EP1776178B1 - Method and device for carbonising a liquid, preferably tap water - Google Patents

Method and device for carbonising a liquid, preferably tap water Download PDF

Info

Publication number
EP1776178B1
EP1776178B1 EP05774384A EP05774384A EP1776178B1 EP 1776178 B1 EP1776178 B1 EP 1776178B1 EP 05774384 A EP05774384 A EP 05774384A EP 05774384 A EP05774384 A EP 05774384A EP 1776178 B1 EP1776178 B1 EP 1776178B1
Authority
EP
European Patent Office
Prior art keywords
pump
pressure
fluid
gas
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05774384A
Other languages
German (de)
French (fr)
Other versions
EP1776178A1 (en
Inventor
Margret Spiegel
Pasquale Spiegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PL05774384T priority Critical patent/PL1776178T3/en
Priority to SI200531485T priority patent/SI1776178T1/en
Publication of EP1776178A1 publication Critical patent/EP1776178A1/en
Application granted granted Critical
Publication of EP1776178B1 publication Critical patent/EP1776178B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/236Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages
    • B01F23/2363Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23762Carbon dioxide
    • B01F23/237621Carbon dioxide in beverages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/0042Details of specific parts of the dispensers
    • B67D1/0057Carbonators
    • B67D1/0058In-line carbonators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/236Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/07Carbonators

Definitions

  • the invention relates to a carbonization preferably of water with CO 2 within one or more pump housings.
  • the tap water pressure is increased by at least one fluid pressure increase pump and is pressed at this high pressure in a so-called Karbonatorkessel or pot.
  • a so-called Karbonatorkessel or pot By adding CO 2 , the tap water is carbonated.
  • this carbonation always takes place by pressure increase within the Karbonatorkessels. Therefore, the fluid pressure must be increased.
  • Such a type of carbonization is mainly used in the operation of dispensing systems for water dispensers and post-mix systems.
  • This method of carbonising via a carbonator shell is mainly used in the following models, for example, counter units with integrated cooling for tap water and syrup, undercounter units with cooling for tap water and syrup, and in circuit carbonator systems.
  • the so-called circulatory carbonators are also available to allow at least one termed python to be used.
  • the python is nothing else than, for example, to lay syrup lines and gas lines as well as still water lines and also carbonization lines bundled and laid isolated from the carbonator to the tap.
  • tap water and CO 2 are carbonated within a carbonator and this carbonated water is circulated. It is always kept in the direction of the taps in a cycle with the help of a circulation pump. Again and again, it undergoes cooling for liquids to keep the carbonated water at an ideal tapping temperature to produce post-mix drinks.
  • two pumps are needed in the aforementioned principle, a booster pump for carbonating and a circulation pump to keep carbonated water in circulation.
  • One of these pumps can also operate a quiet water circuit to keep unreacted tap water in circulation.
  • This stillwater circuit is also used primarily to cool syrup or to mix carbonated water with still water or to maintain a cycle of carbonated liquids that has the same aspect as mentioned above.
  • circulation pumps preferably positive displacement pumps are used, which are connected to a return line and are provided with at least one additional outlet, preferably to supply an inline carbonator or carbonators with liquids.
  • At least one backflow preventer is used in the return line to force inflowing water from the main supply to flow towards the pump. This guarantees the flow direction to the pump intake.
  • at least one liquid pressure regulator should be provided between the main supply line and the pump, preferably located upstream of a filter system that cleans the liquid.
  • the aforesaid still water cycle may also be used to, for example, supply two or more carbonators, preferably inline carbonators, with liquids to utilize the pressure drop within the carbonization lines.
  • a carbonator has become known in which a volume of water measured by a volume meter is mixed with a quantity of gas in a pump.
  • This pump is connected to a storage container 2, in which a mixture formed in the pump of gas and water is homogenized.
  • the amount of water to be impregnated with gas is measured by a water meter.
  • the measured amount of water is added to gas, which is fed through a gas valve in a leading to the pump liquid line.
  • the opening of the gas valve is predetermined by a delay element.
  • the amount of gas injected measures a flow meter.
  • the gas-liquid mixture is fed by the pump into a container in which a homogenization of the gas-liquid mixture takes place.
  • the inventive solution is that is carbonized within a pump housing or more pump housing during operation of the corresponding pump.
  • positive displacement pumps are mainly used, such as, for example, the Maprotec pump, which consists of a brass housing or a VA steel housing.
  • This type of pump is mainly used as a booster pump, for example a Fill carbonator kettle with water.
  • At the Karbonatorkessel usually one of these pumps is attached, which generates a backwater from the boiler to the pump.
  • This backflow causes the pump to an increase in pressure within the pump housing, because they can not displace the amount of water pumped. Because the water can not be condensed, a pressure increase is created in the space between the static component and the moving part of the pump inside the pump so that the pump can displace the offered amount of water, for example one or more To fill carbonator pots.
  • the carbonated liquid contained in the carbonator vessel is used, for example, to supply a python with carbonated liquid. This usage is mostly used for the operation of tapping post-mix drinks.
  • taps are provided which have at least one inlet for carbonated liquid and at least one inlet for beverage syrups. These two liquids are mixed in the tapping process, creating a carbonated soft drink.
  • the high pressure which is present in the carbonator and caused by the pressure increase caused by the pump, is preferred Python fed or operated taps. This high pressure is also needed, for example, to open three taps simultaneously. This possibility did not exist, for example, with a domestic water connection, which produces a water pressure of 3 bar.
  • the same principle for increasing the pressure also applies to a Karbonatorniklaufsystem.
  • the invention uses now that when using at least one pump, a carbonization is carried out within the pump, preferably be provided at the intended liquid for input side CO 2 and tap water. This mixture is usually absorbed even by the pump. Thus, there is now CO 2 with water inside the pump housing.
  • the pump is used to build up a pressure that is needed to carbonize it.
  • at least one line cross-sectional constriction is used, which is provided at the exit point for liquids and liquid lines on the pump.
  • This liquid is mixed with preferably CO 2 according to the principle used. It now comes carbonated with a high pressure from the pump; because the high pressure within the pump housing arises when the cross-section reduction was completed before the pump outlet, inevitably, because the pump has to displace the offered liquid offset with preferably CO 2 .
  • the carbonization within at least one pump housing has opposite to the carbonization in the Carbonator boilers the advantage that is carbonated in the flow process, such as an inline carbonator.
  • the advantage of the invention is that when using the invention, the aforementioned Karbonatorsysteme be completely saved, because when using the pump as Karbonatorsystem the required pump also carbonized at the same time and not only circulates fluids and is needed to increase the pressure.
  • the invention has seen an even greater benefit on the material savings and energy consumption because Kreislaufkarbonatoren usually require at least two pumps for circulation operation. These are usually a booster pump to fill the carbonator boiler and operate the carbonation and at least one circulation pump to keep fluid in circulation. Thanks to the invention, the booster pump and the complete Karbonatorsystem can be omitted, so saved. Only the circulation pump is needed, which is mostly made of VA steel. The pump housing is used for carbonizing and with the same pump, the circulation is maintained for preferably carbonated liquids.
  • the preferred cross-sectional constriction of the conduit in which carbonated liquid is kept in circulation is applied to the line on the pump prior to entry for liquids and gases, because in the line after the cross-sectional constriction only the pressure is present, that of the water supply for the pump is predetermined.
  • This pressure increase in the pump uses the invention, to supply the pump with liquids and gases.
  • the liquid removed during the tapping process can be replenished.
  • the lower pressure, which is present between the liquid inlet on the pump and the cross-sectional constriction, used after the outlet on the pump, that with normal house water pressure liquids and gases can flow into the pump and after an increase in pressure within the pump housing again with fresh carbonated liquid in the same amount as previously tapped, can be recycled.
  • the tapping process and refilling the line to the tap run at the same time and with an identical amount of carbonated liquid. So a trouble-free dispensing operation can be guaranteed. This is the only way to prevent the pump or pumps from running dry and being damaged.
  • the cross-sectional constriction can also be provided directly on the pump housing.
  • FIG. 1 is a diagrammatic representation of FIG. 1 :
  • the pump 1 preferably has a pump housing made of VA steel. It is preferably driven by at least one electric motor (not shown pictorially). At least one main liquid supply for the pump 1 is attached to the pump connection 3 (not shown pictorially) and at least one gas supply, preferably a CO 2 main supply (not shown pictorially). At entrance of liquid, preferably tap water, and gases, preferably CO 2 , via the port 3, the liquid and the gas can get into the interior of the pump housing 8.
  • the movable part (not shown) of the pump 1 promotes within the pump housing 8, the CO 2 offset liquid under pressure increase via a pump outlet 4 in a line 5.
  • the necessary pressure increase is achieved for example by a cross-sectional constriction 6 to the initiate by increasing the pressure within the pump housing 8 required carbonation. About at least one tap 35, the carbonated liquid can be seen (not shown pictorially).
  • the carbonated water is up to the dispensing operation in the line 5 or is kept in operation when the pump 1 and only in the dispensing new preferably tap water offset preferably with CO 2 via the port 3 of the pump and can be carbonated in the pump housing 8.
  • This is ensured by the fact that during the tapping process in the line 5 and in the pump 1, a pressure drop occurs, so flow over the pump port 3 and through the cross-sectional constriction 6 liquid and gases.
  • the pump 1 is preferably a self-priming pump (not shown pictorially). Between the pump port 3 and the cross-sectional constriction 6 is always only the pressure of Liquid main supply available (not pictured).
  • the pump 1 has at least one bypass and pressure adjustment option and at least one overflow valve inside or outside of the pump 1 or the pump housing 8 (not shown pictorially).
  • FIG. 2 is a diagrammatic representation of FIG. 1
  • FIG. 8 shows a preferably made of VA steel schematically illustrated pump housing 8 with at least one inlet possibility 3 through which preferably tap water and CO 2 can flow into the housing 8 or enter through the due to the suction of the pump 1 tap water and CO 2 in the housing 8.
  • the component 16, the line 5 or a T-piece 5 provided therein is attached.
  • a cross-sectional constriction 6 is attached, which makes it possible in Kreislaufkarbonatoren 50 (see FIG. 9 ) to secure the flow so that when tapping over preferably post-mix faucets 45 not too much carbonated liquid through the circulation pump 1 to the taps 34th pushed past the dispensing process.
  • the taps 34 should be guaranteed the highest possible volume flow.
  • the connection option 11 is used to connect the line 5 with an in-line carbonator 12 or other device that preferably mixes tap water with CO 2 before entering the pump 1.
  • the component 13 ensures that preferably tap water and CO 2 flows through the possibilities 14, 15 in the direction of inline carbonator 12 or mixer.
  • the inline carbonator 12 is filled with bulk material, through which the mixture of tap water and gas flows in the direction of the connection possibility 11 and passes from this through the line 5 and via the pump connection in the pump housing, in which a carbonization of the tap water with CO 2 he follows.
  • the pump 1 inevitably builds up a high pressure, so that over the cross-sectional constriction 6 on the outlet side of the pump 1 carbonated liquid comes about and is then used to produce, for example, soft drinks and provided on the outlet side of the pump 1 lines 7, 5, 10 to flow to the post-mix taps 34.
  • the exit option 4 for carbonated liquids can also be used for feeding.
  • the entry option 3 is used to exit possibility for carbonated liquid.
  • the component 2 can be used as an overflow valve or relieving overflow valve to use an additional adjustment of the bypass or preferably for pressure adjustment 1.
  • FIG. 3 is a diagrammatic representation of FIG. 3 :
  • FIG. 17 shows a schematic representation of a membrane electric pump 17, which can also be driven by gases (not shown pictorially).
  • Your housing structure may be made of plastic.
  • the membrane electric pump has at least one input for liquids and gases, which can also be connected as output 21 and an output for liquids and gases, which can also be connected as input 18.
  • at least one chamber 20 is provided, which is used for carbonization and has a pressure or bypass setting 19 for preferably tap water and CO 2 .
  • FIG. 4
  • FIG. 1 shows a schematic diagram of a pump 17 with a supply option via at least one inline premixer 12, which connects via an inlet 21 with the designed as a chamber 20 pump inner housing, which is preferably supplied dosed with tap water and CO 2 . This ensures that after the supply a continuous carbonization takes place within the pump housing.
  • the line 15 and line 14 are suitable, the To supply component 13 with preferably tap water and CO 2 .
  • the liquid and the gas pass via the component 13 into the in-line carbonator 12, which is designed as an in-line premixer.
  • the mixture of liquid and gas formed in the inline carbonator 12 passes via the connection possibility 11 and 30 through the opening 21 into the interior of the pump 17.
  • the cross-sectional constriction 6 causes the pump 17 to increase the pressure.
  • the pump 17 forces the liquid and the gas through the cross-sectional constriction 6. This increases the pressure needed for good carbonization. By this measure, an increase in pressure is made possible and the carbonized water can pass through the opening 18 of the chamber 20 in the conduit 5. It is passed through the interior of the conduit 10.
  • FIG. 8 shows a schematic sketch of a pump housing 8, which has an additional feed option 24 to gases or liquids or both together in addition to the entry options 4, 3 for gases and liquids to be able to initiate.
  • the pump housing 8 may have a bypass option with the component 2.
  • FIG. 8 shows a schematic sketch of a pump housing 8, which has been manufactured in the factory in the region of a terminal 3 with a cross-sectional constriction. This should serve to ensure the required high pressure in the pump housing at the outlet option 3. This is inside the pump housing 8 achieved by prior art techniques, such as by displacement mechanisms (not shown pictorially).
  • FIG. 6 shows an additional component 31 with a bore 25, which serves for the cross-sectional constriction.
  • this component 31 any conventional preferred positive displacement pump 1 can be subsequently retrofitted. It is useful for pressure increase.
  • FIG. 7 is a diagrammatic representation of FIG. 7
  • FIG. 8 shows a schematic diagram of a pump housing 8, which uses at least one inline carbonator 12 as a premixer. This is used in the entry possibility of the pump connection 3 in the direction of the pump housing 8.
  • This in-line carbonator 12, which operates as an in-line premixer, is equipped with at least one device 32 which has the capability of passing gases through an orifice 28 towards the inline premixer.
  • the inline premixer 12 is connected via an opening 33 to the interior of the pump housing.
  • This arrangement can structurally serve to use the pump 1 as a shock-carbonator, but also as a carbonator pump 1, which is carbonized within the pump housing 8 with the components required for this purpose (not shown pictorially) and at the same time also used as a circulation pump, when no carbonated liquid is being tapped. If no carbonated liquid is being tapped, no new preimpregnated liquid can enter the interior of the pump housing (not shown).
  • only the dispensing operation releases via the port 28, for example, the influx of CO 2 toward the in-line pre-mixer 12 and the inflow of tap water from the conduit 27, preferably via the port 26, toward the in-line pre-mixer 12.
  • Carbonated liquid via the pump 1 can be used for tapping, so that no gap of carbonated liquid in the lines 49, 40, 6, 5 (cf. FIG. 9 ) and in the pump housing 8, 20 may arise. As a result, it is not possible for the lack of liquid of carbonated liquid to occur, for example, at the post-mix taps 34 (not shown pictorially).
  • the in-line pre-mixer designed as an inline carbonator 12 preferably consists of one or more hollow bodies 53, into which bulk material is introduced.
  • This hollow body 53 is formed as a holder and securing of screen material, which is held in at least two openings of the hollow body 53. Due to the sieve material held in an opening, the liquid from the line 7 and the gas enter through the opening 28 into the hollow body 53 filled with the bulk material. From the bottom opening closed with the sieve material 55, the liquid mixture pre-mixed with the gas enters the pump housing 8.
  • FIG. 8 is a diagrammatic representation of FIG. 8
  • FIG. 1 Shows a schematic sketch of an upper counter Post-Mix dispensing system 38 with integrated carbonator system 12, 1, 17 and continuous cooling principle with a still water pre-cooling 42, which can also be used as aftercooling for still water.
  • This still water pre-cooling preferably supplies the in-line premixer 12 with chilled tap water for the purpose of pre-carbonization.
  • at least one recooler 40 for carbonated liquids is provided.
  • tap water which may also be filtered (not shown pictorially), enters via a line 44 in an automatic pressure regulator 45 a. This controls the CO 2 .Druck as a function of the existing fluid pressure on the existing fluid pressure. He then passes the liquid to the in-line pre-cabonator (12).
  • the liquid enters the pump 1, 17 in conjunction with preferably tap water flowing from the mains through the automatic pressure regulator 45 during the tapping process.
  • the existing flow pressure over a provided within the automatic pressure regulator 45 piston control a differential pressure is adjusted so that the flow pressure of the liquid is used, that no CO 2 .Ãœberschuß or excessive CO 2 pressure against the liquid pressure may arise (not shown pictorially).
  • the regulated liquid flows through at least one check valve, which, as a backflow preventer 46, prevents a return flow of the tap water in the direction of the pre-cooling line 42.
  • Tap water can then flow into the inline Vorkarbonator 12, in conjunction with previously regulated preferential CO 2 gas via line 47.
  • This entry of gas and liquid into the feed component 13, which forms the prechamber of the inline premixer 12 can only take place when carbonated liquid is tapped via the faucets 35, at which moment the liquid can communicate with the gas via the line 39 in the pump 1, 17 and enter the chamber of the pump 8, 20.
  • FIG. 9 is a diagrammatic representation of FIG. 9 .
  • FIG. 1 shows a schematic sketch of a Kreislaufkarbonatorkal for a preferential half-tap supply 34 with carbonated liquid.
  • city water can preferably flow into the automatic regulator 45 for liquids and gases.
  • CO 2 from a reservoir flows into the automatic pressure regulator 45 by preference.
  • Both media flow simultaneously via the lines 47, 41 into the Einspelsungsbauteil 13 for the inline premixer 12.
  • the pump 1 serves to circulate the carbonated liquid in the circuit 49 while constantly cool in the cooling circuit 40.
  • a cross-sectional constriction 6 lying in the line 49 ensures that fresh liquid-gas mixture entering from the connection possibility 11 into the line 5 flows in the direction of the pump 1 without a flow in the direction of the lines 49 taking place.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices For Dispensing Beverages (AREA)
  • Water Treatment By Sorption (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A system and method for carbonizing a liquid, such as tap water with CO2, are disclosed. The liquid is carbonized inside a pump housing, thereby obviating the need for a separate high-pressure carbonator tank and a separate feed pump. The pump housing has an inlet for receiving in combination the liquid and CO2 at a first pressure, and an outlet for transporting the liquid carbonized with CO2 from the pump housing into an outlet line at a second pressure higher than the first pressure. A constriction is disposed in the outlet line for producing said higher pressure with the pump. The system and method can be employed in closed-loop carbonizing systems in the beverage industry.

Description

Die Erfindung betrifft eine Karbonisierung bevorzugt von Wasser mit CO2 innerhalb eines oder mehrerer Pumpengehäuse.The invention relates to a carbonization preferably of water with CO 2 within one or more pump housings.

Der Leitungswasserdruck wird durch mindestens eine Flüssigkeitsdruckerhöhungspumpe erhöht und wird mit diesem hohen Druck in einen so genannten Karbonatorkessel oder Topf gedrückt. Durch Hinzugabe von CO2 wird das Leitungswasser karbonisiert. Diese Karbonisierung findet aber immer durch Druckerhöhung innerhalb des Karbonatorkessels statt. Deswegen muss der Flüssigkeitsdruck erhöht werden. Eine solche Karbonisierungsart wird hauptsächlich beim Betrieb von Schankanlagen benutzt für Wasserdispenser und Post-Mix Anlagen.The tap water pressure is increased by at least one fluid pressure increase pump and is pressed at this high pressure in a so-called Karbonatorkessel or pot. By adding CO 2 , the tap water is carbonated. However, this carbonation always takes place by pressure increase within the Karbonatorkessels. Therefore, the fluid pressure must be increased. Such a type of carbonization is mainly used in the operation of dispensing systems for water dispensers and post-mix systems.

Diese Art, über einen Karbonatorkessel zu karbonisle-ren, findet hauptsächlich bei folgenden Modellen statt, beispielsweise bei Thekengeräten mit integrierter Kühlung für Leitungswasser und Sirup, bei Unterthekengeräten mit Kühlung für Leitungswasser und Sirup sowie bei Kreislauf-Karbonatoranlagen.This method of carbonising via a carbonator shell is mainly used in the following models, for example, counter units with integrated cooling for tap water and syrup, undercounter units with cooling for tap water and syrup, and in circuit carbonator systems.

Die so genannten Kreislauf-Karbonatoren gibt es auch, um mindestens eine im Fachausdruck genannte Python zur Anwendung kommen zu lassen. Die Python ist nichts anderes, als zum Beispiel Sirupleitungen und Gasleitungen sowie Stillwasserleitungen und auch Karbonisierungsleitungen gebündelt und isoliert vom Karbonator zur Zapfstelle zu verlegen. Bei einer solchen Anwendung wird Leitungswasser und CO2 innerhalb eines Karbonatorkessels karbonisiert und dieses karbonisierte Wasser wird in einen Kreislauf gegeben. Es wird mit Hilfe einer Kreislaufpumpe immer in Richtung der Zapfstellen in einem Kreislauf in Bewegung gehalten. Dabei durchläuft es immer wieder eine Kühlung für Flüssigkeiten, um das karbonisierte Wasser auf einer idealen Zapftemperatur zu halten, um Post-Mix Getränke herzustellen. Beim Stand der Technik werden bei dem vorgenannten Prinzip zwei Pumpen gebraucht, eine Druckerhöhungspumpe zum Karbonisieren und eine Kreislaufpumpe, um karbonisiertes Wasser im Kreislauf zu halten. Eine dieser Pumpen kann auch einen Stillwasser-Kreislauf betreiben, um nicht angereichertes Leitungswasser im Kreislauf zu halten. Dieser Stillwasser-Kreislauf wird hauptsächlich auch zur Kühlung von Sirup genutzt oder dafür, dass karbonisiertes Wasser mit stillem Wasser zu mischen ist oder um einen Kreislauf für karbonisierte Flüssigkeiten aufrechtzuerhalten, der den gleichen, bereits oben aufgeführten Aspekt hat.The so-called circulatory carbonators are also available to allow at least one termed python to be used. The python is nothing else than, for example, to lay syrup lines and gas lines as well as still water lines and also carbonization lines bundled and laid isolated from the carbonator to the tap. In such an application, tap water and CO 2 are carbonated within a carbonator and this carbonated water is circulated. It is always kept in the direction of the taps in a cycle with the help of a circulation pump. Again and again, it undergoes cooling for liquids to keep the carbonated water at an ideal tapping temperature to produce post-mix drinks. In the prior art, two pumps are needed in the aforementioned principle, a booster pump for carbonating and a circulation pump to keep carbonated water in circulation. One of these pumps can also operate a quiet water circuit to keep unreacted tap water in circulation. This stillwater circuit is also used primarily to cool syrup or to mix carbonated water with still water or to maintain a cycle of carbonated liquids that has the same aspect as mentioned above.

Als Kreislaufpumpen kommen bevorzugt Verdrängerpumpen zur Anwendung, die mit einer Rücklaufleitung verbunden sind und mit mindestens einem zusätzlichen Abgang versehen sind, um bevorzugt einen Inline-Karbonator oder Karbonatoren mit Flüssigkeiten zu versorgen.As circulation pumps preferably positive displacement pumps are used, which are connected to a return line and are provided with at least one additional outlet, preferably to supply an inline carbonator or carbonators with liquids.

Ist der Zapfvorgang beendet, wird nicht mehr karbonisiert, weil bis zu den Zapfstellen ein Druckausgleich stattgefunden hat und nun die Flüssigkeit nur als Stillwasser oder im karbonisierten Wasser-Kreislauf umgewälzt wird. Auch ruht dann die Versorgung mit neuer Flüssigkeit von der Hauptversorgung aus in Richtung Pumpe. In der Rücklaufleitung wird mindestens ein Rückflussverhinderer eingesetzt, um nachströmendes Wasser, das aus der Hauptversorgung nachströmt, zu zwingen, in Richtung Pumpe zu strömen. Dadurch wird die Fließrichtung zur Pumpenansaugung garantiert. Auch sollte mindestens ein Druckregler für die Flüssigkeit zwischen der Hauptversorgungsleitung und der Pumpe vorgesehen werden, der möglichst vor einem Filtersystem angeordnet ist, das die Flüssigkeit reinigt. Der vorgenannte Stillwasser-Kreislauf kann auch genutzt werden, um zum Beispiel zwei oder mehrere bevorzugt als Inline-Karbonatoren ausgebildete Karbonatoren mit Flüssigkeiten zu versorgen, um den Druckabfall innerhalb der Leitungen zum Karbonisieren zu nutzen.Once the tapping process is over, carbonation is no longer carried out because pressure equalization has taken place up to the tapping points and now the liquid is circulated only as still water or in the carbonated water circuit. Also, then rested the supply of new liquid from the main supply in the direction of the pump. At least one backflow preventer is used in the return line to force inflowing water from the main supply to flow towards the pump. This guarantees the flow direction to the pump intake. Also, at least one liquid pressure regulator should be provided between the main supply line and the pump, preferably located upstream of a filter system that cleans the liquid. The aforesaid still water cycle may also be used to, for example, supply two or more carbonators, preferably inline carbonators, with liquids to utilize the pressure drop within the carbonization lines.

Aus FR 2 794 454 ist eine Karbonierungsanlage bekanntgeworden, bei der eine von einem Volumenmeßgerät gemessenen Menge Wassers mit einer Gasmenge in einer Pumpe gemischt wird. Diese Pumpe ist mit einem Speicherbehälter 2 verbunden, in dem ein in der Pumpe entstandenes Gemisch aus Gas und Wasser homogenisiert wird. Dabei wird die Wassermenge, die mit Gas imprägiert werden soll, von einem Wasserzähler gemessen. Die dabei gemessene Wassermenge wird mit Gas versetzt, das durch ein Gasventil in eine zur Pumpe führende Flüssigkeitsleitung eingespeist wird. Die Öffnung des Gasventils wird von einem Verzögerungsglied vorgegeben. Die Menge des eingespeisten Gases misst ein Mengenmesser. Das Gas-Flüssigkeitsgemisch wird von der Pumpe in einen Behälter eingespeist, in dem eine Homogeniserung des Gas-Flüssigkeits-Gemisches stattfindet.Out FR 2 794 454 A carbonator has become known in which a volume of water measured by a volume meter is mixed with a quantity of gas in a pump. This pump is connected to a storage container 2, in which a mixture formed in the pump of gas and water is homogenized. The amount of water to be impregnated with gas is measured by a water meter. The measured amount of water is added to gas, which is fed through a gas valve in a leading to the pump liquid line. The opening of the gas valve is predetermined by a delay element. The amount of gas injected measures a flow meter. The gas-liquid mixture is fed by the pump into a container in which a homogenization of the gas-liquid mixture takes place.

Die Herstellung des Gas-Flüssigkeits-Gemisches aufgrund der jeweiligen Volumenmessungen ist sehr ungenau und für die Herstellung von Getränken daher ungeeignet. Darüber hinaus wird keine Imprägnierung des Gases innerhalb des Gas-Flüssigkeits-Gemisches innerhalb einer Querschnittsverengung empfohlen. Das aus dieser Druckschrift bekanntgewordene Mischungsverfahren benötigt eine große Menge CO2 ohne dass ein befriedigendes Mischungsergebnis erzielt wird.The preparation of the gas-liquid mixture due to the respective volume measurements is very inaccurate and therefore unsuitable for the production of beverages. In addition, no impregnation of the gas within the gas-liquid mixture within a cross-sectional constriction is recommended. The mixing method known from this document requires a large amount of CO 2 without achieving a satisfactory mixing result.

Die erfinderische Lösung besteht darin, dass innerhalb eines Pumpengehäuses oder mehrerer Pumpengehäuse bei Betrieb der entsprechenden Pumpen karbonisiert wird.The inventive solution is that is carbonized within a pump housing or more pump housing during operation of the corresponding pump.

Bei vorgenanntem Stand der Technik kommen hauptsächlich Verdrängerpumpen zum Einsatz, wie zum Beispiel die Pumpe von der Firma Maprotec, die aus einem Messinggehäuse oder VA-Stahlgehäuse besteht. Diese Art von Pumpen wird hauptsächlich als Druckerhöhungspumpe benutzt, um zum Beispiel einen Karbonatorkessel mit Wasser zu befüllen. Am Karbonatorkessel ist meistens eine dieser Pumpen angebracht, die einen Rückstau aus dem Kessel zur Pumpe erzeugt. Dieser Rückstau veranlasst die Pumpe zu einer Druckerhöhung Innerhalb des Pumpengehäuses, weil sie die geförderte Wassermenge nicht verdrängen kann. Weil das Wasser sich nicht verdichten lässt, wird in dem Raum, der zwischen dem statischen Bauteil und dem beweglichen Teil der Pumpe liegt, im Inneren der Pumpe ein Druckanstieg erzeugt, sodass die Pumpe die angebotene Wassermenge dadurch verdrängen kann, um zum Beispiel einen oder mehrere Karbonatortöpfe zu befüllen.In the aforementioned state of the art, positive displacement pumps are mainly used, such as, for example, the Maprotec pump, which consists of a brass housing or a VA steel housing. This type of pump is mainly used as a booster pump, for example a Fill carbonator kettle with water. At the Karbonatorkessel usually one of these pumps is attached, which generates a backwater from the boiler to the pump. This backflow causes the pump to an increase in pressure within the pump housing, because they can not displace the amount of water pumped. Because the water can not be condensed, a pressure increase is created in the space between the static component and the moving part of the pump inside the pump so that the pump can displace the offered amount of water, for example one or more To fill carbonator pots.

Zum Tell wird dem so eingedüsten Wasser bei seiner Einspeisung gleichzeitig vorzugsweise CO2 hinzugegeben und mit dieser karbonisierten Flüssigkeit wird dann mindestens eine Zapfstelle bedient, aus der karbonisierte Flüssigkeit oder mindestens ein Post-Mix Getränk entnommen werden kann. Auch wird die karbonisierte Flüssigkeit, die sich im Karbonatorkessel befindet, dazu benutzt, um beispielsweise eine Python mit karbonisierter Flüssigkeit zu versorgen. Diese Nutzung wird meistens für den Betrieb zum Zapfen von Post-Mix-Getränken angewandt. Dazu sind Zapfstellen vorgesehen, die mindestens einen Eingang für karbonisierte Flüssigkeit und mindestens einen Eingang für Getränkesirupe aufweisen. Diese beiden Flüssigkeiten werden bei dem Zapfvorgang vermischt und so entsteht ein kohlensäurehaltiges Erfrischungsgetränk. Mit dem hohen Druck, der im Karbonator ansteht und durch die von der Pumpe veranlasste Druckerhöhung entstanden ist, wird bevorzugt die Python gespeist oder Zapfstellen betrieben. Dieser hohe Druck wird auch gebraucht, um zum Beispiel drei Zapfstellen gleichzeitig zu öffnen. Diese Möglichkeit bestand nicht beispielsweise mit einem Hauswasseranschluss, der einen Wasserdruck von 3 bar Ilefert. Das gleiche Prinzip für eine Druckerhöhung gilt auch für ein Karbonatorkreislaufsystem.To Tell the so-injected water is added at the same time preferably CO 2 in its feed and then this carbonated liquid is then served at least one tapping point, can be removed from the carbonated liquid or at least one post-mix drink. Also, the carbonated liquid contained in the carbonator vessel is used, for example, to supply a python with carbonated liquid. This usage is mostly used for the operation of tapping post-mix drinks. For this purpose, taps are provided which have at least one inlet for carbonated liquid and at least one inlet for beverage syrups. These two liquids are mixed in the tapping process, creating a carbonated soft drink. With the high pressure, which is present in the carbonator and caused by the pressure increase caused by the pump, is preferred Python fed or operated taps. This high pressure is also needed, for example, to open three taps simultaneously. This possibility did not exist, for example, with a domestic water connection, which produces a water pressure of 3 bar. The same principle for increasing the pressure also applies to a Karbonatorkreislaufsystem.

Die Erfindung nutzt nun, dass bei Verwendung von mindestens einer Pumpe eine Karbonisierung innerhalb der Pumpe vollzogen wird, an deren für Flüssigkeiten vorgesehenen Eingangsseite bevorzugt CO2 und Leitungswasser eingespeist werden. Dieses Gemisch wird meistens selbst ansaugend von der Pumpe aufgenommen. Somit befindet sich jetzt CO2 mit Wasser innerhalb des Pumpengehäuses. Dabei wird die Pumpe dazu genutzt, dass sie einen Druck aufbaut, der für diese Art zu karbonisieren benötigt wird. Dazu wird mindestens eine Leitungsquerschnittverengung angewandt, die an der Austrittsstelle für Flüssigkeiten und Flüssigkeitsleitungen an der Pumpe vorgesehen ist. Diese Flüssigkeit ist gemäß dem angewandten Prinzip mit vorzugsweise CO2 versetzt. Sie tritt nun mit einem hohen Druck aus der Pumpe karbonisiert aus; denn der hohe Druck innerhalb des Pumpengehäuses entsteht, wenn die Querschnittsreduzierung vor dem Pumpenaustritt vollzogen wurde, zwangsläufig, weil die Pumpe die angebotene Flüssigkeit versetzt mit vorzugsweise CO2 verdrängen muss. Bei dieser Verdrängung findet gleichzeitig die Karbonisierung statt, wie sie zum Beispiel im Karbonatorkessel stattfindet. Die Karbonisierung innerhalb mindestens eines Pumpengehäuses hat gegenüber der Karbonisierung im Karbonatorkessel den Vorteil, dass im Durchflussverfahren karbonisiert wird, wie zum Beispiel bei einem Inline-Karbonator. Der Vorteil der Erfindung besteht darin, dass bei Anwendung der Erfindung die vorgenannten Karbonatorsysteme komplett eingespart werden, weil bei der Nutzung der Pumpe als Karbonatorsystem die benötigte Pumpe auch gleichzeitig karbonisiert und nicht nur Flüssigkeiten umwälzt und zur Druckerhöhung gebraucht wird.The invention uses now that when using at least one pump, a carbonization is carried out within the pump, preferably be provided at the intended liquid for input side CO 2 and tap water. This mixture is usually absorbed even by the pump. Thus, there is now CO 2 with water inside the pump housing. The pump is used to build up a pressure that is needed to carbonize it. For this purpose, at least one line cross-sectional constriction is used, which is provided at the exit point for liquids and liquid lines on the pump. This liquid is mixed with preferably CO 2 according to the principle used. It now comes carbonated with a high pressure from the pump; because the high pressure within the pump housing arises when the cross-section reduction was completed before the pump outlet, inevitably, because the pump has to displace the offered liquid offset with preferably CO 2 . At the same time, carbonization takes place, as occurs, for example, in the carbonator vessel. The carbonization within at least one pump housing has opposite to the carbonization in the Carbonator boilers the advantage that is carbonated in the flow process, such as an inline carbonator. The advantage of the invention is that when using the invention, the aforementioned Karbonatorsysteme be completely saved, because when using the pump as Karbonatorsystem the required pump also carbonized at the same time and not only circulates fluids and is needed to increase the pressure.

Bei Kreislaufkarbonatoren hat die Erfindung einen noch höheren Nutzen auf die Materialeinsparung und den Energieverbrauch gesehen, weil Kreislaufkarbonatoren meistens mindestens zwei Pumpen für den Kreislaufbetrieb benötigen. Diese sind meistens eine Druckerhöhungspumpe, um den Karbonatorkessel zu befüllen und die Karbonisierung zu betreiben, und mindestens eine Kreislaufpumpe, um Flüssigkeit im Kreislauf zu halten. Dank der Erfindung können die Druckerhöhungspumpe und das komplette Karbonatorsystem wegfallen, also eingespart werden. Es wird nur noch die Kreislaufpumpe benötigt, die meistens aus VA-Stahl gefertigt ist. Das Pumpengehäuse wird zum Karbonisieren genutzt und mit derselben Pumpe wird der Kreislauf für vorzugsweise karbonisierte Flüssigkeiten aufrechterhalten. Die bevorzugte Querschnittsverengung der Leitung, in der karbonisierte Flüssigkeit im Kreislauf gehalten wird, wird vor dem Eintritt für Flüssigkeiten und Gase in die Leitung an der Pumpe angewandt, weil in der Leitung nach der Querschnittsverengung nur der Druck ansteht, der von der Wasserversorgung für die Pumpe vorgegeben ist. Diese Druckerhöhung in der Pumpe nutzt die Erfindung, um die Pumpe mit Flüssigkeiten und Gasen zu versorgen. Dadurch kann die beim Zapfvorgang entnommene Flüssigkeit nachgefüllt werden. Auch wird der niedrigere Druck, der zwischen dem Flüssigkeitseingang an der Pumpe und der Querschnittsverengung vorhanden ist, nach der Austrittsmöglichkeit an der Pumpe dazu genutzt, dass mit normalem Hauswasserdruck Flüssigkeiten und Gase in die Pumpe einströmen können und nach einer Druckerhöhung innerhalb des Pumpengehäuses wieder mit frisch karbonisierter Flüssigkeit in der gleichen Menge, wie sie vorher gezapft worden ist, wieder in den Kreislauf gelangen kann. Der Zapfvorgang und das Nachfüllen der Leitung bis zur Zapfstelle verlaufen zeitgleich und mit identischer Menge der karbonisierten Flüssigkeit. So kann ein störungsfreier Zapfbetrieb gewährleistet werden. Auch nur so kann verhindert werden, dass die Pumpe oder Pumpen nicht trocken laufen und dadurch beschädigt werden. Die Querschnittsverengung kann auch direkt am Pumpengehäuse vorgesehen sein.In Kreislaufkarbonatoren the invention has seen an even greater benefit on the material savings and energy consumption because Kreislaufkarbonatoren usually require at least two pumps for circulation operation. These are usually a booster pump to fill the carbonator boiler and operate the carbonation and at least one circulation pump to keep fluid in circulation. Thanks to the invention, the booster pump and the complete Karbonatorsystem can be omitted, so saved. Only the circulation pump is needed, which is mostly made of VA steel. The pump housing is used for carbonizing and with the same pump, the circulation is maintained for preferably carbonated liquids. The preferred cross-sectional constriction of the conduit in which carbonated liquid is kept in circulation is applied to the line on the pump prior to entry for liquids and gases, because in the line after the cross-sectional constriction only the pressure is present, that of the water supply for the pump is predetermined. This pressure increase in the pump uses the invention, to supply the pump with liquids and gases. As a result, the liquid removed during the tapping process can be replenished. Also, the lower pressure, which is present between the liquid inlet on the pump and the cross-sectional constriction, used after the outlet on the pump, that with normal house water pressure liquids and gases can flow into the pump and after an increase in pressure within the pump housing again with fresh carbonated liquid in the same amount as previously tapped, can be recycled. The tapping process and refilling the line to the tap run at the same time and with an identical amount of carbonated liquid. So a trouble-free dispensing operation can be guaranteed. This is the only way to prevent the pump or pumps from running dry and being damaged. The cross-sectional constriction can also be provided directly on the pump housing.

Es folgt eine genaue Beschreibung der Erfindung:The following is a detailed description of the invention:

Figur 1: FIG. 1 :

Die Pumpe 1 besitzt bevorzugt ein Pumpengehäuse aus VA-Stahl. Sie wird vorzugsweise über mindestens einen Elektromotor angetrieben (bildlich nicht dargestellt). Am Pumpenanschluss 3 ist mindestens eine Flüssigkeitshauptversorgung für die Pumpe 1 angebracht (bildlich nicht dargestellt) sowie mindestens eine Gaseversorgung, bevorzugt eine CO2-Hauptversorgung (bildlich nicht dargestellt). Bei Eintritt von Flüssigkeit, vorzugsweise Leitungswasser, und Gase, vorzugsweise CO2, über den Anschluss 3 kann die Flüssigkeit und das Gas in das Innere des Pumpengehäuses 8 gelangen. Durch den angeschlossenen vorzugsweise Elektromotor fördert der bewegliche Teil (nicht dargestellt) der Pumpe 1 innerhalb des Pumpengehäuses 8 die mit CO2 versetzte Flüssigkeit unter Druckerhöhung über einen Pumpenauslass 4 in eine Leitung 5. Die notwendige Druckerhöhung wird beispielsweise durch eine Querschnittsverengung 6 erreicht, um die durch Druckerhöhung innerhalb des Pumpengehäuses 8 benötigte Karbonisierung einzuleiten. Über mindestens eine Zapfstelle 35 ist die karbonisierte Flüssigkeit zu entnehmen (bildlich nicht dargestellt).The pump 1 preferably has a pump housing made of VA steel. It is preferably driven by at least one electric motor (not shown pictorially). At least one main liquid supply for the pump 1 is attached to the pump connection 3 (not shown pictorially) and at least one gas supply, preferably a CO 2 main supply (not shown pictorially). At entrance of liquid, preferably tap water, and gases, preferably CO 2 , via the port 3, the liquid and the gas can get into the interior of the pump housing 8. By the preferably connected electric motor, the movable part (not shown) of the pump 1 promotes within the pump housing 8, the CO 2 offset liquid under pressure increase via a pump outlet 4 in a line 5. The necessary pressure increase is achieved for example by a cross-sectional constriction 6 to the initiate by increasing the pressure within the pump housing 8 required carbonation. About at least one tap 35, the carbonated liquid can be seen (not shown pictorially).

In diesem Verfahren kann über die Pumpe 1 im Durchflussverfahren karbonisiert werden. Das karbonisierte Wasser steht bis zum Zapfvorgang in der Leitung 5 oder wird bei Betrieb der Pumpe 1 im Kreislauf gehalten und nur bei dem Zapfvorgang kann neues vorzugsweise Leitungswasser versetzt mit vorzugsweise CO2 über den Anschluss 3 der Pumpe nachströmen und kann im Pumpengehäuse 8 karbonisiert werden. Dieses wird dadurch gewährleistet, dass beim Zapfvorgang in der Leitung 5 und in der Pumpe 1 ein Druckabfall eintritt, sodass über den Pumpenanschluss 3 und durch die Querschnittsverengung 6 Flüssigkeit und Gase nachströmen. Dieses wird noch dadurch unterstützt, dass die Pumpe 1 vorzugsweise eine selbstansaugende Pumpe ist (bildlich nicht dargestellt). Zwischen dem Pumpenanschluss 3 und der Querschnittsverengung 6 ist immer nur der Druck der Flüssigkeitshauptversorgung vorhanden (bildlich nicht dargestellt). Dieses ist notwendig, um ohne Hinzunahme mindestens einer zusätzlichen Druckerhöhungspumpe den Hauptwasserdruck vor der Einspeisung des Wassers und des Gases in die Pumpe 1 zu unterstützen (bildlich nicht dargestellt). Vor der Flüssigkeitseinspeisung an der Pumpe 1 wird es eine Möglichkeit geben, um die Pumpe 1 und alle Leitungen und Zapfstellen zu reinigen und um das Reinigungsmittel einzuspeisen (bildlich nicht dargestellt). Die Pumpe 1 hat mindestens eine bypass- und Druckeinstellungsmöglichkeit sowie mindestens ein Überströmventil innerhalb oder außerhalb der Pumpe 1 oder des Pumpengehäuses 8 (bildlich nicht dargestellt).In this process can be carbonated via the pump 1 in the flow process. The carbonated water is up to the dispensing operation in the line 5 or is kept in operation when the pump 1 and only in the dispensing new preferably tap water offset preferably with CO 2 via the port 3 of the pump and can be carbonated in the pump housing 8. This is ensured by the fact that during the tapping process in the line 5 and in the pump 1, a pressure drop occurs, so flow over the pump port 3 and through the cross-sectional constriction 6 liquid and gases. This is further supported by the fact that the pump 1 is preferably a self-priming pump (not shown pictorially). Between the pump port 3 and the cross-sectional constriction 6 is always only the pressure of Liquid main supply available (not pictured). This is necessary to assist, without adding at least one additional booster pump, the main water pressure prior to feeding the water and gas into the pump 1 (not shown pictorially). Before the liquid feed to the pump 1, there will be a possibility to clean the pump 1 and all lines and taps and to feed the detergent (not shown pictorially). The pump 1 has at least one bypass and pressure adjustment option and at least one overflow valve inside or outside of the pump 1 or the pump housing 8 (not shown pictorially).

Figur 2:FIG. 2:

zeigt ein aus bevorzugt VA-Stahl gefertigtes schematisch dargestelltes Pumpengehäuse 8 mit mindestens einer Eintrittsmöglichkeit 3, durch die bevorzugt Leitungswasser und CO2 in das Gehäuse 8 einströmen können oder durch die aufgrund der Ansaugkraft der Pumpe 1 Leitungswasser und CO2 in das Gehäuse 8 eintreten.shows a preferably made of VA steel schematically illustrated pump housing 8 with at least one inlet possibility 3 through which preferably tap water and CO 2 can flow into the housing 8 or enter through the due to the suction of the pump 1 tap water and CO 2 in the housing 8.

Durch beispielsweise das Bauelement 16 wird die Leitung 5 oder ein darin vorgesehenes T-Stück 5 befestigt. An der Leitung 5 wird eine Querschnittsverengung 6 angebracht, die es ermöglicht, bei Kreislaufkarbonatoren 50 (vergleiche Figur 9) den Durchfluss so zu sichern, dass beim Zapfvorgang über bevorzugt Post-Mix Hähne 45 nicht zu viel karbonisierte Flüssigkeit durch die Kreislaufpumpe 1 an den Hähnen 34 beim Zapfvorgang vorbei geschoben wird. Dadurch soll den Hähnen 34 ein möglichst großer Volumenstrom garantiert werden. Dies wird über die Leitungen 7, 9 gesichert, in denen die Querschnittsverengung 6 vorgesehen ist. Die Anschlussmöglichkeit 11 dient zur Verbindung der Leitung 5 mit einem Inline-Karbonator 12 oder einer anderen Vorrichtung, die bevorzugt Leitungswasser mit CO2 vor Eintritt in die Pumpe 1 mischt.By example, the component 16, the line 5 or a T-piece 5 provided therein is attached. On the line 5, a cross-sectional constriction 6 is attached, which makes it possible in Kreislaufkarbonatoren 50 (see FIG. 9 ) to secure the flow so that when tapping over preferably post-mix faucets 45 not too much carbonated liquid through the circulation pump 1 to the taps 34th pushed past the dispensing process. As a result, the taps 34 should be guaranteed the highest possible volume flow. This is secured via the lines 7, 9, in which the cross-sectional constriction 6 is provided. The connection option 11 is used to connect the line 5 with an in-line carbonator 12 or other device that preferably mixes tap water with CO 2 before entering the pump 1.

Das Bauteil 13 gewährleistet, dass vorzugsweise Leitungswasser und CO2 über die Möglichkeiten 14, 15 in Richtung Inline-Karbonator 12 oder Mischer fließt. Der Inline-Karbonator 12 ist mit Schüttgut befüllt, durch das das Gemisch aus Leitungswasser und Gas in Richtung auf die Anschlussmöglichkeit 11 fließt und aus dieser durch die Leitung 5 sowie über den Pumpenanschluss in das Pumpengehäuse gelangt, in dem eine Karbonisierung des Leitungswassers mit CO2 erfolgt. Die Pumpe 1 baut zwangsläufig einen hohen Druck auf, sodass über die Querschnittsverengung 6 auf der Austrittsseite der Pumpe 1 karbonisierte Flüssigkeit zustande kommt und dann genutzt wird, um zum Beispiel Erfrischungsgetränke herzustellen und über die auf der Austrittsseite der Pumpe 1 vorgesehenen Leitungen 7, 5, 10 zu den Post-Mix Hähnen 34 fließen zu lassen.The component 13 ensures that preferably tap water and CO 2 flows through the possibilities 14, 15 in the direction of inline carbonator 12 or mixer. The inline carbonator 12 is filled with bulk material, through which the mixture of tap water and gas flows in the direction of the connection possibility 11 and passes from this through the line 5 and via the pump connection in the pump housing, in which a carbonization of the tap water with CO 2 he follows. The pump 1 inevitably builds up a high pressure, so that over the cross-sectional constriction 6 on the outlet side of the pump 1 carbonated liquid comes about and is then used to produce, for example, soft drinks and provided on the outlet side of the pump 1 lines 7, 5, 10 to flow to the post-mix taps 34.

Die Austrittsmöglichkeit 4 für karbonisierte Flüsslgkeiten kann auch zur Einspeisung genutzt werden. In diesem Falle wird die Eintrittsmöglichkeit 3 zur Austrittsmöglichkeit für karbonisierte Flüssigkeit genutzt. Das Bauteil 2 kann als ein Überströmventil oder entlastendes Überströmventil genutzt werden, um eine zusätzliche Justierung des bypasses oder vorzugsweise zur Druckeinstellung 1 zu nutzen.The exit option 4 for carbonated liquids can also be used for feeding. In this case, the entry option 3 is used to exit possibility for carbonated liquid. The component 2 can be used as an overflow valve or relieving overflow valve to use an additional adjustment of the bypass or preferably for pressure adjustment 1.

Figur 3: FIG. 3 :

zeigt eine schematische Darstellung einer Membranen-Elektropumpe 17, die auch durch Gase angetrieben werden kann (bildlich nicht dargestellt). Ihr Gehäuseaufbau kann aus Kunststoff bestehen.shows a schematic representation of a membrane electric pump 17, which can also be driven by gases (not shown pictorially). Your housing structure may be made of plastic.

Die Membranen-Elektropumpe hat mindestens einen Eingang für Flüssigkeiten und Gase, der auch als Ausgang 21 geschaltet werden kann sowie einen Ausgang für Flüssigkeiten und Gase, der auch als Eingang 18 geschaltet werden kann. Darüber hinaus ist mindestens eine Kammer 20 vorgesehen, die zur Karbonisierung genutzt wird und eine Druck- oder bypass-Einstellung 19 für bevorzugt Leitungswasser und CO2 besitzt.The membrane electric pump has at least one input for liquids and gases, which can also be connected as output 21 and an output for liquids and gases, which can also be connected as input 18. In addition, at least one chamber 20 is provided, which is used for carbonization and has a pressure or bypass setting 19 for preferably tap water and CO 2 .

Figur 4: FIG. 4 :

zeigt eine schematische Skizze einer Pumpe 17 mit einer Versorgungsmöglichkeit über mindestens einen Inline-Vormischer 12, der über eine Eintrittsmöglichkeit 21 mit dem als Kammer 20 ausgebildeten Pumpen-Innengehäuse verbindet, das bevorzugt mit Leitungswasser und CO2 dosiert versorgt wird. Dadurch wird gewährleistet, dass Im Anschluss an die Versorgung eine kontinuierliche Karbonisierung innerhalb des Pumpengehäuses stattfindet.shows a schematic diagram of a pump 17 with a supply option via at least one inline premixer 12, which connects via an inlet 21 with the designed as a chamber 20 pump inner housing, which is preferably supplied dosed with tap water and CO 2 . This ensures that after the supply a continuous carbonization takes place within the pump housing.

Die Leitung 15 sowie Leitung 14 sind geeignet, das Bauteil 13 mit vorzugsweise Leitungswasser und CO2 zu versorgen. Die Flüssigkeit und das Gas gelangen über das Bauteil 13 in den Inline-Karbonator 12, der als Inline-Vormischer ausgebildet ist. Das im Inline-Karbonator 12 entstandene Gemisch von Flüssigkeit und Gas gelangt über die Anschlussmöglichkeit 11 und 30 durch die Öffnung 21 in das Innere der Pumpe 17. Die Querschnittsverengung 6 bringt die Pumpe 17 dazu, den Druck zu erhöhen. Die Pumpe 17 presst die Flüssigkeit und das Gas durch die Querschnittsverengung 6. Dadurch wird der Druck erhöht, der für eine gute Karbonisierung benötigt wird. Durch diese Maßnahme wird eine Druckerhöhung ermöglicht und das so karbonisierte Wasser kann durch die Öffnung 18 der Kammer 20 in die Leitung 5 gelangen. Es wird durch das Innere der Leitung 10 geleitet.The line 15 and line 14 are suitable, the To supply component 13 with preferably tap water and CO 2 . The liquid and the gas pass via the component 13 into the in-line carbonator 12, which is designed as an in-line premixer. The mixture of liquid and gas formed in the inline carbonator 12 passes via the connection possibility 11 and 30 through the opening 21 into the interior of the pump 17. The cross-sectional constriction 6 causes the pump 17 to increase the pressure. The pump 17 forces the liquid and the gas through the cross-sectional constriction 6. This increases the pressure needed for good carbonization. By this measure, an increase in pressure is made possible and the carbonized water can pass through the opening 18 of the chamber 20 in the conduit 5. It is passed through the interior of the conduit 10.

Figur: 5Figure: 5

zeigt eine schematische Skizze eines Pumpengehäuses 8, das eine zusätzliche Einspeisungsmöglichkeit 24 besitzt, um Gase oder Flüssigkeiten oder beides gemeinsam zusätzlich zu den Eintrittsmöglichkeiten 4, 3 für Gase und Flüssigkeiten einleiten zu können. Darüber hinaus kann das Pumpengehäuse 8 mit dem Bauteil 2 eine bypass-Möglichkeit besitzen.shows a schematic sketch of a pump housing 8, which has an additional feed option 24 to gases or liquids or both together in addition to the entry options 4, 3 for gases and liquids to be able to initiate. In addition, the pump housing 8 may have a bypass option with the component 2.

Figur: 6Figure: 6

zeigt eine schematische Skizze von einem Pumpengehäuse 8, das werksseitig im Bereich eines Anschlusses 3 mit einer Querschnittsverengung hergestellt worden ist. Diese soll dazu dienen, an der Austrittsmöglichkeit 3 den benötigten hohen Druck im Pumpengehäuse zu gewährleisten. Dieser wird im Innern des Pumpengehäuses 8 durch vorbekannte Techniken erzielt, wie zum Beispiel durch Verdränger-Mechanismen (bildlich nicht dargestellt).shows a schematic sketch of a pump housing 8, which has been manufactured in the factory in the region of a terminal 3 with a cross-sectional constriction. This should serve to ensure the required high pressure in the pump housing at the outlet option 3. This is inside the pump housing 8 achieved by prior art techniques, such as by displacement mechanisms (not shown pictorially).

Als weiteres zeigt Figur 6 in einer gesonderten Darstellung ein zusätzliches Bauteil 31 mit einer Bohrung 25, die zur Querschnittsverengung dient. Mit diesem Bauteil 31 kann nachträglich jede herkömmliche bevorzugte Verdrängerpumpe 1 nachgerüstet werden. Es ist zur Druckerhöhung dienlich.As another shows FIG. 6 in a separate representation, an additional component 31 with a bore 25, which serves for the cross-sectional constriction. With this component 31, any conventional preferred positive displacement pump 1 can be subsequently retrofitted. It is useful for pressure increase.

Figur 7:FIG. 7:

zeigt eine schematische Skizze eines Pumpengehäuses 8, das mindestens einen Inline-Karbonator 12 als Vormischer einsetzt. Dieser ist in die Eintrittsmöglichkeit des Pumpenanschlusses 3 in Richtung des Pumpengehäuses 8 eingesetzt. Dieser als Inline-Vormischer arbeitende Inline-Karbonator 12 ist mit mindestens einer Vorrichtung 32 ausgestattet, die die Möglichkeit hat, Gase über eine Öffnung 28 in Richtung auf den Inline-Vormischer eintreten zu lassen. Der Inline-Vormischer 12 ist über eine Öffnung 33 mit dem Inneren des Pumpengehäuses verbunden. Diese Anordnung kann baulich dazu dienen, die Pumpe 1 als Stoß-Karbonator zu nutzen, aber auch als Karbonator-Pumpe 1, die innerhalb des Pumpengehäuses 8 mit den dazu benötigten Bauteilen (bildlich nicht dargestellt) karbonisiert und gleichzeitig auch als eine Kreislaufpumpe genutzt wird, wenn keine karbonisierte Flüssigkeit gezapft wird. Falls keine karbonisierte Flüssigkeit gezapft wird, kann keine neue vorimprägnierte Flüssigkeit in das Innere des Pumpengehäuses gelangen (bildlich nicht dargestellt).shows a schematic diagram of a pump housing 8, which uses at least one inline carbonator 12 as a premixer. This is used in the entry possibility of the pump connection 3 in the direction of the pump housing 8. This in-line carbonator 12, which operates as an in-line premixer, is equipped with at least one device 32 which has the capability of passing gases through an orifice 28 towards the inline premixer. The inline premixer 12 is connected via an opening 33 to the interior of the pump housing. This arrangement can structurally serve to use the pump 1 as a shock-carbonator, but also as a carbonator pump 1, which is carbonized within the pump housing 8 with the components required for this purpose (not shown pictorially) and at the same time also used as a circulation pump, when no carbonated liquid is being tapped. If no carbonated liquid is being tapped, no new preimpregnated liquid can enter the interior of the pump housing (not shown).

Nur beim Zapfvorgang werden über die Öffnung 28 zum Beispiel der Zustrom von CO2 in Richtung auf den Inline-Vormischer 12 und der Zufluss vorzugsweise von Leitungswasser aus der Leitung 27 über die Öffnung 26 in Richtung auf den Inline-Vormischer 12 freigegeben.For example, only the dispensing operation releases via the port 28, for example, the influx of CO 2 toward the in-line pre-mixer 12 and the inflow of tap water from the conduit 27, preferably via the port 26, toward the in-line pre-mixer 12.

Dadurch kann eine der entnommenen Menge, die beim Zapfen entnommen wurde, entsprechende Menge wieder in Richtung auf die Pumpe 1 nachströmen. Über die Pumpe 1 karbonisierte Flüssigkeit kann zum Zapfen benutzt werden, sodass keine Lücke von karbonisierter Flüssigkeit in den Leitungen 49, 40, 6, 5 (vergleiche Figur 9) und im Pumpengehäuse 8, 20 entstehen kann. Dadurch kann es auch nicht zum Flüssigkeitsmangel von karbonisierter Flüssigkeit beispielsweise an den Post-Mix Hähnen 34 kommen (bildlich nicht dargestellt).As a result, one of the withdrawn amount, which was removed during tapping, corresponding amount to flow back toward the pump 1. Carbonated liquid via the pump 1 can be used for tapping, so that no gap of carbonated liquid in the lines 49, 40, 6, 5 (cf. FIG. 9 ) and in the pump housing 8, 20 may arise. As a result, it is not possible for the lack of liquid of carbonated liquid to occur, for example, at the post-mix taps 34 (not shown pictorially).

Der als Inline-Karbonator 12 gestaltete Inline-Vormischer besteht vorzugsweise aus einem oder mehreren Hohlkörpern 53, in die Schüttgut eingebracht ist. Dieser Hohlkörper 53 ist als Halter und Sicherung von Siebmaterial ausgebildet, das in mindestens zwei Öffnungen des Hohlkörpers 53 gehaltert ist. Durch das in einer Öffnung gehalterte Siebmaterial tritt die Flüssigkeit aus der Leitung 7 und das Gas durch die Öffnung 28 in den mit dem Schüttgut gefüllten Hohlkörper 53 ein. Aus der mit dem Siebmaterial 55 verschlossenen unteren Öffnung tritt die mit dem Gas vorgemischte Flüssigkelt in das Pumpengehäuse 8 ein.The in-line pre-mixer designed as an inline carbonator 12 preferably consists of one or more hollow bodies 53, into which bulk material is introduced. This hollow body 53 is formed as a holder and securing of screen material, which is held in at least two openings of the hollow body 53. Due to the sieve material held in an opening, the liquid from the line 7 and the gas enter through the opening 28 into the hollow body 53 filled with the bulk material. From the bottom opening closed with the sieve material 55, the liquid mixture pre-mixed with the gas enters the pump housing 8.

Figur 8:FIG. 8:

Zeigt eine schematische Skizze einer Obertheken Post-Mix Schankanlage 38 mit integriertem Karbonatorsystem 12, 1, 17 und Durchlauf-Kühlprinzip mit einer Stillwasser-Vorkühlung 42, die auch als Nachkühlung für Stillwasser genutzt werden kann. Diese Stillwasservorkühlung versorgt vorzugshalber den In-llne-Vormischer 12 mit gekühltem Leitungswasser zum Zwecke der Vorkarbonisierung. Darüber hinaus Ist mindestens eine Nachkühlleltung 40 für karbonisierte Flüssigkeiten vorgesehen. Vorzugshalber Leitungswasser, das auch gefiltert sein kann (bildlich nicht dargestellt), tritt über eine Leitung 44 in einen Automatikdruckregler 45 ein. Dieser steuert über den vorhandenen Flüssigkeitsdruck den CO2.Druck in Abhängigkeit von dem vorhandenen Flüssigkeitsdruck. Anschließend leitet er die Flüssigkeit an den oder die Inline-Vor-Kabonatoren (12) weiter. Danach gelangt die Flüssigkeit in die Pumpe 1, 17 in Verbindung mit bevorzugt Leitungswasser, das vom Leitungsnetz durch den Automatikdruckregler 45 beim Zapfvorgang strömt. Dabei wird der vorhandene Fließdruck über eine innerhalb des Automatikdruckreglers 45 vorgesehene Kolbensteuerung einem Differenzdruck so angepasst, dass der Fließdruck der Flüssigkeit genutzt wird, dass kein CO2.Überschuß oder zu hoher CO2-Druck gegenüber dem Flüssigkeitsdruck entstehen kann (bildlich nicht dargestellt).Shows a schematic sketch of an upper counter Post-Mix dispensing system 38 with integrated carbonator system 12, 1, 17 and continuous cooling principle with a still water pre-cooling 42, which can also be used as aftercooling for still water. This still water pre-cooling preferably supplies the in-line premixer 12 with chilled tap water for the purpose of pre-carbonization. In addition, at least one recooler 40 for carbonated liquids is provided. Preferably tap water, which may also be filtered (not shown pictorially), enters via a line 44 in an automatic pressure regulator 45 a. This controls the CO 2 .Druck as a function of the existing fluid pressure on the existing fluid pressure. He then passes the liquid to the in-line pre-cabonator (12). Thereafter, the liquid enters the pump 1, 17 in conjunction with preferably tap water flowing from the mains through the automatic pressure regulator 45 during the tapping process. In this case, the existing flow pressure over a provided within the automatic pressure regulator 45 piston control a differential pressure is adjusted so that the flow pressure of the liquid is used, that no CO 2 .Überschuß or excessive CO 2 pressure against the liquid pressure may arise (not shown pictorially).

Dieses Prinzip der gegenseitigen Abhängigkeit wird auch zur Vermeidung von Druckschwankungen im Wassernetz benutzt, um immer eine gleich bleibende Dosierung vom Flüssigkeitsstrom und Flüssigkeitsdruck gegenüber dem vorzugshalber CO2-Druck im Fließstrom zu halten, der zur Karbonisierung und Hauptkarbonisierung der Pumpen 1, 17 gebraucht wird. Sonst könnte es passieren, dass bei Anstieg des Flüssigkeitsdruckes und bei einem gleich bleibend eingestellten CO2-Druck keine Karbonisierung mehr möglich ist, weil der zuvor angestiegene Flüssigkeitsdruck das CO2 daran hindert, in Richtung des Inline-Vorkarbonators 12 und der Pumpen 1, 17 zu strömen. Da der vorher fest eingestellte CO2-Druck in diesem Fall niedriger ist als der Fließdruck der Flüssigkeit, käme eine Karbonisierung der Flüssigkeit nicht zustande. Dieser Fall könnte eintreten, wenn ein CO2-Druckregler von einem gesonderten Flüssigkeitsdruckregler unabhängig wäre.This principle of mutual dependence is also used to avoid pressure fluctuations in the water network to always be consistent To keep metering of the liquid flow and liquid pressure against the preferential CO 2 pressure in the flow stream, which is used for carbonation and Hauptkarbonisierung the pump 1, 17. Otherwise, carbonization may no longer be possible if the liquid pressure rises and the CO 2 pressure remains constant, because the previously increased liquid pressure prevents the CO 2 from reaching the in-line precarbonator 12 and the pumps 1, 17 to stream. Since the previously set CO 2 pressure in this case is lower than the flow pressure of the liquid, a carbonation of the liquid would not materialize. This situation could occur if a CO 2 pressure regulator were independent of a separate fluid pressure regulator.

Die Kombination der Druckregelungen in einem Automatikdruckregler 45 beugt diesen Problemen vor. Sie würde auch von Vorteil sein, wenn der Flüssigkeitsdruck unter den Druck des CO2 fallen würde. Dann verdrängt das Gas den Flüssigkeitsstrom, sodass auch in diesem Fall keine gleich gute Karbonisierung stattfinden könnte. Die Pumpen 1, 17 könnten Schaden nehmen (bildlich nicht dargestellt).The combination of the pressure controls in an automatic pressure regulator 45 prevents these problems. It would also be beneficial if the fluid pressure dropped below the pressure of CO 2 . Then the gas displaces the liquid flow, so that in this case no equally good carbonation could take place. The pumps 1, 17 could be damaged (not pictured).

Die regulierte Flüssigkeit durchströmt mindestens ein Rückschlagventil, das als Rückflussverhinderer 46 einen Rückstrom des Leitungswassers in Richtung der Vorkühlleitung 42 verhindert. Leitungswasser kann danach in den Inline-Vorkarbonator 12 fließen, und zwar in Verbindung mit zuvor geregeltem vorzugshalber CO2-Gas über die Leitung 47. Diese mündet in den Anschluss 15 des Einspeisungsbauteils 13, das die Vorkammer des Inline-Vormischers 12 bildet. Dieser Eintritt von Gas- und Flüssigkeit in das Einspeisungsbauteil 13, das die Vorkammer des Inline-Vormischers 12 bildet, kann nur geschehen, wenn über die Hähne 35 karbonisierte Flüssigkeit gezapft wird, in diesem Moment kann die Flüssigkeit in Verbindung mit dem Gas über die Leitung 39 in die Pumpe 1, 17 und in die Kammer der Pumpe 8, 20 gelangen. Durch die zwangsläufige Druckerhöhung in der Pumpe 1, 17, die durch die Querschnittsverengung 6 hervorgerufen wird, entsteht eine sehr gute Karbonisierung im inneren des Pumpengehäuses 8, 20. Diese Karbonisierung erfolgt im Durchflussverfahren, weil zum Beispiel bei Membranpumpen 17 das Verdrängerprinzip angewandt wird. Umso enger der Austritt am Pumpenauslass 4 bzw. 18, umso höher ist der Widerstand für die Pumpe, um die Flüssigkeit fördern zu können. Dadurch wird automatisch der Druck durch die Pumpe 1, 17 erhöht. Diese Druckerhöhung wird für die Karbonisierung benötigt. Nach der auf der Austrittsseite 3, 18 vorgesehenen Querschnittsverengung 6 fällt der Druck in der Austrittsleitung 5, 7 wieder ab, und zwar teilweise bis auf den Eingangsdruck, der vor dem Pumpeneingang 3, 21 gegebenenfalls in Verbindung mit dem vorhandenen CO2-Druck herrschte (bildlich nicht dargestellt). Nachdem die karbonisierte Flüssigkeit die Querschnittsverengung 6 passiert hat, gelangt sie in die Nachkühlleitung 40 und kann über die sich an die Nachkühlleitung 40 anschließende Leitung 39 zu den Zapfhähnen 35 geleitet werden, wo sie gezapft werden kann.The regulated liquid flows through at least one check valve, which, as a backflow preventer 46, prevents a return flow of the tap water in the direction of the pre-cooling line 42. Tap water can then flow into the inline Vorkarbonator 12, in conjunction with previously regulated preferential CO 2 gas via line 47. This opens into the terminal 15 of the feed component 13, which forms the antechamber of the inline premixer 12. This entry of gas and liquid into the feed component 13, which forms the prechamber of the inline premixer 12, can only take place when carbonated liquid is tapped via the faucets 35, at which moment the liquid can communicate with the gas via the line 39 in the pump 1, 17 and enter the chamber of the pump 8, 20. Due to the positive pressure increase in the pump 1, 17, which is caused by the cross-sectional constriction 6, creates a very good carbonization in the interior of the pump housing 8, 20. This carbonization takes place in the flow process, because for example in diaphragm pumps 17, the displacement principle is applied. The closer the outlet at the pump outlet 4 or 18, the higher the resistance for the pump in order to be able to convey the liquid. As a result, the pressure is automatically increased by the pump 1, 17. This pressure increase is needed for the carbonization. After the cross-sectional constriction 6 provided on the outlet side 3, 18, the pressure in the outlet line 5, 7 drops again, in some cases down to the inlet pressure prevailing in front of the pump inlet 3, 21, if appropriate in conjunction with the existing CO 2 pressure ( not shown pictorially). After the carbonated liquid has passed through the cross-sectional constriction 6, it passes into the aftercooling line 40 and can be passed via the subsequent to the Nachkühlleitung 40 line 39 to the taps 35 where it can be tapped.

Figur 9: FIG. 9 :

zeigt eine schematische Skizze von einem Kreislaufkarbonatorprinzip für eine vorzugshalber Post-Mix Hahnversorgung 34 mit karbonisierter Flüssigkeit. Für mindestens einen Leitungswasserdruckregler 44 kann vorzugshalber Stadtwasser in den Automatikregler 45 für Flüssigkeiten und Gase einströmen. Gleichzeitig strömt vorzugshalber CO2 aus einem Vorratsbehälter in den Automatikdruckregler 45. Beide Medien strömen gleichzeitig gemeinsam über die Leitungen 47, 41 in das Einspelsungsbauteil 13 für den Inline-Vormischer 12. Die vorgemischten Medien werden unter Mithilfe der Pumpe 8 und dem Vordruck der beiden Medien über die Leitungen 11, 5, 4 angesaugt und im Pumpengehäuse der Hochdruck erhöht. Sie gelangen über die Leitungen 7, die Querschnittsverengung 6, die Leitung 5 und die Kühlleitung 40 zu den Hähnen 34 und können beim Zapfvorgang über die Austrittsmöglichkeit 4 der Pumpe 1 in den Zirkulationskreislauf einfließen. Dabei ersetzen sie die vorher entnommene Flüssigkeitsmenge, sodass keine Zapfunterbrechung stattfinden kann.shows a schematic sketch of a Kreislaufkarbonatorprinzip for a preferential half-tap supply 34 with carbonated liquid. For at least one tap water pressure regulator 44, city water can preferably flow into the automatic regulator 45 for liquids and gases. At the same time CO 2 from a reservoir flows into the automatic pressure regulator 45 by preference. Both media flow simultaneously via the lines 47, 41 into the Einspelsungsbauteil 13 for the inline premixer 12. The premixed media using the pump 8 and the form of the two media sucked in via the lines 11, 5, 4 and increased in the pump housing, the high pressure. They arrive via the lines 7, the cross-sectional constriction 6, the line 5 and the cooling line 40 to the taps 34 and can flow in the tapping process on the exit option 4 of the pump 1 in the circulation circuit. They replace the previously removed amount of liquid, so that no Zapfunterbrechung can take place.

Bei nicht stattfindendem Zapfbetrieb dient die Pumpe 1 dazu, die karbonisierte Flüssigkeit im Kreislauf 49 umzuwälzen und dabei ständig im Kühlkreislauf 40 nachzukühlen. Eine in der Leitung 49 liegende Querschnittsverengung 6 sorgt dafür, dass aus der Anschlussmöglichkeit 11 in die Leitung 5 eintretendes frisches Flüssigkeits-Gasgemisch in Richtung auf die Pumpe 1 fließt, ohne dass ein Durchfluss in Richtung auf die Leitungen 49 stattfindet.In non-takeoff operation, the pump 1 serves to circulate the carbonated liquid in the circuit 49 while constantly cool in the cooling circuit 40. A cross-sectional constriction 6 lying in the line 49 ensures that fresh liquid-gas mixture entering from the connection possibility 11 into the line 5 flows in the direction of the pump 1 without a flow in the direction of the lines 49 taking place.

Claims (17)

  1. Procedure for impregnating a mixture consisting of a fluid and at least one gas, during which the mixture is pressurized by a pump (1) and subsequently lead off through a duct (5) in direction of a tap (36), characterized in that for the production of a mixture a fluid flow under a fluid pressure is mixed with a gas flow of which the gas pressure is dimensioned depending on the fluid pressure and the mixture is pressed through a cross section restriction (6) before entering the tap (35), after having boosted the pressure in the pump (1).
  2. Procedure according to claim 1, characterized in that the tap water is carbonated with CO2.
  3. Procedure according to claims 1 or 2, characterized in that the mixture consisting of fluid and gas is produced by discharging gas into the fluid contained in the pump (1).
  4. Procedure according to claims 1 or 2, characterized in that the mixture consisting of fluid and gas is produced before entering the pump (1).
  5. Procedure according to one of the claims 1 to 4, characterized in that the mixture consisting of a cooled fluid and gases is pressurized in the pump (1).
  6. Procedure according to one of the claims 1 to 4, characterized in that the mixture which is pressurized in the pump (1) is cooled in at least one cooling system (40).
  7. Procedure according to one of the claims 2 to 6, characterized in that the carbonation of the mixture consisting of tap water and CO2 is effected within the pump (1) by raising the displacement pressure.
  8. Procedure according to one of the claims 2 to 7, characterized in that a refreshing beverage is produced out of the carbonated mixture consisting of fluid and gas.
  9. Arrangement for impregnating a mixture consisting of a fluid and at least one gas with a pump (1), of which the pump box (8) features a pump connection (3) for feeding in the mixture that consists of a fluid, which is under a fluid pressure and a gas which is under a gas pressure, and a pump outlet (4) connected with a duct (5) for leading off the mixture being under the pump pressure in direction of a tap (35), characterized in that a mixing unit(13) is provided for mixing the fluid being under a specified fluid pressure with the gas being under a gas pressure that is depending on the fluid pressure, and the mixing unit is connected with the pump (1) through the pump connection (3) for boosting the pressure in the mixture and for which is foreseen a cross section restriction (6) for the mixture being under pump pressure on its way to the tap (35).
  10. Arrangement according to claim 9, characterized in that the pump (1) features at least one connection (3) for supplying a fluid charged with gases and a pump outlet (4) for leading off fluids that are under boosted pressure and charged with gases into the duct (5).
  11. Arrangement according to claims 9 or 10, characterized in that at least one cooling system (40) and a tap (35) for tapping the cooled fluid are connected downstream to the pump outlet (4).
  12. Arrangement according to one of the claims 9 to 11, characterized in that the pump (1) with its pump connections (3, 4) is switched in a circuit (49) for fluids.
  13. Arrangement according to one of the claims 9 to 12, characterized in that in the pump (1) a connection (2) is foreseen for cleaning the pump (1), the duct (5) and the cross section restriction (6).
  14. Arrangement according to one of the claims 12 or 13, characterized in that in the circuit (49) is foreseen at least one pump (1) for maintaining the circuit (49).
  15. Arrangement according to one of the claims 9 to 14, characterized in that a mixing unit (13) is foreseen for the production of the mixture consisting of fluids and gases in direction of the flow upstream the connection (3) of the pump (1).
  16. Arrangement according to one the claims 9 to 15, characterized in that at the pump (1) at least one overflow valve is foreseen that allows adjusting the pressure.
  17. Arrangement according to one of the claims 9 to 16, characterized in that at least one bypass in the pump (1) is foreseen.
EP05774384A 2004-08-05 2005-07-29 Method and device for carbonising a liquid, preferably tap water Not-in-force EP1776178B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL05774384T PL1776178T3 (en) 2004-08-05 2005-07-29 Method and device for carbonising a liquid, preferably tap water
SI200531485T SI1776178T1 (en) 2004-08-05 2005-07-29 Method and device for carbonising a liquid, preferably tap water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004038563A DE102004038563A1 (en) 2004-08-05 2004-08-05 Method and arrangement for carbonating liquid with CO2 within a pump housing
PCT/DE2005/001348 WO2006012874A1 (en) 2004-08-05 2005-07-29 Method and device for carbonising a liquid, preferably tap water

Publications (2)

Publication Number Publication Date
EP1776178A1 EP1776178A1 (en) 2007-04-25
EP1776178B1 true EP1776178B1 (en) 2011-12-07

Family

ID=35159663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05774384A Not-in-force EP1776178B1 (en) 2004-08-05 2005-07-29 Method and device for carbonising a liquid, preferably tap water

Country Status (11)

Country Link
US (4) US20070132114A1 (en)
EP (1) EP1776178B1 (en)
CN (1) CN101098748B (en)
AT (1) ATE536217T1 (en)
DE (1) DE102004038563A1 (en)
DK (1) DK1776178T3 (en)
ES (1) ES2381839T3 (en)
PL (1) PL1776178T3 (en)
PT (1) PT1776178E (en)
SI (1) SI1776178T1 (en)
WO (1) WO2006012874A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2018904B1 (en) 2007-07-26 2010-09-08 Wmf Württembergische Metallwarenfabrik Ag Device for mixing water and gas
GB2474741B (en) * 2009-08-21 2012-03-07 Schroeder Ind Inc Beverage dispensing apparatus
US8348243B2 (en) * 2010-03-14 2013-01-08 Sodastream Industries Ltd. Gas metering device for a home soda machine
US9309103B2 (en) 2010-05-03 2016-04-12 Cgp Water Systems, Llc Water dispenser system
US8567767B2 (en) 2010-05-03 2013-10-29 Apiqe Inc Apparatuses, systems and methods for efficient solubilization of carbon dioxide in water using high energy impact
EP2723481B1 (en) 2011-06-23 2019-05-01 Apiqe Inc. Flow compensator
WO2012178179A2 (en) 2011-06-23 2012-12-27 Apiqe Inc. Disposable filter cartridge for water dispenser
CA2850165C (en) 2011-10-11 2018-04-03 Flow Control Llc. Adjustable in-line on demand carbonation chamber for beverage applications
EP3209172B1 (en) * 2014-10-20 2021-02-17 Bedford Systems LLC Flow circuit for carbonated beverage machine
IL248295B (en) 2016-10-10 2018-02-28 Strauss Water Ltd Carbonation unit, system and method
SG11201907350QA (en) 2017-02-15 2019-09-27 2266170 Ontario Inc Beverage preparation and infusion system
WO2023182974A1 (en) * 2022-03-21 2023-09-28 C18 Llc Supercharger and carbonated water mixing device
US11554946B1 (en) 2022-03-21 2023-01-17 C18 Llc Supercharger and carbonated water mixing device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB674285A (en) * 1949-06-07 1952-06-18 Franz Kostka Device for selectively dispensing natural or carbonated water
US3731845A (en) * 1970-11-23 1973-05-08 J Booth System for dispensing chilled carbonated water
GB1368023A (en) * 1971-02-24 1974-09-25 Zanussi A Spa Industrie Device for the production of carbonated beverages
US3846515A (en) * 1971-08-11 1974-11-05 Chemetron Corp Mechanical foam generating method and system
US3960066A (en) * 1975-06-19 1976-06-01 Union Kol-Flo Corporation Beverage preparation apparatus
US4193745A (en) * 1978-03-09 1980-03-18 Nordson Corporation Gear pump with means for dispersing gas into liquid
US4216879A (en) * 1978-08-16 1980-08-12 The Cornelius Company Method of and apparatus for dispensing a high volumetric flow rate of carbonated beverage, having partial reversal of a circulating flow
US4601645A (en) * 1985-02-04 1986-07-22 Nordson Corporation Gear pump-liquid gas mixer with improved gas introduction
DE4228777A1 (en) * 1992-08-28 1994-03-03 Bosch Siemens Hausgeraete Device for producing and providing carbonated water in a storage container
DE4228775A1 (en) * 1992-08-28 1994-03-03 Bosch Siemens Hausgeraete Device for preparing and dispensing soft drinks
US5417146A (en) * 1994-05-03 1995-05-23 Standard Keil Industries, Inc. Carbonation apparatus
US5842600A (en) * 1996-07-11 1998-12-01 Standex International Corporation Tankless beverage water carbonation process and apparatus
GB2332154B (en) * 1997-11-29 2001-08-29 Imi Cornelius Provision of carbonated beverages
FR2794454B3 (en) * 1999-06-03 2001-04-20 Michel Lesaint DEVICE FOR DISSOLVING CARBON GAS IN WATER
US6607360B2 (en) * 2001-07-17 2003-08-19 Itt Industries Flojet Constant pressure pump controller system
US6725687B2 (en) * 2002-05-16 2004-04-27 Mccann's Engineering & Mfg. Co. Drink dispensing system
US7080525B2 (en) * 2002-09-06 2006-07-25 Mccann's Engineering & Mfg. Co. Drink dispensing system
US7077293B2 (en) * 2003-07-17 2006-07-18 Mccann's Engineering & Mfg. Co. Drink dispensing system
NO20033348L (en) * 2003-07-25 2005-01-26 Yara Int Asa Method and Equipment for Mixing Fluids
US7597124B2 (en) * 2004-06-07 2009-10-06 Claude Litto Preservation and dispensation by volumetric displacement utilizing potential energy conversion
US20060288874A1 (en) * 2005-06-24 2006-12-28 The Coca-Cola Compay In-Line, Instantaneous Carbonation System

Also Published As

Publication number Publication date
PT1776178E (en) 2012-03-22
CN101098748A (en) 2008-01-02
DE102004038563A1 (en) 2006-03-16
DK1776178T3 (en) 2012-04-02
ES2381839T3 (en) 2012-06-01
EP1776178A1 (en) 2007-04-25
US20080142999A1 (en) 2008-06-19
SI1776178T1 (en) 2012-06-29
PL1776178T3 (en) 2012-07-31
US20090238938A1 (en) 2009-09-24
WO2006012874A1 (en) 2006-02-09
US8191867B2 (en) 2012-06-05
CN101098748B (en) 2012-07-18
US20110081468A1 (en) 2011-04-07
ATE536217T1 (en) 2011-12-15
US20070132114A1 (en) 2007-06-14

Similar Documents

Publication Publication Date Title
EP1776178B1 (en) Method and device for carbonising a liquid, preferably tap water
EP2188045B1 (en) Method and device for batchwise enrichment and dispensing of drinking water with a gas
DE60224408T2 (en) FLUID INJECTOR WITH VENTILATION / PROPORTIONING OPENINGS
WO2005077507A1 (en) Method and device for gasifying water
WO2007112892A2 (en) Impregnator
WO2000027515A1 (en) Method and device for introducing gas into liquids by means of a novel mixer
DE202017005461U1 (en) Draft equipment
DE102012100844A1 (en) Carbonating device for wine and wine-based drinks
DE2359033C3 (en) Device for preparing and dispensing beverages containing CO ↓ 2 ↓
DE102005019410A1 (en) Assembly to create carbonated drinking water from tap water and carbon dioxide in reactor packed with polycarbonate grains
WO1999009264A1 (en) Mixer and method for dispensing cold water containing co¿2?
EP0512393A1 (en) Method and apparatus for mixing components of a beverage
DE102020126392A1 (en) Water dispenser and method for its operation
DE4409490B4 (en) Water mixing device
DE3840567A1 (en) Bathtub
WO2006012850A1 (en) Method and arrangement for carbonising a liquid
EP1108676A1 (en) Attachment for a sink, particularly for a kitchen sink
WO2017012992A1 (en) Device for introducing gases into liquids
DE102020116962A1 (en) Device and method for enriching a liquid flow with a gas in a continuous process
DE102020116961A1 (en) Device and method for enriching a liquid flow with a gas in a continuous process
AT504103B1 (en) Coffee machine also dispenses other drinks, e.g. milk, and has heating block for these drinks which contains chamber connected to steam supply and linked by several transverse bores to U-shaped channel, through which drink flows
DE1953050C (en) Dosing and mixing device for liquids that are difficult to mix with one another
DE3430952A1 (en) ARRANGEMENT OF A CIRCUIT PUMP IN A RESERVOIR
DE102007016143A1 (en) The preferred on the pressure side diaphragm pump preferably an inline carbonator with preferably degassed beer preferably Co2 is supplied to carbonize this degassed beer
DE19935150A1 (en) Method and device for dispensing carbonized drinking water via a tap fitting

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070509

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005012219

Country of ref document: DE

Effective date: 20120308

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. REGINE WUESTEFELD

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20120306

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120308

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2381839

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E013833

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20120730

Year of fee payment: 8

26N No opposition filed

Effective date: 20120910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20120724

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20120716

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005012219

Country of ref document: DE

Effective date: 20120910

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: RIXHEIMERSTRASSE 8 POSTFACH 453, 4055 BASEL (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140201

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20140717

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140717

Year of fee payment: 10

Ref country code: NL

Payment date: 20140714

Year of fee payment: 10

Ref country code: FI

Payment date: 20140721

Year of fee payment: 10

Ref country code: LT

Payment date: 20140714

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140717

Year of fee payment: 10

Ref country code: FR

Payment date: 20140717

Year of fee payment: 10

Ref country code: AT

Payment date: 20140721

Year of fee payment: 10

Ref country code: PL

Payment date: 20140716

Year of fee payment: 10

Ref country code: ES

Payment date: 20140723

Year of fee payment: 10

Ref country code: SI

Payment date: 20140714

Year of fee payment: 10

Ref country code: TR

Payment date: 20140725

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20140130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20141028

Year of fee payment: 10

Ref country code: BE

Payment date: 20140715

Year of fee payment: 10

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20160129

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20150729

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 536217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

Ref country code: SI

Ref legal event code: KO00

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150730

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160129

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150730

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170620

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170602

Year of fee payment: 13

Ref country code: IT

Payment date: 20170731

Year of fee payment: 13

Ref country code: GB

Payment date: 20170725

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005012219

Country of ref document: DE

Representative=s name: STRAUB, BERND, DIPL.-PHYS., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005012219

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005012219

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729