EP1780685B1 - Dispositif de détection sans fil basé sur un processeur - Google Patents

Dispositif de détection sans fil basé sur un processeur Download PDF

Info

Publication number
EP1780685B1
EP1780685B1 EP07002940A EP07002940A EP1780685B1 EP 1780685 B1 EP1780685 B1 EP 1780685B1 EP 07002940 A EP07002940 A EP 07002940A EP 07002940 A EP07002940 A EP 07002940A EP 1780685 B1 EP1780685 B1 EP 1780685B1
Authority
EP
European Patent Office
Prior art keywords
detector
sensor
control circuit
coupled
executable instructions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP07002940A
Other languages
German (de)
English (en)
Other versions
EP1780685A2 (fr
EP1780685A3 (fr
Inventor
Hsing C. Jen
Deborah R. Baricovich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pittway Corp
Original Assignee
Pittway Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/829,218 external-priority patent/US6445292B1/en
Application filed by Pittway Corp filed Critical Pittway Corp
Priority to EP10174554A priority Critical patent/EP2254100A3/fr
Priority to EP10161378A priority patent/EP2221789A1/fr
Publication of EP1780685A2 publication Critical patent/EP1780685A2/fr
Publication of EP1780685A3 publication Critical patent/EP1780685A3/fr
Application granted granted Critical
Publication of EP1780685B1 publication Critical patent/EP1780685B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/181Prevention or correction of operating errors due to failing power supply

Definitions

  • the invention pertains to wireless detectors usable in alarm systems. More particularly, the invention pertains to such detectors which incorporate single die, multi-function, programmed processors configured for energy efficient battery powered operation.
  • Wireless ambient condition detectors are known. Such detectors, most conveniently, have been battery powered so that they may easily be mounted in a variety of locations without any need for power or communications cables. Known wireless detectors, while effective, have used energy at a rate which did not provide as long a battery life as desirable.
  • Known detectors have used separate integrated circuits to interface with different types of sensors such as smoke sensors and heat sensors. Signal processing has in turn required other circuits.
  • ASIC application specific integrated circuits
  • Known detectors have used a different ASIC for communications and low battery detection. Since the ASIC coupled to the respective smoke sensor and the communications ASIC operate autonomously, they create irregular and unpredictable current draw profiles. In known detectors, this irregular and unpredictable current draw profile impedes accurate battery voltage measurements. As a result of these unpredictable current draws, low battery trouble, voltage thresholds have had to be set higher than desirable. This also contributes to shorter battery life.
  • One known type of detector based compensation provides a maximum incremental change which can take place in the detector during each compensation cycle. While this process does provide compensation over a period of time, the greater the extent of the required compensation, the longer is the time interval that is required to achieve a desired sensitivity.
  • heat sensors can be susceptible to nuisance conditions such as electrical noise from static electricity, power surges, radio-frequency interference, as well as thermal noise both from turning the sensor on and off as well as thermal variations from the ambient environment. It has been known to use reference heat sensors to compensate for temperature changes. Such reference heat sensors not only add additional cost to the respective detector but are limited in the thermal noise which can be rejected.
  • US 5990797 discloses an ultraloud ambient condition detector which incorporates a sensor in combination with a control circuit.
  • a wireless single detector incorporates a single chip, or die, integrated control element.
  • the element includes an integrally formed processor, read-write, reprogrammable read only memory or one time programmable read only memory. Different memory types can be formed on the same die.
  • the same chip can include programmable timers, and I/O ports for both analog and digital inputs or outputs.
  • the detector includes a photoelectric smoke sensor and at least one heat sensor.
  • Executable instructions implement a common sensing cycle for both types of sensors.
  • Two heat sensor can be incorporated into a disclosed embodiment.
  • a battery used to power the detector provides an output voltage in a predetermined monitorable range which will support successful operation.
  • a voltage multiplier circuit coupled to the battery, provides a higher voltage to drive an audible output device in accordance with processor supplied modulation.
  • the detector conserves energy, and extends battery life, by performing sensor sampling and signal processing functions for that sample interval during a single active interval. Then, the circuitry enters a low power, inactive state until the next activate interrupt arrives.
  • An example combines different types of sensors, some of which have longer stabilization intervals then others. Different types of sensors can be activated simultaneously. Those with relatively short stabilization intervals can be sampled and the respective signal, or signals, processed, at least in part, during longer stabilization and processing interval for other types of sensors. This overlap contributes to minimal over-all energy usage during each active interval.
  • Fig. 1 illustrates a monitoring system 10 in accordance with the present invention.
  • the system 10 incorporates a system control element 12 which could incorporate one or more programmed processors and pre-stored executable instructions. It will be understood that the exact details of the control element 12 are not a limitation of the present invention.
  • the control element 12 is coupled to a wireless antenna 12a wherein the system 10 has been implemented using RF-type wireless transmissions.
  • Other forms of wireless transmission come within the scope of the present invention.
  • the members of a plurality of electrical units 16 are wirelessly coupled to control element 12.
  • the members of the plurality 16, for example electrical unit 16i could be implemented as battery powered units having one or more ambient condition sensors for purposes of monitoring a region.
  • the sensors could be responsive to smoke, gas, position, flow, intrusion, movement or the like all without limitation of the present invention.
  • the electrical units 16 via respective antennas, such as antenna 16i-1 communicate status information and information pertaining to the condition being monitored to the control element 12.
  • Various levels of processing of the signals from the respective sensor or sensors at the unit 16i can be carried out locally and the results thereof transmitted via antennae 16i-1 and 12a to control element 12.
  • system 10 can incorporate one or more wired communication links, representatively illustrated as link 18, coupled to control element 12.
  • Members of a plurality of electrical units 20 can be coupled to link 18 for communication with control element 12.
  • the members of the plurality 20 could incorporate detectors of ambient conditions as well as output or control devices all without limitation of the present invention.
  • Fig. 2 illustrates more details of a representative member 16i of the plurality 16.
  • the electrical unit 16i is carried in a housing 16i-2.
  • the housing 16i-2 can be mounted to a selected surface.
  • the unit 16i includes a single die, programmed, control element 30.
  • the element 30 includes a processor 30a, read/write memory 30b, and non-volatile memory 30c.
  • the read/write memory 30b can be implemented using a variety of random access or quasi random access technologies as would be understood by those of skill in the art within the scope of the present invention.
  • the non-volatile memory 30c can be implemented with a variety of non-volatile technologies including OPT, flash memory, EEPROM or PROM storage circuitry or combinations thereof. It will be understood that executable instructions and calibration parameters can be stored in one or more types of non-volatile memory all on the same die. By use of EEPROM or other types of reprogrammable storage, parameters and/or executable instructions can be up-dated wirelessly from time to time as a result of commands and files received from the control element 12. In addition, when the unit 16i is being manufactured, executable instructions can be written therein, executed and/or modified without having to be delayed by expensive revisions to mask sets.
  • the control element 30 includes, integrated on the same die, interrupt and I/O ports 30d. Circuitry 30a, 30b, 30c and 30d are all interconnected on the single die resulting in a single chip element which also promotes manufacturability.
  • the unit 16i also includes a wireless interface 34 coupled to the I/O ports 30d and antenna 16i-1.
  • a wireless interface 34 coupled to the I/O ports 30d and antenna 16i-1.
  • a variety of wireless interfaces can be used in the unit 16i without departing from the spirit and scope of the present invention so long as the interfaces enable the respective units, such as the unit 16i to communicate with the control element 12 wirelessly.
  • Preferably communication will be bidirectional although unidirectional communication from the respective electrical units 16 comes within the scope of the present invention.
  • the illustrated electrical unit 16i also includes a smoke chamber 36a.
  • Chamber 3 6a is configured to permit an inflow and outflow of smoke carrying ambient atmosphere in the vicinity of the unit 16i.
  • a radiant energy source 36b mounted within or adjacent to the chamber 36a.
  • the radiator 36b which could be a laser diode or a light emitting diode, and the receiver 36c which could be a photo diode or a photo transistor. They are configured, in chamber 36a, to provide a smoke sensing function, commonly referred to as a photo electric smoke sensor, as would be understood by those of skill in the art.
  • Drive circuits 38a coupled to I/O port 30d and emitter 36b provide electrical energy to emitter 36b under control of instructions being executed by processor 38.
  • photo amp 38b coupled between I/O ports 30d and sensor 36c via an activate line 38b-1 and an amplified sensor output line 38b-2 make it possible to drive emitter 36b via instructions being executed in processor 30a, activate sensing amplifier 38b and receive an analog signal therefrom via line 38b-2.
  • the analog signal on line 38b-2 can be converted in an analog-to- digital converter integral to I/O ports 30d.
  • the resulting digitized value can be processed via instructions executed by processor 30a. It will be understood that the photo-amp 38b can be eliminated where the analog-to-digital converter has sufficient resolution.
  • Representative first and second thermal or heat sensors 40a and 40b are coupled via one or more sensor activate lines 40a-1 and 40b-1 to I/O ports 30d. It will be understood that one or more than two thermal sensors could be used without departing from the scope of the present invention. Analog output signals from sensors 40a, 40b can be coupled via one or more output lines 40a-2 and 40b-2 to I/O ports 30d. It will be understood that either a common activate line or a common feedback line or multiple activate or multiple feedback lines can be used to control or receive signals from the thermal sensors 40a, 40b without departing from the scope of the present invention.
  • the processor 30a can periodically and autonomously activate sensors 40a, 40b via respective lines 40a-1, 40b-1. This in turn provides analog signals, indicative of ambient adjacent thermal conditions on output lines 40a-2, 40b-2. These signals can then be digitized and processed by processor 30a.
  • the processor 30a can be activated only during intermittent spaced apart time intervals. Both smoke sensing and thermal sensing takes place during a common activation interval. Processing of the received signals from the respective sensors also takes place during the same activation interval.
  • the unit 16i is preferably energized by a replaceable battery B.
  • a battery condition measuring circuit 42 is coupled to I/O ports 3 0d via an activation line 42-1 and a battery parameter feedback line, indicative of battery voltage, 42-2.
  • the condition of the battery B can be periodically evaluated by processor 30a by activating measurement circuitry 42.
  • the condition of the battery B can then be monitored in real- time by processor 30a with a known current profile.
  • the value received from measuring circuit 42, on line 42-2 can be compared to a factory programmed threshold value. If the sensed voltage of the battery B is below the preset threshold, the processor 30a can carry out a prestored low battery voltage routine.
  • Voltage incrementing circuit 44 is coupled to battery B and enabling line 44-1, for example a voltage multiplying circuit, can be used to generate an audible device output driving voltage on line 44-2. This driving voltage substantially exceeds the value of the voltage of the battery B.
  • the applied high voltage on the line 44-2 can be modulated via processor 30a and output line 44-3 to drive audible output device 48.
  • This device could be implemented as an audible sounder or piezo-electric device without limitation.
  • processor 30a directly drives battery voltage incrementing circuit 44 to produce an output voltage on line 44-2 sufficiently high to operate the sounder.
  • the sounder via line 44-3 can be modulated in accordance with one or more pre-stored output patterns.
  • an ANSI S 3.41 output pattern can be stored and audibly output via device 48 where the units 16 are marketed in the United States.
  • a Canadian Standards Association, CSA, output pattern can be stored and output for electrical units installed in Canadian markets.
  • processor 30a When processor 30a is generating an audible output pattern, use is made of the silent intervals between tone bursts to carry on a non-tonal processing such as reading sensor values, processing sensor values, reading battery values processing battery output values and executing communication sequences. By multiplexing these operations, only the single processor 30a need be used. Using this same multiplexing approach, a low battery audible indicator can also be produced as appropriate.
  • Graph 100 illustrates one of a plurality of spaced apart active intervals for the control circuits 30. During this interval, the resources of the processor 30a can be devoted to sensor sampling and signal processing.
  • graph 102 illustrates a stabilization and sensing interval of photo amplifier 38b, activated via line 38b-1.
  • the emitter 36b is activated via drive circuits 38a, line 38a-1 near the end of the stabilization interval. This in turn produces radiant energy R in sample chamber 36a, a portion of which, indicative of smoke, is converted to an electrical signal output via photo amp 38b.
  • This signal is sampled, graph 106, and converted to a digital value at the end of the emitter activate interval.
  • one of the thermal sensors such as 40a can be activated for a predetermined period of time, graph 108.
  • An analog output therefrom, line 40a-2 can be sampled and digitized at the I/O port 30d, signal 110a.
  • a second heat or thermal sensor such as sensor 40b can be subsequently activated, graph 112.
  • An analog output therefrom, line 40b-2, can be sampled and digitized at the end of the activation interval 112, waveform 110b.
  • graph 114 the acquired values from the smoke sensor and the thermal sensors can be processed.
  • Fig. 4 illustrates a set of timing diagrams wherein a modulation signal, graph 120, is presented via line 44-3 to an audible output device or sounder.
  • graph 120 processor 30a via line 44-1 and voltage increasing circuit for example voltage multiplier circuit 44 can be driven thereby producing on the output line 44-2 a high enough output voltage to properly drive the sounder 48.
  • sensor activation and signal processing as illustrated in Fig. 3 can be carried out Additionally, low battery testing, discussed above as well as any supervisory signal generation can be carried out and implemented in any of intervals 120a, 120b or 120c.
  • Fig. 5 is a flow diagram of processing in accordance herewith.
  • the processor 30a samples the photo sensor 36c, step 140.
  • This sensor output is processed and filtered to produce an adjusted value, for example Min3 processing as described in Tice U.S. Patent No. 5,736,928 , step 142.
  • the value of Min3_smoke is updated with every photo sample.
  • step 144 the updated Min3_smoke value is used to calculate a running average, Avg step 146.
  • the running average is calculated using, for example, a sample size of 256. It will be understood that other numbers of samples could be used without departing from the scope of the present invention.
  • Smooth which represents the short-term increase in Min3_smoke
  • step 148 Another value, Smooth, which represents the short-term increase in Min3_smoke, is computed, step 148, by averaging the last two differences between Min3_smoke and corresponding Avg. Smooth is greater than zero when Min3_smoke is increasing. Smooth declines to zero when Min3_smoke remains constant or decreases.
  • the most recent value of Smooth is compared with a predetermined value, step 150. When exceeded, an alarm signal is transmitted and an indication is given at the detector step 152.
  • the above described steps not only filter out sensor noise, minimizing false alarms, they also carry out sensitivity compensation.
  • the processor 30a samples the reading of a heat sensor, such as sensor 40a, graph 108, step 160.
  • a value, Avg_temp representing the running average of the last 256 consecutive Inst_temp. including the most recent sample, is calculated, step 162, and stored in memory, step 164.
  • Another value, Delta representing the difference between the most recent Inst_temp and the most recent Avg_temp is calculated step 166a.
  • a third value, Avg_delta is calculated step 166b by taking the running average of the last 12 consecutive Deltas and then stored, step 168.
  • the current reading is compared to 22 degrees C, step 170. If above 22 degrees C and if Avg_delta is greater than or equal to 4, step 172, then the flag ROR is set step 174.
  • step 176i the fixed heat alarm threshold is set to a value that is higher than the most recent Inst_temp by an amount equal to 25% of the difference between the most recent Inst_temp and the predetermined fixed heat alarm threshold step 178. This makes the detector more sensitive by allowing the detector to alarm at a temperature lower than the predetermined fixed heat alarm threshold.
  • Avg_delta is less than 4, then the fixed heat alarm threshold will not be reduced.
  • the detector in this case will respond at the predetermined fixed heat alarm threshold step 180. This process is repeated for the second heat sensor 40b.
  • Avg_delta becomes greater or equal to 4 for one heat sensor
  • the fixed heat alarm thresholds for all heat sensors are adjusted.
  • the adjustment to heat alarm threshold is only made if the temperature is above 22°C, i.e. room temperature, step 170.
  • the Avg_temp, and Avg_delta values for each heat sensor are stored individually.
  • Inst_temp is also compared to the predetermined heat alarm threshold step 180. When exceeded, an alarm signal is transmitted and an indication is given at the detector, step 182.
  • Inst_temp is also compared to a second heat threshold. When exceeded, a trouble signal, different from an alarm signal, is transmitted and an indication is given at the detector.
  • smoke sensor output signals and thermal sensor output signals can be processed using a variety of methods without departing from the spirit and scope of the present invention.
  • other types of sensors can be incorporated into unit 16i without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)

Claims (21)

  1. Détecteur comprenant :
    au moins un capteur de condition ambiante (36a) ;
    un dispositif de sortie audible (48) pour produire un motif acoustique interrompu ayant des intervalles actifs et inactifs prédéterminés ; caractérisé en ce que le détecteur comprend en outre :
    un circuit de contrôle (30) couplé au capteur (36a) et au dispositif (48), dans lequel, en réponse à la présence d'une condition ambiante détectée sélectionnée, le circuit de contrôle (30) commande le dispositif de sortie (48) conformément aux intervalles actifs et inactifs prédéterminés, et dans lequel, pendant les intervalles actifs, le circuit de contrôle (30) est sensiblement complètement dédié à la fourniture d'énergie électrique pour commander le dispositif de sortie (48), et dans lequel, pendant les intervalles inactifs, le circuit de contrôle (30) est adapté pour effectuer différentes fonctions qui ne sont pas de commande.
  2. Détecteur selon la revendication 1, qui comprend un circuit de sortie sans fil (34), couplé au circuit de contrôle (30).
  3. Détecteur selon la revendication 2, qui comprend une source de puissance (B) remplaçable couplée à un circuit d'augmentation de tension (44).
  4. Détecteur selon la revendication 3, dans lequel la source de puissance (B) comprend une batterie.
  5. Détecteur selon la revendication 4, qui comprend un circuit multiplicateur de tension (44) couplé entre la batterie (B) et le dispositif de sortie (48).
  6. Détecteur selon la revendication 1, qui incorpore un deuxième capteur (40a) différent, dans lequel le circuit de contrôle (30) comprend des instructions exécutables (30c) pour établir un cycle d'échantillonnage et pour échantillonner les deux capteurs (36a, 40a) pendant le cycle d'échantillonnage.
  7. Détecteur selon la revendication 6, dans lequel les instructions exécutables (30c) mettent en oeuvre au moins un intervalle de stabilisation avant l'échantillonnage des capteurs (36a, 40a).
  8. Détecteur selon la revendication 7, qui comprend un troisième capteur (40b), sensiblement identique au deuxième capteur (40a) et comprenant des instructions exécutables (30c) pour échantillonner le troisième capteur (40b) pendant le cycle d'échantillonnage.
  9. Détecteur selon la revendication 8, dans lequel un capteur comprend un capteur de fumée (36b, 36c) et un autre comprend un capteur thermique (40a).
  10. Détecteur selon la revendication 6, dans lequel le circuit de contrôle (30) comprend un processeur programmé (30a) configuré avec un cycle actif intermittent qui comprend le cycle d'échantillonnage, et dans lequel le circuit de contrôle (30) nécessite un premier niveau de puissance pendant chaque cycle actif et un niveau de puissance sensiblement réduit entre les cycles actifs, ce qui réduit la puissance requise moyenne.
  11. Détecteur selon la revendication 10, qui comprend des instructions de compensation de sensibilité exécutables (30c), dans lequel différents degrés de compensation sont atteints dans un intervalle de temps sensiblement commun.
  12. Détecteur selon la revendication 10, qui comprend des instructions de traitement de signal de capteur exécutables (30c) qui réagissent à une condition ambiante d'indication de non alarme de l'un des capteurs pour ajuster un seuil d'indication d'alarme pour ce capteur.
  13. Détecteur selon la revendication 12, dans lequel ledit un capteur est un capteur thermique (40a) et l'autre est un capteur de fumée (36b, 36c).
  14. Détecteur selon la revendication 13, qui incorpore un deuxième capteur thermique (40b).
  15. Détecteur selon la revendication 1, comprenant en outre :
    une interface sans fil (34) couplée au circuit de contrôle (30) ; et
    un circuit multiplicateur (44) couplé au circuit de contrôle (30) et au dispositif de sortie (48), dans lequel le circuit de contrôle (30) commande le circuit multiplicateur (44) pendant les intervalles espacés, sensiblement à l'exclusion de l'exécution de différentes fonctions de contrôle, et dans lequel le circuit de contrôle (30) exécute les différentes fonctions de contrôle entre les intervalles espacés.
  16. Détecteur selon la revendication 15, qui comprend une source d'énergie (B) remplaçable avec un port de sortie qui est couplé au circuit multiplicateur (44).
  17. Détecteur selon la revendication 15, qui comprend une puce unique pour au moins un processeur (30a) et une mémoire non volatile (30c) d'instructions exécutables et de valeurs de paramètres.
  18. Détecteur selon la revendication 17, dans lequel la mémoire (30c) comprend au moins l'une d'une mémoire flash, d'une PROM et d'une EEPROM sur la puce.
  19. Détecteur selon la revendication 15, dans lequel le circuit de contrôle (30) comprend des instructions exécutables pour, en partie, exécuter, en tant que fonction de contrôle différente, le traitement des signaux reçus du capteur (36a).
  20. Détecteur selon la revendication 17, dans lequel le processeur (30a) présente un intervalle actif ayant une période prédéterminée, et dans lequel les instructions exécutables effectuent l'échantillonnage des capteurs et le traitement des signaux pendant l'intervalle.
  21. Détecteur selon la revendication 20, dans lequel les instructions exécutables effectuent un processus de compensation à des intervalles de temps fixes indépendamment du degré de compensation.
EP07002940A 2000-04-12 2001-04-11 Dispositif de détection sans fil basé sur un processeur Expired - Lifetime EP1780685B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10174554A EP2254100A3 (fr) 2000-04-12 2001-04-11 Détecteur sans fil avec un processeur
EP10161378A EP2221789A1 (fr) 2000-04-12 2001-04-11 Dispositif de détection sans fil basé sur un processeur

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US19668500P 2000-04-12 2000-04-12
US09/829,218 US6445292B1 (en) 2000-04-12 2001-04-09 Processor based wireless detector
EP01926838A EP1290650B1 (fr) 2000-04-12 2001-04-11 Dispositif de detection sans fil base sur un processeur

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP01926838.2 Division 2001-04-11
EP01926838A Division EP1290650B1 (fr) 2000-04-12 2001-04-11 Dispositif de detection sans fil base sur un processeur

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10161378.4 Division-Into 2010-04-28

Publications (3)

Publication Number Publication Date
EP1780685A2 EP1780685A2 (fr) 2007-05-02
EP1780685A3 EP1780685A3 (fr) 2008-03-12
EP1780685B1 true EP1780685B1 (fr) 2010-08-04

Family

ID=37897238

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07002940A Expired - Lifetime EP1780685B1 (fr) 2000-04-12 2001-04-11 Dispositif de détection sans fil basé sur un processeur

Country Status (1)

Country Link
EP (1) EP1780685B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090102672A1 (en) * 2007-10-19 2009-04-23 Honeywell International, Inc. Features to reduce low-battery reporting to security services at night

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990797A (en) * 1997-03-04 1999-11-23 Bkk Brands, Inc. Ultraloud smoke detector

Also Published As

Publication number Publication date
EP1780685A2 (fr) 2007-05-02
EP1780685A3 (fr) 2008-03-12

Similar Documents

Publication Publication Date Title
EP1290650B1 (fr) Dispositif de detection sans fil base sur un processeur
AU2001253348A1 (en) Processor based wireless detector
US7602304B2 (en) Multi-sensor device and methods for fire detection
EP3022722B1 (fr) Systèmes et procédés pour une alarme multicritères
US7994928B2 (en) Multifunction smoke alarm unit
US7015789B1 (en) State validation using bi-directional wireless link
US5317620A (en) Infrared alarm system
US6320501B1 (en) Multiple sensor system for alarm determination with device-to-device communications
EP1006500A2 (fr) Détecteur de fumée avec unité d'aspiration et capteur de débit
US5864286A (en) Distributed intelligence alarm system having a two- tier monitoring process for detecting alarm conditions
EP1780685B1 (fr) Dispositif de détection sans fil basé sur un processeur
EP0375270B1 (fr) Méthodes et dispositifs de détection de radiation
US4163968A (en) Supervised loop alarm radio transmitter system
JP3603210B2 (ja) ワイヤレス送信器
JP2018136808A (ja) 煙感知器
JP3059498B2 (ja) 在室検出装置
JP3182652B2 (ja) 火災感知器
JPH08293073A (ja) 検知装置
JPH11304851A (ja) ワイヤレスセンサ
JPH05210792A (ja) 煙感知器の警報停止装置
KR950004025A (ko) 환경감시용 유.무선 제어장치
JP2000242877A (ja) 侵入警報システム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1290650

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 20080908

17Q First examination report despatched

Effective date: 20081013

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1290650

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60142755

Country of ref document: DE

Date of ref document: 20100916

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60142755

Country of ref document: DE

Effective date: 20110506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120327

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120430

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120503

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130411

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60142755

Country of ref document: DE

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430