EP3004743B1 - Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine - Google Patents

Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine Download PDF

Info

Publication number
EP3004743B1
EP3004743B1 EP14780788.7A EP14780788A EP3004743B1 EP 3004743 B1 EP3004743 B1 EP 3004743B1 EP 14780788 A EP14780788 A EP 14780788A EP 3004743 B1 EP3004743 B1 EP 3004743B1
Authority
EP
European Patent Office
Prior art keywords
fuel
burner
passage
combustion chamber
fuel passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14780788.7A
Other languages
German (de)
French (fr)
Other versions
EP3004743A1 (en
Inventor
Berthold Köstlin
Bernd Prade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14780788.7A priority Critical patent/EP3004743B1/en
Publication of EP3004743A1 publication Critical patent/EP3004743A1/en
Application granted granted Critical
Publication of EP3004743B1 publication Critical patent/EP3004743B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/70Baffles or like flow-disturbing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06043Burner staging, i.e. radially stratified flame core burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00008Burner assemblies with diffusion and premix modes, i.e. dual mode burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means

Definitions

  • the invention relates to a burner for a gas turbine, which is designed in particular for the combustion of low calorific fuel gas.
  • the invention also relates to a method for reducing thermoacoustic oscillations in a gas turbine, wherein the burner is suitable for carrying out the method.
  • thermoacoustic oscillations which occur in particular in the combustion chamber of a gas turbine, can lead to considerable damage to the components during operation of the gas turbine and force shutdown of the system.
  • the invention also relates to a method for reducing thermoacoustic oscillations in a gas turbine comprising at least one burner, in which a delay time profile of a fuel flow flowing in a first fuel passage of the burner is adapted to reduce the thermoacoustic oscillations.
  • the generic burner comprises at least the above-mentioned first fuel passage which can be acted upon with fuel gas and an air passage which can be acted upon by compressor air to provide the air required for combustion.
  • the two passages each have a main outlet opening into the combustion chamber of the gas turbine.
  • the fuel passage may be formed as Vormischpassage or diffusion passage.
  • the fuel passage for the provision of synthesis gas is formed - in particular in the form of a Ringraumpassage.
  • the burner may include further passages. For example, to initiate with the burner a variety of different fuels for combustion in the combustion chamber.
  • the individual passages can also be connected to a plurality of feed systems, depending on the operating state of the burner to pressurize the passages with different fuels or flushing fluids.
  • the invention relates to a generic burner which comprises at least one connection channel arranged upstream of the main outlet openings and fluidically connecting the air passageway and the fuel passageway.
  • Burners are known from the prior art, which comprises a number of fuel nozzles, which open into the first fuel passage and are arranged offset in the flow direction to each other to broaden a delay time profile of flowing in a first fuel passage fuel gas stream.
  • a burner having the features of the preamble of claim 1 and a method having the features of the preamble of claim 16 are known from WO 2009/068425 known.
  • the invention has for its object to provide a burner and a method of the type mentioned, with which the reduction of thermoacoustic oscillations in a combustion chamber of a gas turbine is made possible in an alternative manner.
  • the burner is designed such that in at least a first operating state of the burner when acted upon air passage with compressor air and acted upon fuel passage with fuel gas part of the fuel gas flowing in the fuel passage via at least one connecting channel flows into the air passage.
  • the branched-off part of the fuel stream can be introduced into the interior of the combustion chamber for combustion through the main exit opening of the air passage.
  • a part of the fuel gas remaining in the fuel passage can be introduced into the interior of the combustion chamber through the main exit opening of the fuel passage.
  • the amount and radial fuel distribution of the branched portion of the fuel stream is such that the feedback of the heat release variations with the pressure variations in the combustion chamber is reduced.
  • the invention is based on the recognition that the radial distribution of the fuel-in particular in the case of a synthesis gas air mixture-plays a decisive role for the acoustic stability of the burner.
  • the burner according to the invention allows a better acoustic stability, so that an extended operating range of the burner is possible in terms of load and fuel quality.
  • the radial fuel / air distribution of a fuel stream flowing in a fuel passage may be adjusted without substantially altering basic fuel design aerodynamic parameters such as swirl number, pressure drop, and major passage dimensions.
  • the invention allows Also, with different fuel compositions to adapt the burner to the thermoacoustic behavior of the combustion chamber, without requiring an adjustment of the entire fuel passage would be required.
  • the burner is designed such that in at least a first operating state of the burner when acted upon air passage with compressor air and acted upon fuel passage with fuel gas applied to the junction of the fuel connecting channels static pressure from the side of the fuel passage is greater than from the side of the air passage.
  • the burner is designed such that the fuel stream, after it already flows in the fuel passage, is split. There is thus a division of the fuel supply system, but the division / diversion takes place after introduction of the fuel into the fuel passage, but upstream of the main outlet.
  • the burner is designed such that the feedback of the heat release fluctuations with the pressure fluctuations in the combustion chamber is reduced by the division / diversion of the fuel flow flowing in the first fuel passage.
  • the flame front changes in front of the burner. This can be adjusted by means of the amount and the radial distribution of the branched portion of the fuel stream such that the feedback of the heat release fluctuations is reduced with the pressure fluctuations in the combustion chamber.
  • the radial fuel distribution of the branched portion of the fuel flow extends substantially the thickness of one between the two Emerging streams occurring shear layer out into the air passage.
  • the invention thus does not relate to a manipulation of the thickness of the shear layer between the compressor air flow leaving the air passage and the fuel flow leaving the main exit opening of the fuel passage. Rather, to reduce feedback of the heat release variations with the pressure variations in the combustion chamber, the invention proceeds in a different way in that the amount and radial fuel distribution of a branched portion of the fuel gas flowing in the fuel passage is such that change of the flame front (with a change the delay time profile of the fuel flow is accompanied) the reduction of a feedback of the heat release fluctuations with the pressure fluctuations in the combustion chamber is effected.
  • the position of the connecting channels and their diameter can be selected correspondingly in the two passages.
  • the burner for producing suitable pressure conditions on the connecting channels comprises flow-guiding means in the fuel passage and / or adjusting element in the region of the connecting channels, which suitably determine the static pressure in the inlet region of the connecting channels.
  • the flow-guiding means and / or adjusting elements can be changed or exchanged in order to adapt the division / branching off of the fuel flow, for example in their position or form.
  • the position of the connection channels in the passages can be freely selected over a wide range.
  • the connecting channels are arranged downstream of the feed lines used in the first operating state of air or supply of the fuel gas and upstream of the two main outlet openings of the two passages, so that fuel gas can be diverted into the air flow.
  • the main outlet opening may be formed, for example, as an annular opening at the outlet of the passage.
  • the main exit opening may consist of a multiplicity of holes in a metal sheet (covering the exit opening of the burner passage). The main exit opening is arranged at the combustion chamber end of the passage.
  • connection channels are arranged along a wall defining the fuel passage, for example in a circumferential sequence, so that their inlet openings are arranged in a circumferential row in the fuel passage and the channels extend through the wall to the air passage.
  • the pressure conditions in the burner can be designed such that the connecting channels also counteract a flashback in the burner when the supply of fuel to the first fuel passage is switched off.
  • the burner is designed such that the caused by the branch common delay profile of the remaining part and the branched portion of the fuel flow is adapted to a thermoacoustic behavior of the combustion chamber, so that the feedback of the heat release fluctuations with the pressure fluctuations in the combustion chamber is reduced.
  • the flame front changes in front of the burner. It can thus set a different common delay profile of the diverted and the remaining part of the fuel flow.
  • the delay time is the period of time that the fuel from the Outlet from the burner to the flame front needed. Since the fuel has different delay times in the fuel stream (depending on the exit location at the burner outlet and depending on the position of the flame in front of the exit location), a delay profile of the fuel flow occurs in the respective operating state.
  • An undesirable feedback of heat release fluctuations and pressure fluctuations in the combustion chamber can be reduced by means of the division and diversion of the fuel flow, since depending on the amount and radial fuel profile of the branched portion of the fuel flow, the common delay profile can change. If, for example, the proportion of the profile whose delay time substantially corresponds to the frequency of a preferred combustion chamber pressure fluctuation is reduced, this reduces a feedback of heat release fluctuations and pressure fluctuations in the combustion chamber.
  • the inventive design of the burner is thus such that at least in the first operating state, a dampening or not alsschaukelnd acting for the thermoacoustic behavior of the combustion chamber delay profile of the fuel flow is effected.
  • thermoacoustic vibration behavior is meant that gas turbine combustors depending on the power range preferably at certain frequencies / frequency bands for rocking thermoacoustic oscillations tend (characteristic buzzing behavior). These frequencies are also referred to as preferential combustion chamber pressure fluctuations. If the delay profile of a burner is adjusted accordingly-in particular widened-this can counteract a rocking of the oscillations in the region of at least one such characteristic hum / frequency band. In this sense, the delay profile can be adapted to the thermoacoustic behavior of the combustion chamber or tune it and counteract a buildup of thermoacoustic oscillations in the combustion chamber.
  • the delay profile can be, for example, by means of the proportion and / or the penetration depth (radial profile) and / or the distribution of the branched fuel flow to the individual connection channels influence.
  • the burner comprises a correspondingly formed branch which, at least in the first operating state, effects a delay profile of the fuel flow that damps the thermoacoustic behavior of the combustion chamber.
  • An advantageous embodiment of the invention can provide that the first fuel passage is designed at least for an application of low-calorie fuel gas.
  • Standard fuel is usually a normal and / or high calorific fuel whose calorific value is well above 30 MJ / kg.
  • normal natural gas typically has a calorific value of between 40 to 50 MJ / kg.
  • the combustible component of standard fuels for gas turbines consists essentially of hydrocarbons.
  • the combustible constituents of the synthesis gas are essentially CO and H2. Due to the low calorific value consequently high volume flows of fuel gas must be supplied through the burner of the combustion chamber. This has the consequence that one or more separate fuel passages must be made available for the combustion of low calorific fuels - such as synthesis gas. Because of the high reactivity of synthesis gases compared to conventional fuels such as natural gas and oil, there is a significantly higher risk of flashback.
  • the present invention can be applied to this fuel passage for low calorific fuels in a particularly advantageous manner.
  • the fuel passage may be configured for a diffusion operation or a premix operation for introducing the low-calorie fuel gas into the combustion chamber.
  • the low-calorie fuel gas- which may be synthesis gas in particular-is premixed with air to form a low-calorie fuel-air mixture and conversion of the low-calorie fuel-air mixture in the fuel passage is avoided, so that the fuel-air Mixture is first converted into a hot gas in the combustion chamber.
  • the invention preferably starts from a synthesis gas passage for a diffusion operation in which a swirl is imparted to the fuel flow by means of swirl generators by means of blades.
  • the synthesis gas passage is preferably designed as a ring chamber passage and may be formed tapering downstream tapered.
  • the burner can be arranged essentially rotationally symmetrically about a longitudinal axis, so that a main flow direction of the fluid flowing in the passages of the burner essentially points in the direction of the longitudinal axis (in particular in the passages arranged radially closer to the longitudinal axis) or at least one component in the direction of Longitudinal axis has (in particular in the radially outer passages, which can run upstream substantially first diagonal to the longitudinal axis and downstream approach a parallel course of the longitudinal axis).
  • the air passage and the fuel passage may be arranged coaxially with one another at least in sections, in particular the air passage coaxially around the fuel passage.
  • the main outlet openings of the air passage and the fuel passage are arranged such that the coaxially surrounding passage with respect to a plane perpendicular to the longitudinal axis projection plane is arranged around the other main outlet opening around.
  • connection channels are formed as holes in the wall.
  • At least one adjusting element is arranged in the region of the connecting channels, so that the proportion and / or the radial inflow and / or the distribution on the connecting channels of the fuel passage from the fuel passage into the air passage branched fuel gas by means of at least one adjustment and / or is adjustable.
  • the adjusting element can influence the static pressure in the region of the inlet opening of at least one connecting channel, so that a suitable position of the inlet opening is not fixed exclusively by the pressure conditions which occur in the fuel passage in the first operating state.
  • the adjustment can be easily adapted to a desired delay profile (for example, by exchange or change its shape) as the location or size of the at least one connecting channel.
  • a flow guiding means is arranged in the fuel gas passage, which increases the static pressure in the region of the inlet openings of the connecting channel when the fuel passage with fuel gas.
  • the flow-guiding means may also be considered advantageous for the flow-guiding means to comprise a substantially annularly formed plate, wherein the plate is arranged circumferentially on an inner side of a wall bounding the fuel passage.
  • sheet refers to the shape but is not meant to be limiting in material choice within the scope of this invention.
  • This embodiment of the Strömungsleitstoffs has a particularly simple structure and thus low production costs.
  • the sheet can inclined against a main flow direction in the fuel passage extend into the interior of the fuel passage. For example, it may project beyond at least a portion of the inlet openings of the connection channels.
  • the substantially annular plate between the downstream of the inlet openings of the connecting channels areas each having a recess so that the sheet, for example, downstream of the inlet openings comprises a triangular or trapezoidal pinnacle.
  • the adjustment element may comprise a number of flow-guiding means which are designed as triangular or trapezoidal sheets.
  • the triangular sheets may be arranged on the inside of the fuel passage analogous to the above-mentioned substantially annular sheet.
  • the individual sheets have the advantage that downstream of the regions between the inlet openings, no unfavorably increasing the pressure loss increasing areas of a Strömungsleitschs are arranged.
  • An alternative, advantageous embodiment of the Strömungsleitstoffs may comprise at least one cap-shaped element having an input opening, which is arranged with the inlet opening in the direction of the inlet opening of a connecting channel downstream of the inlet opening on an inner side of the fuel passage defining wall.
  • the cap-shaped element may substantially have the shape of a quarter-hollow sphere. This can project beyond the inlet opening at least partially.
  • At least one adjusting element is tubular, wherein the tubular adjusting element is arranged in particular at least partially in each case one of the connecting channels.
  • the at least one tubular adjusting elements may be partially inserted into a respective connecting channel and project into the air passage, so that the radial position of the junction of the diverted partial flow flowing through the respective connecting channel can be accurately positioned.
  • how far the tubular adjusting element protrudes into the air passage can also be chosen differently from a tubular adjusting element to a tubular adjusting element.
  • the at least one tubular adjusting element can for example be arranged completely in each case in a connecting channel.
  • the wall thicknesses of the at least one tubular adjusting element can be selected accordingly.
  • the at least one tubular adjusting element can be fastened in the extension of a connecting channel on the inside of the air passage.
  • the at least one tubular adjusting element additionally or alternatively to the mentioned embodiments protrude into the fuel passage and include, for example, at its projecting into the fuel passage end an inlet shell.
  • the inlet shell may be formed, for example, analogous to the triangular plates or the quarter Holhkugel.
  • the aforementioned embodiments of the tubular adjusting element can for example be combined with each other or used individually. If a plurality of such tubular adjustment elements are provided, they may all be of the same design or differ from one another, for example in accordance with the exemplary embodiments mentioned and their combinations, depending on the desired radial inflow profile of the branched fuel stream.
  • Another object of the invention is to provide a method of the type mentioned, with which the reduction of thermo-acoustic vibrations in a combustion chamber of a gas turbine is made possible in an alternative manner.
  • the object is achieved in a method of the type mentioned fact that for adjusting the delay time profile of a flowing fuel flow in a first fuel passage, a remaining portion of the fuel stream is introduced through at least one main exit opening of the first passage in the combustion chamber and a branched-off portion of the fuel stream downstream its introduction into the fuel passage and upstream of the main outlet opening via at least one connecting channel is introduced into at least a second passage, wherein the branched portion of the fuel stream is introduced separately from the remaining fuel flow into the combustion chamber, so that the partial streams after their exit from the burner with different delay times or Verzugs devisprofilen be burned in the combustion chamber, wherein for adjusting the delay time profile of the proportion of the branched partial flow and / or its inflow and / or r its division is adjusted to the at least one connecting channel such that the feedback of the heat release fluctuations is reduced with the pressure fluctuations in the combustion chamber.
  • the remaining fuel flow and the branched off part of the fuel flow are introduced into the combustion chamber essentially coaxially with one another.
  • the proportion and / or the inflow profile and / or its division onto the at least one connecting channel of the branched off part of the fuel stream is set before the burner is put into operation and / or during the operation of the burner.
  • the setting of the proportion and / or the penetration depth and / or the division takes place on the at least one connecting channel by adjusting at least one arranged in the fuel passage Strömungsleitstoffs and / or arranged in the region of the connecting channels adjustment.
  • the adaptation of the at least one Strömungsleitschs and / or adjusting element can be done by replacing and / or adjusting its shape and / or position.
  • Another object of the invention is to provide a combustion chamber with at least one burner and a gas turbine with at least one such combustion chamber, with which the suppression of thermoacoustic vibrations in one Combustion chamber of a gas turbine is made possible in an alternative manner.
  • FIG. 1 shows a schematic sectional view of a gas turbine 1 according to the prior art.
  • the gas turbine 1 has inside a rotatably mounted about a rotation axis 2 rotor 3 with a shaft 4, which is also referred to as a turbine runner.
  • a turbine runner which is also referred to as a turbine runner.
  • the combustion chambers 10 each include a burner assembly 11 and a housing 12, which is lined with a heat shield 20 for protection against hot gases.
  • the combustion system 9 communicates with an annular hot gas duct, for example.
  • a plurality of successively connected turbine stages form the turbine 14.
  • Each turbine stage is formed of blade rings. Viewed in the flow direction of a working medium follows in the hot runner formed by a number 17 vanes row formed from blades 18 row.
  • the guide vanes 17 are fastened to an inner housing of a stator 19, whereas the moving blades 18 of a row are attached to the rotor 3, for example by means of a turbine disk.
  • Coupled to the rotor 3 is, for example, a generator (not shown).
  • FIG. 2 schematically shows a detail of a burner 24 according to the invention for a gas turbine according to a first embodiment in a longitudinal section.
  • the burner 24 comprises an air passage 26 which can be charged with compressor air and is designed as an annular channel. a fuel passage 28 configured for synthesis gas charging; and a secondary delivery unit 30 that may include a pilot burner (not explicitly shown) and other passages (not explicitly shown) for introducing a fluid.
  • the burner has a substantially rotationally symmetrical structure about a longitudinal axis 32.
  • the air passage 26 coaxially includes the synthesis gas-designed fuel passage 28, which in turn coaxially surrounds the secondary feed unit 30.
  • Both the secondary feed unit 30 and the two passages 26 and 28 each have a main outlet opening 36, 38, 40 opening into the combustion chamber 34.
  • the main outlet openings 36 are arranged around the main outlet opening 38 with respect to the projection plane 50 running perpendicular to the longitudinal axis 32.
  • Compressor air entering the air passage 26 is swirled by a swirler 42 (Swirler) disposed in the air passage
  • the blades of the swirler extend from a passage defining inner wall 44a to a passage-limiting outer wall 46, with the vanes annularly disposed about the circumference of the wall
  • the air flow exits the air passage 26 through the main exit port 36.
  • a synthesis gas stream 48 For introducing synthesis gas into the combustion chamber 34, a synthesis gas stream 48 (FIG.
  • connection channels 54 are in the illustrated embodiment, disposed in a region in which the air passage 26 and the fuel passage 28 along a substantially cylinder jacket wall 56 adjacent to each other, wherein the connecting channels 54 are formed as holes in the cylinder jacket-shaped wall 54.
  • the burner 24 is designed such that in at least a first operating state of the burner with acted upon air passage 26 with compressor air and acted upon fuel passage 28 with fuel gas part of the fuel gas flowing in the fuel passage via the connection channels 54 flows into the air passage 26 and through to its combustion the main outlet opening 36 of the air passage into the interior of the combustion chamber 34 can be introduced.
  • the embodiment of the branching is such that the common delay profile of the fuel flow prevents or reduces rocking of thermoacoustic oscillations occurring in the respective combustion chamber 34 of the gas turbine as a function of the power range at characteristic frequency bands, at least in one frequency band. Thus, feedback of heat release variations and pressure fluctuations in the combustion chamber is reduced.
  • the delay time profile is adapted by means of an adjusting element 60 to the thermoacoustic behavior of the combustion chamber 34.
  • the adjusting element 60 in the first embodiment consists of a flow guide 62, which is arranged downstream of the fuel passage side inlet openings 64 of the connecting channels 54 in the fuel passage 28 and increases the static pressure in the region of the inlet openings 64 of the connecting channels 54 when the fuel passage 28 is exposed to fuel gas.
  • the flow guide 62 has the shape of a substantially annular plate 66. This is circumferentially on the inside 68 of the fuel passage 28 bounding wall 56th disposed and extends against a main flow direction 70 in the fuel passage 28 inclined into the interior of the fuel passage.
  • the sheet 66 protrudes while maintaining a distance over at least a portion of the inlet openings 64.
  • the proportion and / or the radial inflow and / or the distribution on the individual connection channels of the fuel passage 28 set in the air passage 26 branched fuel gas by means of at least one adjusting element 60.
  • the adjusting element 60 may consist of a number of sheets, which are each arranged downstream of the inlet openings 64. These can, for example, as in FIG. 3 represented, the shape of triangular sheets 74 which are bent over the inlet openings. For the sake of clarity is in the FIG. 3 only a single such sheet 74 is shown.
  • the adjusting element 60 may consist of a series of cap-shaped elements 84, each comprising an inlet opening 86 and arranged with this in the direction of the inlet opening 64 of a connecting channel 54 downstream of the inlet opening 64 on an inner side 68 of a wall 56 delimiting the fuel passage 28 are and preferably at least partially project beyond the inlet opening 64.
  • the cap-shaped element 84 substantially the Shape of a quarter-hollow sphere on. In the FIG. 4 is also the sake of clarity, only such a quarter-hollow sphere shown.
  • FIGS. 2 to 4 illustrated burner 24 according to the invention are suitable for carrying out the method according to the invention.
  • FIG. 3 for adjusting the delay time profile of a fuel gas stream 78 flowing in a fuel passage 28 a remaining portion 80 of the fuel stream is introduced into the combustion chamber 34 through at least one main exit port 38 of the fuel passage 28.
  • a diverted portion 82 of the fuel stream is introduced downstream of its introduction into the fuel passage and upstream of the main outlet openings 36 and 38, via the connecting channels 54 in the air passage 26.
  • the branched-off part 82 of the fuel stream is introduced separately from the remaining fuel stream 80 into the combustion chamber 34, so that the partial streams are burnt after their exit from the burner 24 with different delay times or delay profiles in the combustion chamber 34, wherein the burner 24 is designed such that the common delay profile of the fuel streams 82 and 80 on the proportion of the branched partial stream 82 and / or its inflow and / or its distribution to the at least one connecting channel 54 is tuned to a thermoacoustic behavior of the combustion chamber 34, so that a feedback of heat release fluctuations and Pressure fluctuations in the combustion chamber is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Description

Die Erfindung betrifft einen Brenner für eine Gasturbine, der insbesondere zur Verbrennung von niederkalorischem Brennstoffgas ausgelegt ist. Die Erfindung betrifft auch ein Verfahren zur Reduzierung von thermoakustischen Schwingungen in einer Gasturbine, wobei der Brenner zur Durchführung des Verfahrens geeignet ist.The invention relates to a burner for a gas turbine, which is designed in particular for the combustion of low calorific fuel gas. The invention also relates to a method for reducing thermoacoustic oscillations in a gas turbine, wherein the burner is suitable for carrying out the method.

In einer Brennkammer kann es zu einer Wechselwirkung von akustischen Schwingungen (Druckschwankungen) und Schwankungen in der Wärmefreisetzung kommen, welche sich gegenseitig aufschaukeln können. Derartige thermoakustische Schwingungen, die insbesondere in der Brennkammer einer Gasturbine auftreten, können beim Betrieb der Gasturbine zu erheblichen Schäden an den Bauteilen führen und eine Abschaltung der Anlage erzwingen.In a combustion chamber, there may be an interaction of acoustic vibrations (pressure fluctuations) and fluctuations in the heat release, which can swell each other. Such thermoacoustic oscillations, which occur in particular in the combustion chamber of a gas turbine, can lead to considerable damage to the components during operation of the gas turbine and force shutdown of the system.

Die Erfindung betrifft auch ein Verfahren zur Reduzierung von thermoakustischen Schwingungen in einer mindestens einen Brenner umfassenden Gasturbine, bei welchem zur Reduzierung der thermoakustischen Schwingungen ein Verzugszeitenprofil eines in einer ersten Brennstoffpassage des Brenners strömenden Brennstoffstroms angepasst wird.The invention also relates to a method for reducing thermoacoustic oscillations in a gas turbine comprising at least one burner, in which a delay time profile of a fuel flow flowing in a first fuel passage of the burner is adapted to reduce the thermoacoustic oscillations.

Der gattungsgemäße Brenner umfasst zur Bereitstellung eines in der Brennkammer der Gasturbine zu verbrennenden Brennstoffgases mindestens die oben genannte erste, mit Brennstoffgas beaufschlagbare Brennstoffpassage sowie zur Bereitstellung der zur Verbrennung benötigten Luft eine mit Verdichterluft beaufschlagbare Luftpassage. Die beiden Passagen weisen jeweils eine in die Brennkammer der Gasturbine mündende Hauptaustrittsöffnung auf. Die Brennstoffpassage kann als Vormischpassage oder Diffusionspassage ausgebildet sein. Hierzu ist die Brennstoffpassage an mindestens eine Zufuhr für das Brennstoffgas angeschlossen. Vorzugsweise ist die Brennstoffpassage zur Bereitstellung von Synthesegas ausgebildet - insbesondere in der Form einer Ringraumpassage. Der Brenner kann weitere Passagen umfassen. Beispielsweise um mit dem Brenner eine Vielzahl an unterschiedlichen Brennstoffen zur Verbrennung in die Brennkammer einzuleiten. Die einzelnen Passagen können auch an mehrere Zuführsysteme angeschlossen sein, um je nach Betriebszustand des Brenners die Passagen mit unterschiedlichen Brennstoffen oder Spülfluiden zu beaufschlagen.To provide a fuel gas to be combusted in the combustion chamber of the gas turbine, the generic burner comprises at least the above-mentioned first fuel passage which can be acted upon with fuel gas and an air passage which can be acted upon by compressor air to provide the air required for combustion. The two passages each have a main outlet opening into the combustion chamber of the gas turbine. The fuel passage may be formed as Vormischpassage or diffusion passage. For this purpose, the fuel passage to at least one supply connected for the fuel gas. Preferably, the fuel passage for the provision of synthesis gas is formed - in particular in the form of a Ringraumpassage. The burner may include further passages. For example, to initiate with the burner a variety of different fuels for combustion in the combustion chamber. The individual passages can also be connected to a plurality of feed systems, depending on the operating state of the burner to pressurize the passages with different fuels or flushing fluids.

Damit derartige Brenner gefahrlos auch Betriebszustände einnehmen können, bei denen die Brennstoffzufuhr zur oben genannten Brennstoffpassage abgestellt ist (um eine andere Passage mit einem anderen Brennstoff zu beaufschlagen), ist es aus dem Stand der Technik bekannt, derartige Brenner mit Spülluftkanälen auszustatten, um einen Flammenrückschlag in die Brennstoffpassage hinein zu vermeiden. Bei den bekannten Brennern wird durch diese Spülluftkanäle bei abgestellter Brennstoffzufuhr Verdichterluft aus der Luftpassage in die Brennstoffpassage eingeleitet. Über die Hauptaustrittsöffnung in die Passage eindringende Brennstoffgase werden bei diesen bekannten Brennern durch die Verdichterluft aus der Passage heraus gespült. Dies vermeidet einen Flammenrückschlag in den Brenner.In order for such burners to safely assume operating conditions in which the fuel supply to the above-mentioned fuel passage is turned off (to apply another passage to another fuel), it is known in the art to provide such burners with purging air passages to provide flashback into the fuel passage to avoid. In the known burners, compressor air is introduced from the air passage into the fuel passage through these purge air channels when the fuel supply is cut off. Fuel gases entering the passage via the main outlet opening are flushed out of the passage by the compressor air in these known burners. This avoids a flashback in the burner.

Die Erfindung bezieht sich auf einen gattungsgemäßen Brenner, der mindestens einen stromauf der Hauptaustrittsöffnungen angeordneten Verbindungskanal umfasst, der die Luftpassage und die Brennstoffpassage fluidisch miteinander verbindet.The invention relates to a generic burner which comprises at least one connection channel arranged upstream of the main outlet openings and fluidically connecting the air passageway and the fuel passageway.

Aus dem Stand der Technik sind Brenner bekannt, die zur Verbreiterung eines Verzugszeitenprofils eines in einer ersten Brennstoffpassage strömenden Brennstoffgasstroms eine Anzahl von Brennstoffdüsen umfasst, die in die erste Brennstoffpassage einmünden und in Strömungsrichtung versetzt zueinander angeordnet sind. Ein Brenner mit den Merkmalen des Oberbegriffs des Anspruchs 1 sowie ein Verfahren mit den Merkmalen des Oberbegriffs des Anspruchs 16 sind aus dem WO 2009/068425 bekannt.Burners are known from the prior art, which comprises a number of fuel nozzles, which open into the first fuel passage and are arranged offset in the flow direction to each other to broaden a delay time profile of flowing in a first fuel passage fuel gas stream. A burner having the features of the preamble of claim 1 and a method having the features of the preamble of claim 16 are known from WO 2009/068425 known.

Der Erfindung liegt die Aufgabe zugrunde, einen Brenner und ein Verfahren der eingangs genannten Art anzugeben, mit welchem die Reduzierung von thermoakustischen Schwingungen in einer Brennkammer einer Gasturbine in einer alternativen Art und Weise ermöglicht wird. Der Brenner ist derart ausgebildet, dass in mindestens einem ersten Betriebszustand des Brenners bei beaufschlagter Luftpassage mit Verdichterluft und bei beaufschlagter Brennstoffpassage mit Brennstoffgas ein Teil des in der Brennstoffpassage strömenden Brennstoffgases über mindestens einen Verbindungskanal in die Luftpassage strömt. Der abgezweigte Teil des Brennstoffstromes ist zu seiner Verbrennung durch die Hauptaustrittsöffnung der Luftpassage in das Innere der Brennkammer einleitbar. Ein in der Brennstoffpassage verbleibender Teil des Brennstoffgases ist durch die Hauptaustrittsöffnung der Brennstoffpassage in das Innere der Brennkammer einleitbar. Die Menge und die radiale Brennstoffverteilung des abgezweigten Teils des Brennstoffstromes ist derart, dass die Rückkopplung der Wärmefreisetzungsschwankungen mit den Druckschwankungen in der Brennkammer reduziert ist.The invention has for its object to provide a burner and a method of the type mentioned, with which the reduction of thermoacoustic oscillations in a combustion chamber of a gas turbine is made possible in an alternative manner. The burner is designed such that in at least a first operating state of the burner when acted upon air passage with compressor air and acted upon fuel passage with fuel gas part of the fuel gas flowing in the fuel passage via at least one connecting channel flows into the air passage. The branched-off part of the fuel stream can be introduced into the interior of the combustion chamber for combustion through the main exit opening of the air passage. A part of the fuel gas remaining in the fuel passage can be introduced into the interior of the combustion chamber through the main exit opening of the fuel passage. The amount and radial fuel distribution of the branched portion of the fuel stream is such that the feedback of the heat release variations with the pressure variations in the combustion chamber is reduced.

Die Erfindung geht von der Erkenntnis aus, dass die radiale Verteilung des Brennstoffs - insbesondere bei einem Synthesegasluftgemisch - eine ausschlaggebende Rolle für die akustische Stabilität des Brenners spielt. Der erfindungsgemäße Brenner ermöglicht eine bessere akustische Stabilität, so dass ein erweiterter Betriebsbereich des Brenners hinsichtlich Last und Brennstoffqualität ermöglicht ist.The invention is based on the recognition that the radial distribution of the fuel-in particular in the case of a synthesis gas air mixture-plays a decisive role for the acoustic stability of the burner. The burner according to the invention allows a better acoustic stability, so that an extended operating range of the burner is possible in terms of load and fuel quality.

Bei dem erfindungsgemäßen Brenner kann die radiale Brennstoff- / Luftverteilung eines in einer Brennstoffpassage strömenden Brennstoffstromes angepasst werden, ohne dass grundlegende Aerodesignparameter der Brennstoffpassage wie Drallzahl, Druckverlust und Hauptabmessungen der Passage nennenswert geändert werden müssen. Die Erfindung ermöglicht auch, bei unterschiedlichen Brennstoffzusammensetzungen den Brenner an das thermoakustische Verhalten der Brennkammer anzupassen, ohne dass hierzu eine Anpassung der gesamten Brennstoffpassage erforderlich wäre.In the combustor of the present invention, the radial fuel / air distribution of a fuel stream flowing in a fuel passage may be adjusted without substantially altering basic fuel design aerodynamic parameters such as swirl number, pressure drop, and major passage dimensions. The invention allows Also, with different fuel compositions to adapt the burner to the thermoacoustic behavior of the combustion chamber, without requiring an adjustment of the entire fuel passage would be required.

Der Brenner ist derart ausgebildet, dass in mindestens einem ersten Betriebszustand des Brenners bei beaufschlagter Luftpassage mit Verdichterluft und bei beaufschlagter Brennstoffpassage mit Brennstoffgas der an den der Abzweigung des Brennstoffs dienenden Verbindungskanälen anliegende statische Druck von Seiten der Brennstoffpassage größer ist als von Seiten der Luftpassage. Der Brenner ist derart ausgebildet, dass der Brennstoffstrom, nachdem er bereits in der Brennstoffpassage strömt, aufgeteilt wird. Es findet somit keitne Aufteilung im Bereich des Zufuhrsystems des Brennstoffs statt, sondern die Aufteilung/Abzweigung erfolgt nach dem Einbringen des Brennstoffs in die Brennstoffpassage, aber stromauf der Hauptaustrittsöffnung.The burner is designed such that in at least a first operating state of the burner when acted upon air passage with compressor air and acted upon fuel passage with fuel gas applied to the junction of the fuel connecting channels static pressure from the side of the fuel passage is greater than from the side of the air passage. The burner is designed such that the fuel stream, after it already flows in the fuel passage, is split. There is thus a division of the fuel supply system, but the division / diversion takes place after introduction of the fuel into the fuel passage, but upstream of the main outlet.

Erfindungsgemäß ist der Brenner derart ausgebildet, das durch die Aufteilung/Abzweigung des in der ersten Brennstoffpassage strömenden Brennstoffstromes die Rückkopplung der Wärmefreisetzungsschwankungen mit den Druckschwankungen in der Brennkammer reduziert ist.According to the invention, the burner is designed such that the feedback of the heat release fluctuations with the pressure fluctuations in the combustion chamber is reduced by the division / diversion of the fuel flow flowing in the first fuel passage.

Durch die Aufteilung und Abzweigung des in der ersten Brennstoffpassage strömenden Brennstoffstromes verändert sich die Flammenfront vor dem Brenner. Diese kann mittels der Menge und der radialen Verteilung des abgezweigten Teils des Brennstoffstromes derart eingestellt werden, dass die Rückkopplung der Wärmefreisetzungsschwankungen mit den Druckschwankungen in der Brennkammer reduziert ist. Um eine relevante Änderung der Flammenfront zu erreichen, erstreckt sich die radiale Brennstoffverteilung des abgezweigten Teils des Brennstoffstromes im Wesentlichen über die Dicke einer zwischen den austretenden Strömen auftretenden Scherschicht hinaus in die Luftpassage hinein.Due to the division and diversion of the fuel flow flowing in the first fuel passage, the flame front changes in front of the burner. This can be adjusted by means of the amount and the radial distribution of the branched portion of the fuel stream such that the feedback of the heat release fluctuations is reduced with the pressure fluctuations in the combustion chamber. In order to achieve a relevant change in the flame front, the radial fuel distribution of the branched portion of the fuel flow extends substantially the thickness of one between the two Emerging streams occurring shear layer out into the air passage.

Die Erfindung bezieht sich somit nicht auf eine Manipulation der Dicke der Scherschicht zwischen dem aus der Luftpassage austretenden Verdichterluftstrom und dem aus der Hauptaustrittsöffnung der Brennstoffpassage austretenden Brennstoffstromes. Vielmehr geht die Erfindung zur Reduzierung einer Rückkopplung der Wärmefreisetzungsschwankungen mit den Druckschwankungen in der Brennkammer einen anderen Weg, indem die Menge und die radiale Brennstoffverteilung eines abgezweigten Teils des in der Brennstoffpassage strömenden Brennstoffgases derart ist, dass durch eine Änderung der Flammenfront (die mit einer Änderung des Verzugszeitenprofils des Brennstoffstromes einhergeht) die Reduzierung einer Rückkopplung der Wärmefreisetzungsschwankungen mit den Druckschwankungen in der Brennkammer bewirkt ist.The invention thus does not relate to a manipulation of the thickness of the shear layer between the compressor air flow leaving the air passage and the fuel flow leaving the main exit opening of the fuel passage. Rather, to reduce feedback of the heat release variations with the pressure variations in the combustion chamber, the invention proceeds in a different way in that the amount and radial fuel distribution of a branched portion of the fuel gas flowing in the fuel passage is such that change of the flame front (with a change the delay time profile of the fuel flow is accompanied) the reduction of a feedback of the heat release fluctuations with the pressure fluctuations in the combustion chamber is effected.

Um die gewünschte Abzweigung des Teils des Brennstoffstromes zu realisieren, kann die Lage der Verbindungskanäle und ihr Durchmesser entsprechend in den beiden Passagen gewählt sein. Die Erfindung geht allerdings davon aus, dass der Brenner zur Herstellung geeigneter Druckverhältnisse an den Verbindungskanälen Strömungsleitmittel in der Brennstoffpassage und/oder Einstellelement im Bereich der Verbindungkanäle umfasst, die den statischen Druck im Eingangsbereich der Verbindungskanäle geeignet festlegen. Die Strömungsleitmittel und/oder Einstellelemente können zur Anpassung der Aufteilung/Abzweigung des Brennstoffstromes beispielsweise in ihrer Lage oder Form verändert oder ausgetauscht werden. Dadurch ist die Lage der Verbindungskanäle in den Passagen in weiten Bereichen frei wählbar. Die Verbindungskanäle sind dabei stromab der in dem ersten Betriebszustand verwendeten Zuleitungen von Luft bzw. Zuleitung des Brennstoffgases angeordnet und stromauf der beiden Hauptaustrittsöffnungen der beiden Passagen, damit Brennstoffgas in den Luftstrom abgezweigt werden kann.In order to realize the desired branching of the part of the fuel stream, the position of the connecting channels and their diameter can be selected correspondingly in the two passages. However, the invention assumes that the burner for producing suitable pressure conditions on the connecting channels comprises flow-guiding means in the fuel passage and / or adjusting element in the region of the connecting channels, which suitably determine the static pressure in the inlet region of the connecting channels. The flow-guiding means and / or adjusting elements can be changed or exchanged in order to adapt the division / branching off of the fuel flow, for example in their position or form. As a result, the position of the connection channels in the passages can be freely selected over a wide range. The connecting channels are arranged downstream of the feed lines used in the first operating state of air or supply of the fuel gas and upstream of the two main outlet openings of the two passages, so that fuel gas can be diverted into the air flow.

Die Hauptaustrittsöffnung kann beispielsweise als ringförmige Öffnung an der Austrittsmündung der Passage ausgebildet sein. Gemäß einem weiteren Ausführungsbeispiel kann die Hauptaustrittsöffnung aus einer Vielzahl von Löchern in einem (die Austrittsmündung der Brennerpassage abdeckenden) Blech bestehen. Die Hauptaustrittsöffnung ist am brennkammerseitigen Ende der Passage angeordnet.The main outlet opening may be formed, for example, as an annular opening at the outlet of the passage. According to a further embodiment, the main exit opening may consist of a multiplicity of holes in a metal sheet (covering the exit opening of the burner passage). The main exit opening is arranged at the combustion chamber end of the passage.

Die Verbindungskanäle sind entlang einer die Brennstoffpassage begrenzenden Wand angeordnet, beispielsweise in einer umlaufenden Abfolge, so dass ihre Eintrittsöffnungen in einer umlaufenden Reihe in der Brennstoffpassage angeordnet sind und die Kanäle sich durch die Wand hindurch bis zur Luftpassage erstrecken. Bevorzugt können die Druckverhältnisse in dem Brenner derart ausgebildet sein, dass die Verbindungskanäle auch einem Flammenrückschlag in den Brenner bei abgeschalteter Versorgung der Brennstoffzufuhr in die erste Brennstoffpassage entgegenwirken.The connection channels are arranged along a wall defining the fuel passage, for example in a circumferential sequence, so that their inlet openings are arranged in a circumferential row in the fuel passage and the channels extend through the wall to the air passage. Preferably, the pressure conditions in the burner can be designed such that the connecting channels also counteract a flashback in the burner when the supply of fuel to the first fuel passage is switched off.

Vorteilhafte Ausgestaltungen der Erfindung sind in der nachfolgenden Beschreibung und den Unteransprüchen angegeben, deren Merkmale einzeln und in beliebiger Kombination miteinander angewendet werden können.Advantageous embodiments of the invention are set forth in the following description and the dependent claims, the features of which can be used individually and in any combination with each other.

Vorteilhafterweise kann vorgesehen sein, dass der Brenner derart ausgebildet ist, dass das durch die Abzweigung bewirkte gemeinsame Verzugszeitenprofil des verbleibenden Teil und des abgezweigten Teil des Brennstoffstromes an ein thermoakustisches Verhalten der Brennkammer angepasst ist, so dass die Rückkopplung der Wärmefreisetzungsschwankungen mit den Druckschwankungen in der Brennkammer reduziert ist.Advantageously, it can be provided that the burner is designed such that the caused by the branch common delay profile of the remaining part and the branched portion of the fuel flow is adapted to a thermoacoustic behavior of the combustion chamber, so that the feedback of the heat release fluctuations with the pressure fluctuations in the combustion chamber is reduced.

Durch die Aufteilung und Abzweigung des in der ersten Brennstoffpassage strömenden Brennstoffstromes verändert sich die Flammenfront vor dem Brenner. Es kann sich somit ein geändertes gemeinsames Verzugszeitenprofil des abgezweigten und des verbleibenden Teils des Brennstoffstromes einstellen. Dabei ist die Verzugszeit die Zeitspanne, die der Brennstoff vom Austritt aus dem Brenner bis zur Flammenfront benötigt. Da der Brennstoff im Brennstoffstrom unterschiedliche Verzugszeiten aufweist (je nach Austrittsort am Brennerausgang und je nach Lage der Flamme vor dem Austrittsort), stellt sich im jeweiligen Betriebszustand ein Verzugszeitenprofil des Brennstoffstromes ein. Eine unerwünschte Rückkopplung von Wärmefreisetzungsschwankungen und Druckschwankungen in der Brennkammer kann mittels der Aufteilung und Abzweigung des Brennstoffstromes reduziert werden, da je nach Menge und radialem Brennstoffprofil des abgezweigten Teils des Brennstoffstromes sich das gemeinsame Verzugszeitenprofil ändern kann. Wird beispielsweise der Anteil des Profils reduziert, dessen Verzugszeit im Wesentlichen der Frequenz einer Vorzugs-Brennkammerdruckschwankung entspricht, reduziert dies eine Rückkopplung von Wärmefreisetzungsschwankungen und Druckschwankungen in der Brennkammer.Due to the division and diversion of the fuel flow flowing in the first fuel passage, the flame front changes in front of the burner. It can thus set a different common delay profile of the diverted and the remaining part of the fuel flow. The delay time is the period of time that the fuel from the Outlet from the burner to the flame front needed. Since the fuel has different delay times in the fuel stream (depending on the exit location at the burner outlet and depending on the position of the flame in front of the exit location), a delay profile of the fuel flow occurs in the respective operating state. An undesirable feedback of heat release fluctuations and pressure fluctuations in the combustion chamber can be reduced by means of the division and diversion of the fuel flow, since depending on the amount and radial fuel profile of the branched portion of the fuel flow, the common delay profile can change. If, for example, the proportion of the profile whose delay time substantially corresponds to the frequency of a preferred combustion chamber pressure fluctuation is reduced, this reduces a feedback of heat release fluctuations and pressure fluctuations in the combustion chamber.

Die erfindungsgemäße Ausbildung des Brenners ist somit derart, dass mindestens im ersten Betriebszustand ein für das thermoakustische Verhalten der Brennkammer dämpfend bzw. nicht aufschaukelnd wirkendes Verzugszeitenprofil des Brennstoffstromes bewirkt ist.The inventive design of the burner is thus such that at least in the first operating state, a dampening or not aufschaukelnd acting for the thermoacoustic behavior of the combustion chamber delay profile of the fuel flow is effected.

Mit thermoakustischem Schwingungsverhalten ist gemeint, dass Gasturbinenbrennkammern abhängig vom Leistungsbereich bevorzugt bei bestimmten Frequenzen/Frequenzbändern zum Aufschaukeln thermoakustischer Schwingungen neigen (charakteristisches Brummverhalten). Diese Frequenzen seien auch mit Vorzugs-Brennkammerdruckschwankungen bezeichnet. Wird das Verzugszeitenprofil eines Brenners entsprechend eingestellt - insbesondere verbreitert - kann dies einem Aufschaukeln der Schwingungen im Bereich mindestens einer derartigen charakteristischen Brummfrequenz/Frequenzband entgegenwirken. In diesem Sinne lässt sich das Verzugszeitenprofil an das thermoakustische Verhalten der Brennkammer anpassen bzw. darauf abstimmen und einem Aufschaukeln von thermoakustischen Schwingungen in der Brennkammer entgegengewirken. Das Verzugszeitenprofil lässt sich beispielsweise mittels des Anteils und/oder der Eindringtiefe (radiales Profil) und/oder der Aufteilung des abgezweigten Brennstoffstromes auf die einzelnen Verbindungskanäle beeinflussen. Der Brenner umfasst bezüglich der ersten Brennstoffpassage eine entsprechend ausgebildete Abzweigung, die mindestens im ersten Betriebszustand ein für das thermoakustische Verhalten der Brennkammer dämpfend wirkendes Verzugszeitenprofil des Brennstoffstromes bewirkt.With thermoacoustic vibration behavior is meant that gas turbine combustors depending on the power range preferably at certain frequencies / frequency bands for rocking thermoacoustic oscillations tend (characteristic buzzing behavior). These frequencies are also referred to as preferential combustion chamber pressure fluctuations. If the delay profile of a burner is adjusted accordingly-in particular widened-this can counteract a rocking of the oscillations in the region of at least one such characteristic hum / frequency band. In this sense, the delay profile can be adapted to the thermoacoustic behavior of the combustion chamber or tune it and counteract a buildup of thermoacoustic oscillations in the combustion chamber. The delay profile can be, for example, by means of the proportion and / or the penetration depth (radial profile) and / or the distribution of the branched fuel flow to the individual connection channels influence. With regard to the first fuel passage, the burner comprises a correspondingly formed branch which, at least in the first operating state, effects a delay profile of the fuel flow that damps the thermoacoustic behavior of the combustion chamber.

Eine vorteilhafte Ausgestaltung der Erfindung kann vorsehen, dass die erste Brennstoffpassage mindestens für eine Beaufschlagung mit niederkalorischem Brennstoffgas ausgelegt ist.An advantageous embodiment of the invention can provide that the first fuel passage is designed at least for an application of low-calorie fuel gas.

Unter einem niederkalorischen Brennstoff ist - im Unterschied zu einem Standardbrennstoff - insbesondere ein Brennstoff mit einem Heizwert von unterhalb von 20 MJ/kg, vorzugsweise unterhalb von 10 MJ/kg, zu verstehen. Dies könnte beispielsweise ein sehr niederkalorisches Erdgas sein oder ein so genanntes Synthesegas. Synthesegas weist üblicherweise Hauptanteile von CO, H2 und ggf. Nebenanteile wie N2 und Co2 sowie Wasserdampf auf. Standardbrennstoff ist üblicherweise ein normal- und/oder hochkalorischer Brennstoff, dessen Heizwert weit oberhalb von 30 MJ/kg liegt. Normales Erdgas hat beispielsweise einen Heizwert in der Regel zwischen 40 bis 50 MJ/kg. Der brennbare Bestandteil von Standardbrennstoffen für Gasturbinen besteht im Wesentlichen aus Kohlenwasserstoffen. Hingegen sind die brennbaren Bestandteile des Synthesegases im wesentlichen CO und H2. Bedingt durch den kleinen Heizwert müssen demzufolge hohe Volumenströme an Brenngas durch den Brenner der Brennkammer zugeführt werden. Dies hat zur Folge, dass für die Verbrennung von niederkalorischen Brennstoffen - wie z.B. Synthesegas - eine oder mehrere gesonderte Brennstoffpassagen zur Verfügung gestellt werden müssen. Wegen der im Vergleich zu konventionellen Brennstoffen wie Erdgas und Öl hohen Reaktivität von Synthesegasen besteht ein deutlich höheres Risiko bezüglich Flammenrückschlag.Under a low calorific fuel - in contrast to a standard fuel - in particular a fuel with a calorific value of below 20 MJ / kg, preferably below 10 MJ / kg to understand. This could for example be a very low calorific natural gas or a so-called synthesis gas. Synthesis gas usually has major proportions of CO, H 2 and optionally minor proportions such as N 2 and Co 2 and water vapor. Standard fuel is usually a normal and / or high calorific fuel whose calorific value is well above 30 MJ / kg. For example, normal natural gas typically has a calorific value of between 40 to 50 MJ / kg. The combustible component of standard fuels for gas turbines consists essentially of hydrocarbons. By contrast, the combustible constituents of the synthesis gas are essentially CO and H2. Due to the low calorific value consequently high volume flows of fuel gas must be supplied through the burner of the combustion chamber. This has the consequence that one or more separate fuel passages must be made available for the combustion of low calorific fuels - such as synthesis gas. Because of the high reactivity of synthesis gases compared to conventional fuels such as natural gas and oil, there is a significantly higher risk of flashback.

Die vorliegende Erfindung lässt sich in besonders vorteilhafter Weise auf diese Brennstoffpassage für niederkalorische Brennstoffe anwenden.The present invention can be applied to this fuel passage for low calorific fuels in a particularly advantageous manner.

Die Brennstoffpassage kann für einen Diffusionsbetrieb oder für einen Vormischbetrieb zur Einleitung des niederkalorischen Brennstoffgas in die Brennkammer ausgebildet sein. Im Vormischbetrieb wird das niederkalorische Brennstoffgas - bei dem es sich insbesondere um Synthesegas handeln kann - mit Luft zu einem niederkalorischen Brennstoff-Luft-Gemisch vorgemischt und eine Umsetzung des niederkalorischen Brennstoff-Luft-Gemisches in der Brennstoffpassage vermieden, so dass das Brennstoff-Luft-Gemisch erst in der Brennkammer zu einem Heißgas umgesetzt wird. Die Erfindung geht bevorzugt von einer Synthesegaspassage für einen Diffusionsbetrieb aus, in der mittels Drallerzeuger durch Schaufeln dem Brennstoffstrom ein Drall aufgeprägt wird. Die Synthesegaspassage ist bevorzugt als Ringraumpassage ausgebildet und kann stromab konisch zulaufend ausgebildet sein.The fuel passage may be configured for a diffusion operation or a premix operation for introducing the low-calorie fuel gas into the combustion chamber. In the premixing operation, the low-calorie fuel gas-which may be synthesis gas in particular-is premixed with air to form a low-calorie fuel-air mixture and conversion of the low-calorie fuel-air mixture in the fuel passage is avoided, so that the fuel-air Mixture is first converted into a hot gas in the combustion chamber. The invention preferably starts from a synthesis gas passage for a diffusion operation in which a swirl is imparted to the fuel flow by means of swirl generators by means of blades. The synthesis gas passage is preferably designed as a ring chamber passage and may be formed tapering downstream tapered.

Bevorzugt kann der Brenner im Wesentlichen rotationssymmetrisch um eine Längsachse angeordnet sein, so dass eine Hauptströmungsrichtung der in den Passagen des Brenners strömenden Fluids im Wesentlichen in Richtung der Längsachse weist (insbesondere in den radial näher zur Längsachse angeordneten Passagen) oder zumindest eine Komponente in Richtung der Längsachse aufweist (insbesondere in den radial weiter außen liegenden Passagen, die stromauf zunächst im Wesentlichen diagonal zur Längsachse verlaufen können und stromab sich einem parallelen Verlauf der Längsachse annähern). Die Luftpassage und die Brennstoffpassage können zumindest abschnittweise koaxial zueinander angeordnet sein, insbesondere die Luftpassage koaxial um die Brennstoffpassage.Preferably, the burner can be arranged essentially rotationally symmetrically about a longitudinal axis, so that a main flow direction of the fluid flowing in the passages of the burner essentially points in the direction of the longitudinal axis (in particular in the passages arranged radially closer to the longitudinal axis) or at least one component in the direction of Longitudinal axis has (in particular in the radially outer passages, which can run upstream substantially first diagonal to the longitudinal axis and downstream approach a parallel course of the longitudinal axis). The air passage and the fuel passage may be arranged coaxially with one another at least in sections, in particular the air passage coaxially around the fuel passage.

Es kann auch vorteilhaft vorgesehen sein, dass die Hauptaustrittsöffnungen der Luftpassage und der Brennstoffpassage derart angeordnet sind, dass die koaxial umgebende Passage in Bezug auf eine senkrecht zur Längsachse verlaufende Projektionsebene um die andere Hauptaustrittsöffnung herum angeordnet ist.It can also be advantageously provided that the main outlet openings of the air passage and the fuel passage are arranged such that the coaxially surrounding passage with respect to a plane perpendicular to the longitudinal axis projection plane is arranged around the other main outlet opening around.

Dies erzeugt koaxial zueinander angeordnete Flammen aus einem gemeinsamen Brennstoffstrom mit angepasstem Verzugszeitenprofil.This produces coaxially arranged flames from a common fuel stream with an adjusted delay profile.

Ein besonders einfacher Aufbau ergibt sich, wenn die Luftpassage und die Brennstoffpassage zumindest abschnittsweise entlang einer im Wesentlichen zylinder- und/oder kegelstumpfmantelförmigen Wand aneinander angrenzen, wobei die Verbindungskanäle als Löcher in der Wand ausgebildet sind.A particularly simple construction results when the air passage and the fuel passage adjoin one another at least in sections along a substantially cylinder and / or truncated cone-shaped wall, wherein the connection channels are formed as holes in the wall.

Gemäß der erfinderischen Ausgesltaltung ist mindestens ein Einstellelement im Bereich der Verbindungskanäle angeordnet, so dass der Anteil und/oder das radiale Einströmprofil und/oder die Aufteilung auf die Verbindungskanäle des aus der Brennstoffpassage in die Luftpassage abgezweigten Brennstoffgases mittels des mindestens einen Einstellelements eingestellt und/oder einstellbar ist.According to the inventive Ausgesltaltung at least one adjusting element is arranged in the region of the connecting channels, so that the proportion and / or the radial inflow and / or the distribution on the connecting channels of the fuel passage from the fuel passage into the air passage branched fuel gas by means of at least one adjustment and / or is adjustable.

Das Einstellelement kann den statischen Druck im Bereich der Eintrittsöffnung mindestens eines Verbindungskanals beeinflussen, so dass eine geeignete Lage der Eintrittsöffnung nicht ausschließlich durch die sich im ersten Betriebszustand in der Brennstoffpassage einstellenden Druckverhältnisse festgelegt ist. Zudem kann das Einstellelement leichter an ein gewünschtes Verzugszeitenprofil angepasst werden (beispielsweise durch Austausch oder Veränderung seiner Form) als die Lage oder Größe des mindestens einen Verbindungskanals. Gemäß einer besonders bevorzugten Ausgestaltung des Einstellelements ist stromab mindestens einer brennstoffpassagenseitigen Eintrittsöffnung eines Verbindungskanals ein Strömungsleitmittel in der Brennstoffgaspassage angeordnet, welches bei einer Beaufschlagung der Brennstoffpassage mit Brennstoffgas den statischen Druck im Bereich der Eintrittsöffnungen des Verbindungskanals erhöht.The adjusting element can influence the static pressure in the region of the inlet opening of at least one connecting channel, so that a suitable position of the inlet opening is not fixed exclusively by the pressure conditions which occur in the fuel passage in the first operating state. In addition, the adjustment can be easily adapted to a desired delay profile (for example, by exchange or change its shape) as the location or size of the at least one connecting channel. According to a particularly preferred embodiment of the adjusting element downstream of at least one fuel passage side inlet opening of a connecting channel, a flow guiding means is arranged in the fuel gas passage, which increases the static pressure in the region of the inlet openings of the connecting channel when the fuel passage with fuel gas.

Es kann auch als vorteilhaft angesehen werden, dass das Strömungsleitmittel ein im Wesentlichen ringförmig ausgebildetes Blech umfasst, wobei das Blech umlaufend an einer Innenseite einer die Brennstoffpassage begrenzenden Wand angeordnet ist. (Der Begriff "Blech" bezieht sich auf die Form, ist aber hinsichtlich der Materialwahl im Rahmen dieser Erfindung nicht einschränkend zu verstehen).It may also be considered advantageous for the flow-guiding means to comprise a substantially annularly formed plate, wherein the plate is arranged circumferentially on an inner side of a wall bounding the fuel passage. (The term "sheet" refers to the shape but is not meant to be limiting in material choice within the scope of this invention).

Diese Ausgestaltung des Strömungsleitmittels weist einen besonders einfachen Aufbau und damit geringe Herstellungskosten auf.This embodiment of the Strömungsleitmittels has a particularly simple structure and thus low production costs.

Um eine besonders starke Erhöhung des Drucks zu erreichen, kann sich das Blech entgegen einer Hauptströmungsrichtung in der Brennstoffpassage geneigt in das Innere der Brennstoffpassage hinein erstrecken. Beispielsweise kann es zumindest einen Teilbereich der Eintrittsöffnungen der Verbindungskanäle überragen.In order to achieve a particularly strong increase in the pressure, the sheet can inclined against a main flow direction in the fuel passage extend into the interior of the fuel passage. For example, it may project beyond at least a portion of the inlet openings of the connection channels.

Um den Strömungsverlauf zwischen den Eintrittsöffnungen der Verbindungskanäle möglichst wenig zu beeinflussen, kann das im Wesentlichen ringförmig ausgebildete Blech zwischen den stromab der Eintrittsöffnungen der Verbindungskanäle gelegenen Bereichen jeweils eine Ausnehmung aufweisen, so dass das Blech beispielsweise stromab der Eintrittsöffnungen eine dreieckig oder trapezförmige Zinne umfasst.In order to influence the flow path between the inlet openings of the connecting channels as little as possible, the substantially annular plate between the downstream of the inlet openings of the connecting channels areas each having a recess, so that the sheet, for example, downstream of the inlet openings comprises a triangular or trapezoidal pinnacle.

Es kann beispielsweise bevorzugt vorgesehen sein, dass das Einstellelement eine Anzahl von Strömungsleitmitteln umfasst, die als dreieckige oder trapezförmige Bleche ausgebildet sind. Die dreieckigen Bleche können an der Innenseite der Brennstoffpassage analog dem oben genannten im Wesentlichen ringförmgien Blech angeordnet sein. Die Einzelbleche haben allerding den Vorteil, dass stromab der Bereiche zwischen den Eintrittsöffnungen keine unvorteilhaft den Druckverlust erhöhenden Bereiche eines Strömungsleitmittels angeordnet sind. Eine alternative, vorteilhafte Ausgestaltung des Strömungsleitmittels kann mindestens ein kappenförmiges Element mit einer Eingangsöffnung umfassen, welches mit der Eingangsöffnung in Richtung der Eintrittsöffnung eines Verbindungskanals weisend stromab der Eintrittsöffnung an einer Innenseite einer die Brennstoffpassage begrenzenden Wand angeordnet ist.For example, it may be preferable for the adjustment element to comprise a number of flow-guiding means which are designed as triangular or trapezoidal sheets. The triangular sheets may be arranged on the inside of the fuel passage analogous to the above-mentioned substantially annular sheet. However, the individual sheets have the advantage that downstream of the regions between the inlet openings, no unfavorably increasing the pressure loss increasing areas of a Strömungsleitmittels are arranged. An alternative, advantageous embodiment of the Strömungsleitmittels may comprise at least one cap-shaped element having an input opening, which is arranged with the inlet opening in the direction of the inlet opening of a connecting channel downstream of the inlet opening on an inner side of the fuel passage defining wall.

Vorteilhafterweise kann das kappenförmige Element im Wesentlichen die Form einer Viertel-Hohlkugel aufweisen. Diese kann die Eintrittsöffnung zumindest teilweise überragen.Advantageously, the cap-shaped element may substantially have the shape of a quarter-hollow sphere. This can project beyond the inlet opening at least partially.

Weiter kann vorteilhaft vorgesehen sein, dass mindestens ein Einstellelement rohrförmig ausgebildet ist, wobei das rohrförmige Einstellelement insbesondere zumindest teilweise in jeweils einem der Verbindungskanäle angeordnet ist.Furthermore, it may be advantageously provided that at least one adjusting element is tubular, wherein the tubular adjusting element is arranged in particular at least partially in each case one of the connecting channels.

Gemäß einem ersten Ausführungsbeispiel der Ausbildung der Erfindung können die mindestens einen rohrförmigen Einstellelemente in jeweils einen Verbindungskanal teilweise eingesetzt sein und in die Luftpassage hineinragen, so dass die radiale Lage der Einmündung der durch den jeweiligen Verbindungskanal strömende, abgezweigte Teilstrom zielgenau positioniert werden kann. Wie weit das rohrförmige Einstellelement in die Luftpassage hineinragt, kann je nach gewünschtem radialem Einströmprofil auch von rohrförmigem Einstellelement zu rohrförmigem Einstellelement unterschiedlich gewählt sein. Gemäß einem weiteren Ausführungsbeispiel der Ausbildung der Erfindung kann das mindestens eine rohrförmige Einstellelement beispielsweise vollständig in jeweils einem Verbindungskanal angeordnet sein. Beispielsweise können zum Einstellen des radialen Einströmprofils des abgezweigten Brennstoffstromes die Wandstärken des mindestens einen rohrförmigen Einstellelements entsprechend gewählt sein. Gemäß einem weiteren Ausführungsbeispiel der Erfindung kann das mindestens eine rohrförmige Einstellelement in Verlängerung eines Verbindungskanals auf der Innenseite der Luftpassage befestigt sein. Gemäß einem weiteren Ausführungsbeispiel kann das mindestens eine rohrförmige Einstellelement zusätzlich oder alternativ zu den erwähnten Ausführungsbeispielen in die Brennstoffpassage hineinragen und beispielsweise an seinem in die Brennstoffpassage hineinragenden Ende eine Einlaufschale umfassen. Die Einlaufschale kann beispielsweise analog der dreieckförmigen Bleche oder der Viertel-Holhkugel ausgebildet sein. Die genannten Ausführungsbeispiele für das rohrförmige Einstellelement können beispielsweise miteinander kombiniert werden oder einzeln zur Anwendung kommen. Sofern mehrere derartige rohrförmige Einstellelemente vorgesehen sind, können diese je nach gewünschtem radialen Einströmprofil des abgezweigten Brennstoffstromes alle gleich ausgebildet sein oder sich voneinander, beispielsweise entsprechend der genannten Ausführungsbeispiele und ihrer Kombinationen, unterscheiden.According to a first embodiment of the embodiment of the invention, the at least one tubular adjusting elements may be partially inserted into a respective connecting channel and project into the air passage, so that the radial position of the junction of the diverted partial flow flowing through the respective connecting channel can be accurately positioned. Depending on the desired radial inflow profile, how far the tubular adjusting element protrudes into the air passage can also be chosen differently from a tubular adjusting element to a tubular adjusting element. According to a further embodiment of the embodiment of the invention, the at least one tubular adjusting element can for example be arranged completely in each case in a connecting channel. For example, to adjust the radial inflow profile of the branched fuel stream, the wall thicknesses of the at least one tubular adjusting element can be selected accordingly. According to a further embodiment of the invention, the at least one tubular adjusting element can be fastened in the extension of a connecting channel on the inside of the air passage. According to a further embodiment, the at least one tubular adjusting element additionally or alternatively to the mentioned embodiments protrude into the fuel passage and include, for example, at its projecting into the fuel passage end an inlet shell. The inlet shell may be formed, for example, analogous to the triangular plates or the quarter Holhkugel. The aforementioned embodiments of the tubular adjusting element can for example be combined with each other or used individually. If a plurality of such tubular adjustment elements are provided, they may all be of the same design or differ from one another, for example in accordance with the exemplary embodiments mentioned and their combinations, depending on the desired radial inflow profile of the branched fuel stream.

Eine weitere Aufgabe der Erfindung ist es, ein Verfahren der eingangs genannten Art anzugeben, mit welchem die Reduzierung von thermoakustischen Schwingungen in einer Brennkammer einer Gasturbine in einer alternativen Art und Weise ermöglicht wird.Another object of the invention is to provide a method of the type mentioned, with which the reduction of thermo-acoustic vibrations in a combustion chamber of a gas turbine is made possible in an alternative manner.

Die Aufgabe wird erfindungsgemäß bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass zum Anpassen des Verzugszeitenprofils eines in einer ersten Brennstoffpassage strömenden Brennstoffstromes ein verbleibender Teil des Brennstoffstromes durch mindestens eine Hauptaustrittsöffnung der ersten Passage in die Brennkammer eingeleitet wird und ein abgezweigter Teil des Brennstoffstromes stromab seiner Einleitung in die Brennstoffpassage und stromauf der Hauptaustrittsöffnung über mindestens einen Verbindungskanal in mindestens eine zweite Passage eingeleitet wird, wobei der abgezweigte Teil des Brennstoffstromes separat vom verbleibenden Brennstoffstrom in die Brennkammer eingeleitet wird, so dass die Teilströme nach ihrem Austreten aus dem Brenner mit unterschiedlichen Verzugszeiten bzw. Verzugszeitenprofilen in der Brennkammer verbrannt werden, wobei zum Anpassen des Verzugszeitenprofils der Anteil des abgezweigten Teilstromes und/oder dessen Einströmprofil und/oder dessen Aufteilung auf den mindestens einen Verbindungskanal derart eingestellt wird, dass die Rückkopplung der Wärmefreisetzungsschwankungen mit den Druckschwankungen in der Brennkammer reduziert ist.The object is achieved in a method of the type mentioned fact that for adjusting the delay time profile of a flowing fuel flow in a first fuel passage, a remaining portion of the fuel stream is introduced through at least one main exit opening of the first passage in the combustion chamber and a branched-off portion of the fuel stream downstream its introduction into the fuel passage and upstream of the main outlet opening via at least one connecting channel is introduced into at least a second passage, wherein the branched portion of the fuel stream is introduced separately from the remaining fuel flow into the combustion chamber, so that the partial streams after their exit from the burner with different delay times or Verzugszeitenprofilen be burned in the combustion chamber, wherein for adjusting the delay time profile of the proportion of the branched partial flow and / or its inflow and / or r its division is adjusted to the at least one connecting channel such that the feedback of the heat release fluctuations is reduced with the pressure fluctuations in the combustion chamber.

Bezüglich der Ausgestaltungsmöglichkeiten und Vorteile des Verfahrens wird auf die obigen Ausführungen zum erfindungsgemäßen Brenner verwiesen.With regard to the design options and advantages of the method, reference is made to the above comments on the burner according to the invention.

Vorteilhafterweise kann weiter vorgesehen sein, dass der verbleibende Brennstoffstrom und der abgezweigte Teil des Brennstoffstromes im Wesentlichen koaxial zueinander in die Brennkammer eingeleitet werden.Advantageously, it can further be provided that the remaining fuel flow and the branched off part of the fuel flow are introduced into the combustion chamber essentially coaxially with one another.

Zum Anpassen des thermoakustischen Verhaltens der den Brenner umfassenden Brennkammer wird der Anteil und/oder das Einströmprofil und/oder dessen Aufteilung auf den mindestens einen Verbindungskanal des abgezweigten Teils des Brennstoffstromes vor Inbetriebnahme des Brenners und/oder während des Betriebs des Brenners eingestellt. Erfindungsgemäß erfolgt das Einstellen des Anteils und/oder der Eindringtiefe und/oder der Aufteilung auf den mindestens einen Verbindungskanal durch Anpassen mindestens eines in der Brennstoffpassage angeordneten Strömungsleitmittels und/oder eines im Bereich der Verbindungskanäle angeordneten Einstellelementes.In order to adapt the thermoacoustic behavior of the combustion chamber comprising the burner, the proportion and / or the inflow profile and / or its division onto the at least one connecting channel of the branched off part of the fuel stream is set before the burner is put into operation and / or during the operation of the burner. According to the invention, the setting of the proportion and / or the penetration depth and / or the division takes place on the at least one connecting channel by adjusting at least one arranged in the fuel passage Strömungsleitmittels and / or arranged in the region of the connecting channels adjustment.

Gemäß einer vorteilhaften Ausgestaltung der Erfindung kann das Anpassen des mindestens einen Strömungsleitmittels und/oder Einstellelementes durch Austauschen und/oder Anpassen von dessen Form und/oder Lage erfolgen.According to an advantageous embodiment of the invention, the adaptation of the at least one Strömungsleitmittels and / or adjusting element can be done by replacing and / or adjusting its shape and / or position.

Eine weitere Aufgabe der Erfindung ist es, eine Brennkammer mit mindestens einem Brenner und eine Gasturbine mit mindestens einer derartigen Brennkammer anzugeben, mit welcher die Unterdrückung von thermoakustischen Schwingungen in einer Brennkammer einer Gasturbine in einer alternativen Art und Weise ermöglicht wird.Another object of the invention is to provide a combustion chamber with at least one burner and a gas turbine with at least one such combustion chamber, with which the suppression of thermoacoustic vibrations in one Combustion chamber of a gas turbine is made possible in an alternative manner.

Die Aufgabe wird erfindungsgemäß bei einer Brennkammer der eingangs genannten Art dadurch gelöst, dass der Brenner nach einem der Ansprüche 1 bis 15 ausgebildet ist.The object is achieved in a combustion chamber of the type mentioned above in that the burner is designed according to one of claims 1 to 15.

Die Aufgabe wird erfindungsgemäß bei einer Gasturbine der eingangs genannten Art dadurch gelöst, dass die Brennkammer nach Anspruch 16 ausgebildet ist.The object is achieved in a gas turbine of the type mentioned above in that the combustion chamber is designed according to claim 16.

Weiter zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figur der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirkende Bauteile verweisen.Further expedient refinements and advantages of the invention are the subject matter of the description of embodiments of the invention with reference to the figure of the drawing, wherein like reference numerals refer to like acting components.

Dabei zeigt die

Fig.1
schematisch einen Längsschnitt durch eine Gasturbine nach dem Stand der Technik, und
Fig.2
schematisch einen Längsschnitt durch einen erfindungsgemäßen Brenner gemäß einem ersten Ausführungsbeispiel,
Fig.3
schematisch einen Längsschnitt durch einen erfindungsgemäßen Brenner gemäß einem zweiten Ausführungsbeispiel, und
Fig.4
schematisch einen Längsschnitt durch einen erfindungsgemäßen Brenner gemäß einem dritten Ausführungsbeispiel.
It shows the
Fig.1
schematically a longitudinal section through a gas turbine according to the prior art, and
Fig.2
1 shows a schematic longitudinal section through a burner according to the invention according to a first exemplary embodiment,
Figure 3
schematically a longitudinal section through a burner according to the invention according to a second embodiment, and
Figure 4
schematically a longitudinal section through a burner according to the invention according to a third embodiment.

Die Figur 1 zeigt eine schematische Schnittansicht einer Gasturbine 1 nach dem Stand der Technik. Die Gasturbine 1 weist im Inneren einen um eine Rotationsachse 2 drehgelagerten Rotor 3 mit einer Welle 4 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 3 folgen aufeinander ein Ansauggehäuse 6, ein Verdichter 8, ein Verbrennungssystem 9 mit einer Anzahl an Brennkammern 10, eine Turbine 14 und ein Abgasgehäuse 15. Die Brennkammern 10 umfassen jeweils eine Brenneranordnung 11 und ein Gehäuse 12, welches zum Schutz vor Heißgasen mit einem Hitzeschild 20 ausgekleidet ist.The FIG. 1 shows a schematic sectional view of a gas turbine 1 according to the prior art. The gas turbine 1 has inside a rotatably mounted about a rotation axis 2 rotor 3 with a shaft 4, which is also referred to as a turbine runner. Along the rotor 3 follow one another Intake housing 6, a compressor 8, a combustion system 9 with a number of combustion chambers 10, a turbine 14 and an exhaust housing 15. The combustion chambers 10 each include a burner assembly 11 and a housing 12, which is lined with a heat shield 20 for protection against hot gases.

Das Verbrennungssystem 9 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal. Dort bilden mehrere hintereinander geschaltete Turbinenstufen die Turbine 14. Jede Turbinenstufe ist aus Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums gesehen folgt im Heißkanal einer aus Leitschaufeln 17 gebildeten Reihe eine aus Laufschaufeln 18 gebildete Reihe. Die Leitschaufeln 17 sind dabei an einem Innengehäuse eines Stators 19 befestigt, wohingegen die Laufschaufeln 18 einer Reihe beispielsweise mittels einer Turbinenscheibe am Rotor 3 angebracht sind. An dem Rotor 3 angekoppelt ist beispielsweise ein Generator (nicht dargestellt).The combustion system 9 communicates with an annular hot gas duct, for example. There, a plurality of successively connected turbine stages form the turbine 14. Each turbine stage is formed of blade rings. Viewed in the flow direction of a working medium follows in the hot runner formed by a number 17 vanes row formed from blades 18 row. The guide vanes 17 are fastened to an inner housing of a stator 19, whereas the moving blades 18 of a row are attached to the rotor 3, for example by means of a turbine disk. Coupled to the rotor 3 is, for example, a generator (not shown).

Während des Betriebes der Gasturbine wird vom Verdichter 8 durch das Ansauggehäuse 6 Luft angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 8 bereitgestellte verdichtete Luft wird zu dem Verbrennungssystem 9 geführt und dort im Bereich der Brenneranordnung 11 mit einem Brennstoff vermischt. Das Gemisch wird dann mit Hilfe der Brenneranordnung 11 unter Bildung eines Arbeitsgasstromes im Verbrennungssystem 9 verbrannt. Von dort strömt der Arbeitsgasstrom entlang des Heißgaskanals an den Leitschaufeln 17 und den Laufschaufeln 18 vorbei. An den Laufschaufeln 18 entspannt sich der Arbeitsgasstrom impulsübertragend, so dass die Laufschaufeln 18 den Rotor 3 antreiben und dieser den an ihn angekoppelten Generator (nicht dargestellt).During operation of the gas turbine, air is sucked in and compressed by the compressor 8 through the intake housing 6. The compressed air provided at the turbine-side end of the compressor 8 is led to the combustion system 9 where it is mixed with a fuel in the area of the burner assembly 11. The mixture is then burned by means of the burner assembly 11 to form a working gas stream in the combustion system 9. From there, the working gas stream flows along the hot gas channel past the guide vanes 17 and the rotor blades 18. At the rotor blades 18, the working gas stream relaxes in a pulse-transmitting manner, so that the rotor blades 18 drive the rotor 3 and this drives the generator (not shown) coupled to it.

Die Figur 2 zeigt schematisch einen Ausschnitt einen erfindungsgemäßen Brenners 24 für eine Gasturbine gemäß einem ersten Ausführungsbeispiel in einem Längsschnitt.The FIG. 2 schematically shows a detail of a burner 24 according to the invention for a gas turbine according to a first embodiment in a longitudinal section.

Der Brenner 24 umfasst eine mit Verdichterluft beaufschlagbare, als Ringkanal ausgebildete Luftpassage 26, eine für die Beaufschlagung mit Synthesegas ausgebildete Brennstoffpassage 28 sowie eine sekundäre Zuführeinheit 30, die einen Pilotbrenner (nicht explizit dargestellt) und weitere Passagen (nicht explizit dargestellt) zum Einbringen eines Fluids umfassen kann. Der Brenner weist einen im Wesentlichen rotationssymmetrischen Aufbau um eine Längsachse 32 auf. Hierbei umfasst die Luftpassage 26 koaxial die für Synthesegas ausgelegte Brennstoffpassage 28, die wiederum koaxial die sekundäre Zuführeinheit 30 umgibt. Sowohl die sekundäre Zuführeinheit 30 als auch die beiden Passagen 26 und 28 weisen jeweils eine in die Brennkammer 34 mündende Hauptaustrittöffnung 36, 38, 40 auf.The burner 24 comprises an air passage 26 which can be charged with compressor air and is designed as an annular channel. a fuel passage 28 configured for synthesis gas charging; and a secondary delivery unit 30 that may include a pilot burner (not explicitly shown) and other passages (not explicitly shown) for introducing a fluid. The burner has a substantially rotationally symmetrical structure about a longitudinal axis 32. Here, the air passage 26 coaxially includes the synthesis gas-designed fuel passage 28, which in turn coaxially surrounds the secondary feed unit 30. Both the secondary feed unit 30 and the two passages 26 and 28 each have a main outlet opening 36, 38, 40 opening into the combustion chamber 34.

Die Hauptaustrittsöffnungen 36 ist hierbei in Bezug auf die senkrecht zur Längsachse 32 verlaufende Projektionsebene 50 um die Hauptaustrittsöffnung 38 herum angeordnet.In this case, the main outlet openings 36 are arranged around the main outlet opening 38 with respect to the projection plane 50 running perpendicular to the longitudinal axis 32.

In die Luftpassage 26 eintretende Verdichterluft, dessen Hauptströmungsrichtung im Eintrittsbereich mit einem Pfeil L" verdeutlicht ist, wird durch einen in der Luftpassage angeordneten Drallerzeuger 42 (Swirler) ein Drall aufgeprägt. Die Schaufeln des Drallerzeugers erstrecken sich von einer die Passage begrenzenden inneren Wand 44 bis zu einer die Passage begrenzenden äußeren Wand 46, wobei die Schaufeln ringförmig über den Umfang der Wand angeordnet sind. Der Luftstrom tritt durch die Hauptaustrittsöffnung 36 aus der Luftpassage 26 aus. Zum Einbringen von Synthesegas in die Brennkammer 34 wird der Brennstoffpassage 28 ein Synthesegasstrom 48 (der auch vor dem Eintritt in den dargestellten Abschnitt der Brennstoffpassage 28 mit Verdichterluft vorgemischt werden kann) über ein Zuführleitungssystem zugeführt. Das Zuführleitungssystem ist in der Figur nicht dargestellt, da es sich außerhalb des dargestellten Ausschnitts befindet. Zum Verdrallen des Synthesegasstroms 48 sind ebenfalls Schaufeln 52 eines Drallerzeugers in der Brennstoffpassage 28 angeordnet. Stromab der Schaufeln 52 sind die Brennstoffpassage 28 und die Luftpassage 26 über Verbindungskanäle 54 fluidisch miteinander verbunden. Die Verbindungskanäle 54 sind bei dem dargestellten Ausführungsbeispiel in einem Bereich angeordnet, in welchem die Luftpassage 26 und die Brennstoffpassage 28 entlang einer im Wesentlichen zylindermantelförmigen Wand 56 aneinander angrenzen, wobei die Verbindungskanäle 54 als Löcher in der zylindermantelförmigen Wand 54 ausgebildet sind.Compressor air entering the air passage 26, the main flow direction of which is indicated by an arrow L "in the entry region, is swirled by a swirler 42 (Swirler) disposed in the air passage The blades of the swirler extend from a passage defining inner wall 44a to a passage-limiting outer wall 46, with the vanes annularly disposed about the circumference of the wall The air flow exits the air passage 26 through the main exit port 36. For introducing synthesis gas into the combustion chamber 34, a synthesis gas stream 48 (FIG. which may also be premixed with compressor air prior to entry into the illustrated portion of the fuel passage 28) .The feed line system is not shown in the figure because it is outside of the illustrated cutout also blades 52 of a swirl generator in the fuel passage 28 arranged. Downstream of the blades 52, the fuel passage 28 and the air passage 26 are fluidly connected to each other via connection channels 54. The connection channels 54 are in the illustrated embodiment, disposed in a region in which the air passage 26 and the fuel passage 28 along a substantially cylinder jacket wall 56 adjacent to each other, wherein the connecting channels 54 are formed as holes in the cylinder jacket-shaped wall 54.

Der Brenner 24 ist derart ausgebildet, dass in mindestens einem ersten Betriebszustand des Brenners bei beaufschlagter Luftpassage 26 mit Verdichterluft und bei beaufschlagter Brennstoffpassage 28 mit Brennstoffgas ein Teil des in der Brennstoffpassage strömenden Brennstoffgases über die Verbindungskanäle 54 in die Luftpassage 26 strömt und zu seiner Verbrennung durch die Hauptaustrittsöffnung 36 der Luftpassage in das Innere der Brennkammer 34 einleitbar ist.The burner 24 is designed such that in at least a first operating state of the burner with acted upon air passage 26 with compressor air and acted upon fuel passage 28 with fuel gas part of the fuel gas flowing in the fuel passage via the connection channels 54 flows into the air passage 26 and through to its combustion the main outlet opening 36 of the air passage into the interior of the combustion chamber 34 can be introduced.

Die Ausgestaltung der Abzweigung ist derart, dass das gemeinsame Verzugszeitenprofil des Brennstoffstromes ein Aufschaukeln von thermoakustischen Schwingungen, die bei der jeweiligen Brennkammer 34 der Gasturbine in Abhängigkeit vom Leistungsbereich bei charakteristischen Frequenzbänder auftreten, zumindest in einem Frequenzband verhindert oder reduziert wird. Somit ist eine Rückkopplung von Wärmefreisetzungsschwankungen und Druckschwankungen in der Brennkammer reduziert.The embodiment of the branching is such that the common delay profile of the fuel flow prevents or reduces rocking of thermoacoustic oscillations occurring in the respective combustion chamber 34 of the gas turbine as a function of the power range at characteristic frequency bands, at least in one frequency band. Thus, feedback of heat release variations and pressure fluctuations in the combustion chamber is reduced.

Das Verzugszeitenprofil ist mittels eines Einstellelements 60 an das thermoakustische Verhalten der Brennkammer 34 angepasst. Das Einstellelement 60 besteht bei dem ersten Ausführungsbeispiel aus einem Strömungsleitmittel 62, das stromab der brennstoffpassagenseitigen Eintrittsöffnungen 64 der Verbindungskanäle 54 in der Brennstoffpassage 28 angeordnet ist und bei einer Beaufschlagung der Brennstoffpassage 28 mit Brennstoffgas den statischen Druck im Bereich der Eintrittsöffnungen 64 der Verbindungskanäle 54 erhöht. Das Strömungsleitmittel 62 hat die Form eines im Wesentlichen ringförmig ausgebildeten Blechs 66. Dieses ist umlaufend an der Innenseite 68 der die Brennstoffpassage 28 begrenzenden Wand 56 angeordnet und erstreckt sich entgegen einer Hauptströmungsrichtung 70 in der Brennstoffpassage 28 geneigt in das Innere der Brennstoffpassage hinein. Das Blech 66 ragt hierbei unter Einhaltung eines Abstandes über zumindest einen Teilbereich der Eintrittsöffnungen 64. Je nach Nähe, Höhe und Anstellwinkel und Form des Blechs 66 lässt sich der Anteil und/oder das radiale Einströmprofil und/oder die Aufteilung auf die einzelnen Verbindungskanäle des aus der Brennstoffpassage 28 in die Luftpassage 26 abgezweigten Brennstoffgases mittels des mindestens einen Einstellelements 60 einstellen.The delay time profile is adapted by means of an adjusting element 60 to the thermoacoustic behavior of the combustion chamber 34. The adjusting element 60 in the first embodiment consists of a flow guide 62, which is arranged downstream of the fuel passage side inlet openings 64 of the connecting channels 54 in the fuel passage 28 and increases the static pressure in the region of the inlet openings 64 of the connecting channels 54 when the fuel passage 28 is exposed to fuel gas. The flow guide 62 has the shape of a substantially annular plate 66. This is circumferentially on the inside 68 of the fuel passage 28 bounding wall 56th disposed and extends against a main flow direction 70 in the fuel passage 28 inclined into the interior of the fuel passage. The sheet 66 protrudes while maintaining a distance over at least a portion of the inlet openings 64. Depending on the proximity, height and angle and shape of the sheet 66, the proportion and / or the radial inflow and / or the distribution on the individual connection channels of the fuel passage 28 set in the air passage 26 branched fuel gas by means of at least one adjusting element 60.

Eine nachteilige Erhöhung des Druckverlustes in der Passage aufgrund des Strömungsleitmittels lässt sich beispielsweise durch Ausnehmungen (nicht dargestellt) in dem Blech 66 vorteilhaft verringern, die jeweils zwischen den stromab der Eintrittsöffnungen der Verbindungskanäle gelegenen Bereichen angeordnet sind.An adverse increase in the pressure loss in the passage due to the Strömungsleitmittels can be advantageously reduced for example by recesses (not shown) in the sheet 66, which are each arranged between the downstream of the inlet openings of the connecting channels areas.

Zur Verhinderung einer nachteiligen Erhöhung des Druckverlustes ist eine Segmentierung des Blechs noch vorteilhafter. Das Einstellelement 60 kann aus einer Anzahl von Blechen bestehen, die jeweils stromab der Eintrittsöffnungen 64 angeordnet sind. Diese können beispielsweise, wie in Figur 3 dargestellt, die Form von dreieckigen Blechen 74 aufweisen, die über die Eintrittsöffnungen gebogen sind. Der Übersicht halber ist in der Figur 3 nur ein einzelnes derartiges Blech 74 dargestellt.To prevent a disadvantageous increase in the pressure loss, a segmentation of the sheet is even more advantageous. The adjusting element 60 may consist of a number of sheets, which are each arranged downstream of the inlet openings 64. These can, for example, as in FIG. 3 represented, the shape of triangular sheets 74 which are bent over the inlet openings. For the sake of clarity is in the FIG. 3 only a single such sheet 74 is shown.

Gemäß einem weiteren Ausführungsbeispiel, das in Figur 4 dargestellt ist, kann das Einstellelement 60 aus einer Reihe von kappenförmigen Elementen 84 bestehen, die jeweils eine Eingangsöffnung 86 umfassen und mit dieser in Richtung der Eintrittsöffnung 64 eines Verbindungskanals 54 weisend stromab der Eintrittsöffnung 64 an einer Innenseite 68 einer die Brennstoffpassage 28 begrenzenden Wand 56 angeordnet sind und vorzugsweise die Eintrittsöffnung 64 zumindest teilweise überragen. Bei dem in Figur 4 dargestellten Ausführungsbeispiel weist das kappenförmige Element 84 im Wesentlichen die Form einer Viertel-Hohlkugel auf. In der Figur 4 ist ebenfalls der Übersicht halber nur eine derartige Viertel-Hohlkugel dargestellt.According to a further embodiment, the in FIG. 4 1, the adjusting element 60 may consist of a series of cap-shaped elements 84, each comprising an inlet opening 86 and arranged with this in the direction of the inlet opening 64 of a connecting channel 54 downstream of the inlet opening 64 on an inner side 68 of a wall 56 delimiting the fuel passage 28 are and preferably at least partially project beyond the inlet opening 64. At the in FIG. 4 illustrated embodiment, the cap-shaped element 84 substantially the Shape of a quarter-hollow sphere on. In the FIG. 4 is also the sake of clarity, only such a quarter-hollow sphere shown.

Die in den Figuren 2 bis 4 dargestellten erfindungsgemäßen Brenner 24 eignen sich zur Durchführung des erfindungsgemäßen Verfahrens. Mit Bezug auf Figur 3, zum Anpassen des Verzugszeitenprofils eines in einer Brennstoffpassage 28 strömenden Brennstoffgasstroms 78 wird ein verbleibender Teil 80 des Brennstoffstromes durch mindestens eine Hauptaustrittsöffnung 38 der Brennstoffpassage 28 in die Brennkammer 34 eingeleitet. Ein abgezweigter Teil 82 des Brennstoffstromes wird, stromab seiner Einleitung in die Brennstoffpassage und stromauf der Hauptaustrittsöffnungen 36 und 38, über die Verbindungskanäle 54 in die Luftpassage 26 eingeleitet. Der abgezweigte Teil 82 des Brennstoffstromes wird separat vom verbleibenden Brennstoffstrom 80 in die Brennkammer 34 eingeleitet, so dass die Teilströme nach ihrem Austreten aus dem Brenner 24 mit unterschiedlichen Verzugszeiten bzw. Verzugszeitenprofilen in der Brennkammer 34 verbrannt werden, wobei der Brenner 24 derart ausgebildet ist, dass das gemeinsame Verzugszeitenprofil von den Brennstoffströmen 82 und 80 über den Anteil des abgezweigten Teilstromes 82 und/oder dessen Einströmprofil und/oder dessen Aufteilung auf den mindestens einen Verbindungskanal 54 auf ein thermoakustisches Verhalten der Brennkammer 34 abgestimmt ist, so dass eine Rückkopplung von Wärmefreisetzungsschwankungen und Druckschwankungen in der Brennkammer reduziert ist.The in the FIGS. 2 to 4 illustrated burner 24 according to the invention are suitable for carrying out the method according to the invention. Regarding FIG. 3 for adjusting the delay time profile of a fuel gas stream 78 flowing in a fuel passage 28, a remaining portion 80 of the fuel stream is introduced into the combustion chamber 34 through at least one main exit port 38 of the fuel passage 28. A diverted portion 82 of the fuel stream is introduced downstream of its introduction into the fuel passage and upstream of the main outlet openings 36 and 38, via the connecting channels 54 in the air passage 26. The branched-off part 82 of the fuel stream is introduced separately from the remaining fuel stream 80 into the combustion chamber 34, so that the partial streams are burnt after their exit from the burner 24 with different delay times or delay profiles in the combustion chamber 34, wherein the burner 24 is designed such that the common delay profile of the fuel streams 82 and 80 on the proportion of the branched partial stream 82 and / or its inflow and / or its distribution to the at least one connecting channel 54 is tuned to a thermoacoustic behavior of the combustion chamber 34, so that a feedback of heat release fluctuations and Pressure fluctuations in the combustion chamber is reduced.

Claims (18)

  1. Burner (24) for a gas turbine (1), having at least one air passage (26) to which compressed air may be supplied and at least one fuel passage (28) to which at least one fuel gas may be supplied, the two passages (26, 28) each comprising a main outlet opening (36, 38) leading into the combustion chamber (34) of the gas turbine (1), the air passage (26) and the fuel passage (28) being connected fluidically together via at least one connection duct (54) arranged upstream of the main outlet openings (36, 38), whereby the burner (24) is configured such that, in at least one first operating state of the burner, when air passage (26) is supplied with compressed air and fuel passage (28) is supplied with fuel gas a portion (82) of the fuel gas flowing in the fuel passage flows via at least one connection duct (54) into the air passage (26) and, for combustion thereof, may be introduced through the main outlet opening (36) of the air passage into the interior of the combustion chamber (34) and a remaining portion (80) of the fuel gas may be introduced through the main outlet opening (38) of the fuel passage into the interior of the combustion chamber,
    characterized in that
    at least one adjusting element (60) is arranged in the region of the connection ducts (54), such that the fraction (82) and/or the radial inflow profile and/or the division over the connection ducts (54) of the fuel gas branched off from the fuel passage (28) into the air passage (26) is adjusted and/or adjustable by means of the at least one adjusting element (60), such that fluctuations in heat release are fed back to a lesser extent into the pressure fluctuations in the combustion chamber.
  2. Burner (24) according to Claim 1,
    characterized in that the burner (24) is configured such that
    the common dwell time profile, brought about by the branching off, of the remaining portion (80) and of the branched-off portion (82) of the fuel stream is adapted to the thermoacoustic behavior of the combustion chamber (34), such that fluctuations in heat release are fed back to a lesser extent into the pressure fluctuations in the combustion chamber.
  3. Burner (24) according to one of Claims 1 or 2,
    characterized in that
    the burner (24) is arranged substantially rotationally symmetrically about a longitudinal axis (32), such that a main direction of flow of the fluid flowing in the passages (26, 28) of the burner points in the direction of the longitudinal axis or has at least one component in the direction of the longitudinal axis (32), and the air passage (26) and the fuel passage (28) are arranged coaxially to one another at least in places.
  4. Burner (24) according to one of the preceding claims,
    characterized in that
    the main outlet openings (36, 38) of the air passage and fuel passage are arranged such that the coaxially surrounding passage (26) is arranged around the other main outlet opening (38) relative to a projection plane (50) extending perpendicular to the longitudinal axis.
  5. Burner (24) according to one of the preceding claims,
    characterized in that
    the air passage (26) and the fuel passage (28) adjoin one another at least in places along a wall (56) which substantially takes the form of a cylindrical casing and/or of a truncated cone-shaped casing, wherein the connection ducts (54) take the form of holes in the wall (56).
  6. Burner (24) according to one of the preceding claims,
    characterized in that a flow guide means (62) is arranged in the fuel gas passage downstream of at least one fuel passageside inlet opening (64) of a connection duct (54), which flow guide means increases the static pressure in the region of the inlet openings (64) of the connection duct (54) when the fuel passage is supplied with fuel gas.
  7. Burner (24) according to Claim 6,
    characterized in that
    the flow guide means (62) comprises a substantially annular metal plate (66), wherein the metal plate (66) is arranged circumferentially on an inside (68) of a wall (56) delimiting the fuel passage.
  8. Burner (24) according to Claim 7,
    characterized in that
    the metal plate (66) extends into the interior of the fuel passage (28) at an angle contrary to a main direction of flow (70) in the fuel passage (28).
  9. Burner (24) according to one of Claims 7 or 8,
    characterized in that
    the metal plate (66) in each case has a cut-out between the regions located downstream of the inlet openings (64) of the connection ducts (54).
  10. Burner (24) according to one of Claims 6 to 9,
    characterized in that
    the adjusting element (60) comprises a number of flow guide means (62), which take the form of triangular or trapezoidal metal plates (74).
  11. Burner according to Claim 6,
    characterized in that
    the flow guide means (62) comprises at least one cupped element (84) with an entry opening (86), which is arranged with the entry opening pointing towards the inlet opening (64) of a connection duct (54) downstream of the inlet opening (64) on an inside (68) of a wall (56) delimiting the fuel passage.
  12. Burner according to Claim 11,
    characterized in that
    the cupped element (84) substantially takes the form of a hollow quarter-sphere.
  13. Burner according to one of the preceding claims,
    characterized in that
    at least one adjusting element (60) is of tubular configuration, wherein the tubular adjusting element is in each case arranged in particular at least in part in one of the connection ducts.
  14. Combustion chamber having at least one burner,
    characterized in that
    the burner (24) is configured according to one of Claims 1 to 13.
  15. Gas turbine having at least one combustion chamber,
    characterized in that
    the combustion chamber (34) is configured according to Claim 14.
  16. Method for reducing thermoacoustic oscillations in a gas turbine (1) comprising at least one burner (24), in which method, to reduce the thermoacoustic oscillations, a dwell time profile of a fuel stream (48, 78) flowing in a first fuel passage (28) of the burner is adapted to the thermoacoustic behavior of the combustion chamber, wherein, to adapt the dwell time profile, a remaining portion (80) of the fuel stream is introduced into the combustion chamber (34) through at least one main outlet opening (38) of the first passage (28) and a branched-off portion (82) of the fuel stream is introduced, downstream of introduction thereof into the fuel passage (28) and upstream of the main outlet opening (38), into at least one second passage (26) via at least one connection duct (54) branching off from the first passage (28), wherein the branched-off portion (82) of the fuel stream is introduced into the combustion chamber separately from the remaining fuel stream (80), such that the sub-streams, after exit thereof from the burner, are combusted in the combustion chamber (34) with different dwell times or dwell time profiles,
    wherein
    the fraction and/or the inflow profile and/or the division over the at least one connection duct (54) of the branched-of portion (82) of the fuel stream is adjusted prior to start-up of the burner and/or during operation of the burner, characterized in that adjustment of the fraction and/or the penetration depth and/or the division over the at least one connection duct (54) proceeds by adapting at least one flow guide means (62) arranged in the fuel passage (28) and/or one adjusting element arranged in the region of the connection ducts, such that fluctuations in heat release are fed back to a lesser extent into the pressure fluctuations in the combustion chamber.
  17. Method according to Claim 16,
    characterized in that
    the remaining fuel stream (80) and the branched-off portion (82) of the fuel stream are introduced substantially coaxially to one another into the combustion chamber.
  18. Method according to one of Claims 16 or 17,
    characterized in that
    adaptation of the at least one flow guide means (62) and/or of the at least one adjusting element may proceed by exchange of the flow guide means and/or the adjusting element and/or adaptation of the shape and/or position thereof.
EP14780788.7A 2013-09-23 2014-09-23 Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine Not-in-force EP3004743B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14780788.7A EP3004743B1 (en) 2013-09-23 2014-09-23 Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13185537 2013-09-23
PCT/EP2014/070168 WO2015040228A1 (en) 2013-09-23 2014-09-23 Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine
EP14780788.7A EP3004743B1 (en) 2013-09-23 2014-09-23 Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine

Publications (2)

Publication Number Publication Date
EP3004743A1 EP3004743A1 (en) 2016-04-13
EP3004743B1 true EP3004743B1 (en) 2017-05-17

Family

ID=49226063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14780788.7A Not-in-force EP3004743B1 (en) 2013-09-23 2014-09-23 Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine

Country Status (4)

Country Link
US (1) US20160195271A1 (en)
EP (1) EP3004743B1 (en)
CN (1) CN105393057B (en)
WO (1) WO2015040228A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147951A2 (en) 2014-01-24 2015-10-01 United Technologies Corporation Axial staged combustor with restricted main fuel injector

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149952B2 (en) 2016-12-07 2021-10-19 Raytheon Technologies Corporation Main mixer in an axial staged combustor for a gas turbine engine
CN108843618A (en) * 2018-04-28 2018-11-20 西北工业大学 A kind of plenum member
CN108825562A (en) * 2018-04-28 2018-11-16 西北工业大学 A kind of twin-channel supercharging device
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
DE102020116245B4 (en) * 2020-06-19 2024-03-07 Man Energy Solutions Se Gas turbine assembly with combustion chamber air bypass
CN113418188B (en) * 2021-06-21 2022-06-14 中国人民解放军国防科技大学 Double-swirl combustion instability control method and system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233798B2 (en) * 1994-02-16 2001-11-26 三菱重工業株式会社 Combustor combustion vibration / pressure fluctuation reduction device
JPH09269107A (en) * 1996-03-29 1997-10-14 Toshiba Corp Apparatus and method for combustion vibration suppression
JP3069347B1 (en) * 1999-06-11 2000-07-24 川崎重工業株式会社 Burner device for gas turbine combustor
EP1624252A1 (en) * 2004-08-06 2006-02-08 Siemens Aktiengesellschaft Burner, Gas Turbine and Method for Operating a Burner
JP4728176B2 (en) * 2005-06-24 2011-07-20 株式会社日立製作所 Burner, gas turbine combustor and burner cooling method
US8393891B2 (en) * 2006-09-18 2013-03-12 General Electric Company Distributed-jet combustion nozzle
EP2225488B1 (en) * 2007-11-27 2013-07-17 Alstom Technology Ltd Premix burner for a gas turbine
US20090139236A1 (en) * 2007-11-29 2009-06-04 General Electric Company Premixing device for enhanced flameholding and flash back resistance
US8205452B2 (en) * 2009-02-02 2012-06-26 General Electric Company Apparatus for fuel injection in a turbine engine
US8322140B2 (en) * 2010-01-04 2012-12-04 General Electric Company Fuel system acoustic feature to mitigate combustion dynamics for multi-nozzle dry low NOx combustion system and method
EP2397764A1 (en) * 2010-06-18 2011-12-21 Siemens Aktiengesellschaft Turbine burner
US9341375B2 (en) * 2011-07-22 2016-05-17 General Electric Company System for damping oscillations in a turbine combustor
US9528698B2 (en) * 2011-08-11 2016-12-27 Richard D. Cook Burner
US20130192243A1 (en) * 2012-01-31 2013-08-01 Matthew Patrick Boespflug Fuel nozzle for a gas turbine engine and method of operating the same
US10317073B2 (en) * 2012-12-13 2019-06-11 Delavan Inc. Flow through cylindrical bores

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147951A2 (en) 2014-01-24 2015-10-01 United Technologies Corporation Axial staged combustor with restricted main fuel injector
EP3102887A4 (en) * 2014-01-24 2017-10-18 United Technologies Corporation Axial staged combustor with restricted main fuel injector

Also Published As

Publication number Publication date
WO2015040228A1 (en) 2015-03-26
CN105393057A (en) 2016-03-09
EP3004743A1 (en) 2016-04-13
US20160195271A1 (en) 2016-07-07
CN105393057B (en) 2017-06-30

Similar Documents

Publication Publication Date Title
EP3004743B1 (en) Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine
DE112009000753B4 (en) Uniform pipe for transporting fluids
DE102011000587B4 (en) Systems and methods for supplying high pressure air to the head end of a combustion chamber
EP1754002B1 (en) Staged premix burner with an injector for liquid fuel
CH708992A2 (en) Fuel injector with premixed pilot nozzle.
EP2470834B1 (en) Burner, in particular for gas turbines
DE102008022669A1 (en) Fuel nozzle and method for its production
CH702825B1 (en) Turbine combustor insert assembly.
CH702173A2 (en) Fuel nozzle assembly for a gas turbine and gas turbine.
DE102010037412B4 (en) Dual fuel nozzle for a turbomachine
EP1659339A1 (en) Method of starting up a burner
CH701461B1 (en) Fuel nozzle assembly for a gas turbine engine.
DE102011000589A1 (en) Axially stepped premixing combustion chamber
DE2222366A1 (en) CARBURETTOR SYSTEM WITH ANNUAL GAP FOR FUEL / AIR FOR THE BURNER OF GAS TURBINE ENGINES
CH701773B1 (en) Burner with a Einlassleitschaufelsystem.
DE102008002934A1 (en) Secondary fuel nozzle arrangement for use in gas-turbine engine, has nozzle section with central passage and passages, and head section with set of inlets in flow-connection with nozzle passages
WO2013056819A1 (en) Lean premix burner of an aircraft gas turbine engine
WO2012016748A2 (en) Gas turbine combustion chamber
EP2470833A2 (en) Swirl blade, burner and gas turbine
DE2116429A1 (en) Combustion chamber for gas turbine engines
EP2409087A2 (en) Method for operating a burner and burner, in particular for a gas turbine
EP2409086B1 (en) Burner assembly for a gas turbine
EP2462379B1 (en) Stabilising of the flame of a burner
DE112017001602T5 (en) FIRE CHAMBER AND GAS TURBINE
DE112017002151B4 (en) COMPRESSOR DIFFUSER AND GAS TURBINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20161207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 894817

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003908

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170517

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170818

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170917

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170817

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014003908

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170923

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170923

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181119

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014003908

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190923

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 894817

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190923