EP1781988B1 - Hybrid burner lance - Google Patents

Hybrid burner lance Download PDF

Info

Publication number
EP1781988B1
EP1781988B1 EP05775906.0A EP05775906A EP1781988B1 EP 1781988 B1 EP1781988 B1 EP 1781988B1 EP 05775906 A EP05775906 A EP 05775906A EP 1781988 B1 EP1781988 B1 EP 1781988B1
Authority
EP
European Patent Office
Prior art keywords
nozzles
passage
lance
nozzle
lance according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05775906.0A
Other languages
German (de)
French (fr)
Other versions
EP1781988A1 (en
Inventor
Andreas Dr. Brautsch
Daniel Burri
Hanspeter Hardegger
Bettina Dr. Paikert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1781988A1 publication Critical patent/EP1781988A1/en
Application granted granted Critical
Publication of EP1781988B1 publication Critical patent/EP1781988B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/108Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel intersecting downstream of the burner outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels

Definitions

  • the invention relates to a lance for a hybrid burner of a combustion chamber of a gas turbine, in particular a gas turbine for a power plant.
  • a liquid fuel for example a suitable oil
  • a gaseous fuel for example natural gas
  • a lance for injecting pre-mixed with combustion air liquid and / or gaseous fuel in a gas turbine engine for example, in the document US 5836163 described.
  • This device allows operation of the gas turbine with liquid or gaseous main fuel and liquid or gaseous pilot fuel.
  • it has a gaseous fuel feeder, a liquid fuel feeder and a compressed combustion air feeder which service the different fuel and combustion air paths.
  • this device comprises a central flow channel (46) for liquid fuel, a coaxially positioned duct (52) for supplying combustion air, another annular channel (54) for gaseous fuel surrounding the latter and terminating in an outlet (55).
  • These three inner channels primarily serve pilots.
  • this device has an annular channel (76) for liquid fuel, a secondary air channel (58), a main air channel (64) and an outer collecting channel (66), from the gaseous main fuel via spokes (68) and openings (70) introduced therein. is injected into the combustion air duct (64) and mixed with the air supplied from the compressor. The resulting mixture is fluidized in the mixing chamber (128) and then exits into the annular combustion chamber (32).
  • An air inlet plate (118) distributes and controls the mass flow of the combustion air supplied by the compressor. By adjusting the air inlet plate (118) and feeding the respective fuel channels with the intended fuel different operating modes of the combustion chamber with liquid or gaseous main fuel with or without pilot support possible.
  • the supply of the lance with the gaseous fuel usually takes place via a pipeline, in which a gas pressure predetermined by the gas supply system prevails.
  • this system pressure present in the pipeline is too low to be able to inject the gaseous fuel with sufficient pressure difference through the lance into the combustion chamber.
  • the installation of such an additional compressor increases the installation cost of the combustion chamber or the equipped gas turbine.
  • the additional compressor for its operation requires energy, which reduces the efficiency of the power plant in a preferred application of the gas turbine in a power plant for power generation.
  • the invention aims to remedy this situation.
  • the invention as characterized in the claims, deals with the problem of providing a lance of the type mentioned an improved embodiment, which in particular allows operation of the hybrid burner equipped with a comparatively low pressure in the gaseous fuel, but a ensures certain pressure difference to the gas path, so that the flame front can not migrate into the gas path opposite to the gas flow direction.
  • the invention is based on the general idea of reducing aerodynamic improvements in the gas path of the lance whose flow resistance, thereby reducing the pressure drop occurring in the flow through the lance. As a result, it can lower the pressure required in the gaseous fuel upstream of the lance.
  • the aim is to lower the flow resistance in the gas path of the lance as far as possible so that the remaining pressure drop already a proper operation of the burner with the system pressure prevailing in the pipeline allows. This means that it is then possible to dispense with an additional compressor upstream of the lance.
  • the flow resistance in the gas path of the lance is significantly reduced in particular because, in the case of a distributor section which is arranged upstream of the outer nozzles in the outer channel and which has a plurality of star-shaped, axially extending passage openings for the gaseous fuel, the passage openings are dimensioned in that these each have a larger opening width in the circumferential direction than in the radial direction.
  • the flow-through cross-section in the manifold section is considerably increased, which reduces its flow resistance accordingly.
  • the invention utilizes the knowledge that a particularly serious pressure drop arises during the flow through the distributor section within the lance, so that there is a particularly great potential for the reduction of the flow resistance.
  • the outer channel may be limited axially in the region of the outer nozzles by an outer end wall, whereby the outer channel is axially closed.
  • an axial recess is then formed in the outer end wall on a side remote from the distributor section.
  • a further reduction of the pressure drop in the gas path of the lance can be realized in another embodiment in that with each outer nozzle, a transition from the outer channel to an outer nozzle channel formed in the interior of the respective outer nozzle is provided with an inlet zone tapering in the direction of flow. Such an inlet zone reduces the flow resistance during the deflection of the gas flow, which also reduces the total resistance of the lance.
  • Corresponding Fig. 1 includes a here only partially indicated combustion chamber 1, at least one hybrid burner 2, which is equipped with a lance 3.
  • the combustion chamber 1 is preferably a component of a gas turbine, not shown here, in particular for generating electricity within a power plant.
  • the hybrid burner 2 may burn both gaseous fuels, such as natural gas, and liquid fuels, such as a suitable oil.
  • the lance 3 is connected on the one hand to a liquid fuel supply line 4 and on the other hand to a gas fuel supply line 5.
  • a pump 6 is usually arranged in order to be able to supply the liquid fuel with the required supply pressure.
  • the gas fuel supply line 5 is connected substantially directly to a pipeline, not shown here, which provides the gaseous fuel at a comparatively low pipeline pressure. Due to the inventive design of the lance 3, it is possible to dispense with a compressor in the gas fuel supply line 5 upstream of the lance 3.
  • the burner 2 compressed air is supplied according to an arrow 7 from a compressor, not shown.
  • the lance 3 is introduced with respect to the flow direction of the air 7 substantially radially to the burner 2 and has a projecting into the burner 2, substantially rectangular angled lance head 8.
  • the lance head 8 is thus with respect to its longitudinal central axis 9 parallel to the main flow direction of the supplied air. 7 oriented.
  • the lance head 8 is configured such that it injects the liquid and / or gaseous fuel radially into the burner 2 with respect to its longitudinal central axis 9, that is, with respect to the main flow direction of the air 7 prevailing in the burner 2.
  • Fig. 2 and 3 contains the lance 3 in its head 8 an inner channel 10 for liquid fuel and an outer channel 11 for gaseous fuel.
  • the two channels 10, 11 are arranged coaxially with each other, so that the outer channel 11 surrounds the inner channel 10. Accordingly, the outer channel 11 has an annular cross section, while the inner channel 10 has a full cross section.
  • Inner channel 10 and outer channel 11 are separated by an inner tube 16 and enclosed by a coaxially arranged outer tube 17.
  • the lance 3 is equipped at its head 8 with a plurality of outer nozzles 12, which are arranged in a star shape with respect to the longitudinal central axis 9 and extend radially from the outer channel 11.
  • the outer nozzles 12 each contain an outer nozzle channel 13 which extends radially from the outer channel 11 and communicates with this. Accordingly, the gaseous fuel can be injected into the burner 2 via the outer nozzles 12.
  • the lance 3 is also equipped at its head 8 with internal nozzles 14, which are also arranged in a star shape with respect to the longitudinal central axis 9 and thereby depart radially from the inner channel 10.
  • an inner nozzle 14 is arranged coaxially within an outer nozzle 12, wherein inner nozzles 14 and outer nozzles 12 radially outwardly each ends approximately flush.
  • Each inner nozzle 14 includes an inner nozzle channel 15 which communicates with the inner channel 10. Accordingly, the liquid fuel can be injected into the burner 2 via the inner nozzles 15.
  • the coaxial arrangement of the nozzles 12, 14 results in an annular cross section for the outer nozzle channel 13, while the inner nozzle channel 15 has a full cross section.
  • a distributor section 18 is arranged upstream of the outer nozzles 12, which in Fig. 2 characterized by a curly bracket.
  • the distributor section 18 forms an annularly closed axial section of the lance 3 or of the lance head 8 and may in particular be formed in one piece on the outer tube 17.
  • the distributor section 18 is thus arranged in the flow-through cross section of the outer channel 11.
  • the distributor section 18 is provided with a plurality of star-shaped passage openings 19 which extend axially through the distributor section 18.
  • Such a distributor section 18 is required in order to avoid a damage event in which the lance head 8 z. B. has become leaky due to overheating, to ensure a certain pressure difference to the gas path, so that the flame front can not migrate into the gas path against the gas flow direction and thus not too much fuel can flow uncontrollably into the burner 2.
  • the passage openings 19 are each designed such that they have a larger opening width in the circumferential direction than in the radial direction.
  • the circumferential opening width oriented in the circumferential direction is marked by an arrow 20, while the radially-oriented radial opening width is indicated by an arrow 21.
  • the circumferential opening width 20 is more than twice as large as the radial opening width 21.
  • the circumferential opening width 20 is approximately three to five times larger, preferably approximately four times larger than the radial opening 21.
  • the passage openings 19 extend in the circumferential direction in each case along a circular arc segment, as a result of which a particularly large flow-through cross section for the respective passage openings 19 can be achieved.
  • a particularly large flow-through cross section for the respective passage openings 19 can be achieved.
  • other cross-sectional geometries may also be used, for example elliptical cross sections.
  • the individual passage openings 19 are separated from one another in the circumferential direction by webs 22.
  • the webs 22 extend radially and axially with respect to the longitudinal central axis 9. Compared to the through holes 19, these webs 22 have only a comparatively small cross section.
  • the circumferential opening width 20 of the through openings 19 is at least three times greater than a wall thickness 23 of the webs 22 measured in the circumferential direction.
  • the webs 22 are dimensioned such that the circumferential opening width 20 of the through openings 19 is approximately four to eight times greater than the wall thickness 23 Footbridges 22.
  • the outer channel 11 is axially closed by an outer end wall 24 in the region of the outer nozzle 12. Since the outer nozzles 12 and the outer nozzle channels 13th With respect to the outer channel 11 are radially oriented, it comes at a transition 25 between the outer channel 11 and outer nozzle channel 13 to a relatively strong flow deflection, which in Fig. 4 is shown by arrows.
  • an axial recess 26 can be recessed in the outer end wall 24 in each outer nozzle 12 at a side facing away from the distributor section 18, according to an advantageous embodiment. This depression 26 makes it easier for the gas flow in the inner channel 11 to flow around the respective inner nozzle 14.
  • the depressions 26 can - as here in Fig. 4 shown - be provided separately for each outer nozzle 12, in which case an embodiment is preferred in which the recess 26 is configured with respect to a longitudinal central axis 27 of the nozzles 12, 14 circular arc segment-shaped. As a result, so-called "dead water areas" can be reduced and the flow resistance can be lowered.
  • Particularly favorable values for the pressure drop at the transition 25 can be achieved if the dimensioning of the recess 26 is matched to the dimension of the outer nozzle channel 13 in a special way.
  • Cheap is for example, an embodiment in which a relative to the longitudinal central axis 27 of the outer nozzle 12 measured radial depth 28 is about twice or at least twice greater than a radial distance 29 between an unspecified inner wall of the outer nozzle 12 and an unspecified outer wall of the inner nozzle 14 arranged therein ,
  • the transition 25 Another measure for reducing the pressure loss within the lance 3 is seen in an aerodynamic optimization of the transition 25.
  • the transition 25 according to Fig. 4 be equipped with an inlet zone 30, which tapers in the flow direction.
  • the taper of the inlet zone 30 can be achieved by a simple chamfering. It is also possible to design the rejuvenation rounded.
  • a divider 31 is suitably arranged in the inner channel 10 in the region of the inner nozzles 14.
  • the divider 31 includes a core 32 that extends concentrically within the inner channel 10.
  • dividing walls 33 are formed, which extend radially and axially and thereby protrude from the core 32 in a star shape, such that they touch the inner tube 16.
  • the core 32 and the partition walls 33 are designed swept in the direction of flow to the longitudinal central axis 9. With the help of such a divider 31, the deflection of the liquid flow in the inner channel 10 can be improved on the inner nozzle 14.
  • a distance 34 between the core 32 and the inner tube 16 is at least twice greater than a core diameter 35.
  • the inner tube 16 in the region of the divider 31 is not or only slightly widened in order to ensure the most constant flow cross-section up to the inner nozzle 14 can.
  • the outer channel 16 may have a larger flow cross-section in the region of the outer nozzles 12, so that even in the outer channel 11 to the outer nozzles 12 as constant a flow cross-section can be achieved.
  • this measure ultimately leads to a reduction of the flow resistance in the gas path of the lance.
  • a transition 37 from the core 32 to the inner end wall 36 may now be configured kehlförmig.
  • an axial length 38 is preferred, which is about the same size as or may be smaller than an opening cross section 39 of the inner channel 10 in the region of the inner nozzle 14. This relatively short divider 31 in turn allows expansion in the outer channel 11 and leads there to a reduced flow resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Gas Burners (AREA)
  • Spray-Type Burners (AREA)

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Lanze für einen Hybridbrenner einer Brennkammer einer Gasturbine, insbesondere einer Gasturbine für eine Kraftwerksanlage.The invention relates to a lance for a hybrid burner of a combustion chamber of a gas turbine, in particular a gas turbine for a power plant.

Stand der TechnikState of the art

Mit Hilfe einer derartigen Lanze können in einen Hybridbrenner ein flüssiger Brennstoff, zum Beispiel ein geeignetes Öl, und ein gasförmiger Brennstoff, zum Beispiel Erdgas, alternativ oder kumulativ eingedüst werden. Eine solche Lanze zum Einspritzen von mit Verbrennungsluft vorgemischtem flüssigem und/oder gasförmigem Brennstoff in ein Gasturbinentriebwerk ist beispielsweise in der Druckschrift US 5836163 beschrieben. Diese Vorrichtung gestattet einen Betrieb der Gasturbine mit flüssigem oder gasförmigem Hauptbrennstoff und flüssigem oder gasförmigem Pilotbrennstoff. Zu diesem Zwecke besitzt sie eine Zuführeinrichtung für gasförmigen Brennstoff, einer Zuführeinrichtung für flüssigen Brennstoff und eine Zuführeinrichtung für komprimierte Verbrennungsluft, die die unterschiedlichen Brennstoff- und Verbrennungsluftpfade bedienen. So umfasst diese Vorrichtung einen zentralen Strömungskanal (46) für flüssigen Brennstoff, einen koaxial dazu positionierten Kanal (52) zur Zuführung von Verbrennungsluft, einen weiteren ringförmigen Kanal (54) für gasförmigen Brennstoff, welcher letzteren umgibt und in einem Auslass (55) endet. Diese drei inneren Kanäle erfüllen vorrangig Pilotzwecke. Darüber hinaus besitzt diese Vorrichtung einen ringförmigen Kanal (76) für flüssigen Brennstoff, einen Sekundärluftkanal (58), einen Hauptluftkanal (64) sowie einen äußeren Sammelkanal (66), aus dem gasförmiger Hauptbrennstoff über Speichen (68) und darin eingebrachte Öffnungen (70) in den Verbrennungsluftkanal (64) eingedüst und mit der vom Kompressor zugeführten Luft vermischt wird. Das entstehende Gemisch wird in der Mischkammer (128) verwirbelt und tritt anschließend in die Ringbrennkammer (32) aus.
Eine Lufteinlassplatte (118) verteilt und steuert den Massenstrom der vom Kompressor zugeführten Verbrennungsluft.
Mittels Verstellung der Lufteinlassplatte (118) und Beschickung der jeweiligen Brennstoffkanäle mit dem vorgesehenen Brennstoff sind unterschiedliche Betriebsmodi der Brennkammer mit flüssigem oder gasförmigem Hauptbrennstoff mit oder ohne Pilotunterstützung möglich.
With the aid of such a lance, a liquid fuel, for example a suitable oil, and a gaseous fuel, for example natural gas, can be injected alternatively or cumulatively into a hybrid burner. Such a lance for injecting pre-mixed with combustion air liquid and / or gaseous fuel in a gas turbine engine, for example, in the document US 5836163 described. This device allows operation of the gas turbine with liquid or gaseous main fuel and liquid or gaseous pilot fuel. For this purpose it has a gaseous fuel feeder, a liquid fuel feeder and a compressed combustion air feeder which service the different fuel and combustion air paths. Thus, this device comprises a central flow channel (46) for liquid fuel, a coaxially positioned duct (52) for supplying combustion air, another annular channel (54) for gaseous fuel surrounding the latter and terminating in an outlet (55). These three inner channels primarily serve pilots. In addition, this device has an annular channel (76) for liquid fuel, a secondary air channel (58), a main air channel (64) and an outer collecting channel (66), from the gaseous main fuel via spokes (68) and openings (70) introduced therein. is injected into the combustion air duct (64) and mixed with the air supplied from the compressor. The resulting mixture is fluidized in the mixing chamber (128) and then exits into the annular combustion chamber (32).
An air inlet plate (118) distributes and controls the mass flow of the combustion air supplied by the compressor.
By adjusting the air inlet plate (118) and feeding the respective fuel channels with the intended fuel different operating modes of the combustion chamber with liquid or gaseous main fuel with or without pilot support possible.

Bei stationären Gasturbinenanlagen erfolgt üblicherweise die Versorgung der Lanze mit dem gasförmigen Brennstoff über eine Pipeline, in der ein vom Gasversorgungssystem vorgegebener Gasdruck herrscht. Bei einer Vielzahl von Anwendungen, z.B. bei einer Brennkammer mit Niederdruckbrenner und nachgeordnetem Hochdruckbrenner, ist dieser in der Pipeline vorhandene Systemdruck jedoch zu niedrig, um den gasförmigen Brennstoff mit hinreichender Druckdifferenz durch die Lanze in die Brennkammer eindüsen zu können. Dementsprechend ist es üblich, stromauf der Lanze einen zusätzlichen Verdichter anzuordnen, um den gasförmigen Brennstoff auf das erforderliche Druckniveau anzuheben. Der Einbau eines derartigen zusätzlichen Verdichters erhöht jedoch die Installationskosten der Brennkammer beziehungsweise der damit ausgestatteten Gasturbine. Darüber hinaus benötigt der zusätzliche Verdichter für seinen Betrieb Energie, die bei einer bevorzugten Anwendung der Gasturbine in einer Kraftwerksanlage zur Stromerzeugung den Wirkungsgrad der Kraftwerksanlage reduziert.In stationary gas turbine plants, the supply of the lance with the gaseous fuel usually takes place via a pipeline, in which a gas pressure predetermined by the gas supply system prevails. In a variety of applications, such as a combustion chamber with low-pressure burner and downstream high-pressure burner, this system pressure present in the pipeline, however, is too low to be able to inject the gaseous fuel with sufficient pressure difference through the lance into the combustion chamber. Accordingly, it is common to place an additional compressor upstream of the lance to raise the gaseous fuel to the required pressure level. However, the installation of such an additional compressor increases the installation cost of the combustion chamber or the equipped gas turbine. In addition, the additional compressor for its operation requires energy, which reduces the efficiency of the power plant in a preferred application of the gas turbine in a power plant for power generation.

Darstellung der ErfindungPresentation of the invention

Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für eine Lanze der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die insbesondere einen Betrieb des damit ausgestatteten Hybridbrenners bei einem vergleichsweise niedrigen Druck im gasförmigen Brennstoff ermöglicht, dabei aber eine gewisse Druckdifferenz zum Gaspfad gewährleistet, damit die Flammenfront nicht in den Gaspfad entgegen der Gasströmungsrichtung hineinwandern kann.The invention aims to remedy this situation. The invention, as characterized in the claims, deals with the problem of providing a lance of the type mentioned an improved embodiment, which in particular allows operation of the hybrid burner equipped with a comparatively low pressure in the gaseous fuel, but a ensures certain pressure difference to the gas path, so that the flame front can not migrate into the gas path opposite to the gas flow direction.

Dieses Problem wird durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.This problem is solved by the subject matter of the independent claim. Advantageous embodiments are the subject of the dependent claims.

Die Erfindung beruht auf dem allgemeinen Gedanken, durch aerodynamische Verbesserungen im Gaspfad der Lanze deren Durchströmungswiderstand zu reduzieren, um dadurch den bei der Durchströmung der Lanze auftretenden Druckabfall zu verringern. Im Ergebnis kann dadurch der stromauf der Lanze erforderliche Druck im gasförmigen Brennstoff abgesenkt werden. Ziel ist es dabei, den Durchströmungswiderstand im Gaspfad der Lanze möglichst so weit abzusenken, dass der verbleibende Druckabfall einen ordnungsgemäßen Betrieb des Brenners bereits mit dem in der Pipeline herrschenden Systemdruck ermöglicht. Das bedeutet, dass dann auf einen zusätzlichen Verdichter stromauf der Lanze verzichtet werden kann.The invention is based on the general idea of reducing aerodynamic improvements in the gas path of the lance whose flow resistance, thereby reducing the pressure drop occurring in the flow through the lance. As a result, it can lower the pressure required in the gaseous fuel upstream of the lance. The aim is to lower the flow resistance in the gas path of the lance as far as possible so that the remaining pressure drop already a proper operation of the burner with the system pressure prevailing in the pipeline allows. This means that it is then possible to dispense with an additional compressor upstream of the lance.

Bei der Erfindung wird der Strömungswiderstand im Gaspfad der Lanze insbesondere dadurch deutlich reduziert, dass bei einem Verteilerabschnitt, der stromauf der Außendüsen im Außenkanal angeordnet ist, und der mehrere sternförmig angeordnete, sich axial erstreckende Durchgangsöffnungen für den gasförmigen Brennstoff aufweist, die Durchgangsöffnungen so dimensioniert sind, dass diese jeweils in Umfangsrichtung eine größere Öffnungsweite aufweisen als in Radialrichtung. Durch diese Bauweise wird der durchströmbare Querschnitt im Verteilerabschnitt erheblich vergrößert, was dessen Durchströmungswiderstand entsprechend reduziert. Die Erfindung nutzt dabei die Erkenntnis, dass bei der Durchströmung des Verteilerabschnitts innerhalb der Lanze ein besonders gravierender Druckabfall entsteht, so dass dort ein besonders großes Potential für die Reduzierung des Durchströmungswiderstands liegt.In the case of the invention, the flow resistance in the gas path of the lance is significantly reduced in particular because, in the case of a distributor section which is arranged upstream of the outer nozzles in the outer channel and which has a plurality of star-shaped, axially extending passage openings for the gaseous fuel, the passage openings are dimensioned in that these each have a larger opening width in the circumferential direction than in the radial direction. By this construction, the flow-through cross-section in the manifold section is considerably increased, which reduces its flow resistance accordingly. In this case, the invention utilizes the knowledge that a particularly serious pressure drop arises during the flow through the distributor section within the lance, so that there is a particularly great potential for the reduction of the flow resistance.

Entsprechend einer vorteilhaften Ausführungsform kann der Außenkanal im Bereich der Außendüsen axial durch eine äußere Stirnwand begrenzt sein, wodurch der Außenkanal axial verschlossen ist. Bei jeder Außendüse ist dann an einer vom Verteilerabschnitt abgewandten Seite in der äußeren Stirnwand eine axiale Vertiefung ausgebildet. Mit Hilfe einer derartigen Vertiefung können die sich koaxial innerhalb der Außendüsen erstreckenden Innendüsen erheblich besser umströmt werden, was das Einströmen des gasförmigen Brennstoffs vom Außenrohr in die Außendüsen, insbesondere an deren vom Verteilerabschnitt abgewandten Seite, erheblich vereinfacht. Dementsprechend wird auch im Bereich des Übergangs zwischen Außenrohr und Außendüsen der Strömungswiderstand deutlich reduziert. Gleichzeitig kann bei einer derartigen Ausführungsform die Homogenität der Durchströmung der Außendüsen und somit die Qualität der Eindüsung des gasförmigen Brennstoffs verbessert werden.According to an advantageous embodiment, the outer channel may be limited axially in the region of the outer nozzles by an outer end wall, whereby the outer channel is axially closed. In the case of each outer nozzle, an axial recess is then formed in the outer end wall on a side remote from the distributor section. With the help of such a depression, the inner nozzles extending coaxially within the outer nozzles can flow much better, which considerably simplifies the flow of the gaseous fuel from the outer tube into the outer nozzles, in particular at its side remote from the distributor section. Accordingly, the flow resistance is significantly reduced even in the region of the transition between outer tube and outer nozzle. At the same time, in such an embodiment, the homogeneity of the flow through the outer nozzles and thus the quality of the injection of the gaseous fuel can be improved.

Eine weitere Reduzierung des Druckabfalls im Gaspfad der Lanze kann bei einer anderen Ausführungsform dadurch realisiert werden, dass bei jeder Außendüse ein Übergang vom Außenkanal zu einem im Inneren der jeweiligen Außendüse ausgebildeten Außendüsenkanal mit einer sich in Strömungsrichtung verjüngenden Einlaufzone versehen ist. Eine derartige Einlaufzone reduziert den Strömungswiderstand bei der Umlenkung der Gasströmung, was den Gesamtwiderstand der Lanze ebenfalls senkt.A further reduction of the pressure drop in the gas path of the lance can be realized in another embodiment in that with each outer nozzle, a transition from the outer channel to an outer nozzle channel formed in the interior of the respective outer nozzle is provided with an inlet zone tapering in the direction of flow. Such an inlet zone reduces the flow resistance during the deflection of the gas flow, which also reduces the total resistance of the lance.

Weitere wichtige Merkmale und Vorteile der erfindungsgemäßen Lanze ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.Further important features and advantages of the lance according to the invention will become apparent from the subclaims, from the drawings and from the associated description of the figures with reference to the drawings.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen. Es zeigen, jeweils schematisch,

Fig. 1
eine vereinfachte Prinzipdarstellung einer Lanze nach der Erfindung im Einbauzustand,
Fig. 2
eine perspektivische, teilweise geschnittene Ansicht auf einen Kopf der Lanze,
Fig. 3
eine teilweise geschnittene, perspektivische Ansicht auf den Lanzenkopf gemäß Fig. 2 entsprechend einer in Fig. 2 mit III gekennzeichneten anderen Blickrichtung,
Fig. 4
einen halben Längsschnitt des Lanzenkopfs in einem Düsenbereich.
Preferred embodiments of the invention are illustrated in the drawings and will be described in more detail in the following description, wherein like reference numerals refer to the same or similar or functionally identical components. Show, in each case schematically,
Fig. 1
a simplified schematic representation of a lance according to the invention in the installed state,
Fig. 2
a perspective, partially cutaway view of a head of the lance,
Fig. 3
a partially cut, perspective view of the lance head according to Fig. 2 according to one in Fig. 2 with III marked other direction,
Fig. 4
a half longitudinal section of the lance head in a nozzle area.

Entsprechend Fig. 1 umfasst eine hier nur teilweise angedeutete Brennkammer 1 zumindest einen Hybridbrenner 2, der mit einer Lanze 3 ausgestattet ist. Die Brennkammer 1 ist vorzugsweise ein Bestandteil einer hier nicht dargestellten Gasturbine, insbesondere zur Stromerzeugung innerhalb einer Kraftwerksanlage.Corresponding Fig. 1 includes a here only partially indicated combustion chamber 1, at least one hybrid burner 2, which is equipped with a lance 3. The combustion chamber 1 is preferably a component of a gas turbine, not shown here, in particular for generating electricity within a power plant.

Der Hybridbrenner 2 kann sowohl gasförmige Brennstoffe, wie zum Beispiel Erdgas, als auch flüssige Brennstoffe, wie zum Beispiel ein geeignetes Öl, verbrennen. Dementsprechend ist die Lanze 3 einerseits an eine Flüssigbrennstoffversorgungsleitung 4 und andererseits an eine Gasbrennstoffversorgungsleitung 5 angeschlossen. In der Flüssigbrennstoffversorgungsleitung 4 ist üblicherweise eine Pumpe 6 angeordnet, um den Flüssigbrennstoff mit dem erforderlichen Versorgungsdruck beaufschlagen zu können. Im Unterschied dazu ist die Gasbrennstoffversorgungsleitung 5 im wesentlichen direkt an eine hier nicht dargestellte Pipeline angeschlossen, die den gasförmigen Brennstoff unter einem vergleichsweise niedrigen Pipelinedruck bereitstellt. Durch die erfindungsgemäße Ausgestaltung der Lanze 3 ist es möglich, auf einen Verdichter in der Gasbrennstoffversorgungsleitung 5 stromauf der Lanze 3 zu verzichten.The hybrid burner 2 may burn both gaseous fuels, such as natural gas, and liquid fuels, such as a suitable oil. Accordingly, the lance 3 is connected on the one hand to a liquid fuel supply line 4 and on the other hand to a gas fuel supply line 5. In the liquid fuel supply line 4, a pump 6 is usually arranged in order to be able to supply the liquid fuel with the required supply pressure. In contrast, the gas fuel supply line 5 is connected substantially directly to a pipeline, not shown here, which provides the gaseous fuel at a comparatively low pipeline pressure. Due to the inventive design of the lance 3, it is possible to dispense with a compressor in the gas fuel supply line 5 upstream of the lance 3.

Dem Brenner 2 wird verdichtete Luft entsprechend einem Pfeil 7 von einem nicht gezeigten Verdichter zugeführt. Die Lanze 3 ist bezüglich der Strömungsrichtung der Luft 7 im wesentlichen radial an den Brenner 2 herangeführt und besitzt einen in den Brenner 2 hineinragenden, im wesentlichen rechtwinklig abgewinkelten Lanzenkopf 8. Der Lanzenkopf 8 ist somit bezüglich seiner Längsmittelachse 9 parallel zur Hauptströmungsrichtung der zugeführten Luft 7 orientiert. Der Lanzenkopf 8 ist so ausgestaltet, dass er den flüssigen und/oder gasförmigen Brennstoff bezüglich seiner Längsmittelachse 9, also bezüglich der in dem Brenner 2 vorherrschenden Hauptströmungsrichtung der Luft 7 radial in den Brenner 2 eindüst.The burner 2 compressed air is supplied according to an arrow 7 from a compressor, not shown. The lance 3 is introduced with respect to the flow direction of the air 7 substantially radially to the burner 2 and has a projecting into the burner 2, substantially rectangular angled lance head 8. The lance head 8 is thus with respect to its longitudinal central axis 9 parallel to the main flow direction of the supplied air. 7 oriented. The lance head 8 is configured such that it injects the liquid and / or gaseous fuel radially into the burner 2 with respect to its longitudinal central axis 9, that is, with respect to the main flow direction of the air 7 prevailing in the burner 2.

Die nachfolgenden Erläuterungen betreffen insbesondere den Lanzenkopf 8.The following explanations relate in particular to the lance head 8.

Entsprechend den Fig. 2 und 3 enthält die Lanze 3 in ihrem Kopf 8 einen Innenkanal 10 für flüssigen Brennstoff sowie einen Außenkanal 11 für gasförmigen Brennstoff. Die beiden Kanäle 10, 11 sind koaxial zueinander angeordnet, so dass der Außenkanal 11 den Innenkanal 10 umschließt. Dementsprechend weist der Außenkanal 11 einen ringförmigen Querschnitt auf, während der Innenkanal 10 einen vollen Querschnitt besitzt. Innenkanal 10 und Außenkanal 11 sind durch ein Innenrohr 16 voneinander getrennt und von einem koaxial dazu angeordneten Außenrohr 17 umschlossen.According to the Fig. 2 and 3 contains the lance 3 in its head 8 an inner channel 10 for liquid fuel and an outer channel 11 for gaseous fuel. The two channels 10, 11 are arranged coaxially with each other, so that the outer channel 11 surrounds the inner channel 10. Accordingly, the outer channel 11 has an annular cross section, while the inner channel 10 has a full cross section. Inner channel 10 and outer channel 11 are separated by an inner tube 16 and enclosed by a coaxially arranged outer tube 17.

Zur Eindüsung des gasförmigen Brennstoffs ist die Lanze 3 an ihrem Kopf 8 mit mehreren Außendüsen 12 ausgestattet, die bezüglich der Längsmittelachse 9 sternförmig angeordnet sind und radial vom Außenkanal 11 ausgehen. Die Außendüsen 12 enthalten jeweils einen Außendüsenkanal 13, der radial vom Außenkanal 11 abgeht und mit diesem kommuniziert. Dementsprechend kann über die Außendüsen 12 der gasförmige Brennstoff in den Brenner 2 eingedüst werden.For injection of the gaseous fuel, the lance 3 is equipped at its head 8 with a plurality of outer nozzles 12, which are arranged in a star shape with respect to the longitudinal central axis 9 and extend radially from the outer channel 11. The outer nozzles 12 each contain an outer nozzle channel 13 which extends radially from the outer channel 11 and communicates with this. Accordingly, the gaseous fuel can be injected into the burner 2 via the outer nozzles 12.

In entsprechender Weise ist die Lanze 3 an ihrem Kopf 8 außerdem mit Innendüsen 14 ausgestattet, die bezüglich der Längsmittelachse 9 ebenfalls sternförmig angeordnet sind und dabei radial vom Innenkanal 10 abgehen. Dabei ist jeweils eine Innendüse 14 koaxial innerhalb einer Außendüse 12 angeordnet, wobei Innendüsen 14 und Außendüsen 12 radial außen jeweils etwa bündig enden. Jede Innendüse 14 enthält einen Innendüsenkanal 15, der mit dem Innenkanal 10 kommuniziert. Dementsprechend kann über die Innendüsen 15 der flüssige Brennstoff in den Brenner 2 eingedüst werden.In a corresponding manner, the lance 3 is also equipped at its head 8 with internal nozzles 14, which are also arranged in a star shape with respect to the longitudinal central axis 9 and thereby depart radially from the inner channel 10. In each case, an inner nozzle 14 is arranged coaxially within an outer nozzle 12, wherein inner nozzles 14 and outer nozzles 12 radially outwardly each ends approximately flush. Each inner nozzle 14 includes an inner nozzle channel 15 which communicates with the inner channel 10. Accordingly, the liquid fuel can be injected into the burner 2 via the inner nozzles 15.

Durch die koaxiale Anordnung der Düsen 12, 14 ergibt sich für den Außendüsenkanal 13 ein ringförmiger Querschnitt, während der Innendüsenkanal 15 einen vollen Querschnitt aufweist.The coaxial arrangement of the nozzles 12, 14 results in an annular cross section for the outer nozzle channel 13, while the inner nozzle channel 15 has a full cross section.

Im Außenkanal 11 ist stromauf der Außendüsen 12 ein Verteilerabschnitt 18 angeordnet, der in Fig. 2 durch eine geschweifte Klammer gekennzeichnet ist. Der Verteilerabschnitt 18 bildet einen ringförmig geschlossenen Axialabschnitt der Lanze 3 beziehungsweise des Lanzenkopfs 8 und kann insbesondere einstückig am Außenrohr 17 ausgebildet sein. Der Verteilerabschnitt 18 ist somit im durchströmbaren Querschnitt des Außenkanals 11 angeordnet. Damit der gasförmige Brennstoff dennoch zu den Außendüsen 12 gelangen kann, ist der Verteilerabschnitt 18 mit mehreren, sternförmig angeordneten Durchgangsöffnungen 19 ausgestattet, die sich axial durch den Verteilerabschnitt 18 hindurch erstrecken. Ein derartiger Verteilerabschnitt 18 wird benötigt, um bei einem Schadensfall, bei dem der Lanzenkopf 8 z. B. durch Überhitzung undicht geworden ist, eine gewisse Druckdifferenz zum Gaspfad gewährleisten zu können, damit die Flammenfront nicht in den Gaspfad entgegen der Gasströmungsrichtung hineinwandern kann bzw. damit nicht zuviel Brennstoff unkontrolliert in den Brenner 2 einströmen kann.In the outer channel 11, a distributor section 18 is arranged upstream of the outer nozzles 12, which in Fig. 2 characterized by a curly bracket. The distributor section 18 forms an annularly closed axial section of the lance 3 or of the lance head 8 and may in particular be formed in one piece on the outer tube 17. The distributor section 18 is thus arranged in the flow-through cross section of the outer channel 11. However, in order for the gaseous fuel to be able to reach the outer nozzles 12, the distributor section 18 is provided with a plurality of star-shaped passage openings 19 which extend axially through the distributor section 18. Such a distributor section 18 is required in order to avoid a damage event in which the lance head 8 z. B. has become leaky due to overheating, to ensure a certain pressure difference to the gas path, so that the flame front can not migrate into the gas path against the gas flow direction and thus not too much fuel can flow uncontrollably into the burner 2.

Damit der Verteilerabschnitt 18 für den gasförmigen Brennstoff einen möglichst geringen Durchströmungswiderstand besitzt, sind die Durchgangsöffnungen 19 jeweils so gestaltet, dass sie in Umfangsrichtung eine größere Öffnungsweite besitzen als in Radialrichtung. In Fig. 3 ist die in der Umfangsrichtung orientierte Umfangsöffnungsweite durch einen Pfeil 20 markiert, während die in Radialrichtung orientierte Radialöffnungsweite durch einen Pfeil 21 angedeutet ist. Es ist klar erkennbar, dass die Umfangsöffnungsweite 20 mehr als doppelt so groß gewählt ist wie die Radialöffnungsweite 21. Insbesondere ist die Umfangsöffnungsweite 20 etwa drei- bis fünfmal größer, vorzugsweise etwa viermal größer, als die Radialöffnungsweite 21. Durch die gewählte Dimensionierung der Durchgangsöffnungen 19 ergibt sich für diese ein vergleichsweise niedriger Durchströmungswiderstand, so dass der bei der Durchströmung des Verteilerabschnitts 18 auftretende Druckabfall entsprechend gering ist. In der Folge ergibt sich auch für die Lanze 3 ein vergleichsweise geringer Strömungswiderstand.In order for the gaseous fuel distributor section 18 to have as low a flow resistance as possible, the passage openings 19 are each designed such that they have a larger opening width in the circumferential direction than in the radial direction. In Fig. 3 For example, the circumferential opening width oriented in the circumferential direction is marked by an arrow 20, while the radially-oriented radial opening width is indicated by an arrow 21. It can be clearly seen that the circumferential opening width 20 is more than twice as large as the radial opening width 21. In particular, the circumferential opening width 20 is approximately three to five times larger, preferably approximately four times larger than the radial opening 21. By the selected dimensioning of the through holes 19, this results in a comparatively low flow resistance, so that the occurring during the flow through the manifold section 18 pressure drop is correspondingly low. As a result, a comparatively low flow resistance also results for the lance 3.

Bei der hier gezeigten, bevorzugten Ausführungsform erstrecken sich die Durchgangsöffnungen 19 in Umfangsrichtung jeweils entlang eines Kreisbogensegments, wodurch sich ein besonders großer durchströmbarer Querschnitt für die jeweiligen Durchgangsöffnungen 19 erzielen lässt. Grundsätzlich können auch andere Querschnittsgeometrien zur Anwendung kommen, beispielsweise elliptische Querschnitte.In the preferred embodiment shown here, the passage openings 19 extend in the circumferential direction in each case along a circular arc segment, as a result of which a particularly large flow-through cross section for the respective passage openings 19 can be achieved. In principle, other cross-sectional geometries may also be used, for example elliptical cross sections.

Ohne Beschränkung der Allgemeinheit sind bei der hier gezeigten Ausführungsform vier Durchgangsöffnungen 19 vorgesehen. Die einzelnen Durchgangsöffnungen 19 sind in Umfangsrichtung durch Stege 22 voneinander getrennt. Die Stege 22 erstrecken sich dabei bezüglich der Längsmittelachse 9 radial und axial. Im Vergleich zu den Durchgangsöffnungen 19 besitzen diese Stege 22 nur einen vergleichsweise kleinen Querschnitt. Vorzugsweise ist die Umfangsöffnungsweite 20 der Durchgangsöffnungen 19 jeweils mindestens dreimal größer als eine in Umfangsrichtung gemessene Wandstärke 23 der Stege 22. Insbesondere sind die Stege 22 so dimensioniert, dass die Umfangsöffnungsweite 20 der Durchgangsöffnungen 19 etwa vier- bis achtmal größer ist als die Wandstärke 23 der Stege 22.Without limitation of generality, four through holes 19 are provided in the embodiment shown here. The individual passage openings 19 are separated from one another in the circumferential direction by webs 22. The webs 22 extend radially and axially with respect to the longitudinal central axis 9. Compared to the through holes 19, these webs 22 have only a comparatively small cross section. Preferably, the circumferential opening width 20 of the through openings 19 is at least three times greater than a wall thickness 23 of the webs 22 measured in the circumferential direction. In particular, the webs 22 are dimensioned such that the circumferential opening width 20 of the through openings 19 is approximately four to eight times greater than the wall thickness 23 Footbridges 22.

Bezugnehmend auf Fig. 4 ist besonders deutlich erkennbar, dass der Außenkanal 11 im Bereich der Außendüsen 12 durch eine äußere Stirnwand 24 axial verschlossen ist. Da die Außendüsen 12 bzw. die Außendüsenkanäle 13 bezüglich des Außenkanals 11 radial orientiert sind, kommt es bei einem Übergang 25 zwischen Außenkanal 11 und Außendüsenkanal 13 zu einer relativ starken Strömungsumlenkung, was in Fig. 4 durch Pfeile dargestellt ist. Um den mit der Strömungsumlenkung einhergehenden Druckabfall zu reduzieren, kann gemäß einer vorteilhaften Ausgestaltung bei jeder Außendüse 12 an einer vom Verteilerabschnitt 18 abgewandten Seite eine axiale Vertiefung 26 in der äußeren Stirnwand 24 ausgespart sein. Diese Vertiefung 26 erleichtert es der Gasströmung im Innenkanal 11 die jeweilige Innendüse 14 zu umströmen. Hierdurch kann die Umlenkung der Gasströmung an der vom Verteilerabschnitt 18 abgewandten Seite mit der Außendüse 12 verbessert werden. Dies führt zu einer Vergleichmäßigung der Druckverteilung innerhalb des Übergangs 25, mit der Folge, dass zum einen der Strömungswiderstand im Bereich des Übergangs 25 reduziert und zum anderen die Homogenität der Strömungsverteilung innerhalb des Außendüsenkanals 13 verbessert wird.Referring to Fig. 4 is particularly clear that the outer channel 11 is axially closed by an outer end wall 24 in the region of the outer nozzle 12. Since the outer nozzles 12 and the outer nozzle channels 13th With respect to the outer channel 11 are radially oriented, it comes at a transition 25 between the outer channel 11 and outer nozzle channel 13 to a relatively strong flow deflection, which in Fig. 4 is shown by arrows. In order to reduce the pressure drop associated with the flow deflection, an axial recess 26 can be recessed in the outer end wall 24 in each outer nozzle 12 at a side facing away from the distributor section 18, according to an advantageous embodiment. This depression 26 makes it easier for the gas flow in the inner channel 11 to flow around the respective inner nozzle 14. As a result, the deflection of the gas flow at the side facing away from the distributor section 18 side with the outer nozzle 12 can be improved. This leads to an equalization of the pressure distribution within the transition 25, with the result that on the one hand reduces the flow resistance in the region of the transition 25 and on the other hand, the homogeneity of the flow distribution within the outer nozzle channel 13 is improved.

Die Vertiefungen 26 können - wie hier in Fig. 4 dargestellt - für jede Außendüse 12 separat vorgesehen sein, wobei dann eine Ausgestaltung bevorzugt wird, bei welcher die Vertiefung 26 bezüglich einer Längsmittelachse 27 der Düsen 12, 14 kreisbogensegmentförmig ausgestaltet ist. Hierdurch können sogenannte "Totwassergebiete" reduziert und der Strömungswiderstand abgesenkt werden. Alternativ ist es grundsätzlich auch möglich, für alle Außendüsen 12 eine gemeinsame Vertiefung 26 vorzusehen. Eine derartige gemeinsame Vertiefung 26 bildet dann in der äußeren Stirnwand 24 eine in Umfangsrichtung geschlossen umlaufende Ringnut. Eine derartige Ausführungsform lässt sich besonders einfach herstellen.The depressions 26 can - as here in Fig. 4 shown - be provided separately for each outer nozzle 12, in which case an embodiment is preferred in which the recess 26 is configured with respect to a longitudinal central axis 27 of the nozzles 12, 14 circular arc segment-shaped. As a result, so-called "dead water areas" can be reduced and the flow resistance can be lowered. Alternatively, it is also possible in principle to provide a common depression 26 for all external nozzles 12. Such a common recess 26 then forms in the outer end wall 24 a circumferentially closed circumferential annular groove. Such an embodiment can be produced particularly easily.

Besonders günstige Werte für den Druckabfall am Übergang 25 können erreicht werden, wenn die Dimensionierung der Vertiefung 26 auf die Dimension des Außendüsenkanals 13 in besonderer Weise abgestimmt ist. Günstig ist beispielsweise eine Ausführungsform, bei welcher eine bezüglich der Längsmittelachse 27 der Außendüse 12 gemessene radiale Tiefe 28 etwa zweimal oder zumindest zweimal größer ist als ein radialer Abstand 29 zwischen einer nicht näher bezeichneten Innenwand der Außendüse 12 und einer nicht näher bezeichneten Außenwand der darin angeordneten Innendüse 14.Particularly favorable values for the pressure drop at the transition 25 can be achieved if the dimensioning of the recess 26 is matched to the dimension of the outer nozzle channel 13 in a special way. Cheap is For example, an embodiment in which a relative to the longitudinal central axis 27 of the outer nozzle 12 measured radial depth 28 is about twice or at least twice greater than a radial distance 29 between an unspecified inner wall of the outer nozzle 12 and an unspecified outer wall of the inner nozzle 14 arranged therein ,

Eine weitere Maßnahme zur Absenkung des Druckverlusts innerhalb der Lanze 3 wird in einer aerodynamischen Optimierung des Übergangs 25 gesehen. Zu diesem Zweck kann der Übergang 25 gemäß Fig. 4 mit einer Einlaufzone 30 ausgestattet sein, die sich in der Strömungsrichtung verjüngt. Hierdurch wird der Strömungswiderstand beim Übergang vom Außenkanal 11 in den jeweiligen Außendüsenkanal 13 reduziert. Die Verjüngung der Einlaufzone 30 kann durch eine einfache Anfasung erzielt werden. Ebenfalls ist es möglich, die Verjüngung abgerundet auszugestalten.Another measure for reducing the pressure loss within the lance 3 is seen in an aerodynamic optimization of the transition 25. For this purpose, the transition 25 according to Fig. 4 be equipped with an inlet zone 30, which tapers in the flow direction. As a result, the flow resistance during the transition from the outer channel 11 is reduced in the respective outer nozzle channel 13. The taper of the inlet zone 30 can be achieved by a simple chamfering. It is also possible to design the rejuvenation rounded.

Wie den Fig. 2 bis 4 entnehmbar ist, ist im Innenkanal 10 im Bereich der Innendüsen 14 zweckmäßig ein Teiler 31 angeordnet. Der Teiler 31 umfasst einen Kern 32, der sich konzentrisch innerhalb des Innenkanals 10 erstreckt. An diesem Kern 32 sind Trennwände 33 ausgebildet, die sich radial und axial erstrecken und dabei vom Kern 32 sternförmig abstehen, derart, dass sie das Innenrohr 16 berühren. Vorteilhaft sind dabei der Kern 32 und die Trennwände 33 in Anströmrichtung zur Längsmittelachse 9 hin gepfeilt ausgestaltet. Mit Hilfe eines derartigen Teilers 31 kann die Umlenkung der Flüssigkeitsströmung im Innenkanal 10 auf die Innendüsen 14 verbessert werden.Like that Fig. 2 to 4 can be removed, a divider 31 is suitably arranged in the inner channel 10 in the region of the inner nozzles 14. The divider 31 includes a core 32 that extends concentrically within the inner channel 10. At this core 32 dividing walls 33 are formed, which extend radially and axially and thereby protrude from the core 32 in a star shape, such that they touch the inner tube 16. Advantageously, the core 32 and the partition walls 33 are designed swept in the direction of flow to the longitudinal central axis 9. With the help of such a divider 31, the deflection of the liquid flow in the inner channel 10 can be improved on the inner nozzle 14.

Besonders vorteilhaft ist nun eine in den Fig. 2 und 3 dargestellte Ausführungsform, bei welcher ein Abstand 34 zwischen dem Kern 32 und dem Innenrohr 16 zumindest zweimal größer ist als ein Kerndurchmesser 35. Bei einer derartigen Bauweise muss das Innenrohr 16 im Bereich des Teilers 31 nicht oder nur geringfügig aufgeweitet werden, um einen möglichst konstanten Strömungsquerschnitt bis zu den Innendüsen 14 gewährleisten zu können. Dies hat zur Folge, dass der Außenkanal 16 im Bereich der Außendüsen 12 einen größeren Durchströmungsquerschnitt aufweisen kann, so dass auch im Außenkanal 11 bis zu den Außendüsen 12 ein möglichst konstanter Strömungsquerschnitt erreicht werden kann. Somit führt auch diese Maßnahme letztlich zu einer Absenkung des Strömungswiderstands im Gaspfad der Lanze 3.Particularly advantageous is now in the Fig. 2 and 3 illustrated embodiment in which a distance 34 between the core 32 and the inner tube 16 is at least twice greater than a core diameter 35. In such a construction, the inner tube 16 in the region of the divider 31 is not or only slightly widened in order to ensure the most constant flow cross-section up to the inner nozzle 14 can. This has the consequence that the outer channel 16 may have a larger flow cross-section in the region of the outer nozzles 12, so that even in the outer channel 11 to the outer nozzles 12 as constant a flow cross-section can be achieved. Thus, this measure ultimately leads to a reduction of the flow resistance in the gas path of the lance. 3

Den Fig. 2 und 3 ist außerdem eine weitere Besonderheit entnehmbar, da dort der Kern 32 von einer inneren Stirnwand 36 axial absteht, welche den Innenkanal 10 im Bereich der Innendüsen 14 axial verschließt. Um die Umlenkung zu den Innendüsen 14 zu verbessern, kann nun ein Übergang 37 vom Kern 32 zur inneren Stirnwand 36 kehlförmig ausgestaltet sein. In der Folge ist es möglich, den Teiler 31 axial kürzer zu bauen. Für den Kern 32 wird beispielsweise eine axiale Länge 38 bevorzugt, die etwa gleich groß ist wie oder sogar kleiner sein kann als ein Öffnungsquerschnitt 39 des Innenkanals 10 im Bereich der Innendüsen 14. Dieser relativ kurze Teiler 31 ermöglicht wiederum eine Aufweitung im Außenkanal 11 und führt dort zu einem reduzierten Strömungswiderstand.The Fig. 2 and 3 In addition, another special feature can be removed, since there the core 32 projects axially from an inner end wall 36, which axially closes the inner duct 10 in the region of the inner nozzles 14. In order to improve the deflection to the inner nozzle 14, a transition 37 from the core 32 to the inner end wall 36 may now be configured kehlförmig. As a result, it is possible to build the divider 31 axially shorter. For the core 32, for example, an axial length 38 is preferred, which is about the same size as or may be smaller than an opening cross section 39 of the inner channel 10 in the region of the inner nozzle 14. This relatively short divider 31 in turn allows expansion in the outer channel 11 and leads there to a reduced flow resistance.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Brennkammercombustion chamber
22
Hybridbrennerhybrid burner
33
Lanzelance
44
FlüssigbrennstoffversorgungsleitungLiquid fuel supply line
55
GasbrennstoffversorgungsleitungGas fuel supply line
66
Pumpepump
77
Luftair
88th
Lanzenkopflance head
99
Längsmittelachse von 8Longitudinal central axis of 8
1010
Innenkanalinternal channel
1111
Außenkanalouter channel
1212
Außendüseouter nozzle
1313
AußendüsenkanalOuter nozzle channel
1414
Innendüseinner nozzle
1515
InnendüsenkanalInternal nozzle channel
1616
Innenrohrinner tube
1717
Außenrohrouter tube
1818
Verteilerabschnittmanifold section
1919
DurchgangsöffnungThrough opening
2020
UmfangsöffnungsweiteExtensive opening width
2121
RadialöffnungsweiteRadial opening width
2222
Stegweb
2323
StegwandstärkeWeb wall thickness
2424
äußere Stirnwandouter end wall
2525
Übergangcrossing
2626
Vertiefungdeepening
2727
Längsmittelachse von 12 und 14Longitudinal central axis of 12 and 14
2828
Tiefe von 26Depth of 26
2929
Abstand zwischen 12 und 14Distance between 12 and 14
3030
Einlaufzoneinlet zone
3131
Teilerdivider
3232
Kerncore
3333
Trennwandpartition wall
3434
Abstand zwischen 32 und 16Distance between 32 and 16
3535
Kerndurchmessercore diameter
3636
innere Stirnwandinner end wall
3737
kehlförmiger Übergangthroat-shaped transition
3838
Kernlängecore length
3939
InnenkanaldurchmesserInterior duct diameter

Claims (12)

  1. Lance for a hybrid burner (2) of a combustor (1) of a gas turbine,
    - having a central inner passage (10) for a liquid fuel,
    - having an outer passage (11), coaxially enclosing the inner passage (10), for a gaseous fuel,
    - having a plurality of radially arranged outer nozzles (12) branching off radially from the outer passage (11),
    - having a plurality of inner nozzles (14) which branch off radially from the inner passage (10) and which each extend coaxially inside one of the outer nozzles (12),
    characterized in that a distributor section (18) is arranged upstream of the outer nozzles (12) in the outer passage (11) and has a plurality of radially arranged, coaxially extending through-openings (19) for the gaseous fuel, these through-openings (19) each having an opening width which is larger in the circumferential direction than in the radial direction.
  2. Lance according to Claim 1, characterized in that the through-openings (19) each extend in the circumferential direction along a segment of an arc of a circle.
  3. Lance according to Claim 1 or 2, characterized in that the through-openings (19) are defined in the circumferential direction by radially and axially extending webs (22), and the opening width (20) of the through-openings (19) in the circumferential direction is at least three or about four to eight times larger than a wall thickness (23) of the webs (22) in the circumferential direction.
  4. Lance according to one of Claims 1 to 3, characterized in that the outer passage (11) is axially closed in the region of the outer nozzles (12) by an outer end wall (24), and, at each outer nozzle (12), an axial recess (26) is formed in the outer end wall (24) on a side remote from the distributor section (18).
  5. Lance according to Claim 4, characterized in that a separate recess (26) is provided for each outer nozzle (12).
  6. Lance according to Claim 5, characterized in that the recess (26) is designed in the shape of an arc of a circle coaxially to the outer nozzle (12).
  7. Lance according to Claim 4, characterized in that a common recess (26) which extends in a closed annular shape in the circumferential direction is provided for all outer nozzles (12).
  8. Lance according to one of Claims 4 to 7, characterized in that the recess (26), relative to a longitudinal centre axis (27) of the respective outer nozzle (12), has a radial depth (28) which is at least twice as large as a radial distance (29) between an inner wall of the outer nozzle (12) and an outer wall of the inner nozzle (14) arranged therein.
  9. Lance according to one of Claims 1 to 8, characterized in that, at each outer nozzle (12), a transition (25) from the outer passage (11) to an outer-nozzle passage (13) formed in the interior of the respective outer nozzle (12) is provided with an inlet zone (30) narrowing in the flow direction.
  10. Lance according to one of Claims 1 to 9, characterized in that a splitter (31) is arranged in the region of the inner nozzles (14) in the inner passage (10), this splitter (31) having a core (32) arranged concentrically to the inner passage (10) and radially and axially extending dividing walls (32) which project radially from said core (32) up to an inner tube (16) defining the inner passage (10) radially on the outside, and in that a distance (34) between the core (32) and the inner tube (16) is at twice as large as a core diameter (35).
  11. Lance according to Claim 10, characterized in that the core (32) projects axially from an inner end wall (36) axially closing the inner passage (10) in the region of the inner nozzles (14), and in that a transition (37) from the core (32) to the inner end wall (36) is designed in the form of a fillet in longitudinal section.
  12. Lance according to Claim 10 or 11, characterized in that an axial length (38) of the core (32) is approximately the same size as or is smaller than an opening cross section (39) of the inner passage (10) in the region of the inner nozzles (14).
EP05775906.0A 2004-08-23 2005-08-18 Hybrid burner lance Active EP1781988B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004041272.3A DE102004041272B4 (en) 2004-08-23 2004-08-23 Hybrid burner lance
PCT/EP2005/054073 WO2006021541A1 (en) 2004-08-23 2005-08-18 Hybrid burner lance

Publications (2)

Publication Number Publication Date
EP1781988A1 EP1781988A1 (en) 2007-05-09
EP1781988B1 true EP1781988B1 (en) 2015-09-30

Family

ID=35045074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05775906.0A Active EP1781988B1 (en) 2004-08-23 2005-08-18 Hybrid burner lance

Country Status (8)

Country Link
US (1) US7963764B2 (en)
EP (1) EP1781988B1 (en)
CA (1) CA2577770C (en)
DE (1) DE102004041272B4 (en)
ES (1) ES2556165T3 (en)
MX (1) MX2007001887A (en)
TW (1) TWI366648B (en)
WO (1) WO2006021541A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2400247T3 (en) 2008-12-19 2013-04-08 Alstom Technology Ltd Burner of a gas turbine that has a special lance configuration
US20100192582A1 (en) * 2009-02-04 2010-08-05 Robert Bland Combustor nozzle
EP2388520B1 (en) * 2010-05-20 2016-10-26 General Electric Technology GmbH Lance of a gas turbine burner
US8671691B2 (en) * 2010-05-26 2014-03-18 General Electric Company Hybrid prefilming airblast, prevaporizing, lean-premixing dual-fuel nozzle for gas turbine combustor
US20110314827A1 (en) * 2010-06-24 2011-12-29 General Electric Company Fuel nozzle assembly
EP2789915A1 (en) * 2013-04-10 2014-10-15 Alstom Technology Ltd Method for operating a combustion chamber and combustion chamber
US10794596B2 (en) * 2013-08-30 2020-10-06 Raytheon Technologies Corporation Dual fuel nozzle with liquid filming atomization for a gas turbine engine
EP3180568B1 (en) 2014-08-14 2019-04-10 Siemens Aktiengesellschaft Multi-functional fuel nozzle with a heat shield
CN106574775B (en) 2014-08-14 2019-10-18 西门子公司 Multifunctional fuel nozzle with dual orifice atomizer
CN106574774A (en) 2014-08-14 2017-04-19 西门子公司 Multi-functional fuel nozzle with an atomizer array
EP3073097B1 (en) * 2015-03-27 2019-06-12 Ansaldo Energia Switzerland AG Integrated dual fuel delivery system
US10571128B2 (en) * 2015-06-30 2020-02-25 Ansaldo Energia Ip Uk Limited Gas turbine fuel components
USD849226S1 (en) * 2017-05-24 2019-05-21 Hamworthy Combustion Engineering Limited Atomizer
EP3657072B1 (en) * 2018-11-23 2021-08-11 Ansaldo Energia Switzerland AG Lance for a burner and method for retrofitting a lance
DE112021002636T5 (en) * 2020-06-26 2023-02-16 Mitsubishi Heavy Industries, Ltd. FUEL INJECTOR, COMBUSTOR WITH FUEL INJECTOR, AND GAS TURBINE WITH COMBUSTOR

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1512132A (en) * 1923-04-13 1924-10-21 Severance Mfg Company S Gas and oil burner
US1950044A (en) * 1931-05-18 1934-03-06 Surface Combustion Corp Method of and apparatus for producing stable luminous flame combustion
US3061001A (en) * 1958-09-12 1962-10-30 Zink Co John Gaseous fuel burner
DE1264433B (en) * 1965-07-30 1968-03-28 Basf Ag Device for the production of acetylene-containing gases
US3468487A (en) * 1966-02-28 1969-09-23 Us Navy Variable thrust injector
DE2710618C2 (en) * 1977-03-11 1982-11-11 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Fuel injector for gas turbine engines
JPS58198612A (en) * 1982-05-13 1983-11-18 Mitsubishi Heavy Ind Ltd Fuel atomizer
US4678429A (en) * 1985-09-12 1987-07-07 Zecman Kenneth P Die casting torch
US4846670A (en) * 1986-02-11 1989-07-11 Pearl Ii David S Combustion device
US5271562A (en) * 1993-03-01 1993-12-21 The Babcock & Wilcox Company Dual fluid atomizer exit orifice shield gas supply housing
USRE39425E1 (en) * 1993-07-15 2006-12-12 Maxon Corporation Oxygen-fuel burner with integral staged oxygen supply
DE4326802A1 (en) * 1993-08-10 1995-02-16 Abb Management Ag Fuel lance for liquid and / or gaseous fuels and process for their operation
US5680766A (en) * 1996-01-02 1997-10-28 General Electric Company Dual fuel mixer for gas turbine combustor
US5836163A (en) 1996-11-13 1998-11-17 Solar Turbines Incorporated Liquid pilot fuel injection method and apparatus for a gas turbine engine dual fuel injector
DE19741752A1 (en) * 1997-09-22 1999-03-25 Basf Ag Injector and its use for spraying catalyst beds
DE19905996A1 (en) * 1999-02-15 2000-08-17 Abb Alstom Power Ch Ag Fuel lance for injecting liquid and / or gaseous fuels into a combustion chamber
DE19905995A1 (en) * 1999-02-15 2000-08-17 Asea Brown Boveri Injection lance or nozzle for liquid and gaseous fuel in combustion chamber is part of secondary or tertiary burner around which flows hot gas jet in main flow direction
US6311473B1 (en) * 1999-03-25 2001-11-06 Parker-Hannifin Corporation Stable pre-mixer for lean burn composition
US6402996B1 (en) * 2000-10-31 2002-06-11 Eastman Kodak Company Method of manufacturing a microlens and a microlens array
US7267809B2 (en) * 2000-11-27 2007-09-11 The Linde Group Burner and method for the chemical reaction of two gas streams
US6910431B2 (en) * 2002-12-30 2005-06-28 The Boc Group, Inc. Burner-lance and combustion method for heating surfaces susceptible to oxidation or reduction

Also Published As

Publication number Publication date
DE102004041272B4 (en) 2017-07-13
CA2577770A1 (en) 2006-03-02
WO2006021541A1 (en) 2006-03-02
TWI366648B (en) 2012-06-21
MX2007001887A (en) 2008-10-29
CA2577770C (en) 2013-03-12
TW200617323A (en) 2006-06-01
ES2556165T3 (en) 2016-01-13
EP1781988A1 (en) 2007-05-09
US20070207425A1 (en) 2007-09-06
DE102004041272A1 (en) 2006-03-02
US7963764B2 (en) 2011-06-21

Similar Documents

Publication Publication Date Title
EP1781988B1 (en) Hybrid burner lance
DE102007004864B4 (en) Combustion chamber of a gas turbine and combustion control method for a gas turbine
EP1802915B1 (en) Gas turbine burner
EP2588805B1 (en) Burner
EP1754002B1 (en) Staged premix burner with an injector for liquid fuel
DE102009044136A1 (en) Tubular fuel injectors for secondary fuel nozzles
EP3087323B1 (en) Fuel nozzle, burner having such a fuel nozzle, and gas turbine having such a burner
DE60037850T2 (en) Liquid fuel injector for gas turbine burners
CH707752A2 (en) Premixing system for a gas turbine.
CH708992A2 (en) Fuel injector with premixed pilot nozzle.
EP2470834B1 (en) Burner, in particular for gas turbines
DE102009019978A1 (en) Clean air flow fuel injector
CH701454B1 (en) Burner with a flow conditioner.
DE102009044764A1 (en) Burner housing for combustion of low BTU fuel gases and method of making and using same
EP3004743B1 (en) Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine
CH702737B1 (en) Combustion chamber with two combustion chambers.
EP2232147B1 (en) Burner and method for reducing self-induced flame oscillations
DE102008002934A1 (en) Secondary fuel nozzle arrangement for use in gas-turbine engine, has nozzle section with central passage and passages, and head section with set of inlets in flow-connection with nozzle passages
EP2161502A1 (en) Pre-mix burner for a low calorie and high calorie fuel
DE102009054669A1 (en) Burner for a turbine
CH710503B1 (en) Liquid fuel injector for a gas turbine fuel nozzle.
DE4446611A1 (en) Combustion chamber
EP2601447A2 (en) Gas turbine combustion chamber
EP2470833A2 (en) Swirl blade, burner and gas turbine
EP1855054B1 (en) Method for supplying fuel to a premix burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111230

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150610

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 752643

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005014949

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2556165

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005014949

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005014949

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005014949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

26N No opposition filed

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160818

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005014949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ANSALDO ENERGIA IP UK LIMITED

Effective date: 20170927

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 752643

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180818

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180819

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220825

Year of fee payment: 18

Ref country code: DE

Payment date: 20220819

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005014949

Country of ref document: DE