1786360A1 (de)
JP (1) JP2008506506A (de)
CA (1) CA2573534A1 (de)
WO (1) WO2006014631A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647376B2 (en) * 2007-03-30 2014-02-11 Boston Scientific Scimed, Inc. Balloon fold design for deployment of bifurcated stent petal architecture
US8936567B2 (en) 2007-11-14 2015-01-20 Boston Scientific Scimed, Inc. Balloon bifurcated lumen treatment
US8932340B2 (en) 2008-05-29 2015-01-13 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US8827954B2 (en) 2008-06-05 2014-09-09 Boston Scientific Scimed, Inc. Deflatable bifurcated device
JP6095270B2 (ja) * 2012-02-29 2017-03-15 フクダ電子株式会社 カテーテル
AU2016232781B2 (en) 2015-03-19 2017-11-02 Prytime Medical Devices, Inc. System for low-profile occlusion balloon catheter
EP3463106B1 (de) 2016-06-02 2023-10-25 Prytime Medical Devices, Inc. System für okklusionsballonkatheter mit niedrigem profil
EP4327732A3 (de) 2017-01-12 2024-04-24 The Regents of The University of California Endovaskuläre perfusionsverstärkung für die kritische versorgung
CN110769749B (zh) 2017-04-21 2023-05-09 加利福尼亚大学董事会 用于部分主动脉闭塞的主动脉流量计和泵
WO2020033372A1 (en) 2018-08-06 2020-02-13 Prytime Medical Devices, Inc. System and method for low profile occlusion balloon catheter
CA3171608A1 (en) 2020-03-16 2021-09-23 Certus Critical Care, Inc. Blood flow control devices, systems, and methods and error detection thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220275B2 (en) * 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006014631A1 *

Also Published As

Publication number Publication date
JP2008506506A (ja) 2008-03-06
CA2573534A1 (en) 2006-02-09
WO2006014631A1 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
US20050060027A1 (en) Catheter balloon systems and methods
EP2111825B1 (de) Katheterballonsysteme und Ballon mit Ausbauchung
US11717428B2 (en) System and methods for treating a bifurcation with a fully crimped stent
EP1786360A1 (de) Katheterballonsysteme und verfahren
US7344557B2 (en) Catheter balloon systems and methods
US11857442B2 (en) System and methods for treating a bifurcation
US6129738A (en) Method and apparatus for treating stenoses at bifurcated regions
EP0757571B1 (de) Endoprothesen und stents
US8343181B2 (en) Method and apparatus for treating stenoses at bifurcated regions
EP1475054A2 (de) Katheteranordnung und Verfahren zur Behandlung verzweigter Gefässe
WO2007136637A1 (en) Dual balloon catheter and deployment of same
US20090054836A1 (en) Method and Apparatus for Treating Stenoses at Bifurcated Regions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081021

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090701