EP1776125A2 - Functionalized single walled carbon nanotubes - Google Patents

Functionalized single walled carbon nanotubes

Info

Publication number
EP1776125A2
EP1776125A2 EP05857879A EP05857879A EP1776125A2 EP 1776125 A2 EP1776125 A2 EP 1776125A2 EP 05857879 A EP05857879 A EP 05857879A EP 05857879 A EP05857879 A EP 05857879A EP 1776125 A2 EP1776125 A2 EP 1776125A2
Authority
EP
European Patent Office
Prior art keywords
walled carbon
single walled
fibrils
less
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05857879A
Other languages
German (de)
French (fr)
Other versions
EP1776125A4 (en
Inventor
Robert Hoch
Alan Fischer
Howard Tennent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyperion Catalysis International Inc
Original Assignee
Hyperion Catalysis International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyperion Catalysis International Inc filed Critical Hyperion Catalysis International Inc
Publication of EP1776125A2 publication Critical patent/EP1776125A2/en
Publication of EP1776125A4 publication Critical patent/EP1776125A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0061Methods for manipulating nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates broadly to graphitic nanotubes, which includes tubular fullerenes (commonly called "buckytubes") and fibrils, which are functional ized by chemical substitution or by adsorption of functional moieties. More specifically the invention relates to single walled carbon nanotubes which are uniformly or non-uniformly substituted with chemical moieties or upon which certain cyclic compounds are adsorbed and to complex structures comprised of such functionalized fibrils linked to one another. The invention also relates to methods of introducing functional groups onto the surface of single walled carbon nanotubes.
  • This invention lies in the field of submicron graphitic fibrils, sometimes called vapor grown carbon fibers.
  • Carbon fibrils are vermicular carbon deposits having diameters less than 1.0 ⁇ , preferably less than 0.5 ⁇ , and even more preferably less than 0.2 ⁇ . They exist in a variety of forms and have been prepared through the catalytic decomposition of various carbon-containing gases at metal surfaces. Such vermicular carbon deposits have been observed almost since the advent of electron microscopy.
  • a good early survey and reference is found in Baker and Harris, Chemistry and Physics of Carbon. Walker and Thrower ed., Vol. 14, 1978, p. 83, hereby incorporated by reference. See also, Rodriguez, N., J. Mater. Research. Vol. 8, p. 3233 (1993), hereby incorporated by reference.
  • Endo et al. see Obelin, A. and Endo, M., J. of Crystal Growth. Vol.
  • Tennent U.S. Patent No. 4,663,230, hereby incorporated by reference, succeeded in growing cylindrical ordered graphite cores, uncontaminated with pyrolytic carbon.
  • the Tennent invention provided access to smaller diameter fibrils, typically 35 to 700 A (0.0035 to 0.070 ⁇ ) and to an ordered, "as grown" graphitic surface. Fibrillar carbons of less perfect structure, but also without a pyrolytic carbon outer layer have also been grown.
  • the fibrils, buckytubes and nanofibers that are functionalized in this application are distinguishable from continuous carbon fibers commercially available as reinforcement materials.
  • continuous carbon fibers which have, desirably large, but unavoidably finite aspect ratios
  • continuous carbon fibers have aspect ratios (L/D) of at least 10 4 and often 10 6 or more.
  • the diameter of continuous fibers is also far larger than that of fibrils, being always >1.0 ⁇ and typically 5 to 7 ⁇ .
  • Continuous carbon fibers are made by the pyrolysis of organic precursor fibers, usually rayon, polyacrylonitrile (PAN) and pitch. Thus, they may include heteroatoms within their structure.
  • PAN polyacrylonitrile
  • the graphitic nature of "as made" continuous carbon fibers varies, but they may be subjected to a subsequent graphitization step. Differences in degree of graphitization, orientation and crystallinity of graphite planes, if they are present, the potential presence of heteroatoms and even the absolute difference in substrate diameter make experience with continuous fibers poor predictors of nanofiber chemistry.
  • 4,663,230 describes carbon fibrils that are free of a continuous thermal carbon overcoat and have multiple graphitic outer layers that are substantially parallel to the fibril axis. As such they may be characterized as having their c- axes, the axes which are perpendicular to the tangents of the curved layers of graphite, substantially perpendicular to their cylindrical axes. They generally have diameters no greater than O.l ⁇ and length to diameter ratios of at least 5. Desirably they are substantially free of a continuous thermal carbon overcoat, i.e., pyrolytically deposited carbon resulting from thermal cracking of the gas feed used to prepare them. [0009] Tennent, et al., U.S. Patent No.
  • Carbon nanotubes of a morphology similar to the catalytically grown fibrils described above have been grown in a high temperature carbon arc (Iijima, Nature 354 56 1991). It is now generally accepted (Weaver, Science 265 1994) that these arc-grown nanofibers have the same morphology as the earlier catalytically grown fibrils of Tennent. Arc grown carbon nanofibers are also useful in the invention.
  • Moy disclosed a process for producing hollow, single-walled carbon nanotubes by catalytic decomposition of one or more gaseous carbon compounds by first forming a gas phase mixture carbon feed stock gas comprising one or more gaseous carbon compounds, each having one to six carbon atoms and only H, O, N, S or Cl as hetero atoms, optionally admixed with hydrogen, and a gas phase metal containing compound which is unstable under reaction conditions for said decomposition, and which forms a metal containing catalyst which acts as a decomposition catalyst under reaction conditions; and then conducting said decomposition reaction under decomposition reaction conditions, thereby producing said nanotubes.
  • a gas phase mixture carbon feed stock gas comprising one or more gaseous carbon compounds, each having one to six carbon atoms and only H, O, N, S or Cl as hetero atoms, optionally admixed with hydrogen, and a gas phase metal containing compound which is unstable under reaction conditions for said decomposition, and which forms a metal containing catalyst which acts as a de
  • the invention relates to a gas phase reaction in which a gas phase metal containing compound is introduced into a reaction mixture also containing a gaseous carbon source.
  • the carbon source is typically a Ci through C ⁇ compound having as hetero atoms H, O, N, S or Cl, optionally mixed with hydrogen.
  • Carbon monoxide or carbon monoxide and hydrogen is a preferred carbon feedstock.
  • Increased reaction zone temperatures of approximately 400 0 C. to 1300 0 C. and pressures of between about 0 and about 100 p.s.i.g., are believed to cause decomposition of the gas phase metal containing compound to a metal containing catalyst. Decomposition may be to the atomic metal or to a partially decomposed intermediate species.
  • the metal containing catalysts (1) catalyze CO decomposition and (2) catalyze SWNT formation.
  • the invention also relates to forming SWNT via catalytic decomposition of a carbon compound.
  • the invention of U.S. Patent No. 6,221,330 may in some embodiments Attorney DXket No. 100647-03591
  • An advantage of an aerosol method for producing SWNT is that it will be possible to produce catalyst particles of uniform size and scale such a method for efficient and continuous commercial or industrial production.
  • the previously discussed electric arc discharge and laser deposition methods cannot economically be scaled up for such commercial or industrial production.
  • metal containing compounds useful in the invention include metal carbonyls, metal acetyl acetonates, and other materials which under decomposition conditions can be introduced as a vapor which decomposes to form an unsupported metal catalyst.
  • Catalytically active metals include Fe, Co, Mn, Ni and Mo.
  • Molybdenum carbonyls and Iron carbonyls are the preferred metal containing compounds which can be decomposed under reaction conditions to form vapor phase catalyst. Solid forms of these metal carbonyls may be delivered to a pretreatment zone where they are vaporized, thereby becoming the vapor phase precursor of the catalyst. It was found that two methods may be employed to form SWNT on unsupported catalysts. [0017] The first method is the direct injection of volatile catalyst. The direct injection method is described is U.S. Application Ser. No. 08/459,534, incorporated herein by reference.
  • the second method uses a vaporizer to introduce the metal containing compound (FIG. 12).
  • the vaporizer 10 shown at FIG. 12, comprises a quartz thermowell 20 having a seal 24 about 1 " from its bottom to form a second compartment. This compartment has two 1/4" holes 26 which are open and exposed to the reactant gases.
  • the catalyst is placed into this compartment, and then vaporized at any desired temperature using a vaporizer furnace 32. This furnace is controlled using a first thermocouple 22.
  • a metal containing compound preferably a metal carbonyl
  • reactant gases CO or CO/H.sub.2 sweep the precursor into the reaction zone 34, which is controlled separately by a reaction zone furnace 38 and second thermocouple 42.
  • the metal containing compound is decomposed either partially to an intermediate species or completely to metal atoms. These intermediate species and/or metal atoms coalesce to larger aggregate particles which are the actual catalyst. The particle then grows to the correct size to both catalyze the decomposition of CO and promote SWNT growth.
  • the catalyst particles and the resultant carbon forms are collected on the quartz wool plug 36. Rate of growth of the particles depends on the concentration of the gas phase metal containing intermediate species. This concentration is determined by the vapor pressure (and therefore the temperature) in the vaporizer. If the concentration is too high, particle growth is too rapid, and structures other than SWNT are grown (e.g., MWNT, amorphous carbon, onions, etc.). All of the contents of U.S. Patent No. 6,221,330, including the Examples described therein, are hereby incorporated by reference.
  • Supported metal catalysts for formation of SWNT are also known. Smalley
  • Fibrils have also been oxidized non-uniformly by treatment with nitric acid.
  • Polymer Chem. 30 (1)420(1990) prepared derivatives of oxidized fibrils in order to demonstrate that the surface comprised a variety of oxidized groups.
  • Fig. 1 is a graphical representation of an assay of BSA binding to plain fibrils, carboxy fibrils, and PEG-modified fibrils.
  • Fig. 2 is a graphical representation of an assay of ⁇ -lactoglobulin binding to carboxy fibrils and PEG-modified fibrils prepared by two different methods.
  • Fig. 3 is a graphical representation of the elution profile of bovine serum albumin (BSA) on a tertiary amine fibril column.
  • BSA bovine serum albumin
  • Fig. 4 is a graphical representation of the elution profile of BSA on a quaternary amine fibril column.
  • Fig. 5 is the reaction sequence for the preparation lysine-based dendrimeric fibrils.
  • Fig. 6 is a graphical representation of cyclic voltammograms demonstrating the use of iron phthalocyanine modified fibrils in a flow cell.
  • Fig. 7 is the reaction sequence for the preparation of bifunctional fibrils by the addition of N ⁇ -(tert-butoxycarbonyl)-L-lysine.
  • Fig. 8 is a graphical representation of the results of the synthesis of ethyl butyrate using fibril-immobilized lipase.
  • Fig. 9 is a graphical representation of the results of separation of alkaline phosphatase (AP) from a mixture of AP and ⁇ -galactosidase ( ⁇ G) using AP inhibitor- modified fibrils.
  • AP alkaline phosphatase
  • ⁇ G ⁇ -galactosidase
  • Fig. 10 is a graphical representation of the results of separation of ⁇ G from a mixture of AP and ⁇ G using ⁇ G-modified fibrils.
  • Fig. 11 illustrates a reactor capable of producing single walled carbon nanotubes.
  • Fig. 12 illustrates the vaporizer component of the reactor described in Fig. 11.
  • compositions which broadly have the formula
  • n is an integer
  • L is a number less than O.ln
  • m is a number less than 0.5n
  • each of R is the same and is selected from SO 3 H 3 COOH, NH 2 , OH, R'CHOH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR' 3 , Si(OR') y R' 3-y , Si(O- SiR' 2 )OR', R", Li, A1R' 2 , Hg-X, TlZ 2 and Mg-X, y is an integer equal to or less than 3,
  • R' is hydrogen, alkyl, aryl, cycloalkyl, or aralkyl, cycloaryl, or poly(alkylether),
  • R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl, fluoroaralkyl or cycloaryl,
  • X is halide
  • Z is carboxylate or trifluoroacetate.
  • the carbon atoms, C n are surface carbons of a substantially cylindrical, graphitic nanotube of substantially constant diameter.
  • the nanotubes include those having a Attorney Dc55ket No. 100647-03591 10 length to diameter ratio of greater than 5 and a diameter of less than 0.5 ⁇ , preferably less than O.l ⁇ .
  • the nanotubes can also be substantially cylindrical, graphitic nanotubes which are substantially free of pyrolytically deposited carbon, more preferably those characterized by having a projection of the graphite layers on the fibril axis which extends for a distance of at least two fibril diameters and/or those having cylindrical graphitic sheets whose c-axes are substantially perpendicular to their cylindrical axis.
  • carbon atoms, C n are surface carbons of a substantially cylindrical, single walled carbon nanotube of substantially constant diameter or having diameter less than 5 nanometers. Most preferably, the carbon atoms C n are surface atoms of single walled carbon nanotube having a diameter less than 5 nanometers. These compositions are uniform in that each of R is the same.
  • Non-uniformly substituted nanotubes are also prepared. These include compositions of the formula
  • n, L, m, R and the nanotube itself are as defined above, provided that each of R does not contain oxygen, or, if each of R is an oxygen-containing group COOH is not present.
  • n, L, m, R and R' have the same meaning as above and the carbon atoms are surface carbon atoms of a fishbone fibril having a length to diameter ratio greater than 5 or are carbon atons of a single walled carbon nanotube having a diameter less than 5 nanometers, are also included within the invention. These may be uniformly or non-uniformly substituted.
  • the nanotubes are free of thermal overcoat and have diameters less than ⁇ .5 ⁇ .
  • the carbon atoms, C n are surface carbons of a substantially cylindrical, graphitic nanotube of substantially constant diameter.
  • the nanotubes have a length to diameter ratio of greater than 5 and a diameter of less than 0.5 ⁇ , preferably less than O.l ⁇ .
  • the nanotubes may be nanotubes which are substantially free of pyrolytically deposited carbon. Additionally, the nanotubes are those in which the Attorney DSHcet No. 100647-03591 11 projection of the graphite layers on the fibril axes extends for a distance of at least two fibril diameters and/or those having cylindrical graphitic sheets whose c-axes are substantially perpendicular their cylindrical axis.
  • carbon atoms, C n are surface carbons of a substantially cylindrical, single walled carbon nanotube of substantially constant diameter or having diameter less than 5 nanometers. Most preferably, the carbon atoms C n are surface atoms of single walled carbon nanotube having a diameter less than 5 nanometers.
  • C n are reacted.
  • edge or basal plane carbons of lower, interior layers of the nanotube may be exposed.
  • surface carbon includes all the carbons, basal plane and edge, of the outermost layer of the nanotube, as well as carbons, both basal plane and/or edge, of lower layers that may be exposed at defect sites of the outermost layer.
  • the edge carbons are reactive and must contain some heteroatom or group to satisfy carbon valency.
  • the substituted nanotubes described above may advantageously be further functionalized. Such compositions include compositions of the formula
  • A is selected from
  • Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, a nucleotide, an oligonucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R'-NR' 2 , R'SH, R'CHO, R'CN, R'X, R 1 N + (RO 3 X " R'SiR' 3 , R'Si ⁇ OR') y R' 3-y , R 5 Si(O- SiR' 2 )OR', R'-R", R'-N-CO, (C 2 H 4 O) W -H, ⁇ C 3 H 6 O) W H, (C 2 H 4 O) W -R', (C 3 H 6 O) W -R', Attorney ⁇ Tket No. 100647-03591 12
  • the carbon atoms, C n are surface carbons of a substantially cylindrical, graphitic nanotube of substantially constant diameter.
  • the nanotubes include those having a length to diameter ratio of greater than 5 and a diameter of less than O.l ⁇ , preferably less than 0.05 ⁇ .
  • the nanotubes can also be substantially cylindrical, graphitic nanotubes which are substantially free of pyrolytically deposited carbon. More preferably they are characterized by having a projection of the graphite layers on the fibril axes which extends for a distance of at least two fibril diameters and/or they are comprised of cylindrical graphitic sheets whose c-axes are substantially perpendicular to their cylindrical axes.
  • the nanotubes are free of thermal overcoat and have diameters less than 0.5 ⁇ .
  • the nanotubes may be substantially cylindrical, single walled carbon nanotube of substantially constant diameter or having diameter less than 5 nanometers.
  • the carbon atoms C n are surface atoms of single walled carbon nanotube having a diameter less than 5 nanometers.
  • [C n H L ⁇ [R'-R] m may also be functionalized to produce compositions having the formula
  • C n are surface carbons of a substantially cylindrical, graphitic nanotube of substantially constant diameter.
  • the nanotubes include those having a length to diameter ratio of greater than 5 and a diameter of less than 0.5 ⁇ , preferably less than O.l ⁇ .
  • the nanotubes can also be substantially cylindrical, graphitic nanotubes which are substantially free of pyrolytically deposited carbon.
  • the nanotubes are free of thermal overcoat and have diameters less than 0.5 ⁇ .
  • the nanotubes may be substantially cylindrical, single walled carbon nanotube of substantially constant diameter or having diameter less than 5 nanometers.
  • the carbon atoms C n are surface atoms of single walled carbon nanotube having a diameter less than 5 nanometers.
  • compositions of the invention also include nanotubes upon which certain cyclic compounds are adsorbed. These include compositions of matter of the formula
  • n is an integer
  • L is a number less than O.ln
  • m is less than 0.5n
  • a is zero or a number less than 10
  • X is a polynuclear aromatic, polyheteronuclear aromatic or metallopolyheteronuclear aromatic moiety or is a planar metal tetrathiooxalate
  • R is as recited above.
  • the carbon atoms, C n are surface carbons of a substantially cylindrical, graphitic nanotube of substantially constant diameter.
  • the nanotubes include those having a length to diameter ratio of greater than 5 and a diameter of less than 0.5 ⁇ , preferably less than 0.1 ⁇ .
  • the nanotubes can also be substantially cylindrical, graphitic nanotubes which are substantially free of pyrolytically deposited carbon and more preferably those characterized by having a projection of the graphite layers on said fibril axes which extend for a distance of at least two fibril diameters and/or those having cylindrical graphitic sheets whose c-axes are substantially perpendicular to their cylindrical axes.
  • the nanotubes are free of thermal overcoat and have diameters less than 0.5 ⁇ .
  • the nanotubes may be substantially cylindrical, single walled carbon nanotube of substantially constant diameter or having diameter less than 5 nanometers.
  • the carbon atoms C n are surface atoms of single walled carbon nanotube having a diameter less than 5 nanometers.
  • Preferred cyclic compounds are planar macrocycles as described on p. 76 of
  • compositions of the invention also include single walled carbon nanotubes having diameters less than 5 nanometers upon which certain planar aromatic compounds are adsorbed on the walls of the single walled carbon nanotubes. If the adsorbed molecules are themselves functionalized then the sidewalls are effectively functionalized without comprising their physical structure. The functionalized single walled carbon nanotubes may then may further heated or or the adsorbed molecules may be subjected to partial pyrolysis to prevent desorption. Other mechanisms for anchoring the adsorbed molecule such as crosslinking or oligomerization (to decrease solubility) may be used.
  • Prefered planar aromatic compounds for adsorption include porphyrins and phthalocyanines,
  • the adsorbed cyclic compounds may be functionalized.
  • Such compositions include compounds of the formula
  • m, n, L, a, X and A are as defined above and the carbons are surface carbons of a substantially cylindrical graphitic or single walled carbon nanotube as described above.
  • the carbon fibrils functionalized as described above may be incorporated in a matrix.
  • the matrix is an organic polymer (e.g., a thermoset resin such as epoxy, bismaleimide, polyamide, or polyester resin; a thermoplastic resin; a reaction injection molded resin; or an elastomer such as natural rubber, styrene-butadiene rubber, or cis-1,4- polybutadiene); an inorganic polymer (e.g., a polymeric inorganic oxide such as glass), a metal (e.g., lead or copper), or a ceramic material (e.g., Portland cement).
  • Beads may be formed from the matrix into which the fibrils have been incorporated. Alternately, functionalized fibrils can be attached to the outer surface of functionalized beads.
  • the functionalized fibrils are better dispersed into polymer systems because the modified surface properties are more compatible with the polymer, or, because the modified functional groups (particularly hydroxyl or amine groups) are bonded directly to the polymer as terminal groups.
  • polymer systems such as polycarbonates, polyurethanes, polyesters or polyamides/imides bond directly to the fibrils making the fibrils easier to disperse with improved adherence.
  • the invention is also in methods of introducing functional groups onto the surface of carbon fibrils by contacting carbon fibrils with a strong oxidizing agent for a period of time sufficient to oxidize the surface of said fibrils and further contacting said fibrils with a reactant suitable for adding a functional group to the oxidized surface.
  • the oxidizing agent is comprised of a solution of an alkali metal chlorate in a strong acid.
  • the alkali metal chlorate is sodium chlorate or potassium chlorate.
  • the strong acid used is sulfuric acid. Periods of time sufficient for oxidation are from about 0.5 hours to about 24 hours.
  • a composition having the formula [C ⁇ H L ⁇ fCH(R')OH] m , wherein n, L, R' and m are as defined above, is formed by reacting R'CHbOH with the surface carbons of a nanotube in the presence of a free radical initiator Attorney DTOet No. 100647-03591
  • the invention is also in a method for linking proteins to nanotubes modified by an NHS ester, by forming a covalent bond between the NHS ester and the amino group of the protein.
  • the invention is also in methods for producing a network of carbon fibrils or single walled carbon nanotubes comprising contacting carbon fibrils or single walled carbon nanotubes with an oxidizing agent for a period of time sufficient to oxidize the surface of the carbon fibrils or single walled carbon nanotubes, contacting the surface-oxidized carbon fibrils or single walled carbon nanotubes with reactant suitable for adding a functional group to the surface of the carbon fibrils or single walled carbon nanotubes, and further contacting the surface-functionalized fibrils with a cross-linking agent effective for producing a network of carbon fibrils or single walled carbon nanotubes.
  • a preferred cross-linking agent is a polyol, polyamine or polycarboxylic acid.
  • Functionalized fibrils or single walled carbon nanotubes also are useful for preparing rigid networks of fibrils or networks of single walled carbon nanotubes.
  • a well- dispersed, three-dimensional network of acid-ftinctionalized fibrils or single walled carbon nanotubes may, for example, be stabilized by cross-linking the acid groups (inter-fibril) with polyols or polyamines to form a rigid network.
  • the invention also includes three-dimensional networks formed by linking ninctionalized fibrils or single walled carbon nanotubes of the invention.
  • These complexes include at least two functionalized fibrils or single walled carbon nanotubes linked by one or more linkers comprising a direct bond or chemical moiety.
  • These networks comprise porous media of remarkably uniform equivalent pore size. They are useful as adsorbents, catalyst supports and separation media.
  • interstices between these fibrils or single walled carbon nanotubes are irregular in both size and shape, they can be thought of as pores and characterized by the methods used to characterize porous media.
  • the size of the interstices in such networks can be controlled by the concentration and level of dispersion of fibrils, and the concentration and chain lengths of the cross-linking agents.
  • Such materials can act as structured catalyst supports and may be tailored to exclude or include molecules of a certain size. Aside from conventional industrial catalysis, they have special applications as large pore supports for biocatalysts.
  • the rigid networks can also serve as the backbone in biomimetic systems for molecular recognition. Such systems have been described in U.S. Patent No. 5,110,833 and Attorney Docket No. 100647-03591 16
  • the uniformly functionalized fibrils of the invention can be directly prepared by sulfonation, electrophilic addition to deoxygenated fibril surfaces or metallation.
  • arc grown nanofibers When arc grown nanofibers are used, they may require extensive purification prior to functionalization. Ebbesen et al. (Nature 367 519 (1994)) give a procedure for such purification.
  • the carbon fibrils are processed prior to contacting them with the functionalizing agent.
  • processing may include dispersing the fibrils in a solvent.
  • the carbon fibrils may then be filtered and dried prior to further contact.
  • Activated C-H (including aromatic C-H) bonds can be sulfonated using fuming sulfuric acid (oleum), which is a solution of cone, sulfuric acid containing up to 20% SO3.
  • oleum fuming sulfuric acid
  • the conventional method is via liquid phase at T-80°C using oleum; however, activated C-H bonds can also be sulfonated using SO 3 in inert, aprotic solvents, or SO 3 in the vapor phase.
  • the reaction is:
  • the SO3 source was connected to the reactor tube and an argon stream was used to carry SO 3 vapors into the quartz tube reactor. Reaction was carried out for the desired time at the desired temperature, after which the reactor was cooled under flowing argon. The fibrils were then dried at 90°C at 5" Hg vacuum to obtain the dry weight gain. Sulfonic acid (-SO 3 H) content was determined by reaction with 0.10ON NaOH and back-titration with 0.10ON HCl using pH 6.0 as the end point.
  • the surface carbons in fibrils behave like graphite, i.e., they are arranged in Attorney D3Hcet No. 100647-03591 18 hexagonal sheets containing both basal plane and edge carbons. While basal plane carbons are relatively inert to chemical attack, edge carbons are reactive and must contain some heteroatom or group to satisfy carbon valency. Fibrils also have surface defect sites which are basically edge carbons and contain heteroatoms or groups.
  • Fibril-O Reactive Fibril Surface (RFS) + 2 CO + CO 2 followed by:
  • R' is a hydrocarbon radical (alkyl, cycloalkyl, etc.)
  • KL3 2423199 1 Attorney D ⁇ cet No. 100647-03591 19 tube fitted with a thermocouple and situated in a Lindberg tube furnace. The ends are fitted with a gas inlet/outlets. The tube is purged with dry, deoxygenated argon for 10 minutes, after which the temperature of the furnace is raised to 300°C and held for 30 minutes. Thereafter, under a continued flow of argon, the temperature is raised in 100 0 C increments to 1000 0 C, and held there for 16 hours. At the end of that time, the tube is cooled to room temperature (RT) under flowing argon.
  • RT room temperature
  • the flow of argon is then shunted to pass through a multi-neck flask containing neat purified acrylic acid at 50 0 C and fitted with gas inlet/outlets.
  • the flow of acrylic acid/argon vapors is continued at RT for 6 hours.
  • residual unreacted acrylic acid is removed, first by purging with argon, then by vacuum drying at 100 0 C at ⁇ 5" vacuum.
  • the carboxylic acid content is determined by reaction with excess 0,10ON NaOH and back-titrating with 0.100N HCL to an endpoint at pH 7.5.
  • Aromatic C-H bonds can be metallated with a variety of organometallic reagents to produce carbon-metal bonds (C-M).
  • M is usually Li, Be, Mg, Al, or Tl; however, other metals can also be used.
  • the simplest reaction is by direct displacement of hydrogen in activated aromatics:
  • the reaction may require additionally, a strong base, such as potassium t-butoxide or chelating diamines.
  • a strong base such as potassium t-butoxide or chelating diamines.
  • Aprotic solvents are necessary (paraffins, benzene).
  • the metallated derivatives are examples of primary singly-functionalized fibrils. However, they can be reacted further to give other primary singly-functionalized fibrils. Some reactions can be carried out sequentially in the same apparatus without isolation of intermediates.
  • Fibril-M + X 2 > Fibril-X + MX X Halogen catalyst Fibril-M + CH 3 ONH 2 .HC1 > Fibril-NH 2 + MOCH 3 ether
  • CC fibrils are placed in a porcelain boat and inserted into a 1" quartz tube reactor which is enclosed in a Lindberg tube furnace. The ends of the tube are fitted with gas inlet/outlets. Under continuous flow of H 2 , the fibrils are heated to 700 0 C for 2 hours to convert any surface oxygenates to C-H bonds. The reactor is then cooled to RT under flowing H 2 .
  • Fibrils are transferred to a 50 cc r.b. flask fitted with a stopcock and dried under 10 "4 torr vacuum at 5O 0 C.
  • the lithium concentration is determined by reaction of a sample of fibrils with excess 0.10ON HCl in DI water and back-titration with 0.100N NaOH to an endpoint at pH 5.0.
  • One gram of thallated fibrils is prepared as in Ex. 7.
  • the fibrils are slurried in dioxane and 0.5 g triphenyl phosphine dissolved in dioxane is added.
  • the slurry is stirred at 50°C for several minutes, followed by addition at 50 0 C of gaseous ammonia for 30 min.
  • the fibrils are then separated by filtration, washed in dioxane, then DI water and dried at 80°C at 5" vacuum.
  • the amine concentration is determined by reaction with excess acetic anhydride and back-titration of free acetic acid and unreacted anhydride with 0.10ON NaOH.
  • the graphitic surfaces of fibrils allow for physical adsorption of aromatic compounds.
  • the attraction is through van der Waals forces. These forces are considerable between multi-ring heteronuclear aromatic compounds and the basal plane carbons of graphitic surfaces. Desorption may occur under conditions where competitive surface adsorption is possible or where the adsorbate has high solubility.
  • fibrils can be functionalized by the adsorption of phthalocyanine derivatives. These phthalocyanine derivative fibrils can then be used as solid supports for protein immobilization. Different chemical groups can be introduced on the fibril surface simply by choosing different derivatives of phthalocyanine.
  • phthalocyanine derivative fibrils for protein immobilization has significant advantages over the prior art methods of protein immobilization. In particular, it is simpler than covalent modifications. In addition, the phthalocyanine derivative fibrils have high surface area and are stable in almost any kind of solvent over a wide range of temperature and pH.
  • the preferred compounds for physical adsorption on fibrils are derivatized porphyrins or phthalocyanines which are known to adsorb strongly on graphite or carbon blacks.
  • Several compounds are available, e.g., a tetracarboxylic acid porphyrin, cobalt (II) phthalocyanine or dilithium phthalocyanine. The latter two can be derivatized to a carboxylic acid form.
  • the two Li + ions are displaced from the phthalocyanine (Pc) group by most metal (particularly multi-valent) complexes. Therefore, displacement of the Li + ions with a metal ion bonded with non-labile ligands is a method of putting stable functional groups onto fibril surfaces. Nearly all transition metal complexes will displace Li + from Pc to form a stable, non-labile chelate. The point is then to couple this metal with a suitable ligand.
  • Cobalt (II) complexes are particularly suited for this.
  • Co 4+ ion can be substituted for the two Li + ions to form a very stable chelate.
  • the Co + * ion can then be coordinated to a ligand such as nicotinic acid, which contains a pyridine ring with a pendant carboxylic acid group and which is known to bond preferentially to the pyridine group.
  • a ligand such as nicotinic acid, which contains a pyridine ring with a pendant carboxylic acid group and which is known to bond preferentially to the pyridine group.
  • Co(II)Pc can be electrochemically oxidized to
  • Suitable ligands are the aminopyridines or ethylenediamine (pendant
  • the loading capacity of the porphyrin or phthalocyanines can be determined by decoloration of solutions when they are added incrementally.
  • the deep colors of the solutions deep pink for the tetracarboxylic acid porphyrin in MeOH, dark blue-green for the
  • Co(II) or the dilithium phthalocyanine in acetone or pyridine are discharged as the molecules are removed by adsorption onto the black surface of the fibrils.
  • Loading capacities were estimated by this method and the footprints of the derivatives were calculated from their approximate measurements ( ⁇ 140 sq. Angstroms).
  • maximum loading will be -0.3 mmol/g.
  • the tetracarboxylic acid porphyrin was analyzed by titration. The integrity of the adsorption was tested by color release in aqueous systems at ambient and elevated temperatures.
  • the fibril slurries were initially mixed (Waring blender) and stirred during loading. Some of the slurries were ultra-sounded after color was no longer discharged, but with no effect.
  • a number of substituted polynuclear aromatic or polyheteronuclear aromatic compounds were adsorbed on fibril surfaces.
  • the number of aromatic rings should be greater than two per rings/pendant functional group.
  • substituted anthracenes, phenanthrenes, etc. containing three fused rings, or polyfunctional derivatives containing four or more fused rings can be used in place of the porphyrin or phthalocyanine derivatives.
  • substituted aromatic heterocycles such as the quinolines, or multiply substituted heteroaromatics containing four or more rings can be used.
  • Table II summarizes the results of the loading experiments for the three porphyrin/phthalocyanine derivatives.
  • CoPhth Cobalt(II) Phthalocyanine
  • thermolysin on these fibrils was determined by measuring the enzyme activity of the fibrils.
  • Thermolysin can react with substrate FAGLA (N-(3-[2- furyl]acryloyl)-gly-leuamide) and produce a compound that causes absorbance decrease at 345 nm with extinction coefficient of -310 M 1 Cm "1 .
  • the assay buffer condition for this reaction was 4OmM Tris, 1OmM CaCl 2 and 1.75 M NaCl at pH 7.5.
  • the reaction was performed in 1 ml cuvette by mixing 5 ⁇ l of FAGLA stock solution (25.5 mM in 30% DMF Attorney D3BIcet No.
  • thermolysin fibrils 100647-03591 26 in CiH 2 O) and lO ⁇ g of thermolysin fibrils in 1 ml of assay buffer.
  • the absorbance decrease at 345 nm was monitored by time scan over 10 minutes.
  • the enzyme activity ( ⁇ M/min) was then calculated from the initial slope using the extinction coefficient -310 M -1 Cm "1 .
  • the amount of active thermolysin per gram of fibril was 0.61 ⁇ moles.
  • Thermolysin was immobilized on these phthalocyanine derivative fibrils by adsorption according to the method of Example 34.
  • the amount of active thermolysin per gram of fibrils was 0.70 ⁇ moles.
  • Phthalocyanine derivative fibrils on which thermolysin has been immobilized can be used to catalyze the synthesis of a precursor of the artificial sweetener aspartame.
  • the reaction is carried out by mixing 80 mM L-Z-Asp and 220 niM L-PheOMe in ethyl acetate with 10 ⁇ M fibril immobilized thermolysin.
  • the product Z-Asp-PheOMe is monitored by HPLC to determine the yield.
  • a weighed sample of fibrils was slurried with nitric acid of the appropriate strength in a round bottom multi-neck indented reactor flask equipped with an overhead stirrer and a water condenser. With constant stirring, the temperature was adjusted and the reaction carried out for the specified time. Brown fumes were liberated shortly after the temperature exceeded 70 0 C, regardless of acid strength. After the reaction, the slurry was poured onto cracked ice and diluted with DI water. The slurry was filtered and excess acid removed by washing in a Soxhlet extractor, replacing the reservoir with fresh DI water every several hours, until a slurried sample gave no change in Ph from DI water. The fibrils were dried at 100 0 C at 5" vacuum overnight.
  • Amino groups can be introduced directly onto graphitic fibrils by treating the fibrils with nitric acid and sulfuric acid to get nitrated fibrils, then reducing the nitrated form with a reducing agent such as sodium dithionite to get amino-functionalized fibrils according to the following formula:
  • the resulting fibrils have many utilities, including the immobilization of proteins (e.g., enzymes and antibodies), and affinity and ion exchange chromatography.
  • proteins e.g., enzymes and antibodies
  • affinity and ion exchange chromatography e.g., affinity and ion exchange chromatography
  • the reaction mixture is filtered and the carbon nanotube material is washed and dried, yielding modified nanotubes of the formula Nanotube-CH(R)OH.
  • This method can also be used to couple bifunctional alcohols. This allows one end to be linked to the carbon nanotube and the other to be used for the indirect linkage of another material to the surface.
  • Non-specific binding to high surface area carbon material is ubiquitous. It has been found that attaching hydrophilic oligomers such as PEG to carbon nanotubes can reduce non-specific binding. Further, it has been found that by attaching one end of chain- like molecules such as PEG to the surface of the nanotubes the free end can contain a functional group that can be used for attachment of other materials of interest while still retaining the properties of the PEG (or other material) layer to reduce non-specific binding. Reduction of Non-specific Binding of Bovine Serum Albumen with PEG-modified Fibrils
  • R alkyl, aralkyl, aryl, R- Methanol, phenol, tri- fluoroethanol, polymer, SiR'3 fluorocarbon, OH-terminated
  • H 2 N-R R same as above R- Amines, anilines, fluorinated amines, silylamines, amine terminated polyamides, proteins
  • HO-R-OH, R alkyl, HO- Ethyleneglycol, PEG, Penta- aralkyl, CH 2 O- erythritol, bis-Phenol A
  • H 2 N- Ethylenediamine polyethyl- aralkyl eneamines
  • the reactions can be carried out using any of the methods developed for esterifying or aminating carboxylic acids with alcohols or amines.
  • the methods of H.A. Staab, Anagew. Chem. Intemat. Edit., (1), 351 (1962) using N,N'-carbonyl diimidazole (CDI) as the acylating agent for esters or amides and of G. W. Anderson, et al., J. Amer. Chem. Soc. 86, 1839 (1964), using N-hydroxysuccinimide (NHS) to activate carboxylic acids for amidation were used.
  • CDI N,N'-carbonyl diimidazole
  • NHS N-hydroxysuccinimide
  • DABCO Diaza- 1,1,1 -bicyclooctane
  • Suitable solvents are dioxane and toluene.
  • Aryl sulfonic acids as prepared in Example 1, can be further reacted to yield secondary derivatives.
  • Sulfonic acids can be reduced to mercaptans by L1AIH 4 or the combination of triphenyl phosphine and iodine (March, J.P., p. 1107). They can also be converted to sulfonate esters by reaction with dialkyl ethers, i.e., Fibril ⁇ SO 3 H + R-O-R
  • This method is particularly useful for the covalent attachment of protein to graphitic fibrils via the free NH 2 on the protein's side chain.
  • proteins which can be immobilized on fibrils by this method include trypsin, streptavidin and avidin.
  • streptavidin (or avidin) fibrils provide a solid carrier for any biotinylated substance.
  • streptavidin fibrils were stored in PBS buffer for further use.
  • Trypsin fibrils were prepared by mixing 1.1 mg NHS-ester fibrils (treated as in avidin fibrils) and 200 ⁇ l of 1.06 mM trypsin solution made in 5 mM sodium phosphate buffer (pH 7.1) and rotating at room temperature for 6.5 hours. The trypsin fibrils were then washed by 1 ml of 5 mM sodium phosphate buffer (pH 7.1) three times and suspended in 400 ⁇ l of the same buffer for storage.
  • Trypsin can react with substrate L-BAPNA (N ⁇ -benzoyl-L-arginine p- nitroanilide) and release a colored compound that absorbs light at 410 nm.
  • the assay buffer for this reaction was 0.05 M Tris, 0.02 M CaCl 2 , pH 8.2.
  • the reaction was performed in 1 ml cuvette by mixing 5 ⁇ l of L-BAPNA stock solution (50 mM in 37% DMSO in H 2 O) and 10-25 ⁇ g of trypsin fibrils in a 1 ml of assay buffer.
  • the absorbance increase at 410 nm was monitored over 10 minutes.
  • the enzyme activity ( ⁇ M/min) was then calculated from the initial slope.
  • the activity was 5.24 ⁇ M/min per 13 ⁇ g fibrils. This result can be converted to the amount of active trypsin on fibrils by dividing the activity of a known concentration of trypsin solution, which was measured to be 46 ⁇ M/min per 1 ⁇ M trypsin under the same assay conditions. Therefore the amount of active trypsin per gram of fibrils was 8.3 ⁇ moles (or 195 mg).
  • a 10 mg sample of thiolated nanotubes was suspended in 10 mis. of DI water with sonication and filtered onto 0.45 ⁇ m nylon membrane to form a felt-like mat.
  • the mat section was stored in a vacuum desiccator prior to analysis by ESCA which showed 0.46% sulfur and 1.69% nitrogen, confirming successful conversion to thiol-modified CN.
  • Amino fibrils were prepared according to Example 13. The amino fibrils
  • maleimides with different linkers e.g., sulfo-SMCC, succinimidyl 4-[p-maleimidophenyl]butyrate [SMPB], sulfo- SMPB, m-maleimidobenzyl-N-hydroxysuccinimide ester [MBS], sulfo-MBS etc.
  • linkers e.g., succinimidyl 4-[p-maleimidophenyl]butyrate [SMPB], sulfo- SMPB, m-maleimidobenzyl-N-hydroxysuccinimide ester [MBS], sulfo-MBS etc.
  • the resulting maleimide fibrils can be used as a solid support for the covalent immobilization of proteins, e.g., antibodies and enzymes, Antibodies were covalently immobilized on malemide activated fibrils.
  • the capacity of antibody was 1.84 milligrams per gram of fibrils when amino fibrils obtained from nitration/reduction method (Example 13) were used and 0.875 milligrams per gram of fibrils when amino fibrils derivatized from carboxyl fibrils were used.
  • the carboxylic acid content was 0.75 meq/g.
  • Fibrils were reacted with a stoichiometric amount of CDI in an inert atmosphere with toluene as solvent at R.T. until CO2 evolution ceased. Thereafter, the slurry was reacted at 80 0 C with a 10-fold molar excess of polyethyleneglycol (MW 600) and a small amount of NaOEt as catalyst. After two hours reaction, the fibrils were separated by filtration, washed with toluene and dried at 100 0 C.
  • ESCA was carried out to quantify the amount of N present on the aminated fibrils (GFZNH 2 ).
  • ESCA analysis of 177-046-1 showed 0.90 at% N (177-059).
  • a derivative was made by the gas phase reaction with pentafluorobenzaldehyde to produce the corresponding Schiff Base linkages with available primary amine groups.
  • ESCA analysis still showed the 0.91 at% N, as expected, and 1.68 at%F. This translates into a 0.34 at% of N present as reactive primary amine on the aminated fibrils (5 F per pentafluorobenzaldehyde molecule).
  • a level of 0.45 at% N would be expected assuming complete reaction with the free ends of each N. The observed level indicates a very high yield from the reaction of N with NHS-activated fibril and confirms the reactivity of the available free amine groups.
  • 1,6-diaminohexane (a six-carbon linker), rather than ethylenediamine (a two-carbon linker).
  • Carboxyl groups on fibrils can be modified by reacting the carboxyl groups with one amino group of a compound having two or more amino groups (at least one of which is unprotected by groups such as t-Boc or CBZ).
  • the fibrils so generated are amide Attorney lWkct No. 100647-03591 38 derivatives in which the amide carbonyl is derived from the fibril carboxyl group and the amide nitrogen is substituted with a group (such as an alkyl group) containing one or more primary amines.
  • the amino groups are then available for use or further modification.
  • N-boc-l,6-diaminohexane hydrochloride (1.94 g, 7.7 mmol) was partitioned between dichloromethane (10 mL) and 1 M NaOH (10 mL). The lower, organic phase was dried over anhydrous potassium carbonate and filtered through a disposable Pasteur pipette containing a cotton plug, and N-methylmorpholine (758 ⁇ L, 7 mmol) was added.
  • Acid functionalized fibrils prepared as in Example 14 were slurried in dioxane in an inert atmosphere. With stirring, a stoichiometric amount of chlorotriethyl silane was added and reacted for 0.5 hr, after which several drops of a 5% solution of DABCO in dioxane was added. The system was reacted for an additional hour, after which the fibrils were collected by filtration and washed in dioxane. The fibrils were dried at 100 0 C in 5" vacuum overnight.
  • Table 5 summarizes the secondary derivative preparations. The products were analyzed by ESCA for C, O, N, Si and F surface contents.
  • Acid functionalized fibrils prepared as in Example 14 are slurried in dioxane in an inert atmosphere. With stirring, a stoichiometric amount of chlorotriethyl silane is added and reacted for 0.5 hr, after which several drops of a 5% solution of DABCO in dioxane is added. The system is reacted for an additional hour, after which the fibrils are collected by filtration and washed in dioxane. The fibrils are dried at 100 0 C in 5" vacuum overnight.
  • Table VI summarizes the secondary derivative preparations. Products are analyzed by ESCA. The analysis confirms the incorporation of the desired pendant groups. The products are analyzed by ESCA for C, O, N, Si and F surface contents. Attorney D ⁇ Met No. 100647-03591 40
  • Tertiary and quaternary amine functional groups can be attached to the surface of carbon nanotubes via an amide or ester bond via a carboxyl group on the nanotube and either an amine or hydroxyl group of the tertiary or quaternary amine precursor.
  • Such tertiary or quaternary amine fibrils are useful as chromatographic matrices for the separation of biomolecules.
  • the tertiary or quaternary amine fibrils can be fabricated into disk-shaped mats or mixed with conventional chromatographic media (such as agarose) for separation purposes.
  • the resulting fibrils were washed three times with 20 ml dimethylformamide, three times with 20 ml methylene chloride, three times with 20 ml methanol and finally three times with de-ionized water.
  • the product was dried under vacuum. Results from an elemental analysis of nitrogen showed that about 50% of the carboxyl groups on the fibril had reacted with the primary amino group in the quaternary amine moiety.
  • BSA Serum Albumin
  • the column was eluted with 5 mM sodium phosphate at a flow rate of 0.2 ml/min and 0.6 ml fractions were collected.
  • the elution profile was monitored using a UV- visible detector, and is shown in Fig 3. Once the detector indicated that no more protein was eluting from the column, bound BSA was eluted by adding 1 M KCl in 5 mM sodium phosphate (pH 7.3). The presence of the protein in each fraction was identified by micro BCA assay (Pierce, Rockford, II).
  • the elution profile was monitored using a UV-visible detector (Fig. 4). Once the detector indicated that protein was no longer being eluted with 5 mM sodium phosphate buffer, the solvent was changed to 1 M KCl in 5 mM sodium phosphate (pH 7.3). The presence of the protein in each fraction was identified by micro BCA assay (Pierce, Rockford, II). Attorney DMet No. 100647-03591 42
  • Biocatalysts can be used to introduce functional groups onto the surface of graphitic carbon, especially carbon nanotubes.
  • graphitic carbon has been modified by purely chemical means (see e.g., U.S. Application Serial No. 08/352,400, filed December 8, 1994). These chemical methods have drawbacks of: (1) harshness of conditions (use of extreme temperatures, extreme acidity or toxic chemicals), and (2) lack of specificity (e.g., oxidation can introduce COOH, COH, and CHO groups).
  • Aqueous suspensions of solid graphitic carbon are made containing one or more enzymes that are capable of accepting the graphitic carbon as a substrate and performing a chemical reaction resulting in chemically-modified graphitic carbon.
  • the aqueous suspension is maintained at conditions acceptable for the enzyme(s) to carry out the reaction (temperature, pH, salt concentration, etc.) for a time sufficient for the enzyme(s) to catalytically modify the surface of the graphitic carbon.
  • the suspension is continually mixed to allow the enzyme(s) access to the surface of the graphitic carbon.
  • the enzyme is removed from the carbon by filtration washing.
  • cytochrome p450 enzymes and peroxidase enzymes.
  • the types of enzymes have been well-studied, they accept aromatic type substrates, and their optimal reaction conditions have been worked out. Both enzyme types introduce hydroxyl groups into their substrates and may introduce hydroxyl groups into graphitic carbon.
  • biocatalysts such as ribozymes and catalytic antibodies, or non-biological mimics of enzymes, could be designed to catalytically functionalize carbon nanotubes.
  • Cytochrome p450 enzymes are generally believed to function in the liver as detoxifying agents (F. Peter Guengerich, American Scientist, 81, 440-447 and F. Peter Guengerich, J. Biol. Chem., 266, 10019-10022). They hydroxylate foreign compounds such as polyaromatic toxic compounds. Hydroxylation allows these compounds to become water soluble so that they can be eliminated from the body via the urine.
  • cytochrome p450 enzymes in the liver each with different substrate specificities. These broad range of specificities is believed to be important because of the wide range of environmental toxins whose detoxification is required. Although individual cytochrome p450s are commercially available, no information is available regarding whether any of
  • KL3:2423I99.1 Attorney D ⁇ Met No. 100647-03591 43 these would accept carbon nanotubes as a substrate. Because of this uncertainty, we decided to initially incubate carbon nanotubes with a rat liver extract which contained many different cytochrome p450s.
  • cytochrome p450 enzymes Two other rats (“control" rats) were given water without phenobarbital. The rats were then sacrificed and cytochrome p450-containing microsomes were prepared from their livers by standard procedures (see for example, Methods in Enzymology, Vol. 206). [00186] The microsomes were mixed with carbon nanotubes (fibrils) to allow the cytochrome p450s to react with the graphitic carbon.
  • fibrils both "plain” or nonfunctionalized and “COOH” or oxidized fibrils
  • microsomes both experimental and control microsomes
  • 0.1 M Tris 1.0 mM NADPH, 0.01% NaN 3 , 10 mM glucose-6-phosphate, glucose-6- phosphate dehydrogenase (1 unit/mL), pH 7.4.
  • NADPH was included as a co-substrate for cytochrome p450s and glucose-6-phosphate, glucose- 6-phosphate dehydrogenase were added to regenerate NADPH from NADP + (if NADP + is generated by cytochrome p450s).
  • the mixtures were rotated at room temperature for about 1.5 days in microcentrifuge tubes. Following the incubation, the fibrils were washed extensively in deionized water, 1 M HCl, 1 M NaOH, 0.05% Triton X-100, 0.05% Tween, methanol, and 1 M NaCl. Following washing, microBCA assay for proteins (Pierce) showed that fibrils seemed to still have protein associated with them (although no protein was detected in the wash solution). [00187] To determine whether hydroxyl groups had been introduced onto the fibril surfaces, the fibrils were reacted with N-FMOC-isoleucine.
  • cytochrome p450 enzymes were purchased (GENTEST, Woburn, MA). Because cytochrome p450 enzymes are only active in association with membranes, these enzymes are supplied as microsomal preparations. Using a reaction procedure similar to that described above, we tested the following cytochrome p450s: CYPlAl (cat.# MlUb), CYP1A2 (cat.# M103c), CYP2B6 (cat.# HOa), CYP3A4 (with reductase, cat J 107r).
  • MgCh (0.67 mg/mL) was also included in the reaction solution.
  • fibrils were washed with the aid of a Soxhlet apparatus.
  • Analysis of introduced hydroxyl groups was carried out by reaction of cytochrome p450-reacted, washed fibrils with the colored reagent 3,5-dinitrobenzoic acid (DNBA). Coupling was carried out as described above for N-FMOC-isoleucine. Following reaction with DNBA, the fibrils were washed with DMF and residual (covalently attached) DNBA was hydro lyzed using either 6 M HCl or 46 units/mL pig liver esterase (Sigma).
  • HPLC analysis of liberated DNBA was carried out by HPLC analysis of the supernatant surrounding the fibrils following hydro lytic treatment.
  • HPLC analysis of liberated DNBA was carried out on a Waters HPLC system equipped with a Vydac Cl 8 reversed phase analytical column (cat.# 218TP54) and a linear gradient from deionized water containing 0.1% TFA (solvent A) to acetonitrile containing 0.1% TFA (solvent B).
  • fibrils 11 mg were mixed in a solution containing 50 mM sodium acetate (1.25 mL, pH 5.0), horseradish peroxidase (200 nM), and dihydroxyfumaric acid (15 mg) was added 5 mg at a time for the first 3 hours of the reaction. The reaction was carried out for a total of 5
  • the concentration of functional groups on the surface of nanotubes can be increased by modifying the nanotubes with a series of generations of a polyfunctional reagent that results in the number of the specific functional groups increasing with each generation to form a dendrimer-like structure.
  • the resulting dendrimeric nanotubes are particularly useful as a solid support upon which to covalently immobilize proteins, because they increase the density of protein immobilized on the nanotube surface.
  • the present invention demonstrates that high densities of a specific chemical functionality can be imparted to the surface of high surface area particulate carbon, which has been difficult with previous high surface area carbons
  • the product amino lysine fibrils were extensively washed with methylene chloride, methanol and water and dried under vacuum. Preparation of the second and the third generation lysine fibrils followed the same procedure.
  • the amino acid analysis data showed that the first generation lysine fibrils contained 0.6 ⁇ mols lysine per gram of fibrils, the second generation lysine fibrils contained 1.8 ⁇ mols per gram of fibrils, and the third generation lysine had 3.6 ⁇ mols lysine per gram of fibrils.
  • Carboxyl dendrimeric fibrils can be prepared by the same method by using aspartic or glutamic acid with carboxyl fibrils.
  • Carboxylate terminated dendrimers with a carbon nanotube (CN) core are produced by successive, sequential couplings of aminobuty-nitrilotriacetic acid (NTA) and Attorney D ⁇ Ket No. 100647-03591 47 beginning with the NHS ester of chlorate oxidized carbon nanotubes. Preparation of NTA
  • NTA was prepared according to the method of Hochuli (E. Hochuli, H.
  • CN/NTA was first converted to the NHS active ester. 0.396 grams of
  • CN/NTA was dried in an oven at 90 0 C for 30 minutes and then placed in a 100 ml RB flask with 30 mis of anhydrous dioxane and purged with argon.
  • 0.4 g of N-hydroxysuccinimide added with stirring followed by 0.67 grams of EDC with continued stirring for an additional hour.
  • the CN tended to agglomerate together during this time.
  • the dioxane was decanted off and the solids were washed 2X with 20 mis of anhydrous dioxane.
  • the solids were washed with 20 mis of anhydrous MeOH during which the agglomerates broke up.
  • the solids were filtered onto a 0.45 ⁇ m nylon membrane, resuspended in MeOH, filtered and washed on the filter with MeOH.
  • HRP horseradish peroxidase
  • second generation lysine fibrils and third generation lysine fibrils were sonicated with sodium bicarbonate conjugate buffer (600 ⁇ l, 0.1 M, containing 0.9% NaCl) for 15 minutes at room temperature. Then they were incubated with HRP solution in sodium bicarbonate conjugate buffer (490 ml, enzyme stock solution of 5.6 mg/ml) for 19 hours at room, temperature.
  • the HRP immobilized fibrils were washed with the following buffer (1 ml): 10 mM NaHCO 3 buffer containing 0.9% NaCl at pH 9.5 (IX washing buffer) seven times, 0.1% Triton X-100 in IX washing buffer five times, 50% ethylene glycol in IX washing buffer three times.
  • a functional group e.g., a carboxyl group and an amino group
  • a functionalized nanotube e.g., a carboxy nanotube
  • Such bifunctional fibrils can be used to immobilize multiple molecules, particularly in 1: 1 stoichiometrics and in close proximity.
  • N ⁇ -CBZ-N ⁇ -(tert- butoxycarbonyl)-L-lysine was treated with 0.2 M calcium carbonate (4 ml) and the aqueous layer was removed to obtain a white solid.
  • the solid was resuspended in N,N-dimethylformamide (40 ml) and benzyl bromide (1.16 ml). The reaction mixture was stirred overnight at room temperature. The reaction mixture was worked up with ethyl acetate and water, and the organic layer was dried over magnesium sulphate.
  • N ⁇ -CBZ-L-lysine benzyl ester fibrils (113 mg) in methanol (4 ml) was added sodium hydroxide (1 N, 4 ml) and the reaction mixture was stirred overnight.
  • the product N ⁇ -CBZ-L-lysine fibrils was extensively washed with water and methanol and the fibrils were dried under vacuum.
  • To a suspension of N ⁇ -CBZ-L-lysine fibrils (50 mg) in acetonitrile (4 ml) was added trimethyl silyl iodide (1 ml). The mixture was stirred for 3 hours at 4O 0 C.
  • the final bifunctional fibrils were extensively washed with water, methanol, 0.5 N sodium hydroxide, acetonitrile and methylene chloride. Amino acid analysis showed 0.3 ⁇ mols lysine per gram of fibrils.
  • Hydroxyl and carboxyl (or amino) bifunctional fibrils can be made by a similar method to that described here by using serine, threonine, or tyrosine.
  • Thiolated and carboxyl (or amino) bifunctional fibrils can be made using cysteine.
  • Carboxyl and amino bifunctional fibrils can be made using aspartic or glutamic acid.
  • Functionalized graphitic nanotubes are useful as solid supports in many biotechnology applications due to their high porosity, chemical and thermal stability and high surface area. They have been found to be compatible with harsh chemical and thermal treatments and very amenable to chemical functionalization.
  • an enzyme can be covalently immobilized on a modified nanotube while retaining its biological activity.
  • nanotubes are also suitable for use as affinity chromatographic supports in biomolecular separations.
  • enzyme inhibitors have been prepared on nanotubes in multi-step syntheses such that the immobilized inhibitors were accessible to macromolecules, and reversible specific biological recognition occurred between proteins and modified fibrils.
  • the hydrophobicity of the nanotube surface is not enough to immobilize high densities of proteins by adsorption.
  • alkyl is added to increase the hydrophobicity of the nanotube surface and to expand the hydrophobic environment from two dimensions to three dimensions.
  • KL32423199 1 Attorney D ⁇ 5 ⁇ cet No. 100647-03591 51 chains of varying lengths have been coupled to the nanotube surface.
  • Proteins that have been immobilized on alkyl nanotubes by adsorption include trypsin, alkaline phosphatase, lipase and avidin. The enzyme activities of these immobilized proteins are comparable with those of the free enzymes, proven by the catalytic efficiencies toward the hydrolysis of their substrates in aqueous solutions.
  • phenyl-alkyl nanotubes which are alkyl nanotubes with the addition of a phenyl group on the end of the alkyl chain, have also been prepared.
  • This modification introduced an aromatic structure that interacts with the amino acids phenylalanine, tyrosine, and tryptophan in proteins through ⁇ - ⁇ interactions.
  • the adsorption of alkaline phosphatase and lipase on phenyl-alkyl nanotubes was comparable to the adsorption on Cs-alkyl nanotubes.
  • EDC l-ethyl-3-(3- dimethylaminopropyl)carbodiimide
  • DMAP dimethylaminopyridine
  • Example 41 The lipase fibrils were washed first by dioxane, then a mixture of dioxane and heptane, and finally heptane in order to disperse the fibrils in heptane.
  • ethyl butyrate a food additive which provides pineapple-banana flavor
  • ethanol 0.25M
  • butyric acid 0.25M
  • Phenyl-alkyl fibrils were prepared by two different reactions. Reaction 1 Attorney D ⁇ BEet No. 100647-03591
  • Alkaline phosphatase reacts with substrate p-nitrophenyl phosphate and releases a color compound that absorbs light at 405 nm with extinction coefficient of 18,200 M ⁇ cm "1 .
  • the reaction was performed in 1 ml cuvette by mixing 5 ⁇ l of p- nitrophenyl phosphate stock solution (0.5 M in 33% DMSO in assay buffer) and 13 ⁇ g of alkaline phosphatase fibrils in 1 ml of assay buffer.
  • the absorbance increase of 405 nm was monitored by time scan over 0 minutes.
  • the enzyme activity ( ⁇ M/min) was then calculated from the initial slope using the extinction coefficient 18200 M 4 Cm "1 .
  • the activity was 6.95 ⁇ M/min per 13 ⁇ g fibrils.
  • the activity was 2.58 ⁇ M/min per 13 ⁇ g fibrils.
  • phenyl-alkyl fibrils were suspended in 50 ⁇ l of 5 niM sodium phosphate buffer (pH 7.1) and sonicated for 20 minutes.
  • 5 niM sodium phosphate buffer pH 7.1
  • lipase solution 0.2 mM in 5 mM sodium phosphate buffer, pH 7.1
  • the fibrils were then washed with 600 ⁇ l of 5 mM sodium phosphate buffer (pH 7.1) three times and suspended in 200 ⁇ l of the same buffer.
  • Lipase can react with the substrate l,2-o-dilauryl-rac-glycero-3-glutaric acid- resorufin ester (Boehringer Mannheim, 1179943) and produce a color compound that absorbs light at 572 nm with extinction coefficient of 60,000 M -1 Cm "1 .
  • the reaction was performed in 1 ml cuvette by mixing 5 ⁇ l of substrate stock solution (7.6 mM in 50% dioxane in Thesit) and 13 ⁇ g of alkaline phosphatase fibrils in 1 ml of assay buffer. The absorbance increase at 572 nm was monitored by time scan over 10 minutes. The enzyme activity ( ⁇ M/min) was then calculated from the initial slope using the extinction coefficient 60,000 M "1 cm "1 . [00229] For lipase adsorbed on phenylalkyl fibrils from reaction 1 of Example 43, the activity was 0.078 ⁇ M/min per 13 ⁇ g fibrils.
  • conjugation buffer 0.1 M NaHCO 3 , 0.9% NaCl, pH 9.5
  • conjugation buffer 0.1 M NaHCO 3 , 0.9% NaCl, pH 9.5
  • the fibrils were then washed twice with conjugation buffer in an Eppendorf tube and suspended 430 ⁇ L conjugation buffer.
  • a 50- ⁇ L aliquot of the suspension (0.14 mg fibrils) was mixed with 4.0 mg activated HRP (Pierce, Rockford, IL) dissolved in 50 ⁇ L deionized water and the resulting suspension was rotated overnight at 4°C.
  • the HRP-co ⁇ jugated fibrils were washed extensively in an Eppendorf centrifuge tube with a combination of the following solutions; conjugation buffer, washing buffer (20 mM KH 2 PO 4 , 0.45% NaCl, pH 6.2), washing buffer containing 0.03-0.1% Triton X-100, and washing buffer containing 50% ethylene glycol.
  • conjugation buffer 20 mM KH 2 PO 4 , 0.45% NaCl, pH 6.2
  • washing buffer containing 0.03-0.1% Triton X-100 washing buffer containing 50% ethylene glycol.
  • Immobilized active HRP was quantitated by substrate turnover using H 2 O 2 and the chromogenic substrate 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), diammonium salt (ABTS).
  • Catalytic activity of HRP was spectrophotometrically monitored at 414 nm using 100 ⁇ M H 2 O 2 and 30 ⁇ M ABTS as substrates.
  • the total amount of enzyme bound to amino fibrils in these preliminary studies was 0.0230 ⁇ mol HRP/g fibrils.
  • control (plain fibrils) nonspecifically bound 0.0048 ⁇ mol HRP/g fibrils.
  • the amount of covalently (specifically attached) HRP was 0.0182 ⁇ mol/g fibrils.
  • NHS ester fibrils as described in Example 50 above. NHS ester fibrils (114 mg) were suspended in 4 mL acetone and 10 equivalents (based on the estimation of 0.7 meq NHS ester per gram of fibrils) of tyramine were added. Dry triethylamine (10 equiv.) was added and the mixture was stirred for 3 hours at room temperature. The tyraminyl fibrils were washed under vacuum in a scintered glass funnel first with acetone, then extensively with deionized water.
  • Atomic absorption analysis of arsenic in the AP- inhibitor fibrils was carried out by Galbraith Laboratories (Knoxville, TN). AP-inhibitor fibrils which contain sidechains containing one atom of arsenic were found by atomic absorption analysis to have any arsenic content of 0.4%. This indicates that roughly 10% of the estimated initial COOH groups were converted to AP-inhibitors in this multi-step synthesis. Based on the surface area of fibrils, this means that there would be one inhibitor molecule (enzyme binding site) for every 500A 2 of surface area. Preparation of ⁇ -Galactosidase-Inhibitor Fibrils,
  • TPEG p-Amino-phenyl- ⁇ -D-thiogalactoside
  • PNPP p-nitro-phenylphosphate
  • AP-inhibitor and ⁇ G-inhibitor fibrils For both AP-inhibitor and ⁇ G-inhibitor fibrils, a mixture of AP and ⁇ G were added. To facilitate determinations of specific binding capacities, the concentrations of added enzymes were in large excess of the immobilized inhibitor concentrations. For AP- inhibitor fibrils, 0.550 ⁇ mol AP/g fibrils was bound (as opposed to non-specific binding of 0.020 Amol ⁇ G/g fibrils). For ⁇ G-inhibitor fibrils, the capacity was determined to be 0.093 ⁇ mol ⁇ G/g fibrils (in contrast with non-specific binding of 0.012 ⁇ mol AP/g fibrils). The results of the affinity chromatography experiments are shown in Figs. 9 and 10.
  • AP- inhibitor fibrils did not appreciably bind ⁇ G, but bound AP, which specifically eluted when 40 mM phosphate, a competing inhibitor, was added to the buffer (Fig. 9).
  • Fibrils derivatized with ⁇ G did not bind substantial amounts of AP, but bound ⁇ G, which specifically eluted when the pH was raised to weaken the enzyme-inhibitor association (Fig. 10).
  • antibody nanotubes can be immobilized on fimctionalized nanotubes, and that such antibody nanotubes have unique advantages for many applications due to their high surface area per weight, electrical conductivity, and chemical and physical stability.
  • antibody nanotubes can be used as affinity reagents for molecular separations.
  • Antibody nanotubes are also useful for analytical applications, including diagnostic immunoassays such as ECL-based immunoassays.
  • Antibodies can be immobilized either by covalent binding or non-covalent adsorption. Covalent immobilization was accomplished by various methods; including reductive animation of antibody carbohydrate groups, NHS ester activation of carboxylated fibrils (see Example 27, supra), and reaction of thiolated or maleimido fibrils with reduced or maleimido-modif ⁇ ed antibodies (see Examples 23 and 25 supra). [00241] The best method for attaching antibodies to nanotubes will depend on the application they are to be used in. For separations applications, the preferred method may be non-covalent adsorption because the capacity of protein binding seems to be the highest for this method.
  • NAD + fibrils have been used as a solid support for the purification of dehydrogenases.
  • the main advantage of using fibrils is their large amount of accessible surface area.
  • An affinity matrix with high surface area is desirable because of the high potential capacity.
  • the fibrils may either be a loose dispersion or fixed into a column or mat.
  • Fibrils were oxidized to introduce carboxyl groups according to Examples 14 and 15.
  • sodium bicarbonate solution 3ml, 0.2 M, pH 8.6
  • N 6 -[aminohexyl]carbamoylmethyl)-nicotinamide adenine dinucleotide lithium salt solution 25 mg from Sigma in 5 ml sodium bicarbonate solution.
  • the reaction mixture was stirred overnight at room temperature.
  • the product fibrils were extensively washed with water, N,N-dimethylformarnide, and methanol.
  • the elemental analysis data showed that the product fibrils contained 130 mmols of NAD molecules per gram of fibrils by nitrogen analysis and 147 mmols of NAD molecules per gram of fibrils by phosphorus analysis.
  • Other NAD + analogs having linkers terminating in an amino group can be used to prepare NAD + fibrils.
  • NAD + immobilized fibrils (0.26 mg) and plain fibrils (0.37 mg) were sonicated with 0.1% polyethylene glycol (PEG, MW 1000) in sodium phosphate (1 ml, 0.1 M, at pH 7.1) for 30 minutes at 4O 0 C, then incubated for 30 minutes at 4O 0 C.
  • the fibril suspension was centrifuged and the supernatant were removed.
  • the fibrils were incubated with the mixture of L-lactate dehydrogenase (LDH) in 0.1% PEG (1000) sodium phosphate buffer (250 ⁇ l, the ratio of the LDH solution and the 0.1% PEG buffer was 1 : 1) for 90 minutes at 4 0 C.
  • LDH L-lactate dehydrogenase
  • the assay mixture contained 0.1% PEG (1000) in sodium phosphate buffer (980 ⁇ l), pyruvate (3.3 ⁇ l, 100 mM stock solution), and each elution fraction (16.7 ⁇ l).
  • the enzyme reaction is shown below:
  • control was 3.68 nmols per gram of fibrils.
  • the nonspecific binding of LDH was 5.6%.
  • fibril surfaces can be functionalized by biotinylation or by both alkylation and biotinylation.
  • the fibrils containing such modifications can then bind any streptavidin conjugated substances such as streptavidin beads and streptavidin enzymes.
  • Fibrils offer great advantages as solid carriers because of their high surface area. Beads, which can be made strongly magnetic, are extremely useful in separation assays.
  • the biotinylated fibrils described herein combine the advantages of both the fibrils and the beads.
  • the biotinylated alkyl fibrils are an extension of the same concept but exhibit
  • the streptavidin- and biotin-coated fibrils can be used in diagnostics and can be used as capture agents for assays such as electrocherailuminescence assays.
  • a novel feature of this invention is the combination of two solid carriers on one fibril to create a bifunctional fibril. Moreover, the disclosed process increases the surface area for beads and magnifies fibril magnetization.
  • Biotinylated fibrils were prepared by mixing 2.4 mg of amino fibrils prepared as described in Example 16 and 9 mg of NHS ester long chain biotin in buffer 0.2 M NaHCO3 at a pH of 8.15. The mixture was rotated at room temperature for four hours and washed with the same buffer twice.
  • Biotinylated alkyl fibrils were prepared by a two step reaction. First, 4.25 mg of bifunctional fibrils (containing both amino and carboxyl) and 25 mg of NHS ester long chain biotin were mixed. The fibrils were washed and dried under vacuum. [00253] The second reaction was carried out by mixing 4 mg of biotinylated bifunctional fibrils with 11 mg ofEDC (l-ethyl-3-3-dimethylaminopropyl)carbodiimide), 7.5 mg of DMAP (4-dimethylaminopyridine) and 10 ⁇ l OfNH 2 (CH 2 )VCH 3 in 0.5 ml of DMF. The mixture was stirred at room temperature overnight. The final biotinylated alkyl fibrils were washed by CH 2 Cl 2 , MeOH, and dH 2 O.
  • Biotinylated fibrils can be used in assays involving formats that require streptavidin-biotin or avidin-biotin interactions. Biotinylated fibrils could, for example, be further derivatized with streptavidin. Biotin covalently linked to fibrils (see Example 50) could form strong non-covalent binding interactions with streptavidin. Because streptavidin is a tetrameric protein with four equivalent binding sites, streptavidin bound to biotinylated fibrils would almost certainly have unoccupied binding sites to which additional biotinylated reagents could bind. Thus, biotinylated fibrils would be converted to streptavidin-coated fibrils.
  • FBS fibril-biotin-streptavidin
  • a biotinylated anti-analyte antibody could be captured on the FBS support (either before or after the antibody has complexed to an analyte).
  • Assays using biotinylated anti-analyte antibodies are well established. Such assays include competitive assays where the analyte of interest competes with a labeled analyte for binding to the anti-analyte antibody.
  • Free (unbound) analyte and free (unbound) labeled analyte can be washed from the fibril immobilized antibody.
  • the washing step depends on the fibrils being physically separated from the solution phase by common practices involving centrifugation, filtration, or by attraction to a magnet.
  • a sandwich type immunoassay could be carried out on FBS supports. Sandwich immunoassays are well known in the field of diagnostics.
  • Such assays involve an analyte being bound simultaneously by two antibodies; a first "primary” antibody which is captured on a solid surface by for example being labeled with biotin, and a "secondary” antibody which is not captured by a solid surface but is labeled with a reporter group.
  • a sandwich assay could be carried out using fibrils as a solid capture support whereby the fibrils are captured as described in the previous paragraph.
  • the fibril would have covalently linked to it biotin, which would be bound to streptavidin, which would in turn be bound to a biotinylated primary antibody, which would be bound to analyte (if present), which would be bound to a labeled secondary antibody.
  • DNA probe assays could be carried out using FBS supports.
  • Biotinylated single stranded DNA can be bound to FBS supports and competitive hybridization can occur between complementary single stranded analyte DNA molecules and complementary labeled oligonucleotides.
  • biotinylated fibrils can be used in immunoassays and DNA probe assays.
  • bifunctional fibrils can be modified by covalent attachment of biotin to one type of functional group and alkyl chains to the other type of functional group.
  • the resultant alkylated, biotinylated fibrils can be used both in specific association with streptavidin or avidin (via biotin) and also for adsorption of proteins (via the alkyl chains).
  • Alkyl fibrils could be used in conjunction with other solid supports, such as streptavidin-coated magnetic beads.
  • One advantage of fibrils over such beads is that they have a much higher surface area (per unit weight). Thus, if fibrils could be attached to the outside surface of the magnetic beads, this would dramatically improve the surface area and hence the binding capacity of the beads.
  • alkylated, biotinylated fibrils Attorney DoTKet No. 100647-03591 63 could be mixed with streptavidin-coated beads resulting in high affinity streptavidin(bead)- biotin(fibril) interactions and hence fibril-coated beads with an extremely high surface area.
  • fibril-coated beads could be further derivatized with adsorbed proteins including streptavidin and antibodies.
  • streptavidin or antibody coated fibrils can be used in immunoassays and DNA probe assays.
  • fibril-coated beads could improve the properties of the beads by dramatically increasing their surface area such that fewer beads would be required in a given assay to give the same result.
  • the oxidized fibrils are more easily dispersed in aqueous media than unoxidized fibrils.
  • Stable, porous 3-dimensional structures with meso- and macropores (pores >2 nm) are very useful as catalysts or chromatography supports. Since fibrils can be dispersed on an individualized basis, a well-dispersed sample which is stabilized by crosslinks allows one to construct such a support.
  • Functionalized fibrils are ideal for this application since they are easily dispersed in aqueous or polar media and the functionality provides cross-link points. Additionally, the functionality provides points to support the catalytic or chromatographic sites. The end result is a rigid, 3-dimensional structure with its total surface area accessible with functional sites on which to support the active agent.
  • Typical applications for these supports in catalysis include their use as a highly porous support for metal catalysts laid down by impregnation, e.g., precious metal hydrogenation catalysts.
  • the ability to anchor molecular catalysts by tether to the support via the functionality combined with the very high porosity of the structure allows one to carry out homogeneous reactions in a heterogeneous manner.
  • the tethered molecular catalyst is essentially dangling in a continuous liquid phase, similar to a homogeneous reactor, in which it can make use of the advantages in selectivities and rates that go along with homogeneous reactions.
  • being tethered to the solid support allows easy separation and recovery of the active, and in many cases, very expensive catalyst.
  • the ligand on Co(II) containing the target molecule can then be recovered by mass action substitution of the labile Co(II) ligand, thereby effecting a separation and recovery of molecules which are otherwise very difficult or expensive to perform (e.g., chiral drugs).
  • the pores within the functionalized carbon fibril mats were too small to allow significant flow and thus would not be useful as flow through electrodes.
  • particulate carbon or other carbon based materials such as Reticulated Vitreous Carbon (RVC)
  • RVC Reticulated Vitreous Carbon
  • the porous electrode materials could not be formed in situ, packed too densely and formed voids or channels, were subject to dimensional instability during changes in solvent and flow conditions, and were unable to form very thin electrodes.
  • the use of functionalized carbon fibrils as electrodes in a flow cell solved such problems.
  • the functionalized carbon fibrils used as electrodes in a flow cell can be modified by surface treatment with electroactive agents.
  • the fibrils can also be modified with non-electroactive materials that may serve a catalytic or electrocatalytic function or serve to inhibit unwanted reactions or adsorption of materials from the flowing stream.
  • These flow through electrodes are useful in separation techniques such as electrochromatography, electrochemically modulated affinity chromatography, electrosynthesis or electrochemically modulated ion exchange chromatography. They can also be used in diagnostic devices that separate and/or analyze material trapped on the carbon fibril mat.
  • Composite mats composed of functionalized carbon fibrils and other fibers or particulates can also be used. These fibers or particulates can be added to the suspension to alter the final porosity or conductivity of the carbon fibril mat.
  • a electrochemical flow cell was constructed from a 13 mm, plastic, Swinney type membrane filter holder by placing a 13 mm diameter disk of gold mesh (400 mesh, Ladd Industries) on top of the membrane support and making electrical contact to the screen with a platinum wire, insulated with Teflon® heat shrink tubing that was fed through the wall of the filter holder for external connection as the working electrode of a three electrode potentiostat circuit.
  • the gold mesh was fixed in place with a minimal amount of epoxy around the outer edge.
  • a strip of gold foil was fashioned into a ring and placed in the bottom, down stream section of the filter holder and connected with an insulated Pt wire lead for connection as the counter electrode of a three electrode potentiostat circuit.
  • the flow cell was connected to a Sage syringe pump filled with 0.1M KCl in 0.1M potassium phosphate buffer at pH 7.0. Cyclic voltammograms (CVs) were recorded under no flow (static) and flow (0.4 mls/min.) at a potential scan rate of 20 mv/sec. (see Fig. 6).
  • nitric acid oxidized fibrils (185-01-02) was highly dispersed in 100 cc DI water using and U/S disintegrator.
  • the fibril slurry was heated to 90 0 C and a solution of 0.04 mol aluminum tributoxide dissolved in 20 cc propanol was slowly added. Reflux was continued for 4 hr, after which the condenser was removed to drive out the alcohol. After 30 min the condenser was put back and the slurry refluxed at 100 0 C overnight.
  • a black sol with uniform appearance was obtained.
  • the sol was cooled to RT and after one week, a black gel with a smooth surface was fo ⁇ ned.
  • the gel was heated at 300 0 C in air for 12 hr.
  • the alumina-fibril composites were examined by SEM. Micrographs of cracked surfaces showed a homogeneous dispersion of fibrils in the gel.
  • silica-fibril composites were examined by SEM. Micrographs of cracked surfaces showed a homogeneous dispersion of fibrils in the gel.
  • Polymer beads especially magnetic polymer beads containing an F ⁇ 3 ⁇ 4 core, such as those manufactured by Dynal and others, have many uses in diagnostics. These beads suffer, however, from having a low surface area compared to that available from nanotubes. Functionalized fibrils can be incorporated onto the surface of beads, which allows the polymer/fibril composites to be used as solid supports for separations or analytical application (e.g., electrochemiluminescence.assays, enzyme immobilization).
  • analytical application e.g., electrochemiluminescence.assays, enzyme immobilization
  • SWNT (University of Kentucky) were treated with 6M HCl for 72 hours to remove any metallic impurities. The acid washed nanotubes dispersed in DI water with sonication and filtered. This was repeated 4 times to rinse to a neutral pH.
  • the SWNT were resuspended in DI water and dispersed with sonication. 2X serial dilutions were made into 8 PP centrifuge tubes. Aliquots of methylene blue solution were added and the tubes placed on a rotator to agitate for 4 hours. The tubes were then spun in a centrifuge for 4 minutes resulting in the SWNT being pelleted at the bottom of the tubes. The tubes with the highest concentrations of SWNT had a clear filtrate and the two with the lowest SWNT concentration were similar in color to the control MB solution. The 6 tubes at intermediate SWNT concentrations showed increasing blue color as the concentration decreased.
  • SWNT (University of Kentucky) were treated with 6M HCl for 72 hours to remove any metallic impurities. The acid washed nanotubes dispersed in DI water with sonication and filtered. This was repeated 4 times to rinse to a neutral pH.
  • 7 mg of Fe Phthalocyanine - bis pyridine (FePc-2Py) was dissolved with 40 mis EtOH with sonication. 22 mg of SWNT were added and sonication continued for 5 minutes. Solution was allowed to cool and repeated sonication. Hot solution was filtered onto 0.45 micron PVDF membrane to dryness and then rinsed with fresh EtOH. Filtered to dryness. Dry weight 27 mg.
  • Electrodes were fashioned by pressing sections of the mat between 400 x 400 mesh SS mesh to serve as current collector. One edge of the SS mesh was attached to a Cu wire inserted into a glass pipette. Any exposed Cu was insulated with epoxy. The electrode was heated at IOOC for 1 hour to cure the 5 minute epoxy.
  • the electrode was examined by cyclic voltammetry vs a SS mesh counter and an Ag/AgCl reference electrode.
  • the electrolyte was isotonic borate buffered saline. Two peaks were observed, one near -.-4 that was obscured by the H2 evolution current. The second peak was centered about +0.1 V vs Ag/Ag/Cl. Peak currents for the peak centered at
  • FePc-2PY was strongly confined to the electrode and not lost to the electrolyte.
  • the invention has application in the formulation of a wide variety of functionalized nanotubes and uses therefor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Graphitic nanotubes, which includes tubular fullerenes (commonly called 'buckytubes') and fibrils, which are functionalized by chemical substitution or by adsorption of functional moieties. More specifically the invention relates to single walled carbon nanotubes having diameters than 5 nanometers which are uniformly or non-uniformly substituted with chemical moieties or upon which certain cyclic compounds are adsorbed and to complex structures comprised of such functionalized nanotubes linked to one another. The invention also relates to methods for introducing functional groups onto the surface of such nanotubes. The invention further relates to uses for functionalized single walled carbon nanotubes.

Description

Attorney Docket No. 100647-03591
UNITED STATES RECEIVING OFFICE
FUNCTIONALIZED SINGLE WALLED CARBON NANOTUBES
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application is a continuation-in-part of U.S. Application Serial No.
[Attorney Docket No. 100647-3583], filed April 30, 2004, which is a continuation of U.S. Application Serial No. 08/812,856, filed March 6, 1997, now abandoned, which is a continuation of U.S. Application Serial No. 08/611,368, filed March 6, 1996, now abandoned, and which claims benefit to Provisional Application No. 60/037,238, filed September 25, 1996. This application is also a continuation-in-part of U.S. Application Serial No. 09/594,673, filed June 16, 2000 which is a divisional of U.S. Application Serial Number 08/352,400, filed December 8, 1994, now U.S. Patent No. 6,203,814. The contents of each of the aforementioned application are hereby incorporated by reference.
FIELD OF THE INVENTION
[0002] The invention relates broadly to graphitic nanotubes, which includes tubular fullerenes (commonly called "buckytubes") and fibrils, which are functional ized by chemical substitution or by adsorption of functional moieties. More specifically the invention relates to single walled carbon nanotubes which are uniformly or non-uniformly substituted with chemical moieties or upon which certain cyclic compounds are adsorbed and to complex structures comprised of such functionalized fibrils linked to one another. The invention also relates to methods of introducing functional groups onto the surface of single walled carbon nanotubes.
BACKGROUND OF THE INVENTION
[0003] This invention lies in the field of submicron graphitic fibrils, sometimes called vapor grown carbon fibers. Carbon fibrils are vermicular carbon deposits having diameters less than 1.0μ, preferably less than 0.5 μ, and even more preferably less than 0.2μ. They exist in a variety of forms and have been prepared through the catalytic decomposition of various carbon-containing gases at metal surfaces. Such vermicular carbon deposits have been observed almost since the advent of electron microscopy. A good early survey and reference is found in Baker and Harris, Chemistry and Physics of Carbon. Walker and Thrower ed., Vol. 14, 1978, p. 83, hereby incorporated by reference. See also, Rodriguez, N., J. Mater. Research. Vol. 8, p. 3233 (1993), hereby incorporated by reference. [0004] In 1976, Endo et al. (see Obelin, A. and Endo, M., J. of Crystal Growth. Vol.
32 (1976), pp. 335-349, hereby incorporated by reference) elucidated the basic mechanism Attorney ϋSTket No. 100647-03591
2 by which such carbon fibrils grow. There were seen to originate from a metal catalyst particle, which, in the presence of a hydrocarbon containing gas, becomes supersaturated in carbon. A cylindrical ordered graphitic core is extruded which immediately, according to Endo et al., becomes coated with an outer layer of pyrolytically deposited graphite. These fibrils with a pyrolytic overcoat typically have diameters in excess of 0.1 μ, more typically 0.2 to 0.5μ.
[0005] In 1983, Tennent, U.S. Patent No. 4,663,230, hereby incorporated by reference, succeeded in growing cylindrical ordered graphite cores, uncontaminated with pyrolytic carbon. Thus, the Tennent invention provided access to smaller diameter fibrils, typically 35 to 700 A (0.0035 to 0.070μ) and to an ordered, "as grown" graphitic surface. Fibrillar carbons of less perfect structure, but also without a pyrolytic carbon outer layer have also been grown.
[0006] The fibrils, buckytubes and nanofibers that are functionalized in this application are distinguishable from continuous carbon fibers commercially available as reinforcement materials. In contrast to fibrils, which have, desirably large, but unavoidably finite aspect ratios, continuous carbon fibers have aspect ratios (L/D) of at least 104 and often 106 or more. The diameter of continuous fibers is also far larger than that of fibrils, being always >1.0μ and typically 5 to 7μ.
[0007] Continuous carbon fibers are made by the pyrolysis of organic precursor fibers, usually rayon, polyacrylonitrile (PAN) and pitch. Thus, they may include heteroatoms within their structure. The graphitic nature of "as made" continuous carbon fibers varies, but they may be subjected to a subsequent graphitization step. Differences in degree of graphitization, orientation and crystallinity of graphite planes, if they are present, the potential presence of heteroatoms and even the absolute difference in substrate diameter make experience with continuous fibers poor predictors of nanofiber chemistry. [0008] Tennent, U.S. Patent No. 4,663,230 describes carbon fibrils that are free of a continuous thermal carbon overcoat and have multiple graphitic outer layers that are substantially parallel to the fibril axis. As such they may be characterized as having their c- axes, the axes which are perpendicular to the tangents of the curved layers of graphite, substantially perpendicular to their cylindrical axes. They generally have diameters no greater than O.lμ and length to diameter ratios of at least 5. Desirably they are substantially free of a continuous thermal carbon overcoat, i.e., pyrolytically deposited carbon resulting from thermal cracking of the gas feed used to prepare them. [0009] Tennent, et al., U.S. Patent No. 5,171,560, hereby incorporated by reference, Attorney DTJEket No. 100647-03591 3 describes carbon fibrils free of thermal overcoat and having graphitic layers substantially parallel to the fibril axes such that the projection of said layers on said fibril axes extends for a distance of at least two fibril diameters. Typically, such fibrils are substantially cylindrical, graphitic nanotubes of substantially constant diameter and comprise cylindrical graphitic sheets whose c-axes are substantially perpendicular to their cylindrical axis. They are substantially free of pyrolytically deposited carbon, have a diameter less than O.lμ and a length to diameter ratio of greater than 5. These fibrils are of primary interest in the invention.
[0010] Further details regarding the formation of carbon fibril aggregates may be found in the disclosure of Snyder et al., U.S. Patent Application Serial No. 149,573, filed January 28, 1988, and PCT Application No. US89/00322, filed January 28, 1989 ("Carbon Fibrils") WO 89/07163, and Moy et al., U.S. Patent Application Serial No. 413,837 filed September 28, 1989 and PCT Application No. US90/05498, filed September 27, 1990 ("Fibril Aggregates and Method of Making Same") WO 91/05089, all of which are assigned to the same assignee as the invention here and are hereby incorporated by reference. [0011] Moy et al., USSN 07/887,307 filed May 22, 1992, hereby incorporated by reference, describes fibrils prepared as aggregates having various macroscopic morphologies (as determined by scanning electron microscopy) in which they are randomly entangled with each other to form entangled balls of fibrils resembling bird nests ("BN"); or as aggregates consisting of bundles of straight to slightly bent or kinked carbon fibrils having substantially the same relative orientation, and having the appearance of combed yarn ("CY") e.g., the longitudinal axis of each fibril (despite individual bends or kinks) extends in the same direction as that of the surrounding fibrils in the bundles; or as aggregates consisting of straight to slightly bent or kinked fibrils which are loosely entangled with each other to form an "open net" ("ON") structure. In open net structures the degree of fibril entanglement is greater than observed in the combed yarn aggregates (in which the individual fibrils have substantially the same relative orientation) but less than that of bird nests. CY and ON aggregates are more readily dispersed than BN making them useful in composite fabrication where uniform properties throughout the structure are desired.
[0012] When the projection of the graphitic layers on the fibril axis extends for a distance of less than two fibril diameters, the carbon planes of the graphitic nanofiber, in cross section, take on a herring bone appearance. These are termed fishbone fibrils. Geus, U.S. Patent No. 4,855,091, hereby incorporated by reference, provides a procedure for preparation of fishbone fibrils substantially free of a pyrolytic overcoat. These fibrils are Attorney Docket No. 100647-03591 4 also useful in the practice of the invention.
[0013] Carbon nanotubes of a morphology similar to the catalytically grown fibrils described above have been grown in a high temperature carbon arc (Iijima, Nature 354 56 1991). It is now generally accepted (Weaver, Science 265 1994) that these arc-grown nanofibers have the same morphology as the earlier catalytically grown fibrils of Tennent. Arc grown carbon nanofibers are also useful in the invention.
[0014] Single walled carbon nanotubes and process for making them have been disclosed since 1993 in "Single-shell carbon nanotubes of 1-nm diameter", S Iijima and T Ichihashi Nature, vol.363, p. 603 (1993) and "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls", D S Bethune, C H Kiang, M S DeVries, G Gorman, R Savoy and R Beyers Nature, vol.363, p. 605 (1993), both articles of which are hereby incorporated by reference.
[0015] Single walled carbon nanotubes are also disclosed in U.S. Patent No.
6,221,330 to Moy et. al.} the contents therein of which are hereby incorporated by reference. Moy disclosed a process for producing hollow, single-walled carbon nanotubes by catalytic decomposition of one or more gaseous carbon compounds by first forming a gas phase mixture carbon feed stock gas comprising one or more gaseous carbon compounds, each having one to six carbon atoms and only H, O, N, S or Cl as hetero atoms, optionally admixed with hydrogen, and a gas phase metal containing compound which is unstable under reaction conditions for said decomposition, and which forms a metal containing catalyst which acts as a decomposition catalyst under reaction conditions; and then conducting said decomposition reaction under decomposition reaction conditions, thereby producing said nanotubes. The invention relates to a gas phase reaction in which a gas phase metal containing compound is introduced into a reaction mixture also containing a gaseous carbon source. The carbon source is typically a Ci through Cβ compound having as hetero atoms H, O, N, S or Cl, optionally mixed with hydrogen. Carbon monoxide or carbon monoxide and hydrogen is a preferred carbon feedstock. Increased reaction zone temperatures of approximately 4000C. to 13000C. and pressures of between about 0 and about 100 p.s.i.g., are believed to cause decomposition of the gas phase metal containing compound to a metal containing catalyst. Decomposition may be to the atomic metal or to a partially decomposed intermediate species. The metal containing catalysts (1) catalyze CO decomposition and (2) catalyze SWNT formation. Thus, the invention also relates to forming SWNT via catalytic decomposition of a carbon compound. [0016] The invention of U.S. Patent No. 6,221,330 may in some embodiments Attorney DXket No. 100647-03591
5 employ an aerosol technique in which aerosols of metal containing catalysts are introduced into the reaction mixture. An advantage of an aerosol method for producing SWNT is that it will be possible to produce catalyst particles of uniform size and scale such a method for efficient and continuous commercial or industrial production. The previously discussed electric arc discharge and laser deposition methods cannot economically be scaled up for such commercial or industrial production. Examples of metal containing compounds useful in the invention include metal carbonyls, metal acetyl acetonates, and other materials which under decomposition conditions can be introduced as a vapor which decomposes to form an unsupported metal catalyst. Catalytically active metals include Fe, Co, Mn, Ni and Mo. Molybdenum carbonyls and Iron carbonyls are the preferred metal containing compounds which can be decomposed under reaction conditions to form vapor phase catalyst. Solid forms of these metal carbonyls may be delivered to a pretreatment zone where they are vaporized, thereby becoming the vapor phase precursor of the catalyst. It was found that two methods may be employed to form SWNT on unsupported catalysts. [0017] The first method is the direct injection of volatile catalyst. The direct injection method is described is U.S. Application Ser. No. 08/459,534, incorporated herein by reference. Direct injection of volatile catalyst precursors has been found to result in the formation of SWNT using molybdenum hexacarbonyl [Mo(CO)6] and dicobalt octacarbonyl [C02 (CO)8 ] catalysts. Both materials are solids at room temperature, but sublime at ambient or near-ambient temperatures-the molybdenum compound is thermally stable to at least 15O.degree., the cobalt compound sublimes with decomposition "Organic Syntheses via Metal Carbonyls," Vol. 1, 1. Wender and P. Pino, eds., Interscience Publishers, New York, 1968, p. 40).
[0018] The second method uses a vaporizer to introduce the metal containing compound (FIG. 12). In one preferred embodiment of the invention, the vaporizer 10, shown at FIG. 12, comprises a quartz thermowell 20 having a seal 24 about 1 " from its bottom to form a second compartment. This compartment has two 1/4" holes 26 which are open and exposed to the reactant gases. The catalyst is placed into this compartment, and then vaporized at any desired temperature using a vaporizer furnace 32. This furnace is controlled using a first thermocouple 22. A metal containing compound, preferably a metal carbonyl, is vaporized at a temperature below its decomposition point, reactant gases CO or CO/H.sub.2 sweep the precursor into the reaction zone 34, which is controlled separately by a reaction zone furnace 38 and second thermocouple 42. Although applicants do not wish to be limited to a particular theory of operability, it is believed that at the reactor temperature, Attorney ticket No. 100647-03591 6 the metal containing compound is decomposed either partially to an intermediate species or completely to metal atoms. These intermediate species and/or metal atoms coalesce to larger aggregate particles which are the actual catalyst. The particle then grows to the correct size to both catalyze the decomposition of CO and promote SWNT growth. In the apparatus of FIG. 11, the catalyst particles and the resultant carbon forms are collected on the quartz wool plug 36. Rate of growth of the particles depends on the concentration of the gas phase metal containing intermediate species. This concentration is determined by the vapor pressure (and therefore the temperature) in the vaporizer. If the concentration is too high, particle growth is too rapid, and structures other than SWNT are grown (e.g., MWNT, amorphous carbon, onions, etc.). All of the contents of U.S. Patent No. 6,221,330, including the Examples described therein, are hereby incorporated by reference.
[0019] U.S. Pat. No. 5,424,054 to Bethune et al., hereby incorporated by reference, describes a process for producing single-walled carbon nanotubes by contacting carbon vapor with cobalt catalyst. The carbon vapor is produced by electric arc heating of solid carbon, which can be amorphous carbon, graphite, activated or decolorizing carbon or mixtures thereof. Other techniques of carbon heating are discussed, for instance laser heating, electron beam heating and RF induction heating
[0020] Smalley (Guo, T., Nikoleev, P., Thess, A., Colbert, D. T., and Smally, R. E.,
Chem. Phys. Lett. 243: 1-12 (1995)), hereby incorporated by reference, describes a method of producing single-walled carbon nanotubes wherein graphite rods and a transition metal are simultaneously vaporized by a high-temperature laser.
[0021] Smalley (Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C, Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseiϊa, G. E., Tonarek, D., Fischer, J. E., and Smalley, R. E., Science, 273: 483-487 (1996)), hereby incorporated by reference, also describes a process for production of single-walled carbon nanotubes in which a graphite rod containing a small amount of transition metal is laser vaporized in an oven at about 1200.degree. C. Single-wall nanotubes were reported to be produced in yields of more than 70%.
[0022] Supported metal catalysts for formation of SWNT are also known. Smalley
(Dai., H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E., Chem. Phys. Lett. 260: 471-475 (1996)), hereby incorporated by reference, describes supported Co, Ni and Mo catalysts for growth of both multi-walled nanotubes and single-walled nanotubes from CO, and a proposed mechanism for their formation. [0023] McCarthy et al., U.S. Patent Application Serial No. 351 ,967 filed May 15,
KU2423199.] Attorney Dulcet No. 100647-03591 7
1989, hereby incorporated by reference, describes processes for oxidizing the surface of carbon fibrils that include contacting the fibrils with an oxidizing agent that includes sulfuric acid (H2SO4) and potassium chlorate (KCIO3) under reaction conditions (e.g., time, temperature, and pressure) sufficient to oxidize the surface of the fibril. The fibrils oxidized according to the processes of McCarthy, et al. are non-uniformly oxidized, that is, the carbon atoms are substituted with a mixture of carboxyl, aldehyde, ketone, phenolic and other carbonyl groups.
[0024] Fibrils have also been oxidized non-uniformly by treatment with nitric acid.
International Application PCT/US94/10168 discloses the formation of oxidized fibrils containing a mixture of functional groups. Hoogenvaad, M.S., et al. ("Metal Catalysts supported on a Novel Carbon Support", Presented at Sixth International Conference on Scientific Basis for the Preparation of Heterogeneous Catalysts, Brussels, Belgium, September 1994) also found it beneficial in the preparation of fibril-supported precious metals to first oxidize the fibril surface with nitric acid. Such pretreatment with acid is a standard step in the preparation of carbon-supported noble metal catalysts, where, given the usual sources of such carbon, it serves as much to clean the surface of undesirable materials as to functionalize it.
[0025] In published work, McCarthy and Bening (Polymer Preprints ACS Div. of
Polymer Chem. 30 (1)420(1990)) prepared derivatives of oxidized fibrils in order to demonstrate that the surface comprised a variety of oxidized groups. The compounds they prepared, phenylhydrazones, haloaromaticesters, thallous salts, etc., were selected because of their analytical utility, being, for example, brightly colored, or exhibiting some other strong and easily identified and differentiated signal. These compounds were not isolated and are, unlike the derivatives described herein, of no practical significance.
[0026] While many uses have been found for carbon fibrils and aggregates of carbon fibrils, as described in the patents and patent applications referred to above, many different and important uses may be developed if the fibril surfaces are functionalized. Functionalization, either uniformly or non-uniformly, permits interaction of the functionalized fibrils with various substrates to form unique compositions of matter with unique properties and permits fibril structures to be created based on linkages between the functional sites on the fibrils' surfaces.
OBJECTS OF THE INVENTION
[0027] It is therefore a primary object of this invention to provide functionalized single walled carbon nanotubes having diameters less than 5 nanometers, i.e., single walled carbon Attorney Dofket No. 100647-03591 8 nanotubes whose surfaces are uniformly or non-uniformly modified so as to have a functional chemical moiety associated therewith.
[0028] It is a further and related object of this invention to provide single walled carbon nanotubes having diameters less than 5 nanometers whose surfaces are functionalized by reaction with oxidizing or other chemical media.
[0029] It is a further and related object of this invention to provide single walled carbon nanotubes having diameters less than 5 nanometers whose surfaces are uniformly modified either by chemical reaction or by physical adsorption of species which themselves have a chemical reactivity.
[0030] It is a further object to provide single walled carbon nanotubes having diameters less than 5 nanometers whose surfaces have been modified e.g., by oxidation which are then further modified by reaction with functional groups.
[0031] It is still a further and related object of this invention to provide single walled carbon nanotubes having diameters less than 5 nanometers whose surfaces are modified with a spectrum of functional groups so that the single walled carbon nanotubes can be chemically reacted or physically bonded to chemical groups in a variety of substrates.
[0032] It is still the further and related object of this invention to provide complex structures of single walled carbon nanotubes having diameters less than 5 nanometers by linking functional groups on the single walled carbon nanotubes with one another by a range of linker chemistries.
[0033] It is still a further and related object of this invention to provide methods for chemical modification of fibril surfaces and methods for physically absorbing species on the surfaces of single walled carbon nanotubes having diameters less than 5 nanometers so as to provide, in each case, a functional moiety associated with the surface of the fibril.
[0034] It is yet a further object of this invention to provide new compositions of matter based upon the functionalized single walled carbon nanotubes having diameters less than 5 nanometers.
BRIEF DESCRIPTION OF THE DRAWINGS
[0035] Fig. 1 is a graphical representation of an assay of BSA binding to plain fibrils, carboxy fibrils, and PEG-modified fibrils.
[0036] Fig. 2 is a graphical representation of an assay of β-lactoglobulin binding to carboxy fibrils and PEG-modified fibrils prepared by two different methods. [0037] Fig. 3 is a graphical representation of the elution profile of bovine serum albumin (BSA) on a tertiary amine fibril column. Attorney Docket No. 100647-03591 9
[0038] Fig. 4 is a graphical representation of the elution profile of BSA on a quaternary amine fibril column.
[0039] Fig. 5 is the reaction sequence for the preparation lysine-based dendrimeric fibrils.
[0040] Fig. 6 is a graphical representation of cyclic voltammograms demonstrating the use of iron phthalocyanine modified fibrils in a flow cell.
[0041] Fig. 7 is the reaction sequence for the preparation of bifunctional fibrils by the addition of Nε-(tert-butoxycarbonyl)-L-lysine.
[0042] Fig. 8 is a graphical representation of the results of the synthesis of ethyl butyrate using fibril-immobilized lipase.
[0043] Fig. 9 is a graphical representation of the results of separation of alkaline phosphatase (AP) from a mixture of AP and β -galactosidase (βG) using AP inhibitor- modified fibrils.
[0044] Fig. 10 is a graphical representation of the results of separation of βG from a mixture of AP and βG using βG-modified fibrils.
[0045] Fig. 11 illustrates a reactor capable of producing single walled carbon nanotubes. [0046] Fig. 12 illustrates the vaporizer component of the reactor described in Fig. 11.
DETAILED DESCRIPTION OF THE INVENTION
[0047] The invention is directed to compositions which broadly have the formula
[CnHL}Rm
where n is an integer, L is a number less than O.ln, m is a number less than 0.5n, each of R is the same and is selected from SO3H3 COOH, NH2, OH, R'CHOH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR'3, Si(OR')yR'3-y, Si(O- SiR'2)OR', R", Li, A1R'2, Hg-X, TlZ2 and Mg-X, y is an integer equal to or less than 3,
R' is hydrogen, alkyl, aryl, cycloalkyl, or aralkyl, cycloaryl, or poly(alkylether),
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl, fluoroaralkyl or cycloaryl,
X is halide, and
Z is carboxylate or trifluoroacetate.
[0048] The carbon atoms, Cn, are surface carbons of a substantially cylindrical, graphitic nanotube of substantially constant diameter. The nanotubes include those having a Attorney Dc55ket No. 100647-03591 10 length to diameter ratio of greater than 5 and a diameter of less than 0.5 μ, preferably less than O.lμ. The nanotubes can also be substantially cylindrical, graphitic nanotubes which are substantially free of pyrolytically deposited carbon, more preferably those characterized by having a projection of the graphite layers on the fibril axis which extends for a distance of at least two fibril diameters and/or those having cylindrical graphitic sheets whose c-axes are substantially perpendicular to their cylindrical axis. In the preferred embodiment, carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube of substantially constant diameter or having diameter less than 5 nanometers. Most preferably, the carbon atoms Cn are surface atoms of single walled carbon nanotube having a diameter less than 5 nanometers. These compositions are uniform in that each of R is the same.
[0049] Non-uniformly substituted nanotubes are also prepared. These include compositions of the formula
[CnHL]Rm
where n, L, m, R and the nanotube itself are as defined above, provided that each of R does not contain oxygen, or, if each of R is an oxygen-containing group COOH is not present. [0050] Functionalized nanotubes having the formula
[CnHL} Rm
where n, L, m, R and R' have the same meaning as above and the carbon atoms are surface carbon atoms of a fishbone fibril having a length to diameter ratio greater than 5 or are carbon atons of a single walled carbon nanotube having a diameter less than 5 nanometers, are also included within the invention. These may be uniformly or non-uniformly substituted. Preferably, the nanotubes are free of thermal overcoat and have diameters less than θ.5μ.
[0051] Also included in the invention are functionalized nanotubes having the formula
[CnH1J [R'-R]m
where n, L, m, R' and R have the same meaning as above. The carbon atoms, Cn, are surface carbons of a substantially cylindrical, graphitic nanotube of substantially constant diameter. The nanotubes have a length to diameter ratio of greater than 5 and a diameter of less than 0.5 μ, preferably less than O.lμ. The nanotubes may be nanotubes which are substantially free of pyrolytically deposited carbon. Additionally, the nanotubes are those in which the Attorney DSHcet No. 100647-03591 11 projection of the graphite layers on the fibril axes extends for a distance of at least two fibril diameters and/or those having cylindrical graphitic sheets whose c-axes are substantially perpendicular their cylindrical axis. In the preferred embodiment, carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube of substantially constant diameter or having diameter less than 5 nanometers. Most preferably, the carbon atoms Cn are surface atoms of single walled carbon nanotube having a diameter less than 5 nanometers.
[0052] In both uniformly and non-uniformly substituted nanotubes, the surface atoms
Cn are reacted. Most carbon atoms in the surface layer of a graphitic fibril, as in graphite, are basal plane carbons. Basal plane carbons are relatively inert to chemical attack. At defect sites, where, for example, the graphitic plane fails to extend fully around the fibril, there are carbon atoms analogous to the edge carbon atoms of a graphite plane (See Urry, Elementary Equilibrium Chemistry of Carbon, Wiley, New York 1989) for a discussion of edge and basal plane carbons).
[0053] At defect sites, edge or basal plane carbons of lower, interior layers of the nanotube may be exposed. The term surface carbon includes all the carbons, basal plane and edge, of the outermost layer of the nanotube, as well as carbons, both basal plane and/or edge, of lower layers that may be exposed at defect sites of the outermost layer. The edge carbons are reactive and must contain some heteroatom or group to satisfy carbon valency. [0054] The substituted nanotubes described above may advantageously be further functionalized. Such compositions include compositions of the formula
[CnH1J. Am
where the carbons are surface carbons of a nanotube described above, and n, L and m are as described above,
A is selected from
O O O O O
Il Il Il Il Il
OY, NHY, C-OY, C-NR 'Y, C-SY, C-Y, -CR' 2-OY, N=Y , -NHCY or C=Y,
Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, a nucleotide, an oligonucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R'-NR'2, R'SH, R'CHO, R'CN, R'X, R1N+(RO3X" R'SiR'3, R'Si<OR')yR'3-y, R5Si(O- SiR'2)OR', R'-R", R'-N-CO, (C2H4O) W-H, <C3H6O)WH, (C2H4O)W-R', (C3H6O)W-R', Attorney ϋδTket No. 100647-03591 12
and w is an integer greater than one and less than 200. The carbon atoms, Cn, are surface carbons of a substantially cylindrical, graphitic nanotube of substantially constant diameter. The nanotubes include those having a length to diameter ratio of greater than 5 and a diameter of less than O.lμ, preferably less than 0.05μ. The nanotubes can also be substantially cylindrical, graphitic nanotubes which are substantially free of pyrolytically deposited carbon. More preferably they are characterized by having a projection of the graphite layers on the fibril axes which extends for a distance of at least two fibril diameters and/or they are comprised of cylindrical graphitic sheets whose c-axes are substantially perpendicular to their cylindrical axes. Preferably, the nanotubes are free of thermal overcoat and have diameters less than 0.5μ. Additionally, the nanotubes may be substantially cylindrical, single walled carbon nanotube of substantially constant diameter or having diameter less than 5 nanometers. Most preferably, the carbon atoms Cn are surface atoms of single walled carbon nanotube having a diameter less than 5 nanometers. [0055] The functional nanotubes of structure
[CnHL}[R'-R]m may also be functionalized to produce compositions having the formula
[CnHL} [R'-A]m where n, L, m, R' and A are as defined above. The carbon atoms, Cn, are surface carbons of a substantially cylindrical, graphitic nanotube of substantially constant diameter. The nanotubes include those having a length to diameter ratio of greater than 5 and a diameter of less than 0.5μ, preferably less than O.lμ. The nanotubes can also be substantially cylindrical, graphitic nanotubes which are substantially free of pyrolytically deposited carbon. More preferably they are characterized by having a projection of the graphite layers on the fibril axes which extends for a distance of at least two fibril diameters and/or by having cylindrical graphitic sheets whose c-axes are substantially perpendicular to their cylindrical axis. Preferably, the nanotubes are free of thermal overcoat and have diameters less than 0.5μ. Additionally, the nanotubes may be substantially cylindrical, single walled carbon nanotube of substantially constant diameter or having diameter less than 5 nanometers. Most Attorney D^Eket No. 100647-03591 13 preferably, the carbon atoms Cn are surface atoms of single walled carbon nanotube having a diameter less than 5 nanometers.
[0056] The compositions of the invention also include nanotubes upon which certain cyclic compounds are adsorbed. These include compositions of matter of the formula
[CnHLHX-Ra]m
where n is an integer, L is a number less than O.ln, m is less than 0.5n, a is zero or a number less than 10, X is a polynuclear aromatic, polyheteronuclear aromatic or metallopolyheteronuclear aromatic moiety or is a planar metal tetrathiooxalate, and R is as recited above. The carbon atoms, Cn, are surface carbons of a substantially cylindrical, graphitic nanotube of substantially constant diameter. The nanotubes include those having a length to diameter ratio of greater than 5 and a diameter of less than 0.5μ, preferably less than 0.1 μ. The nanotubes can also be substantially cylindrical, graphitic nanotubes which are substantially free of pyrolytically deposited carbon and more preferably those characterized by having a projection of the graphite layers on said fibril axes which extend for a distance of at least two fibril diameters and/or those having cylindrical graphitic sheets whose c-axes are substantially perpendicular to their cylindrical axes. Preferably, the nanotubes are free of thermal overcoat and have diameters less than 0.5 μ. Additionally, the nanotubes may be substantially cylindrical, single walled carbon nanotube of substantially constant diameter or having diameter less than 5 nanometers. Most preferably, the carbon atoms Cn are surface atoms of single walled carbon nanotube having a diameter less than 5 nanometers.
[0057] Preferred cyclic compounds are planar macrocycles as described on p. 76 of
Cotton and Wilkinson, Advanced Organic Chemistry. More preferred cyclic compounds for adsorption are porphyrins and phthalocyanines, or a tetrathioxalate of Ni, Cu, Pd, Pt or Ag. [0058] The compositions of the invention also include single walled carbon nanotubes having diameters less than 5 nanometers upon which certain planar aromatic compounds are adsorbed on the walls of the single walled carbon nanotubes. If the adsorbed molecules are themselves functionalized then the sidewalls are effectively functionalized without comprising their physical structure. The functionalized single walled carbon nanotubes may then may further heated or or the adsorbed molecules may be subjected to partial pyrolysis to prevent desorption. Other mechanisms for anchoring the adsorbed molecule such as crosslinking or oligomerization (to decrease solubility) may be used. Prefered planar aromatic compounds for adsorption include porphyrins and phthalocyanines,
KU 2423199 1 Attorney D'Wket No. 100647-03591 14 or a tetrathioxalate of Ni, Cu, Pd, Pt or Ag.
[0059] The adsorbed cyclic compounds may be functionalized. Such compositions include compounds of the formula
[CnHL} [ X-Aa]m
where m, n, L, a, X and A are as defined above and the carbons are surface carbons of a substantially cylindrical graphitic or single walled carbon nanotube as described above. [0060] The carbon fibrils functionalized as described above may be incorporated in a matrix. Preferably, the matrix is an organic polymer (e.g., a thermoset resin such as epoxy, bismaleimide, polyamide, or polyester resin; a thermoplastic resin; a reaction injection molded resin; or an elastomer such as natural rubber, styrene-butadiene rubber, or cis-1,4- polybutadiene); an inorganic polymer (e.g., a polymeric inorganic oxide such as glass), a metal (e.g., lead or copper), or a ceramic material (e.g., Portland cement). Beads may be formed from the matrix into which the fibrils have been incorporated. Alternately, functionalized fibrils can be attached to the outer surface of functionalized beads. [0061] Without being bound to a particular theoiy, the functionalized fibrils are better dispersed into polymer systems because the modified surface properties are more compatible with the polymer, or, because the modified functional groups (particularly hydroxyl or amine groups) are bonded directly to the polymer as terminal groups. In this way, polymer systems such as polycarbonates, polyurethanes, polyesters or polyamides/imides bond directly to the fibrils making the fibrils easier to disperse with improved adherence.
[0062] The invention is also in methods of introducing functional groups onto the surface of carbon fibrils by contacting carbon fibrils with a strong oxidizing agent for a period of time sufficient to oxidize the surface of said fibrils and further contacting said fibrils with a reactant suitable for adding a functional group to the oxidized surface. In a preferred embodiment of the invention, the oxidizing agent is comprised of a solution of an alkali metal chlorate in a strong acid. In other embodiments of the invention the alkali metal chlorate is sodium chlorate or potassium chlorate. In preferred embodiments the strong acid used is sulfuric acid. Periods of time sufficient for oxidation are from about 0.5 hours to about 24 hours.
[0063] In a further preferred embodiment, a composition having the formula [CΠHL} fCH(R')OH]m, wherein n, L, R' and m are as defined above, is formed by reacting R'CHbOH with the surface carbons of a nanotube in the presence of a free radical initiator Attorney DTOet No. 100647-03591
15 such as benzoyl peroxide.
[0064] The invention is also in a method for linking proteins to nanotubes modified by an NHS ester, by forming a covalent bond between the NHS ester and the amino group of the protein.
[0065] The invention is also in methods for producing a network of carbon fibrils or single walled carbon nanotubes comprising contacting carbon fibrils or single walled carbon nanotubes with an oxidizing agent for a period of time sufficient to oxidize the surface of the carbon fibrils or single walled carbon nanotubes, contacting the surface-oxidized carbon fibrils or single walled carbon nanotubes with reactant suitable for adding a functional group to the surface of the carbon fibrils or single walled carbon nanotubes, and further contacting the surface-functionalized fibrils with a cross-linking agent effective for producing a network of carbon fibrils or single walled carbon nanotubes. A preferred cross-linking agent is a polyol, polyamine or polycarboxylic acid.
[0066] Functionalized fibrils or single walled carbon nanotubes also are useful for preparing rigid networks of fibrils or networks of single walled carbon nanotubes. A well- dispersed, three-dimensional network of acid-ftinctionalized fibrils or single walled carbon nanotubes may, for example, be stabilized by cross-linking the acid groups (inter-fibril) with polyols or polyamines to form a rigid network.
[0067] The invention also includes three-dimensional networks formed by linking ninctionalized fibrils or single walled carbon nanotubes of the invention. These complexes include at least two functionalized fibrils or single walled carbon nanotubes linked by one or more linkers comprising a direct bond or chemical moiety. These networks comprise porous media of remarkably uniform equivalent pore size. They are useful as adsorbents, catalyst supports and separation media.
[0068] Although the interstices between these fibrils or single walled carbon nanotubes are irregular in both size and shape, they can be thought of as pores and characterized by the methods used to characterize porous media. The size of the interstices in such networks can be controlled by the concentration and level of dispersion of fibrils, and the concentration and chain lengths of the cross-linking agents. Such materials can act as structured catalyst supports and may be tailored to exclude or include molecules of a certain size. Aside from conventional industrial catalysis, they have special applications as large pore supports for biocatalysts.
[0069] The rigid networks can also serve as the backbone in biomimetic systems for molecular recognition. Such systems have been described in U.S. Patent No. 5,110,833 and Attorney Docket No. 100647-03591 16
International Patent Publication No. W093/19844. The appropriate choices for cross-linkers and complexing agents allow for stabilization of specific molecular frameworks.
METHODS OF FUNCTIONALIZING NANOTUBES
[0070] The uniformly functionalized fibrils of the invention can be directly prepared by sulfonation, electrophilic addition to deoxygenated fibril surfaces or metallation. When arc grown nanofibers are used, they may require extensive purification prior to functionalization. Ebbesen et al. (Nature 367 519 (1994)) give a procedure for such purification.
[0071] Preferably, the carbon fibrils are processed prior to contacting them with the functionalizing agent. Such processing may include dispersing the fibrils in a solvent. In some instances the carbon fibrils may then be filtered and dried prior to further contact.
1. SULFONATION
[0072] Background techniques are described in March, J.P., Advanced Organic
Chemistry, 3rd Ed. Wiley, New York 1985; House, H., Modern Synthetic Reactions, 2nd Ed., Benjamin/Cumrnings, Menlo Park, CA 1972.
[0073] Activated C-H (including aromatic C-H) bonds can be sulfonated using fuming sulfuric acid (oleum), which is a solution of cone, sulfuric acid containing up to 20% SO3. The conventional method is via liquid phase at T-80°C using oleum; however, activated C-H bonds can also be sulfonated using SO3 in inert, aprotic solvents, or SO3 in the vapor phase. The reaction is:
-C-H + SO3 — > -C-SO3H
Over-reaction results in formation of sulfones, according to the reaction:
2 -C-H + SO3 — > -C-SO2-C- + H2O
EXAMPLE 1 Activation of C-H Bonds Using Sulfuric Acid
[0074] Reactions were carried out in the gas phase and in solution without any significant difference in results. The vapor phase reaction was carried out in a horizontal quartz tube reactor heated by a Lindberg furnace. A multi-neck flask containing 20% SO3 in cone. H2SO4 fitted with gas inlet/outlet tubes was used as the SO3 source. [0075] A weighed sample of fibrils (BN or CC) in a porcelain boat was placed in the
1" tube fitted with a gas inlet; the outlet was connected to a cone. H2SO4 bubbler trap. Argon was flushed through the reactor for 20 min to remove all air, and the sample was heated to 3000C for 1 hour to remove residual moisture. After drying, the temperature was Attorney DδCket No. 100647-03591 17 adjusted to reaction temperature under argon.
[0076] When the desired temperature was stabilized, the SO3 source was connected to the reactor tube and an argon stream was used to carry SO3 vapors into the quartz tube reactor. Reaction was carried out for the desired time at the desired temperature, after which the reactor was cooled under flowing argon. The fibrils were then dried at 90°C at 5" Hg vacuum to obtain the dry weight gain. Sulfonic acid (-SO3H) content was determined by reaction with 0.10ON NaOH and back-titration with 0.10ON HCl using pH 6.0 as the end point.
[0077] The liquid phase reaction was carried out in cone, sulfuric acid containing
20% SO3 in a multi-neck 100 cc flask fitted with a thermometer/temperature controller and a magnetic stirrer. A fibril slurry in cone. H2SO4 (50) was placed in the flask. The oleum solution (20 cc) was preheated to -6O0C before addition to the reactor. After reaction, the acid slurry was poured onto cracked ice, and diluted immediately with 1 1 DI water. The solids were filtered and washed exhaustively with DI water until there was no change in pH of the wash effluent. Fibrils were dried at 100°C at 5" Hg vacuum. Due to transfer losses on filtration, accurate weight gains could not be obtained. Results are listed in Table 1. [0078]
TABLE I
Summary of Reactions
SAMPLE FIBRIL DRY Wt SO 3H CONC
EX. RUN # REACT Wt.g TYPE T0C TIME GAIN meq/g
IA 118-60A Vap 0.20 CY 110 15 m 9.3% 0.50
IB 118-6 IA Vap 0.20 BN 100 30 m 8.5% 0.31
1C 118-61B Vap 0.20 BN 65 15 m 4.2% 0.45
ID 118-56A Liq 1.2 CY 50 10 m 0.33
IE 118-56B Liq 1.0 CY 25 20 m 0.40
[0079] There was no significant difference in sulfonic acid content by reaction in the vapor phase or liquid phase. There was a temperature effect. Higher temperature of reaction (vapor phase) gives higher amounts of sulfones. In 118-61B, the 4.2% wt gain agreed with the sulfonic acid content (theoretical was 0.51 meq/g). Runs 6OA and 61 A had too high a wt gain to be accounted for solely by sulfonic acid content. It was therefore assumed that appreciable amounts of sulfones were also made.
2. ADDITIONS TO OXIDE-FREE FIBRIL SURFACES [0080] Background techniques are described in Urry, G., Elementary Equilibrium
Chemistry of Carbon, Wiley, New York 1989. [0081] The surface carbons in fibrils behave like graphite, i.e., they are arranged in Attorney D3Hcet No. 100647-03591 18 hexagonal sheets containing both basal plane and edge carbons. While basal plane carbons are relatively inert to chemical attack, edge carbons are reactive and must contain some heteroatom or group to satisfy carbon valency. Fibrils also have surface defect sites which are basically edge carbons and contain heteroatoms or groups.
[0082] The most common heteroatoms attached to surface carbons of fibrils are hydrogen, the predominant gaseous component during manufacture; oxygen, due to its high reactivity and because traces of it are very difficult to avoid; and H2O, which is always present due to the catalyst. Pyrolysis at ~1000°C in a vacuum will deoxygenate the surface in a complex reaction with unknown mechanism, but with known stoichiometry. The products are CO and CO2, in a 2:1 ratio. The resulting fibril surface contains radicals in a Ci -C4 alignment which are very reactive to activated olefins. The surface is stable in a vacuum or in the presence of an inert gas, but retains its high reactivity until exposed to a reactive gas. Thus, fibrils can be pyrolized at ~1000°C in vacuum or inert atmosphere, cooled under these same conditions and reacted with an appropriate molecule at lower temperature to give a stable functional group. Typical examples are: 10000C
Fibril-O > Reactive Fibril Surface (RFS) + 2 CO + CO2 followed by:
10000C RFS + CH2=CHCOX > Fibril-R'COX X=-OH,-C1,-NH2,-H
RFS + Maleic anhydride > Fibril-R' (COOH)2
RFS + Cyanogen > Fibril-CN
RFS + CH2=CH-CH2X > Fibril-R'CH2X X=-NH2,-OH, -Halogen,
RFS + H2O > Fibril=O (quinoidal)
RFS + CH2=CHCHO > Fibril-R1 CHO (aldehydic)
RFS + CH2=CH-CN > Fibril-R'CN
where R' is a hydrocarbon radical (alkyl, cycloalkyl, etc.)
EXAMPLE 2
Preparation of Functionalized Fibrils by Reacting Acrylic Acid with Oxide-Free Fibril Surfaces
[0083] One gram of BN fibrils in a porcelain boat is placed in a horizontal 1" quartz
KL3 2423199 1 Attorney Dδδϊcet No. 100647-03591 19 tube fitted with a thermocouple and situated in a Lindberg tube furnace. The ends are fitted with a gas inlet/outlets. The tube is purged with dry, deoxygenated argon for 10 minutes, after which the temperature of the furnace is raised to 300°C and held for 30 minutes. Thereafter, under a continued flow of argon, the temperature is raised in 1000C increments to 10000C, and held there for 16 hours. At the end of that time, the tube is cooled to room temperature (RT) under flowing argon. The flow of argon is then shunted to pass through a multi-neck flask containing neat purified acrylic acid at 500C and fitted with gas inlet/outlets. The flow of acrylic acid/argon vapors is continued at RT for 6 hours. At the end of that time, residual unreacted acrylic acid is removed, first by purging with argon, then by vacuum drying at 1000C at <5" vacuum. The carboxylic acid content is determined by reaction with excess 0,10ON NaOH and back-titrating with 0.100N HCL to an endpoint at pH 7.5.
EXAMPLE 3
Preparation of Functionalized Fibrils by Reacting Acrylic Acid with Oxide-Free Fibril Surfaces
[0084] The procedure is repeated in a similar manner to the above procedure, except that the pyrolysis and cool -down are carried out at 10"4 Torr vacuum. Purified acrylic acid vapors are diluted with argon as in the previous procedure.
EXAMPLE 4
Preparation of Functionalized Fibrils by Reacting Maleic Acid with Oxide-Free Fibril Surfaces
[0085] The procedure is repeated as in Ex. 2, except that the reactant at RT is purified maleic anhydride (MAN) which is fed to the reactor by passing argon gas through a molten MAN bath at 800C.
EXAMPLE 5
Preparation of Functionalized Fibrils by Reacting Acryloyl Chloride with Oxide-Free Fibril Surfaces
[0086] The procedure is repeated as in Ex. 2, except that the reactant at RT is purified acryloyl chloride, which is fed to the reactor by passing argon over neat acryloyl chloride at 25°C. Acid chloride content is determined by reaction with excess 0.10ON NaOH and back-titration with 0.100N HCl.
[0087] Pyrolysis of fibrils in vacuum deoxygenates the fibril surface. In a TGA apparatus, pyrolysis at 10000C either in vacuum or in a purified Ar flow gives an average wt loss of 3% for 3 samples of BN fibrils. Gas chromatographic analyses detected only CO and CO2, in -2:1 ratio, respectively. The resulting surface is very reactive and activated olefins such as acrylic acid, acryloyl chloride, acrylamide, acrolein, maleic anhydride, allyl amine, Attorney D^cet No. 100647-03591 20 allyl alcohol or allyl halides will react even at room temperature to form clean products containing only that functionality bonded to the activated olefin. Thus, surfaces containing only carboxylic acids are available by reaction with acrylic acid or maleic anhydride; surf only acid chloride by reaction with acryloyl chloride; only aldehyde from acrolein; only hydroxyl from allyl alcohol; only amine from allyl amine, and only halide from allyl halide.
3. METALLATION
[0088] Background techniques are given in March, Advanced Organic Chemistry,
3rd ed., p 545.
[0089] Aromatic C-H bonds can be metallated with a variety of organometallic reagents to produce carbon-metal bonds (C-M). M is usually Li, Be, Mg, Al, or Tl; however, other metals can also be used. The simplest reaction is by direct displacement of hydrogen in activated aromatics:
1. Fibril-H + R-Li > Fibril-Li + RH
[0090] The reaction may require additionally, a strong base, such as potassium t-butoxide or chelating diamines. Aprotic solvents are necessary (paraffins, benzene).
2. Fibril-H + AlR3 > Fibril-A1R2 + RH
3. Fibril-H + Tl(TFA)3 > Fibril-T 1 (TFA)2 + HTFA
TFA=Trifluoroacetate HTFA=Trifluoroacetic acid
[0091] The metallated derivatives are examples of primary singly-functionalized fibrils. However, they can be reacted further to give other primary singly-functionalized fibrils. Some reactions can be carried out sequentially in the same apparatus without isolation of intermediates.
4. Fibril-M + O2 > Fibril-OH + MO M= Li, Al
H+
Fibril-M + S -> Fibril-SH + M+
Fibril-M + X2 > Fibril-X + MX X=Halogen catalyst Fibril-M + CH3ONH2.HC1 > Fibril-NH2 + MOCH3 ether
catalyst
Fibril-T1(TFA)2 + NaOH > Fibril-OH catalyst Fibril-T1(TFA)2 + NH3OH -> Fibril-NH2 + HTFA Attorney DcJEket No. 100647-03591 21
Fibril-T1(TFA)2 + aq. KCN > Fibril-CN + TlTFA +KTFA
Fibril-CN + H2 > Fibril-CH2-NH2
EXAMPLE 6 Preparation of Fibril-Li
[0092] One gram of CC fibrils is placed in a porcelain boat and inserted into a 1" quartz tube reactor which is enclosed in a Lindberg tube furnace. The ends of the tube are fitted with gas inlet/outlets. Under continuous flow of H2, the fibrils are heated to 7000C for 2 hours to convert any surface oxygenates to C-H bonds. The reactor is then cooled to RT under flowing H2.
[0093] The hydrogenated fibrils are transferred with dry, de-oxygenated heptane
(with LiAlH4) to a 1 liter multi-neck round bottom flask equipped with a purified argon purging system to remove all air and maintain an inert atmosphere, a condenser, a magnetic stirrer and rubber septum through which liquids can be added by a syringe. Under an argon atmosphere, a 2% solution containing 5 mmol butyllithium in heptane is added by syringe and the slurry stirred under gentle reflux for 4 hours. At the end of that time, the fibrils are separated by gravity filtration in an argon atmosphere glove box and washed several times on the filter with dry, deoxygenated heptane. Fibrils are transferred to a 50 cc r.b. flask fitted with a stopcock and dried under 10"4 torr vacuum at 5O0C. The lithium concentration is determined by reaction of a sample of fibrils with excess 0.10ON HCl in DI water and back-titration with 0.100N NaOH to an endpoint at pH 5.0.
EXAMPLE 7 Preparation of Fibril-T1(TFA)2
[0094] One gram of CC fibrils are hydrogenated as in Ex. 5 and loaded into the multi-neck flask with HTFA which has been degassed by repeated purging with dry argon. A 5% solution of 5 mmol Tl(TF A)3 in HTFA is added to the flask through the rubber septum and the slurry is stirred at gentle reflux for 6 hours. After reaction, the fibrils are collected and dried as in Ex. 1.
EXAMPLE 8
Preparation of Fibril-OH
(Oxygenated Derivative Containing Only OH Functionalization)
[0095] One half g of lithiated fibrils prepared in Ex. 6 are transferred with dry, deoxygenated heptane in an argon-atmosphere glove bag to a 50 cc single neck flask fitted with a stopcock and magnetic stirring bar. The flask is removed from the glove bag and stirred on a magnetic stirrer. The stopcock is then opened to the air and the slurry stirred for 24 hours. At the end of that time, the fibrils are separated by filtration and washed with aqueous MeOH, and dried at 500C at 5" vacuum. The concentration of OH groups is Attorney OWkst No. 100647-03591
22 determined by reaction with a standardized solution of acetic anhydride in dioxane (0.252 M) at 800C to convert the OH groups to acetate esters, in so doing, releasing 1 equivalent of acetic acid/mole of anhydride reacted. The total acid content, free acetic acid and unreacted acetic anhydride, is determined by titration with 0.10ON NaOH to an endpoint at pH 7.5.
EXAMPLE 9 Preparation of Fibril-NH∑
[0096] One gram of thallated fibrils is prepared as in Ex. 7. The fibrils are slurried in dioxane and 0.5 g triphenyl phosphine dissolved in dioxane is added. The slurry is stirred at 50°C for several minutes, followed by addition at 500C of gaseous ammonia for 30 min. The fibrils are then separated by filtration, washed in dioxane, then DI water and dried at 80°C at 5" vacuum. The amine concentration is determined by reaction with excess acetic anhydride and back-titration of free acetic acid and unreacted anhydride with 0.10ON NaOH.
4. DERIVATIZED POLYNUCLEAR AROMATIC, POLYHETERONUCLEAR AROMATIC AND PLANAR MACROCYCLIC COMPOUNDS
[0097] The graphitic surfaces of fibrils allow for physical adsorption of aromatic compounds. The attraction is through van der Waals forces. These forces are considerable between multi-ring heteronuclear aromatic compounds and the basal plane carbons of graphitic surfaces. Desorption may occur under conditions where competitive surface adsorption is possible or where the adsorbate has high solubility. [0098] For example, it has been found that fibrils can be functionalized by the adsorption of phthalocyanine derivatives. These phthalocyanine derivative fibrils can then be used as solid supports for protein immobilization. Different chemical groups can be introduced on the fibril surface simply by choosing different derivatives of phthalocyanine. [0099] The use of phthalocyanine derivative fibrils for protein immobilization has significant advantages over the prior art methods of protein immobilization. In particular, it is simpler than covalent modifications. In addition, the phthalocyanine derivative fibrils have high surface area and are stable in almost any kind of solvent over a wide range of temperature and pH.
EXAMPLE 10 Adsorption of Porphyrins and PIithalocyanines onto Fibrils
[00100] The preferred compounds for physical adsorption on fibrils are derivatized porphyrins or phthalocyanines which are known to adsorb strongly on graphite or carbon blacks. Several compounds are available, e.g., a tetracarboxylic acid porphyrin, cobalt (II) phthalocyanine or dilithium phthalocyanine. The latter two can be derivatized to a carboxylic acid form. Attorney DSCket No. 100647-03591
23
Dilithium phthalocvanine
[00101] In general, the two Li+ ions are displaced from the phthalocyanine (Pc) group by most metal (particularly multi-valent) complexes. Therefore, displacement of the Li+ ions with a metal ion bonded with non-labile ligands is a method of putting stable functional groups onto fibril surfaces. Nearly all transition metal complexes will displace Li+ from Pc to form a stable, non-labile chelate. The point is then to couple this metal with a suitable ligand.
Cobalt (ID Phthalocyanine
[00102] Cobalt (II) complexes are particularly suited for this. Co4+ ion can be substituted for the two Li+ ions to form a very stable chelate. The Co+* ion can then be coordinated to a ligand such as nicotinic acid, which contains a pyridine ring with a pendant carboxylic acid group and which is known to bond preferentially to the pyridine group. In the presence of excess nicotinic acid, Co(II)Pc can be electrochemically oxidized to
Co(III)Pc, forming a non-labile complex with the pyridine moiety of nicotinic acid. Thus, the free carboxylic acid group of the nicotinic acid ligand is firmly attached to the fibril surface.
[00103] Other suitable ligands are the aminopyridines or ethylenediamine (pendant
NH2), mercaptopyridine (SH), or other polyfunctional ligands containing either an amino- or pyridyl-moiety on one end, and any desirable function on the other.
[00104] The loading capacity of the porphyrin or phthalocyanines can be determined by decoloration of solutions when they are added incrementally. The deep colors of the solutions (deep pink for the tetracarboxylic acid porphyrin in MeOH, dark blue-green for the
Co(II) or the dilithium phthalocyanine in acetone or pyridine) are discharged as the molecules are removed by adsorption onto the black surface of the fibrils.
[00105] Loading capacities were estimated by this method and the footprints of the derivatives were calculated from their approximate measurements (~140 sq. Angstroms).
For an average surface area for fibrils of 250 m2/g, maximum loading will be -0.3 mmol/g.
[00106] The tetracarboxylic acid porphyrin was analyzed by titration. The integrity of the adsorption was tested by color release in aqueous systems at ambient and elevated temperatures.
[00107] The fibril slurries were initially mixed (Waring blender) and stirred during loading. Some of the slurries were ultra-sounded after color was no longer discharged, but with no effect.
[00108] After loading, Runs 169-11, -12, -14 and -19-1 (see Table II) were washed in Attorney DM:et No. 100647-03591
24 the same solvent to remove occluded pigment. All gave a continuous faint tint in the wash effluent, so it was difficult to determine the saturation point precisely. Runs 168-18 and -19-
2 used the calculated amounts of pigment for loading and were washed only very lightly after loading.
[00109] The tetracarboxylic acid porphyrin (from acetone) and the Co phthalocyanine
(from pyridine) were loaded onto fibrils for further characterization (Runs 169-18 and -19-2, respectively).
Analysis of Tetracarboxylic Acid Porphyrin
[00110] Addition of excess base (pH 11-12) caused an immediate pink coloration in the titrating slurry. While this did not interfere with the titration, it showed that at high pH, porphyrin desorbed. The carboxylic acid concentration was determined by back titration of excess NaOH using Ph 7.5 as end-point. The titration gave a loading of 1.10 meq/g of acid, equivalent to 0.275 meq/g porphyrin.
Analysis of Cobalt or Dilithium Phthalocyanine
[00111] The concentrations of these adsorbates were estimated from decoloration experiments only. The point where the blue-green tint did not fade after 30 min was taken as the saturation-point.
[00112] A number of substituted polynuclear aromatic or polyheteronuclear aromatic compounds were adsorbed on fibril surfaces. For adhesion, the number of aromatic rings should be greater than two per rings/pendant functional group. Thus, substituted anthracenes, phenanthrenes, etc., containing three fused rings, or polyfunctional derivatives containing four or more fused rings can be used in place of the porphyrin or phthalocyanine derivatives. Likewise, substituted aromatic heterocycles such as the quinolines, or multiply substituted heteroaromatics containing four or more rings can be used.
[00113] Table II summarizes the results of the loading experiments for the three porphyrin/phthalocyanine derivatives.
KU S423199.1 Attorney DoWcet No, , 100647-03591
25
TABLE II Summary of Adsorption Runs
Wgt. Loading meq/g
EX. RUN Adsorbate Fib, g SoIv. g/g Form Titration
1OA 169-11 TCAPorph 19.6 mg Acet 0.18g/g Acid na 1OB 169-12 TCAPorph 33.3 mg H2O 0.11 Na SaIt na 1OC 169-14 DiLiPhth 119.0 mg Acet 0.170 Li na 1OD 169-19-1 CoPhth 250.0 mg Pyr 0.187 Co 0.335(cal) 1OE 169-18 TCAPorph 1.00 g Acet 0.205 Acid 1.10(T) 1OF 169-19-2 CoPhth 1.40 g Pyr 0.172 Co 0.303(cal)
TCAPorph=Tetracarboxylic Acid Porphyrin (cal)=calculated
DiLiPhth=Dilithium Phthalocyanine (T)=Titration
CoPhth=Cobalt(II) Phthalocyanine
[00114] The following Examples 11 and 12 illustrate methods for the adsorption of two different phthalocyanine derivatives on carbon nanotubes.
EXAMPLE 11
Fibrils Fuiictionalized by Adsorption of Nickel (II) Phthalocyaninetetrasulfonic Acid
[00115] Two milligrams of Nickel (II) phthalocyanine-tetrasulfonic acid (tetrasodium salt) was mixed with 4.2 milligrams of plain fibrils in one milliliter of dH2O. The mixture was sonicated for 50 minutes and rotated at room temperature overnight. [00116] The fibrils were washed with 3 x 1 ml of dH2O, 3 x 1 ml of MeOH, and 3 x 1 ml OfCH2Cl2 and dried under vacuum.
[00117] Thermolysin was immobilized on these phthalocyanine derivative fibrils by adsorption. 0.5 mg of fibrils were suspended in 250 μl of dH2θ and sonicated for 20 minutes. The supernatant was discarded and the fibrils were suspended in 250 μl of 0.05 M Tris (pH=8.0) and mixed with 250 μl of 0.6 mM thermolysin solution made in the same buffer. The mixture was rotated at room temperature for 2 hours and stored at 40C overnight. The fibrils were then washed three times with 1 ml of 25 mM Tris (pH=8) and suspended in 250 μl of buffer containing 40 mM Tris and 1OmM CaCl2 at pH 7.5. [00118] The amount of thermolysin on these fibrils was determined by measuring the enzyme activity of the fibrils. Thermolysin can react with substrate FAGLA (N-(3-[2- furyl]acryloyl)-gly-leuamide) and produce a compound that causes absorbance decrease at 345 nm with extinction coefficient of -310 M1Cm"1. The assay buffer condition for this reaction was 4OmM Tris, 1OmM CaCl2 and 1.75 M NaCl at pH 7.5. The reaction was performed in 1 ml cuvette by mixing 5 μl of FAGLA stock solution (25.5 mM in 30% DMF Attorney D3BIcet No. 100647-03591 26 in CiH2O) and lOμg of thermolysin fibrils in 1 ml of assay buffer. The absorbance decrease at 345 nm was monitored by time scan over 10 minutes. The enzyme activity (μM/min) was then calculated from the initial slope using the extinction coefficient -310 M-1Cm"1. The amount of active thermolysin per gram of fibril was 0.61 μ moles.
EXAMPLE 12
Fibrils Functionalized by Adsorption of 1, 4, 8, 11, 15, 18, 22, 25-Octabutoxy-29H, 31H-phthalocyaniπe
[00119] Three milligrams of 1, 4, 8, 11, 15, 22, 25-octabutoxy-29H, 3 IH- phthalocyanine and 5.3 mg of plain fibrils were mixed in 1 ml of CHCI3. The mixture was sonicated for 50 minutes and rotated at room temperature overnight. [00120] The fibrils were washed with 3 x 1 ml of CH2CI2 and dried under vacuum.
[00121] Thermolysin was immobilized on these phthalocyanine derivative fibrils by adsorption according to the method of Example 34. The amount of active thermolysin per gram of fibrils was 0.70 μmoles.
EXAMPLE 13 Aspartame Precursor Synthesis Using
Phthalocyanine Derivative Fibrils With Thermolysin Immobilized Thereon
[00122] Phthalocyanine derivative fibrils on which thermolysin has been immobilized can be used to catalyze the synthesis of a precursor of the artificial sweetener aspartame. The reaction is carried out by mixing 80 mM L-Z-Asp and 220 niM L-PheOMe in ethyl acetate with 10 μM fibril immobilized thermolysin. The product Z-Asp-PheOMe is monitored by HPLC to determine the yield.
5. CHLORATE OR NITRIC ACID OXIDATION
[00123] Literature on the oxidation of graphite by strong oxidants such as potassium chlorate in cone, sulfuric acid or nitric acid, includes R.N. Smith, Quarterly Review 13, 287 (1959); MJ.D. Low, Chem. Rev. 60. 267 (I960)). Generally, edge carbons (including defect sites) are attacked to give mixtures of carboxylic acids, phenols and other oxygenated groups. The mechanism is complex involving radical reactions.
EXAMPLE 14
Preparation of Carboxylic Acid-Functionalized Fibrils Using Chlorate
[00124] The sample of CC fibrils was slurried in cone. H2SO4 by mixing with a spatula and then transferred to a reactor flask fitted with gas inlet/outlets and an overhead stirrer. With stirring and under a slow flow of argon, the charge OfNaClO3 was added in Attorney Dof£et No. 100647-03591
27 portions at RT over the duration of the run. Chlorine vapors were generated during the entire course of the run and were swept out of the reactor into a aqueous NaOH trap. At the end of the run, the fibril slurry was poured over cracked ice and vacuum filtered. The filter cake was then transferred to a Soxhlet thimble and washed in a Soxhlet extractor with DI water, exchanging fresh water every several hours. Washing was continued until a sample of fibrils, when added to fresh DI water, did not change the pH of the water. The fibrils were then separated by filtration and dried at 1000C at 5" vacuum overnight. [00125] The carboxylic acid content was determined by reacting a sample with excess
0.100N NaOH and back-titrating with 0.100" HCl to an endpoint at pH 7.5. The results are listed in the Table.
TABLE III
Summary of Direct Oxidation Runs
Components, g Time Rec
Acid,
Ex. # RUN Fibrils NaClO3 Cc H2SO4 hours Wash Ph Wgt meq/g
HA 168-30 10.0 8.68 450 24 5.7 10.0 0.78
HB 168-36 12.0 13.9 600 24 5.9 13.7 0.75
EXAMPLE 15
Preparation of Carboxylic Acid-Functionalized Fibrils Using Nitric Acid
[00126] A weighed sample of fibrils was slurried with nitric acid of the appropriate strength in a round bottom multi-neck indented reactor flask equipped with an overhead stirrer and a water condenser. With constant stirring, the temperature was adjusted and the reaction carried out for the specified time. Brown fumes were liberated shortly after the temperature exceeded 700C, regardless of acid strength. After the reaction, the slurry was poured onto cracked ice and diluted with DI water. The slurry was filtered and excess acid removed by washing in a Soxhlet extractor, replacing the reservoir with fresh DI water every several hours, until a slurried sample gave no change in Ph from DI water. The fibrils were dried at 1000C at 5" vacuum overnight. A weighed portion of fibrils was reacted with standard 0.100 N NaOH and the carboxylic acid content determined by back-titration with 0.100 N HCl. Surface oxygen content was determined by XPS. Dispersibility in water was tested at 0.1 wt% by mixing in a Waring Blender at high for 2 min. Results are summarized in Table 4. Attorney JJόTket No. 100647-03591
28
TABLE IV Summary of Direct Oxidation Runs
COMPONENTS Gms. Acid Temp Wgt. COOH ESCA, at % Disp
Ex. Fibrils cc Acid Cone. 0C. Time Loss meq/g C O H2O
12A l(BN) 300 70% RT 24 hr 0 <0.1 98 2 P
12B 1(BN) 300 15 rflx 48 <5% <0.1 not analyzed P
12C 20(BN) 1.0 1 70 rflx 7 25% 0.8 not analyzed G
12D 48(BN) 1.0 1 70 rflx 7 20% 0.9 not analyzed G
P=Poor; G=Good
O1 AMINO FUNCTIONALIZATION OF FIBRILS
[00127] Amino groups can be introduced directly onto graphitic fibrils by treating the fibrils with nitric acid and sulfuric acid to get nitrated fibrils, then reducing the nitrated form with a reducing agent such as sodium dithionite to get amino-functionalized fibrils according to the following formula:
F i b g"V Hg S θ 4 F I b -NO 2 »» 3 2 θ « . F i b - N E ,
The resulting fibrils have many utilities, including the immobilization of proteins (e.g., enzymes and antibodies), and affinity and ion exchange chromatography.
EXAMPLE 16 Preparation of Amino-Functionalized Fibrils Using Nitric Acid
[00128] To a cooled suspension (00C) of fibrils (70 mg) in water (1.6 ml) and acetic acid (0.8 ml) was added nitric acid (0.4 ml) in a dropwise manner. The reaction mixture was stirred for 15 minutes at O0C and stirred for further 1 hour at room temperature. A mixture of sulfuric acid (0.4 ml) and hydrochloric acid (0.4 ml) was added slowly and stirred for 1 hour at room temperature. The reaction was stopped and centrifuged. The aqueous layer was removed and the fibrils washed with water (X5). The residue was treated with 10% sodium hydroxide (X3), and washed with water (X5) to furnish nitrated fibrils. [00129] To a suspension of nitrated fibrils in water (3 ml) and ammonium hydroxide
(2 ml) was added sodium dithionite (200 mg) in three portions at 00C. The reaction mixture was stirred for 5 minutes at room temperature and refluxed for 1 hour at 1000C. The reaction was stopped, cooled to 00C and the pH adjusted with acetic acid (pH 4). After standing overnight at room temperature, the suspension was filtered, washed with water Attorney ϋM:et No. 100647-03591 29
(XlO), methanol (X5) and dried in vacuo to give amino fibrils. [00130] To test the amino functionalized fibrils, the fibrils were coupled with horseradish peroxidaese. The HRP-coupled amino fibrils were then extensively dialyzed. Following dialysis, the fibrils were washed 15 times over the following week. The enzyme- modified fibrils were assayed as follows:
HRP
H2O2 + ABTS (clear) 2H2O + product (green)
[00131] The results indicated that HRP coupled with Fib-NHa showed good enzyme activity which was retained over a period of one week.
7. ATTACHMENT OF TERMINAL ALCOHOLS USING A FREE
RADICAL INITIATOR
[00132] The high degree of stability of carbon nanotubes, while allowing them to be used in harsh environments, makes them difficult to activate for further modification. Previous methods have involved the use of harsh oxidants and acids. It has now been surprisingly found that terminal alcohols can be attached to carbon nanotubes using a free radical initiator such as benzoyl peroxide (BPO). Carbon nanotubes are added to an alcohol having the formula RCH2OH, wherein R is hydrogen, alkyl, aryl, cycloalkyl, aralkyl, cycloaryl, or poly(alkylether) along with free radical initiator and heated to from about 6O0C to about 900C. Preferred alcohols include ethanol and methanol. When sufficient time has elapsed for all of the free radical initiator to decompose, the reaction mixture is filtered and the carbon nanotube material is washed and dried, yielding modified nanotubes of the formula Nanotube-CH(R)OH. This method can also be used to couple bifunctional alcohols. This allows one end to be linked to the carbon nanotube and the other to be used for the indirect linkage of another material to the surface.
EXAMPLE 17
Preparation of Alcohol Functionalized Nanotubes Using Benzoyl Peroxide
[00133] 0.277 grams of carbon nanotubes were dispersed in MeOH using a probe sonicator. 0.126 grams of BPO were added at RT and the temperature was increased to 600C and an additional 0.128 grams of BPO were added. After an additional 45 minutes at 600C, a final BPO charge of 0.129 grams was added and the mixture was kept at 6O0C for an additional 30 minutes. The product was filtered onto a membrane and washed several times with MeOH and EtOH and dried in an oven at 900C. The yield was 0.285 grams. ESCA analysis showed an oxygen content of 2.5 atomic percent compared with 0.74% for a control
KU 2423199 1 Attorney DM:et No. 100647-03591 30 sample refluxed in MeOH without BPO.
EXAMPLE 18
Modification of Carbon Nanotubes with Poly(ethylene Glycol) Using Benzoyl Peroxide
[00134] 0.1 grams of carbon nanotubes, 0.5 grams BPO and 10 grams poly(ethyleneglycol), avg. mol. wt. 1000 (PEG-1000) were mixed together at room temperature. The mixture was heated to 900C to melt the PEG and the mixture was left to react at 900C overnight. The entire mixture was then filtered and washed to remove the excess PEG and was then dried. The resultant material can be used either as is, or it can be further modified by attaching materials of interest to the free end of the PEG.
EXAMPLE 19
Use of Carbon Nanotubes Modified With PEG to Reduce Nonspecific Binding
[00135] Non-specific binding to high surface area carbon material is ubiquitous. It has been found that attaching hydrophilic oligomers such as PEG to carbon nanotubes can reduce non-specific binding. Further, it has been found that by attaching one end of chain- like molecules such as PEG to the surface of the nanotubes the free end can contain a functional group that can be used for attachment of other materials of interest while still retaining the properties of the PEG (or other material) layer to reduce non-specific binding. Reduction of Non-specific Binding of Bovine Serum Albumen with PEG-modified Fibrils
[00136] Stock dispersions of unmodified fibrils, chlorate oxidized fibrils and PEG modified fibrils at 0.1 mg/ml in 50 mM potassium phosphate buffer at pH 7.0 were prepared by dispersing 1.0 mg of each in 10 mis of buffer with sonication. 2 mis of 2-fold serial dilutions of each were placed in each of 9 polypropylene tubes. 100 μl of a 0.2 mg/ml solution of bovine serum albumin (BSA) in the same buffer was added to each tube and to three buffer blanks. Three buffer tubes without protein were also prepared. All tubes were mixed on a vortex mixer and allowed to incubate for 30 minutes with 30 seconds of vortexing every 10 minutes. All tubes were centrifuged to separate the fibrils and 1 ml aliquots of the supernatant were transferred to new tubes and analyzed for total protein content using a Micro BCA protein assay (Pierce). The level of protein remaining in the supernatant was an indirect measure of the amount that had been non-specifically bound to the fibrils. All the BSA remained in the supernatant for the PEG modified fibrils while there was nearly complete binding to the unmodified or chlorate oxidized fibrils (see Fig. 1). Attorney DSCket No. 100647-03591
31
Comparison of Reduction of Non-specific Binding by PEG-modified Fibrils Prepared Using Benzoyl Peroxide and by NHS Ester Coupling
[00137] Stock dispersions of chlorate oxidized fibrils, Fibrils modified with PEG using benzoyl peroxide and chlorate oxidized fibrils modified with PEG by NHS ester coupling were prepared at 1.0 mg/ml in 50 mM potassium phosphate buffer, pH 7.0 with sonication. 2 mis of 3-fold serial dilutions of each were placed in each of 7 polypropylene tubes. lOOμl of a 0.2 mg/ml solution of β-lactoglobυlin (βLG) in the same buffer was added to each tube and to 3 buffer blanks. Three buffer tubes without protein were also prepared. All tubes were mixed on a vortex mixer and allowed to incubate for 60 minutes with 30 seconds of vortexing every 10 minutes. All tubes were centrifuged to separate the fibrils and 1 ml aliquots of the supernatant were transferred to new tubes and analyzed for total protein content using a Micro BCA protein assay (Pierce). The level of protein remaining in the supernatant was an indirect measure of the amount that had been non-specifically bound to the protein (see Fig. T). For each of the tubes the βLG remained in the supernatant for the fibrils modified with PEG via the NHS ester route signifying no non-specific binding. The fibrils modified with PEG via the BPO route exhibited only slight (approx. 10%) binding of the βLG at the highest fibril level of 1.0 mg/ml and no significant binding at lower levels. In contrast, there was nearly complete binding to the chlorate oxidized fibrils at fibril levels of 0.1 mg/ml and above and substantial binding down to 0.01 mg/ml of these fibrils.
8. SECONDARY DERIVATIVES OF FUNCTIONALIZED NANOTUBES Carboxylic Acid-functionalized Nanotubes
[00138] The number of secondary derivatives which can be prepared from just carboxylic acid is essentially limitless. Alcohols or amines are easily linked to acid to give stable esters or amides. If the alcohol or amine is part of a di- or bifunctional poly- functional molecule, then linkage through the O- or NH- leaves the other functionalities as pendant groups. Typical examples of secondary reagents are:
GENERAL FORMULA PENDANT GROUP EXAMPLES
HO-R, R=alkyl, aralkyl, aryl, R- Methanol, phenol, tri- fluoroethanol, polymer, SiR'3 fluorocarbon, OH-terminated
Polyester, silanols
H2N-R R=same as above R- Amines, anilines, fluorinated amines, silylamines, amine terminated polyamides, proteins
KL3.2423I99 1 Attorney DδTKet No. 100647-03591
32
GENERAL FORMULA PENDANT GROUP EXAMPLES
Cl-SiR3 SiR3- Chlorosilanes
HO-R-OH, R=alkyl, HO- Ethyleneglycol, PEG, Penta- aralkyl, CH2O- erythritol, bis-Phenol A
H2N-R-NH2, R=alkyl, H2N- Ethylenediamine, polyethyl- aralkyl eneamines
X-R-Y, R=alkyl, etc; Y- Polyamine amides,
X=OH or NH2; Y=SH, CN, Mercaptoethanol
C=O, CHO, alkene, alkyne, aromatic, heterocycles
[00139] The reactions can be carried out using any of the methods developed for esterifying or aminating carboxylic acids with alcohols or amines. Of these, the methods of H.A. Staab, Anagew. Chem. Intemat. Edit., (1), 351 (1962) using N,N'-carbonyl diimidazole (CDI) as the acylating agent for esters or amides, and of G. W. Anderson, et al., J. Amer. Chem. Soc. 86, 1839 (1964), using N-hydroxysuccinimide (NHS) to activate carboxylic acids for amidation were used.
EXAMPLE 20 Preparation of Secondary Derivatives of Functionalized Fibrils
N, N'-Carbonyl Diimidazole
[00140] Clean, dry, aprotic solvents (e.g., toluene or dioxane) are required for this procedure. Stoichiometric amounts of reagents are sufficient. For esters, the carboxylic acid compound is reacted in an inert atmosphere (argon) in toluene with a stoichiometric amount of CDI dissolved in toluene at R.T. for 2 hours. During this time, CO2 is evolved. After two hours, the alcohol is added along with catalytic amounts of Na ethoxide and the reaction continued at 80°C for 4 hr. For normal alcohols, the yields are quantitative. The reactions are:
1. R-COOH + Im-CO-Im > R-CO-Im + Him + CO2, Im=Imidazolide,
HIm=Imidazole
NaOEt
2. R-CO-Im + R'OH > R-CO-OR' + Him
[00141] Amidation of amines occurs uncatalyzed at RT. The first step in the procedure is the same. After evolution of CO2, a stoichiometric amount of amine is added at RT and reacted for 1-2 hours. The reaction is quantitative. The reaction is: Attorney Doϊlcet No. 100647-03591
33
3. R-CO-Im + R5NH2 > R-CO-NHR + Him
Silylation
[00142] Trialkylsilylchlorides or trialkylsilanols react immediately with acidic H according to:
R-COOH + Cl-SiR'3 > > R-CO-SiR'3 + HCl
[00143] Small amounts of Diaza- 1,1,1 -bicyclooctane (DABCO) are used as catalysts.
Suitable solvents are dioxane and toluene.
Sulfonic Acid-Functionalized Fibrils
[00144] Aryl sulfonic acids, as prepared in Example 1, can be further reacted to yield secondary derivatives. Sulfonic acids can be reduced to mercaptans by L1AIH4 or the combination of triphenyl phosphine and iodine (March, J.P., p. 1107). They can also be converted to sulfonate esters by reaction with dialkyl ethers, i.e., Fibril~SO3H + R-O-R
— > Fibril-SO2OR + ROH
N-Hydroxysuccinimide
[00145] Activation of carboxylic acids for amidation with primary amines occurs through the N-hydroxysuccinamyl ester; carbodiimide is used to tie up the water released as a substituted urea. The NHS ester is then converted at RT to the amide by reaction with primary amine. The reactions are:
1. R-COOH + NHS + carbodimide > R-CONHS + Subst. Urea
2. R-CONHS + R'NH2 > R-CO-NHR'
[00146] This method is particularly useful for the covalent attachment of protein to graphitic fibrils via the free NH2 on the protein's side chain. Examples of proteins which can be immobilized on fibrils by this method include trypsin, streptavidin and avidin. The streptavidin (or avidin) fibrils provide a solid carrier for any biotinylated substance.
EXAMPLE 21 Covalent Attachment of Proteins to Fibrils via NHS Ester
[00147] To demonstrate that protein can be covalently linked to fibrils via NHS ester, streptavidin, avidin and trypsin were attached to fibrils as follows.
[00148] 0.5 mg of NHS-ester fibrils were washed with 5 mM sodium phosphate buffer
(pH 7.1) and the supernatant was discarded. 200 μl streptavidin solution (1.5 mg in the same buffer) was added to the fibrils and the mixture was rotated at room temperature for 5.5 hours. The fibrils were then washed with 1 ml of following buffers in sequence: 5 mM Attorney DSicet No. 100647-03591 34 sodium phosphate (pH 7.1), PBS (0.1 M sodium phosphate, 0.15 M NaCl, pH 7.4), ORIGEN™ assay buffer (IGEN, Inc., Gaithersburg, MD) and PBS. The streptavidin fibrils were stored in PBS buffer for further use.
[00149] 2.25 mg NHS-ester fibrils were sonicated in 500 μl of 5 mM sodium phosphate buffer (pH 7.1) for 40 minutes and the supernatant was discarded. The fibrils were suspended in 500 μl of 5 mM sodium phosphate buffer (pH 7.1) and 300 μl of avidin solution made in the same buffer containing 2 mg avidin (Sigma, A-9390) was added. The mixture were rotated at room temperature for two hours, stored at 4°C overnight and rotated at room temperature for another hour. The fibrils were washed with 1 ml of 5 mM sodium phosphate buffer (pH 7.1) four times and PBS buffer twice. The avidin fibrils were suspended in 200 μl PBS buffer for storage.
[00150] Trypsin fibrils were prepared by mixing 1.1 mg NHS-ester fibrils (treated as in avidin fibrils) and 200 μl of 1.06 mM trypsin solution made in 5 mM sodium phosphate buffer (pH 7.1) and rotating at room temperature for 6.5 hours. The trypsin fibrils were then washed by 1 ml of 5 mM sodium phosphate buffer (pH 7.1) three times and suspended in 400 μl of the same buffer for storage.
EXAMPLE 22 Measurement of Enzyme Activity of Trypsin on Fibrils
[00151] Trypsin can react with substrate L-BAPNA (Nα-benzoyl-L-arginine p- nitroanilide) and release a colored compound that absorbs light at 410 nm. The assay buffer for this reaction was 0.05 M Tris, 0.02 M CaCl2, pH 8.2. The reaction was performed in 1 ml cuvette by mixing 5 μl of L-BAPNA stock solution (50 mM in 37% DMSO in H2O) and 10-25 μg of trypsin fibrils in a 1 ml of assay buffer. The absorbance increase at 410 nm was monitored over 10 minutes. The enzyme activity (μM/min) was then calculated from the initial slope.
[00152] For covalently bound trypsin fibrils, the activity was 5.24 μM/min per 13 μg fibrils. This result can be converted to the amount of active trypsin on fibrils by dividing the activity of a known concentration of trypsin solution, which was measured to be 46 μM/min per 1 μM trypsin under the same assay conditions. Therefore the amount of active trypsin per gram of fibrils was 8.3 μmoles (or 195 mg).
EXAMPLE 23 Carbon Nanotubes with Surface Thiols
[00153] 0.112 gms of amino carbon nanotubes (CN) prepared by modification with ethylenediamine as described in Example 27 (below) were suspended in 20 mis of pH 8.0 Attorney Do"Scet No. 100647-03591
35
0.05 M potassium phosphate buffer containing 50 mM EDTA. The suspension was sonicated with a Branson 450 Watt probe sonicator for 5 minutes to disperse the CN. The resulting suspension was quite thick. Argon was bubbled though the suspension for 30 minutes with stirring. 50 mgs of 2-iminothiolane*HC 1 was added and the mixture was allowed to react for 70 minutes with continued stirring under argon. The resulting material was filtered onto a polycarbonate membrane filter, washed 2X with buffer, IX with DI water and 2X with absolute EtOH, all under an argon blanket. The thiol modified CN were placed in a vacuum desiccator and pumped on overnight.
[00154] Final weight = 0.118 gms, 55% conversion, based on weight gain.
[00155] A 10 mg sample of thiolated nanotubes was suspended in 10 mis. of DI water with sonication and filtered onto 0.45μm nylon membrane to form a felt-like mat. The mat section was stored in a vacuum desiccator prior to analysis by ESCA which showed 0.46% sulfur and 1.69% nitrogen, confirming successful conversion to thiol-modified CN.
EXAMPLE 24 Attachment of Thiol-modified Carbon Nanotubes to Gold Surfaces
[00156] Gold foil (Alfa/Aesar), 2 cm x 0.8 cm, was cleaned with a solution of 1 part
30% H2O2 and 3 parts concentrated H2SO4 for 10 minutes and rinsed with DI water. The foil piece was connected to an Au wire lead and cycled electrochemically between -0.35 V vs. Ag/AgCl and 1.45 V vs. Ag/AgCl in 1 M H2SO4 at 50 mv/sec until the cyclic voltammograms were unchanged, approx. 10 minutes. It was then rinsed with DI water and dried. The large piece was cut into four strips 0.5 cm x 0.8 cm.
[00157] 10 mis of absolute EtOH, deoxygenated by argon purging for 30 min., was placed in each of two glass vials. In one vial was suspended 16 mgs of thiol-modified CN (CN/SH) and 2 Au pieces and in the other vial 1 piece of Au and 10 mgs of the ethylene diamine modified CN used to make the thiol derivative. All manipulations were carried out in an Ar filled glove bag. The vials were sealed under Ar and placed in a chilled ultrasonic bath for 1 hour. The sealed vials were left at RT for 72 hours. The Au samples were removed from the vials, rinsed 3X with EtOH, air dried and placed in protective vials. [00158] The Au foil samples exposed to the CN/ethylenediamine and CN/SH were examined by scanning electron microscopy (SEM) to detect the presence or absence of CN on the surface. Examination at 40,00OX revealed the presence of CN distributed over the surface exposed to CN/SH but no CN were observed on the Au foil sample exposed to CN/ethylenediamine. Attorney D<!5!cet No. 100647-03591 36
EXAMPLE 25 Preparation of Maleimide Fibrils From Amino Fibrils
[00159] Amino fibrils were prepared according to Example 13. The amino fibrils
(62.2 mg) were then sonicated in sodium phosphate buffer (5 ml, 5 mM at pH 7.2). SuIfosuccinmidyl-4-(N-maleimidomethyl)cyclohexane-l-carboxylate (SMCC; 28.8 mg, 0.66 mmols; Pierce, Cat. No.22360) was added to the fibril suspension. The reaction mixture was stirred overnight at room temperature. The fibrils were washed with water and methanol, and the product fibrils were dried under vacuum. Antibody immobilization on the product confirmed the presence of maleimide fibrils. Other maleimides with different linkers (e.g., sulfo-SMCC, succinimidyl 4-[p-maleimidophenyl]butyrate [SMPB], sulfo- SMPB, m-maleimidobenzyl-N-hydroxysuccinimide ester [MBS], sulfo-MBS etc.) fibrils can be made through the same method.
[00160] The resulting maleimide fibrils can be used as a solid support for the covalent immobilization of proteins, e.g., antibodies and enzymes, Antibodies were covalently immobilized on malemide activated fibrils. The capacity of antibody was 1.84 milligrams per gram of fibrils when amino fibrils obtained from nitration/reduction method (Example 13) were used and 0.875 milligrams per gram of fibrils when amino fibrils derivatized from carboxyl fibrils were used.
EXAMPLE 26
Preparation of Ester/Alcohol Derivatives from Carboxylic Acid-Functionalized Fibrils
[00161] The carboxylic acid functionalized fibrils were prepared as in Example 14.
The carboxylic acid content was 0.75 meq/g. Fibrils were reacted with a stoichiometric amount of CDI in an inert atmosphere with toluene as solvent at R.T. until CO2 evolution ceased. Thereafter, the slurry was reacted at 80 0C with a 10-fold molar excess of polyethyleneglycol (MW 600) and a small amount of NaOEt as catalyst. After two hours reaction, the fibrils were separated by filtration, washed with toluene and dried at 100 0C.
EXAMPLE 27
Preparation of Amide/Amine Derivatives from Carboxylic Acid-Functionalized Fibrils (177-041-1)
[00162] 0.242 g of chlorate-oxidized fibrils (0.62 meq/g) was suspended in 20 ml anhydrous dioxane with stirring in a 100 ml RB flask fitted with a serum stopper. A 20-fold molar excess of N-hydroxysuccinimide (0.299 g) was added and allowed to dissolve. This was followed by addition of 20-fold molar excess of l-ethyl-3-(3- dimethylaminopropyl)carbodiimide (EDAC) (0.510 g), and stirring was continued for 2 hr at Attorney Dulcet No. 100647-03591
37
RT. At the end of this period stirring was stopped, and the supernatant aspirated and the solids were washed with anhydrous dioxane and MeOH and filtered on a 0.45 micron polysulfone membrane. The solids were washed with additional MeOH on the filter membrane and vacuum-dried until no further weight reduction was observed. Yield of NHS-activated oxidized fibrils was 100% based on the 6% weight gain observed. [00163] 100 μl ethylenediamine (en) was added to 10 ml 0.2 M NaHCO3 buffer. An equivalent volume of acetic acid (HOAc) was added to maintain the pH near 8. NHS- activated oxidized fibrils (0.310 g) was added with vigorous stirring and reacted for 1 hr. An additional 300 μl of en and 300 μl HOAc was added for an additional 10 min. The solution was filtered on 0.45 micron polysulfone membrane and washed successively with NaHCOs buffer, 1% HCl, DI water and EtOH. The solids were dried under vacuo overnight. The HCl salt was converted back to the free amine by reaction with NaOH (177-046-1) for further analysis and reactions.
[00164] ESCA was carried out to quantify the amount of N present on the aminated fibrils (GFZNH2). ESCA analysis of 177-046-1 showed 0.90 at% N (177-059). To further assess how much of this N is present as both accessible and reactive amine groups, a derivative was made by the gas phase reaction with pentafluorobenzaldehyde to produce the corresponding Schiff Base linkages with available primary amine groups. ESCA analysis still showed the 0.91 at% N, as expected, and 1.68 at%F. This translates into a 0.34 at% of N present as reactive primary amine on the aminated fibrils (5 F per pentafluorobenzaldehyde molecule). A level of 0.45 at% N would be expected assuming complete reaction with the free ends of each N. The observed level indicates a very high yield from the reaction of N with NHS-activated fibril and confirms the reactivity of the available free amine groups.
[00165] At the level of 0.34 at% N present as free amine calculated from the ESCA data, there would be almost complete coverage of the fibrils by the free amine groups allowing coupling of other materials.
[00166] Carboxyl fibrils were also converted to amino fibrils using mono-protected
1,6-diaminohexane (a six-carbon linker), rather than ethylenediamine (a two-carbon linker).
EXAMPLE 28 Preparation of Amine Derivatives from Carboxylic Acid Functionalized Fibrils
[00167] Carboxyl groups on fibrils can be modified by reacting the carboxyl groups with one amino group of a compound having two or more amino groups (at least one of which is unprotected by groups such as t-Boc or CBZ). The fibrils so generated are amide Attorney lWkct No. 100647-03591 38 derivatives in which the amide carbonyl is derived from the fibril carboxyl group and the amide nitrogen is substituted with a group (such as an alkyl group) containing one or more primary amines. The amino groups are then available for use or further modification. [00168] One gram of carbon fibrils was placed in a dry scintered glass filter tunnel, the outlet of which was tightly stoppered with a rubber serum septum, and anhydrous dichloromethane was added to cover. N-Methylmorpholine (758 μL, 7 mmol) was added, the suspension was mixed with the aid of a spatula. Then isobutyl chloroformate (915 μL, 7 mmol) was added, and the suspension mixed periodically for one hour. The mixture was protected from atmospheric moisture by a cover of Parafilm as much as was practical. [00169] Meanwhile, N-boc-l,6-diaminohexane hydrochloride (1.94 g, 7.7 mmol) was partitioned between dichloromethane (10 mL) and 1 M NaOH (10 mL). The lower, organic phase was dried over anhydrous potassium carbonate and filtered through a disposable Pasteur pipette containing a cotton plug, and N-methylmorpholine (758 μL, 7 mmol) was added.
[00170] The serum septum was removed from the filter funnel, the reagents were removed from the fibrils by vacuum filtration, and the fibrils were washed with anhydrous dichloromethane. The serum septum was replaced, and the mixture of N-methylmorpholine and monoprotected diaminohexane was added to the fibrils. The mixture was stirred periodically for one hour. Then, the reagents were removed by filtration, and the fibrils were washed successively with dichloromethane, methanol, water, methanol, and dichloromethane.
[00171] A 50% mixture of trifluoric acid and dichloromethane was added to the fibrils and the mixture stirred periodically for 20 minutes. The solvents were removed by filtration, and the fibrils were washed successively with dichloromethane, methanol, water, 0.1 M NaOH, and water.
[00172] To demonstrate the efficacy of the method, a small sample of amino fibrils were reacted with "activated" horseradish peroxidase (HRP; 5 mg, Pierce) which was modified to specifically react with amino groups. The fibrils were washed repeatedly for several days (by suspension, rotation, and centrifugation in an Eppendorf tube) while kept cold. After approximately two weeks of washing, the enzyme was assayed with H2O2/ABTS in glycine buffer, pH 4.4. A green color appeared in the solution within 10 minutes indicating the presence of enzyme. Control fibrils (COOH fibrils treated with activated HRP and washed for the same period of time) showed little if any catalytic activity. Attorney DSClcet No. 100647-03591 39
EXAMPLE 29
Preparation of Silyl Derivative from Carboxylic Acid-Functionalized Fibrils
[00173] Acid functionalized fibrils prepared as in Example 14 were slurried in dioxane in an inert atmosphere. With stirring, a stoichiometric amount of chlorotriethyl silane was added and reacted for 0.5 hr, after which several drops of a 5% solution of DABCO in dioxane was added. The system was reacted for an additional hour, after which the fibrils were collected by filtration and washed in dioxane. The fibrils were dried at 1000C in 5" vacuum overnight.
[00174] Table 5 summarizes the secondary derivative preparations. The products were analyzed by ESCA for C, O, N, Si and F surface contents.
TABLE V
Summary of Secondary Derivative Preparations
ESCA ANALYSIS, ATOM %
REACTANT PENDANT GROUP S C N O Si F
As Grown — 98.5 1.5 - -
Chlorate Oxidized -COOH, C=O, C-OH 92.4 7.6 - -
H2N-C2H4-NH2 -CONHC2H4NH2 99.10 0.90 --
-CONHC2H4N=OC5F5 97.41 0.91 _. 1.68
EXAMPLE 30
Preparation of Silyl Derivative from Carboxylic Acid-Functionalized Fibrils
[00175] Acid functionalized fibrils prepared as in Example 14 are slurried in dioxane in an inert atmosphere. With stirring, a stoichiometric amount of chlorotriethyl silane is added and reacted for 0.5 hr, after which several drops of a 5% solution of DABCO in dioxane is added. The system is reacted for an additional hour, after which the fibrils are collected by filtration and washed in dioxane. The fibrils are dried at 1000C in 5" vacuum overnight.
[00176] Table VI summarizes the secondary derivative preparations. Products are analyzed by ESCA. The analysis confirms the incorporation of the desired pendant groups. The products are analyzed by ESCA for C, O, N, Si and F surface contents. Attorney D<Met No. 100647-03591 40
TABLE VT Summary of Secondary Derivative Preparations
ESCA ANALYSIS, ATOM %
REACTANT PENDANT GROUP S_ C N Q Si F
CF3CH2OH -COOCH,CF3 NOT ANALYZED
PolyEG-600 -Co- (OC2H4O-JH NOT ANALYZED
HO-C2H4-SH -COOC2H4SH Cl-SiEt3 -COSiEt3
EXAMPLE 31
Preparation of Tertiary and
Quaternary Amine Derivatives from
Carboxylic Acid Functioπalized Fibrils
[00177] Tertiary and quaternary amine functional groups can be attached to the surface of carbon nanotubes via an amide or ester bond via a carboxyl group on the nanotube and either an amine or hydroxyl group of the tertiary or quaternary amine precursor. Such tertiary or quaternary amine fibrils are useful as chromatographic matrices for the separation of biomolecules. The tertiary or quaternary amine fibrils can be fabricated into disk-shaped mats or mixed with conventional chromatographic media (such as agarose) for separation purposes.
Preparation of triethylethanolamine iodide precursor
[00178] In a 100 ml round bottom flask, 10 g N,N-diethylethanolamine (85.3 mmole) was mixed with 10 ml anhydrous methanol. A mixture of 20 g ethyl iodide (127.95 mmole) and 10 ml anhydrous methanol was then added dropwise using a pipette. The reaction mixture was refluxed for 30 minutes. White crystalline product formed when the reaction mixture was allowed to cool to room temperature. The white solid product was collected by filtration and washed with anhydrous methanol. The product was further dried overnight in a desiccator under vacuum. Product (10.3 g, 37.7 mmole) was obtained in a yield of 33%. Preparation of quaternary amine functionalized graphite fibrils
[00179] In a vacuum dried 25 ml Wheaton disposable scintillation vial, 100 mg dry carboxyl fibril (about 0.7 mmole COOH per gram of fibrils) was mixed with 2 ml anhydrous dimethylformamide and the mixture was sonicated for 60 seconds. Two more milliliters of dimethylformamide, 39 mg dimethyl-aminopyridine (0.316 mmole), and 50 μl diisopropylcarbodiimide (0.316 mmole) were added to the reaction vial. The reaction mixture was stirred for one hour at room temperature, then 88 mg triethylethanolamine iodide (0.316 mmole) was added to the vial and the reaction was allowed to go overnight. Attorney DόWet No. 100647-03591 41
The resulting fibrils were washed three times with 20 ml dimethylformamide, three times with 20 ml methylene chloride, three times with 20 ml methanol and finally three times with de-ionized water. The product was dried under vacuum. Results from an elemental analysis of nitrogen showed that about 50% of the carboxyl groups on the fibril had reacted with the primary amino group in the quaternary amine moiety.
EXAMPLE 32
Chromatography of Bovine
Serum Albumin (BSA) on Tertiary
Amine Functionalized Graphite Fibrils.
[00180] An aqueous slurry containing 60 mg 2-diethylamino ethylamine modified carboxyl fibrils and 180 mg Sephadex G-25 superfine resin (Pharmacia, Uppsala, Sweden) was allowed to stand overnight at room temperature to ensure full hydration of the solid support. The slurry was packed into a 1 cm x 3.5 cm column. The column was equilibrated with 5 mM sodium phosphate buffer (pH 7.3) at a flow rate of 0.2 ml/min. BSA (0.6 mg in 0.1 ml de-ionized water) was loaded on the column. The column was eluted with 5 mM sodium phosphate at a flow rate of 0.2 ml/min and 0.6 ml fractions were collected. The elution profile was monitored using a UV- visible detector, and is shown in Fig 3. Once the detector indicated that no more protein was eluting from the column, bound BSA was eluted by adding 1 M KCl in 5 mM sodium phosphate (pH 7.3). The presence of the protein in each fraction was identified by micro BCA assay (Pierce, Rockford, II).
EXAMPLE 33
Chromatography of Bovine Serum
Albumin (BSA) on Quaternary Amine
Functionalized Graphite Fibrils.
[00181] An aqueous slurry containing 100 mg 2-(2-triethylamino ethoxy) ethanol modified carboxyl fibril and 300 mg Sephadex G-25 superfine resin was allowed to stand overnight at room temperature. The resulting slurry was used to pack a 1 cm diameter column. The column was equilibrated with 5 mM sodium phosphate buffer (pH 7.3) at a flow rate of 0.1-0.6 ml/min. BSA (2.7 mg in 0.2 ml de-ionized water) was loaded on the column. The column was eluted with 5 mM sodium phosphate at a flow rate of 0.2 ml/min and 0.6 ml fractions were collected. The elution profile was monitored using a UV-visible detector (Fig. 4). Once the detector indicated that protein was no longer being eluted with 5 mM sodium phosphate buffer, the solvent was changed to 1 M KCl in 5 mM sodium phosphate (pH 7.3). The presence of the protein in each fraction was identified by micro BCA assay (Pierce, Rockford, II). Attorney DMet No. 100647-03591 42
9. ENZYMATIC FUNCTIONALIZATION OF GRAPHITIC CARBON
[00182] Biocatalysts can be used to introduce functional groups onto the surface of graphitic carbon, especially carbon nanotubes. Until now, graphitic carbon has been modified by purely chemical means (see e.g., U.S. Application Serial No. 08/352,400, filed December 8, 1994). These chemical methods have drawbacks of: (1) harshness of conditions (use of extreme temperatures, extreme acidity or toxic chemicals), and (2) lack of specificity (e.g., oxidation can introduce COOH, COH, and CHO groups). Aqueous suspensions of solid graphitic carbon (such as carbon fibrils; Hyperion, Inc.) are made containing one or more enzymes that are capable of accepting the graphitic carbon as a substrate and performing a chemical reaction resulting in chemically-modified graphitic carbon. The aqueous suspension is maintained at conditions acceptable for the enzyme(s) to carry out the reaction (temperature, pH, salt concentration, etc.) for a time sufficient for the enzyme(s) to catalytically modify the surface of the graphitic carbon. During the reaction, the suspension is continually mixed to allow the enzyme(s) access to the surface of the graphitic carbon. Following a reaction time acceptable for the reaction to proceed to a satisfactory degree, the enzyme is removed from the carbon by filtration washing. [00183] To date two types of enzymes have been used: cytochrome p450 enzymes and peroxidase enzymes. In both cases, the types of enzymes have been well-studied, they accept aromatic type substrates, and their optimal reaction conditions have been worked out. Both enzyme types introduce hydroxyl groups into their substrates and may introduce hydroxyl groups into graphitic carbon. Besides enzymes, other biocatalysts such as ribozymes and catalytic antibodies, or non-biological mimics of enzymes, could be designed to catalytically functionalize carbon nanotubes.
EXAMPLE 34 Enzymatic Functionalization Using Rat Liver Microsomes
[00184] Cytochrome p450 enzymes are generally believed to function in the liver as detoxifying agents (F. Peter Guengerich, American Scientist, 81, 440-447 and F. Peter Guengerich, J. Biol. Chem., 266, 10019-10022). They hydroxylate foreign compounds such as polyaromatic toxic compounds. Hydroxylation allows these compounds to become water soluble so that they can be eliminated from the body via the urine. There are many different cytochrome p450 enzymes in the liver, each with different substrate specificities. These broad range of specificities is believed to be important because of the wide range of environmental toxins whose detoxification is required. Although individual cytochrome p450s are commercially available, no information is available regarding whether any of
KL3:2423I99.1 Attorney D<Met No. 100647-03591 43 these would accept carbon nanotubes as a substrate. Because of this uncertainty, we decided to initially incubate carbon nanotubes with a rat liver extract which contained many different cytochrome p450s.
[00185] Two rats ("experimental" rats) were administered phenobarbital (1 g/L, pH
7.0) in their drinking water for one week to induce expression of cytochrome p450 enzymes. Two other rats ("control" rats) were given water without phenobarbital. The rats were then sacrificed and cytochrome p450-containing microsomes were prepared from their livers by standard procedures (see for example, Methods in Enzymology, Vol. 206). [00186] The microsomes were mixed with carbon nanotubes (fibrils) to allow the cytochrome p450s to react with the graphitic carbon. In these experiments, 5 mg of fibrils (both "plain" or nonfunctionalized and "COOH" or oxidized fibrils) were mixed with microsomes (both experimental and control microsomes) in a buffered solution containing 0.1 M Tris, 1.0 mM NADPH, 0.01% NaN3, 10 mM glucose-6-phosphate, glucose-6- phosphate dehydrogenase (1 unit/mL), pH 7.4. NADPH was included as a co-substrate for cytochrome p450s and glucose-6-phosphate, glucose- 6-phosphate dehydrogenase were added to regenerate NADPH from NADP+ (if NADP+ is generated by cytochrome p450s). The mixtures were rotated at room temperature for about 1.5 days in microcentrifuge tubes. Following the incubation, the fibrils were washed extensively in deionized water, 1 M HCl, 1 M NaOH, 0.05% Triton X-100, 0.05% Tween, methanol, and 1 M NaCl. Following washing, microBCA assay for proteins (Pierce) showed that fibrils seemed to still have protein associated with them (although no protein was detected in the wash solution). [00187] To determine whether hydroxyl groups had been introduced onto the fibril surfaces, the fibrils were reacted with N-FMOC-isoleucine. The different batches of fibrils (control and experimental) (1.5 mg each) were reacted with 333 microliters of a solution of dry DMF containing 4.45 mg/niL FMOC-isoleucine, 1.54 mg/mL dimethylaminopyridine (DMAP) and 2.6 mg/mL 1,3-dicyclohexylcarbodiimide (DCC). Following reaction for two days (while being continuously rotated), the fibrils were washed with DMF, piperidine, methanol, water, DMF, methanol, methylene chloride (600 microliters of each). This wash sequence was repeated three times. Fibrils were sent to Galbraith Laboratories (Knoxville, TN) for amino acid analysis for isoleucine present. The results were equivocal because many other amino acids were seen in addition to isoleucine, indicating that proteins, peptides, and amino acids present in the rat liver microsomal extracts had not completely washed away from the fibrils. Thus, because of technical difficulties in washing and Attorney DδCIcet No. 100647-03591
44 analysis it could not be determined whether or not cytochrome p450's had functionalized the fibrils.
EXAMPLE 35
Fibril Functionalization Using Commercially-Available Recombinant Cytochrome p450 Enzymes
[00188] To avoid the impurities associated with using rat liver microsomes as a source of cytochrome p450s, individual cytochrome p450 enzymes were purchased (GENTEST, Woburn, MA). Because cytochrome p450 enzymes are only active in association with membranes, these enzymes are supplied as microsomal preparations. Using a reaction procedure similar to that described above, we tested the following cytochrome p450s: CYPlAl (cat.# MlUb), CYP1A2 (cat.# M103c), CYP2B6 (cat.# HOa), CYP3A4 (with reductase, cat J 107r). MgCh (0.67 mg/mL) was also included in the reaction solution. In this experiment, fibrils were washed with the aid of a Soxhlet apparatus. [00189] Analysis of introduced hydroxyl groups was carried out by reaction of cytochrome p450-reacted, washed fibrils with the colored reagent 3,5-dinitrobenzoic acid (DNBA). Coupling was carried out as described above for N-FMOC-isoleucine. Following reaction with DNBA, the fibrils were washed with DMF and residual (covalently attached) DNBA was hydro lyzed using either 6 M HCl or 46 units/mL pig liver esterase (Sigma). Analysis of liberated DNBA was carried out by HPLC analysis of the supernatant surrounding the fibrils following hydro lytic treatment. HPLC analysis of liberated DNBA was carried out on a Waters HPLC system equipped with a Vydac Cl 8 reversed phase analytical column (cat.# 218TP54) and a linear gradient from deionized water containing 0.1% TFA (solvent A) to acetonitrile containing 0.1% TFA (solvent B).
EXAMPLE 36 Functionalization of Fibrils Using Peroxidase
[00190] Literature descriptions of peroxidase substrate specificities indicated that carbon nanotubes may be substrates for these enzymes (J.S. Dorick et al., Biochemistry (1986), 25, 2946-2951; D.R. Buhler et al., Arch. Biochem. Biophys. (1961) 92, 424-437; H.S. Mason, Advances in Enzymology, (1957) 19, 79; G.D. Nordblom et al., Arch Biochem. Biophys. (1976) 175, 524-533). To determine whether peroxidase (hydrogen peroxidase, Type IL Sigma) could introduce hydroxyl groups onto the surface of fibrils, fibrils (11 mg) were mixed in a solution containing 50 mM sodium acetate (1.25 mL, pH 5.0), horseradish peroxidase (200 nM), and dihydroxyfumaric acid (15 mg) was added 5 mg at a time for the first 3 hours of the reaction. The reaction was carried out for a total of 5
KL3 2423199 1 Attorney UdCϊcet No. 100647-03591
45 hours at 4° C with intermittent bubbling of gaseous oxygen. Following the reaction, the fibrils were washed with water, 1 N NaOH, methanol, and methylene chloride (200 mL of each). A control reaction was carried out using peroxidase that had been heat inactivated (100° C for 5 minutes).
[00191] For analysis of the extent of peroxidase-catalyzed fibril hydroxylation, fibrils were reacted with t-butyldimethylsilyl chloride (Aldrich) in dry DMF in the presence of imidazole. Following washing of the fibrils, the fibrils were sent to Robertson Microlit Laboratories, Inc (Madison, NJ) for elemental analysis of silicon incorporated into the fibrils. The results of the analysis were equivocal for the presence of silicon on the surface of the fibrils. It is believed that silicon from glassware used in the experiment was present in small chips in the fibrils submitted for elemental analysis. This resulted in a high level of silicon in both experimental and control samples. The conclusion of the experiment is that peroxidase may have introduced hydroxyl groups into the fibrils but technical difficulties precluded us from determining the presence of any introduced hydroxyl groups.
10. NANOTUBES FUNCTIONALIZED BY ELECTROPHILIC
ADDITION TO OXYGEN-FREE FIBRIL SURFACES
OR BY METALLIZATION
[00192] The primary products obtainable by addition of activated electrophiles to oxygen-free fibril surfaces have pendant -COOH, -COCl, -CN, -CH2NH2, -CH2OH, -CH2- Halogen, or HC=O. These can be converted to secondary derivatives by the following: Fibril-COOH > see above.
Fibril-COCl (acid chloride) + HO-R-Y > F-COO-R-Y (Sec. 4/5)
Fibril-COCl + NH2-R-Y > F-CONH-R-Y
Fibril-CN + H2 > F-CH2-NH2
Fibril-CH2NH2 + HOOC-R-Y > F-CH2NHCO-R-Y
Fibril-CH2NH2 + O=CR-R1Y -> F-CH2N=CR-R' -Y
Fibril-CH2OH + 0(COR-Y)2 -> F-CH2OCOR-Y
Fibril-CH2OH + HOOC-R-Y > F-CH2OCOR-Y
Fibril-CH2-Halogen + Y~ -> F-CH2-Y + X~ Y~ = NCO~ -OR" Attorney DόTKet No. 100647-03591
46
Fibril-C=O + H2N-R-Y > F-C=N-R-Y
IL DEINTDRIMERIC NANOTUBES
[00193] The concentration of functional groups on the surface of nanotubes can be increased by modifying the nanotubes with a series of generations of a polyfunctional reagent that results in the number of the specific functional groups increasing with each generation to form a dendrimer-like structure. The resulting dendrimeric nanotubes are particularly useful as a solid support upon which to covalently immobilize proteins, because they increase the density of protein immobilized on the nanotube surface. The present invention demonstrates that high densities of a specific chemical functionality can be imparted to the surface of high surface area particulate carbon, which has been difficult with previous high surface area carbons
EXAMPLE 37 Preparation of Lysine-Based Dendrimers
[00194] The reaction sequence is shown in Fig. 5.
[00195] To a suspension of amino fibrils (90 mg) in sodium bicarbonate (5 ml, 0.2 M, pH 8.6) was added a solution of Nα,Nε-di-t-boc-L-lysine N-hydroxysuccinimide ester (120 mg, 0.27 mmol) in diosane (5 ml). The reaction mixture was stirred overnight at room temperature. The tert-butoxycarbonyl protected lysine fibrils were extensively washed with water, methanol and methylene chloride and dried under vacuum. The tert-butoxycarbonyl protected lysine fibrils were then treated with trifluoroacetic acid (5 ml) in methylene chloride (5 ml) for 2 hours at room temperature. The product amino lysine fibrils were extensively washed with methylene chloride, methanol and water and dried under vacuum. Preparation of the second and the third generation lysine fibrils followed the same procedure. The amino acid analysis data showed that the first generation lysine fibrils contained 0.6 μmols lysine per gram of fibrils, the second generation lysine fibrils contained 1.8 μmols per gram of fibrils, and the third generation lysine had 3.6 μmols lysine per gram of fibrils.
[00196] Carboxyl dendrimeric fibrils can be prepared by the same method by using aspartic or glutamic acid with carboxyl fibrils.
EXAMPLE 38 Preparation of Carboxylate-Terminated Dendrimers
[00197] Carboxylate terminated dendrimers with a carbon nanotube (CN) core are produced by successive, sequential couplings of aminobuty-nitrilotriacetic acid (NTA) and Attorney DόϊKet No. 100647-03591 47 beginning with the NHS ester of chlorate oxidized carbon nanotubes. Preparation of NTA
[00198] NTA was prepared according to the method of Hochuli (E. Hochuli, H.
Dobeli, and A. Schacher, J. Chromatography. 411, 177-184 (1987)), the contents of which is hereby incorporated by reference. Preparation of CN/NHS
[00199] CN/NHS were prepared according to the method of Example 20.
Preparation of CN/NTA
[00200] 0.4 g of NTA-HCl was dissolved in 25 mis of 0.2M NaHCO3, pH 8.1. IM
NaOH was added to bring the pH back up to 7.8. 0.5 g of CN/NHS was added, the mixture was sonicated to disperse the CN and the resultant slurry was left to react for 30 minutes with stirring. The slurry was filtered onto a 0.45μm nylon membrane and washed 2X with pH 8.1 carbonate buffer and 2X with DI water on filter. The modified CN were twice resuspended in 25 mis of MeOH with sonication, filtered to a solid cake and finally dried in a vacuum desiccator. Preparation of CN/NTA/NTA
[00201] CN/NTA was first converted to the NHS active ester. 0.396 grams of
CN/NTA was dried in an oven at 900C for 30 minutes and then placed in a 100 ml RB flask with 30 mis of anhydrous dioxane and purged with argon. 0.4 g of N-hydroxysuccinimide added with stirring followed by 0.67 grams of EDC with continued stirring for an additional hour. The CN tended to agglomerate together during this time. The dioxane was decanted off and the solids were washed 2X with 20 mis of anhydrous dioxane. The solids were washed with 20 mis of anhydrous MeOH during which the agglomerates broke up. The solids were filtered onto a 0.45 μm nylon membrane, resuspended in MeOH, filtered and washed on the filter with MeOH.
[00202] 0.2 g of NTA added to a 50 ml flask and dissolved with 10 drops of IM
NaOH. 20 mis of 0.2M NaHCO3 at pH 8.1, was added and then all of the CN/NTA/NHS was added and the solution lightly sonicated with a probe sonicator. The mixture was left to react for 2.5 hours at room temperature. The modified CN were filtered onto a 0.45μm nylon membrane, washed 2X with carbonate buffer, resuspended in DI water with sonication, filtered and washed with DI water. They were then placed in vacuum desiccator to dry. Attorney DόTKet No. 100647-03591 48
Preparation of CN/NTA/NTA/NTA
[00203] An additional level of NTA was added by following the procedure described above.
Preparation of CN/NTA/NTA/NTA/NTA
[00204] An additional level of NTA was added by following the procedure described above.
[00205] Samples (approx. 10 mg) of each of the four generation of NTA addition were suspended in 10 mis of DI water with sonication and filtered onto 0.45 μm nylon membranes to form felt-like mats. The mat sections were stored in a vacuum desiccator and analyzed by ESCA for nitrogen (N) to indicate relative amounts of NTA. The results are shown in the table below.
Material % N by ESCA
CN/NTA 0
CN/NTA/NTA 1.45
CN/NTA/NTA/NTA 1.87
CN/NTA/NTA/NTA/NTA 2.20
[00206] The ESCA results verify incorporation of increasing amounts with each successive generation.
EXAMPLE 39 Carbon Nanotube Dendrimers as Protein Supports
[00207] The density of protein immobilized on carbon nanotubes can be greatly increased by using fibrils derivatized to bear dendrimers. Horseradish peroxidase (HRP) has been immobilized on dendrimeric nanotubes according to the following method: [00208] Plain fibrils (0.49 mg), amino fibrils (0.32 mg), first generation lysine fibrils
(0.82 mg), second generation lysine fibrils and third generation lysine fibrils were sonicated with sodium bicarbonate conjugate buffer (600 μl, 0.1 M, containing 0.9% NaCl) for 15 minutes at room temperature. Then they were incubated with HRP solution in sodium bicarbonate conjugate buffer (490 ml, enzyme stock solution of 5.6 mg/ml) for 19 hours at room, temperature. The HRP immobilized fibrils were washed with the following buffer (1 ml): 10 mM NaHCO3 buffer containing 0.9% NaCl at pH 9.5 (IX washing buffer) seven times, 0.1% Triton X-100 in IX washing buffer five times, 50% ethylene glycol in IX washing buffer three times. The activity of HRP was assayed with hydrogen peroxide solution (10 μl, 10 mM stock solution) and 2,2-azinobis (3-ethylbenzothiazoline) -6-sulfonic Attorney Doϋcet No. 100647-03591 49 acid diammonium salt (ABTS, 3 μl, mM stock solution) in glycine assay buffer (50 mM, pH 4.4) at 414 nm. The results are shown in the following table:
Fibrils nmol HRP/εram fibrils plain Fib 3.82
Fib-NH2 8.58
Fib-NH-Lys 28.09
Fib-NH-Lys(Lys)2 28.30
Fib-NH-Lys(Lys)4 46.28
12. BIFUNCTIONAL FIBRILS
[00209] It has been found that more than one type of functional group (e.g., a carboxyl group and an amino group) can be introduced onto a fibril simultaneously by reacting a functionalized nanotube, e.g., a carboxy nanotube, with an amino acid. Such bifunctional fibrils can be used to immobilize multiple molecules, particularly in 1: 1 stoichiometrics and in close proximity.
EXAMPLE 40 Preparation of Bifunctional Fibrils by Addition of Lysine
Synthesis of Nπ-CBZ-L-lysine Benzyl Ester
[00210] The reaction sequence is shown in Fig. 7. N6-(tert-butoxycarbonyl)-L-lysine
(2 g, 8.12 mmol) was dissolved in methanol (40 ml) and water (40 ml), and the pH was adjusted to 8 with triethylamine. A solution of N-(benzyloxycarbonyl-oxy)succinimide in dioxane (2.4 g, 9.7 mmol in 20 ml) was added to the above mixture and the pH was maintained at 8-9 with triethylamine. The reaction mixture was stirred overnight. The solvent was removed by rotary evaporation to obtain crude Nα-CBZ-Nε-(tert- butoxycarbonyl)-L-lysine. Nα-CBZ-Nε-(tert- butoxycarbonyl)-L-lysine was treated with 0.2 M calcium carbonate (4 ml) and the aqueous layer was removed to obtain a white solid. The solid was resuspended in N,N-dimethylformamide (40 ml) and benzyl bromide (1.16 ml). The reaction mixture was stirred overnight at room temperature. The reaction mixture was worked up with ethyl acetate and water, and the organic layer was dried over magnesium sulphate. The solvent was removed to obtain crude Nα-CBZ-Ns-(tert-butoxycarbonyl)-L- lysine benzyl ester which was purified by silica gel chromatography using 25% hexane in ethyl acetate as a solvent. To Nα-CBZ-Nε-(tert-butoxycarbonyl)-L-lysine benzyl ester (1 g, 2.2 mmol) in methylene chloride (10 ml) was added trifluoroacetic acid at 00C. The reaction mixture was stirred for 10 minutes at 00C, then stirred for further 2.5 hr at room temperature. The solvent was removed and the crude product was obtained. Pure Nα-CBZ-L-lysine benzyl ester was obtained by silica gel chromatography. Attorney DόTEet No. 100647-03591 50
Synthesis of N.-CBZ-L-lvsine Benzyl Ester Fibrils
[0021 1] To a suspension of carboxyl fibrils (300 mg) in methylene chloride (18 ml) was added a solution of N0-CBZ-L - lysine benzyl ester (148 mg, 0.32 mmol in 20 ml methylene chloride and 176 μl triethylamine). HOBT (43.3 mg, 0.32 mmol) and EDC (61.3 mg, 0.32 mmol) were then added. The reaction mixture was stirred overnight at room temperature to obtain the crude product. The product fibrils were extensively washed with methanol, methylene chloride, and water, then dried under vacuum. Synthesis of Bifunctional Fibrils Fib-Lys(COOH)NH?
[00212] To Nα-CBZ-L-lysine benzyl ester fibrils (113 mg) in methanol (4 ml) was added sodium hydroxide (1 N, 4 ml) and the reaction mixture was stirred overnight. The product Nα-CBZ-L-lysine fibrils was extensively washed with water and methanol and the fibrils were dried under vacuum. To a suspension of Nα-CBZ-L-lysine fibrils (50 mg) in acetonitrile (4 ml) was added trimethyl silyl iodide (1 ml). The mixture was stirred for 3 hours at 4O0C. The final bifunctional fibrils were extensively washed with water, methanol, 0.5 N sodium hydroxide, acetonitrile and methylene chloride. Amino acid analysis showed 0.3 μmols lysine per gram of fibrils.
[00213] Hydroxyl and carboxyl (or amino) bifunctional fibrils can be made by a similar method to that described here by using serine, threonine, or tyrosine. Thiolated and carboxyl (or amino) bifunctional fibrils can be made using cysteine. Carboxyl and amino bifunctional fibrils can be made using aspartic or glutamic acid.
USES FOR FUNCTIONALIZED NANOTUBES
[00214] Functionalized graphitic nanotubes are useful as solid supports in many biotechnology applications due to their high porosity, chemical and thermal stability and high surface area. They have been found to be compatible with harsh chemical and thermal treatments and very amenable to chemical functionalization.
[00215] For example, an enzyme can be covalently immobilized on a modified nanotube while retaining its biological activity. In addition, nanotubes are also suitable for use as affinity chromatographic supports in biomolecular separations. For example, enzyme inhibitors have been prepared on nanotubes in multi-step syntheses such that the immobilized inhibitors were accessible to macromolecules, and reversible specific biological recognition occurred between proteins and modified fibrils.
[00216] The hydrophobicity of the nanotube surface is not enough to immobilize high densities of proteins by adsorption. To increase the hydrophobicity of the nanotube surface and to expand the hydrophobic environment from two dimensions to three dimensions, alkyl
KL32423199 1 Attorney D<5δϊcet No. 100647-03591 51 chains of varying lengths have been coupled to the nanotube surface. Proteins that have been immobilized on alkyl nanotubes by adsorption include trypsin, alkaline phosphatase, lipase and avidin. The enzyme activities of these immobilized proteins are comparable with those of the free enzymes, proven by the catalytic efficiencies toward the hydrolysis of their substrates in aqueous solutions.
[00217] In addition, phenyl-alkyl nanotubes, which are alkyl nanotubes with the addition of a phenyl group on the end of the alkyl chain, have also been prepared. This modification introduced an aromatic structure that interacts with the amino acids phenylalanine, tyrosine, and tryptophan in proteins through π- π interactions. The adsorption of alkaline phosphatase and lipase on phenyl-alkyl nanotubes was comparable to the adsorption on Cs-alkyl nanotubes.
[00218] Functionalized fibrils have also been found to be useful as solid supports for protein synthesis. L FUNCTIONALIZED NANOTUBES AS SOLID SUPPORTS FOR ENZYMES
EXAMPLE 41 Enzyme Immobilization by Adsorption
Preparation of Alkyl Fibrils
[00219] Alkyl fibrils were prepared by reacting 1 Omg of carboxyl fibrils, which contained approximately 0.007 mmoles of -COOH group (10 mg fibrils x 0.7 mmoles- COOH/mg of fibrils = 0.007 mmoles), with 0.14 mmoles of alkylamines in 1.5 ml DMF (N,N-dimethylformamide) using 0.14 mmoles of EDC (l-ethyl-3-(3- dimethylaminopropyl)carbodiimide) and 0.14 mmoles of DMAP (4- dimethylaminopyridine). The chemical reaction is as follows
Fibril-COOH + NH2(CH2)nCH2R (R=H or OH) >
Fibril-CONH (CH2)nCH2R
Several different alkyl fibrils with different lengths of alkyl chains (n = 5, 7, 9, 17; R=OH only for n=5) were prepared by this procedure. After the reaction was stirred at ambient temperature overnight, fibrils were washed rigorously with 3 x 25 ml CH2Cl2, 3 x 25 ml
MeOH, and 3 x 25 ml dH2θ. Elemental analysis of the nitrogen content in the fibrils showed that the yields of the reaction were 65-100%.
Adsorption of Enzymes
[00220] The enzymes lipase, trypsin, alkaline phosphatase and avidin were Attorney DόTKet No. 100647-03591
52 immobilized on the alkyl fibrils of this example by adsorption. The alkyl fibrils and enzyme were mixed at room temperature for three to four hours, followed by washing two to four times with 5mM sodium phosphate (pH 7.1). Alkaline phosphatase was immobilized on C§- fibrils and CβOH-fibrils; trypsin on C6-, C8-, Cio- and Cis-fibrils, lipase on COOH-, Cg-, Cio- and Cig-fibrils, and avidin on C8-fibrils. The results are shown in the following table:
[00221] The kinetic properties of the immobilized enzymes were found to be comparable to those of the free enzymes, as shown in the following table:
substrate: Lipase 1, 2-O-dilauryl-rac-glycero-3-glutaric acid resorufin ester trypsin N-benzoyl-L-arginine-p-nitroanilide
EXAMPLE 42
Esterification Catalyzed by Fibril-Lipase (Synthesis of Ethyl Butyrate)
[00222] Lipase was immobilized on Cs-alkyl fibrils according to the procedure of
Example 41. The lipase fibrils were washed first by dioxane, then a mixture of dioxane and heptane, and finally heptane in order to disperse the fibrils in heptane. To synthesize ethyl butyrate (a food additive which provides pineapple-banana flavor), ethanol (0.4M) and butyric acid (0.25M) were mixed in heptane with 6.2 μm fibril-immobilized lipase. The reaction mixture was stirred at room temperature. The yield was 60% in 7 hours, which was determined by measuring ethanol concentration in the reaction mixture using an established method. The reaction and results are shown in Fig. 8.
EXAMPLE 43
Immobilization of Alkaline Phosphatase on Phenyl-akyl Fibrils
Preparation of Phenyl-Alkyl Fibrils
[00223] Phenyl-alkyl fibrils were prepared by two different reactions. Reaction 1 Attorney DδBEet No. 100647-03591
53 mixed 20 mg carboxyl fibrils (containing approximately 0.014 mmoles of -COOH group) with 0.28 mmoles of 4-phenylbutylamine, 0.28 mmoles EDC and 0.28 mmoles DMAP (4- dimethylaminopyridine) in 1.5 ml of DMF (N,N-dirnethylformamide). Reaction 2 mixed 20 mg carboxyl fibrils with 0.28 mmoles of 6-phenyl-l-hexanol, 0.28 mmoles DCC (1,3- dicyclohexylcarbodiimide) and 0.28 mmoles DMAP in 1.5 ml of DMF. The reactions were performed at room temperature with stirring overnight. The fibrils were then washed rigorously with 3 x 25 ml CH2Cl2, 3 x 25 ml MeOH, and 3 x 25 ml dH2O. Preparation of Alkaline Phosphatase-Immobilized Fibrils
[00224] 0.5 mg of phenyl-alkyl fibrils were suspended in 400 μl of 0.05 M Tris (pH
8.6) and sonicated for 20 minutes. To these fibrils 150 μl of alkaline phosphatase solution (1.67 mg/ml in 5 mM sodium phosphate buffer, pH 7.0) were added and the mixture was rotated at room temperature for 2 hours and stored at 4°C overnight. The fibrils were then washed with 600 μl of 5 mM sodium phosphate buffer (pH 7.1) twice and suspended in 200 μl of the same buffer.
Quantitation of Specifically Immobilized Alkaline-Phosphatase by Measurement of Catalytic Activity
[00225] Alkaline phosphatase reacts with substrate p-nitrophenyl phosphate and releases a color compound that absorbs light at 405 nm with extinction coefficient of 18,200 M^cm"1. The assay buffer condition for this reaction was 10 mM Tris, 1 mM MgCl2 and 0.1 mM ZnCl2, pH = 8.4. The reaction was performed in 1 ml cuvette by mixing 5 μl of p- nitrophenyl phosphate stock solution (0.5 M in 33% DMSO in assay buffer) and 13 μg of alkaline phosphatase fibrils in 1 ml of assay buffer. The absorbance increase of 405 nm was monitored by time scan over 0 minutes. The enzyme activity (μM/min) was then calculated from the initial slope using the extinction coefficient 18200 M4Cm"1. [00226] For alkaline phosphatase adsorbed on phenyl fibrils from reaction 1, the activity was 6.95 μM/min per 13 μg fibrils. For alkaline phosphatase adsorbed on phenyl fibrils from reaction 2, the activity was 2.58 μM/min per 13 μg fibrils. These results were converted to 0.63 μmoles (or 54 mg) and 0.23 μmoles (or 20 mg) active alkaline phosphatase per gram of fibrils, respectively, by dividing the activity of a known concentration of alkaline phosphatase solution, which was measured to be 879.8 μM/min per 1 μM alkaline phosphatase under the same assay condition. Attorney DδWcet No. 100647-03591
54
EXAMPLE 44
Immobilization of Lipase on Phenyl Alkyl Fibrils Preparation of Lipase-Immobilized Fibrils
[00227] 0.5 mg of phenyl-alkyl fibrils were suspended in 50 μl of 5 niM sodium phosphate buffer (pH 7.1) and sonicated for 20 minutes. To these fibrils 350 μl of lipase solution (0.2 mM in 5 mM sodium phosphate buffer, pH 7.1) were added and the mixture was rotated at room temperature for 5 hours and stored at 4°C overnight. The fibrils were then washed with 600 μl of 5 mM sodium phosphate buffer (pH 7.1) three times and suspended in 200 μl of the same buffer.
Quantitation of Specifically Immobilized Lipase by Measurement of Catalytic Activity [00228] Lipase can react with the substrate l,2-o-dilauryl-rac-glycero-3-glutaric acid- resorufin ester (Boehringer Mannheim, 1179943) and produce a color compound that absorbs light at 572 nm with extinction coefficient of 60,000 M-1Cm"1. The assay buffer condition for this reaction was 0.1 M KH2PO4, pH = 6.8. The reaction was performed in 1 ml cuvette by mixing 5 μl of substrate stock solution (7.6 mM in 50% dioxane in Thesit) and 13 μg of alkaline phosphatase fibrils in 1 ml of assay buffer. The absorbance increase at 572 nm was monitored by time scan over 10 minutes. The enzyme activity (μM/min) was then calculated from the initial slope using the extinction coefficient 60,000 M"1 cm"1. [00229] For lipase adsorbed on phenylalkyl fibrils from reaction 1 of Example 43, the activity was 0.078 μM/min per 13 μg fibrils. For lipase adsorbed on phenylalkyl fibrils from reaction 2 of Example 43, the activity was 0.054 μM/min per 13 μg fibrils. These results were converted to 4.7 μmoles (or 564 mg) and 3.3 μmoles (or 396 mg) active lipase per gram of fibrils, respectively, by dividing the activity of a known concentration of lipase solution, which was measured to be 1.3 μM/min per 1 μM lipase under the same assay condition.
EXAMPLE 45
Immobilization of Horseradish Peroxidase (HRP) on Amino Alkyl-niodified Fibrils
Preparation of Carboxylic Acid-Functionalized Fibrils CCarboxyl Fibrils') [00230] A 10.0 g sample of graphitic fibrils was slurried in 450 mL concentrated
H2SO4 by mixing with a spatula, then transferred to a reactor flask fitted with inlet/outlets and an overhead stirrer. With stirring and under a slow flow of argon, a charge of 8.68 g of NaC IO3 was added in portions at room temperature over a 24 hour period. Chlorine vapors, which were generated during the entire course of the run, were swept out of the reactor into an aqueous NaOH trap. At the end of the run, the fibril slurry was poured over cracked ice Attorney DόTKet No. 100647-03591
55 and vacuum filtered. The filter cake was then transferred to a Soxhlet thimble and washed in a Soxhlet extractor with deionized water, exchanging fresh water every several hours. Washing continued until a sample of fibrils, when added to fresh deionized water, did not change the pH of the water. The carboxylated fibrils were then recovered by filtration and dried overnight at 1000C and 5" vacuum. The yield was 10.0 g. Preparation of HRP-Immobilized Fibrils
[00231] Amino fibrils made from 1, 6-diaminohexane using the method of Example
27 (1.2 mg) were added to conjugation buffer (0.1 M NaHCO3, 0.9% NaCl, pH 9.5) and the suspension was sonicated for 20 minutes. The fibrils were then washed twice with conjugation buffer in an Eppendorf tube and suspended 430 μL conjugation buffer. A 50-μL aliquot of the suspension (0.14 mg fibrils) was mixed with 4.0 mg activated HRP (Pierce, Rockford, IL) dissolved in 50 μL deionized water and the resulting suspension was rotated overnight at 4°C. The HRP-coηjugated fibrils were washed extensively in an Eppendorf centrifuge tube with a combination of the following solutions; conjugation buffer, washing buffer (20 mM KH2PO4, 0.45% NaCl, pH 6.2), washing buffer containing 0.03-0.1% Triton X-100, and washing buffer containing 50% ethylene glycol. As a control, identical manipulations with activated HRP were carried out with plain (non-derivatized) fibrils, which indicated that the attachment of HRP to amino fibrils was indeed a specific covalent linkage.
Quantitation of Specifically Immobilized HRP by Measurement of Catalytic Activity [00232] Extensive washing removed the majority of non-specifically bound enzyme.
Immobilized active HRP was quantitated by substrate turnover using H2O2 and the chromogenic substrate 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), diammonium salt (ABTS). Catalytic activity of HRP was spectrophotometrically monitored at 414 nm using 100 μM H2O2 and 30 μM ABTS as substrates. The total amount of enzyme bound to amino fibrils in these preliminary studies was 0.0230 μmol HRP/g fibrils. By comparison, control (plain fibrils) nonspecifically bound 0.0048 μmol HRP/g fibrils. By subtraction, the amount of covalently (specifically attached) HRP was 0.0182 μmol/g fibrils.
EXAMPLE 46
Affinity Chromatographic Separation of Alkaline
Phosphatase (AP) and β-Galactosidase (βG) on Fibrils
Bearing Immobilized Enzyme Inhibitors
Preparation of Alkaline Phosphatase Inhibitor Fibrils
[00233] Preparation of AP-inhibitor modified fibrils was based on the method of
Brenna et al. (1975), Biochem J., 151:291-296. Carboxylated fibrils were used to prepare Attorney Dulcet No. 100647-03591 56
NHS ester fibrils as described in Example 50 above. NHS ester fibrils (114 mg) were suspended in 4 mL acetone and 10 equivalents (based on the estimation of 0.7 meq NHS ester per gram of fibrils) of tyramine were added. Dry triethylamine (10 equiv.) was added and the mixture was stirred for 3 hours at room temperature. The tyraminyl fibrils were washed under vacuum in a scintered glass funnel first with acetone, then extensively with deionized water.
[00234] 4-(p-Aminophenylazo)-phenylarsonic acid (66 mg) was suspended in 4 mL of
1 N HCl. The suspension was cooled to 4°C and mixed slowly with 0.36 mL of 0.5 M NaNO2. After 15 minutes, the arsonic acid/NaNO2 mixture was added to the tyraminyl fibrils, which were suspended in 10 mL of 0.1 M NaCO3 (pH 10.0). The reaction mixture (pH » 10) was stirred overnight at 40C. The fibrils were then treated with successive washes of 0.1 M Na2CO3 (pH 10.0), 8 M guanidine HCl, 25 mMNaOH, and water until the effluent became clear. Atomic absorption analysis of arsenic in the AP- inhibitor fibrils was carried out by Galbraith Laboratories (Knoxville, TN). AP-inhibitor fibrils which contain sidechains containing one atom of arsenic were found by atomic absorption analysis to have any arsenic content of 0.4%. This indicates that roughly 10% of the estimated initial COOH groups were converted to AP-inhibitors in this multi-step synthesis. Based on the surface area of fibrils, this means that there would be one inhibitor molecule (enzyme binding site) for every 500A2 of surface area. Preparation of β-Galactosidase-Inhibitor Fibrils,
[00235] p-Amino-phenyl-β-D-thiogalactoside (TPEG) derivatized fibrils were prepared based on the method of Ullman, (1984) Gene, 29:27-31. To 8 mg of carboxylated fibrils in 0.2 mL deionized water was added 2.24 mg TPEG. The pH of the suspension was adjusted to 4.0 with 0.1 M HCl and 15 mg EDAC was added. The mixture was stirred for 3 hours at pH 4.0 and room temperature. The reaction was stopped by rapid centrifugation in an Eppendorf tube and removal of the liquid. The β-galactosidase-inhibitor fibrils were washed five times by repeated resuspension in deionized water and centrifugation. Affinity Separations
[00236] Mixtures of alkaline phosphatase (AP), from E. coli, Type III; Sigma
Chemical Co., St. Louis, MO) and β -galactosidase (BG) (from E. coli; Calbiochem, La Jolla, CA) were separated batchwise on either AP-inhibitor fibrils or βG-inhibitor fibrils in Eppendorf microcentrifuge tubes. For affinity separations, 1.0 mL solutions of loading buffer (20 mM Tris, 10 mM MgCl, 1.6 M NaCl, 10 mM cysteine, pH 7.4) containing both AP (generally approximately 10 units) and BG (generally approximately 280 units) were Attorney DiMet No. 100647-03591 57 added to 0.8-1.0 mg of either AP-or BG-inhibitor fibrils. The resulting suspensions were gently vortexed, then rotated at room temperature for 2 hours. Following enzyme binding, the fibrils were sedimented by brief centrifugation in a tabletop centrifuge and the liquid phase containing unbound enzyme was withdrawn and saved for enzyme assay. Washes (7 x 1.0 mL) with loading buffer were carried out by repeated buffer addition, gentle vortexing, 15-minute rotation, brief centrifugation, and solvent withdrawal with a Pasteur pipette. After the seventh wash, the same manipulations were repeatedly carried out (5 x 1.0 mL) with the appropriate elution buffer for either βG-inhibitor fibrils (100 mM sodium borate, 10 mM cysteine, 10 mM cysteine, pH 10.0) or AP-inhibitor fibrils (40 mM NaHPO4, 10 mM Tris, 1.0 mM MgCl2, 0.1 mM ZnCl2, pH 8.4).
[00237] All fractions .(unbound enzyme, washes, and elutions) were assayed for both
AP and BG activity. Alkaline phosphatase activity was determined by spectrophotometrically monitoring the rate of hydrolysis of 500 μM p-nitro-phenylphosphate (PNPP) at 410 nm(Δε=18,000 M-1Cm"1). Alkaline phosphatase activity measurements were carried out in 10 mM Tris, 1.0 mM MgCh, and 0.1 mM ZnCl2 at pH 8.4. β-Galactosidase was assayed by spectrophotometrically monitoring the enzyme's ability to hydrolyze 2-nitro-galacto-β-D- pyranoside (ONPG). Initial rates of β-galactosidase-catalyzed hydrolysis of 5.0 mM ONPG were measured at 405 nm (Δε=3500 M4Cm"1) in 10 mM Tris, 10 mM MgCl2, 1.6 M NaCl, 10 mM cysteine, pH 7.4.
[00238] For both AP-inhibitor and βG-inhibitor fibrils, a mixture of AP and βG were added. To facilitate determinations of specific binding capacities, the concentrations of added enzymes were in large excess of the immobilized inhibitor concentrations. For AP- inhibitor fibrils, 0.550 μmol AP/g fibrils was bound (as opposed to non-specific binding of 0.020 Amol βG/g fibrils). For βG-inhibitor fibrils, the capacity was determined to be 0.093 μmol βG/g fibrils (in contrast with non-specific binding of 0.012 μmol AP/g fibrils). The results of the affinity chromatography experiments are shown in Figs. 9 and 10. AP- inhibitor fibrils did not appreciably bind βG, but bound AP, which specifically eluted when 40 mM phosphate, a competing inhibitor, was added to the buffer (Fig. 9). Fibrils derivatized with βG did not bind substantial amounts of AP, but bound βG, which specifically eluted when the pH was raised to weaken the enzyme-inhibitor association (Fig. 10). These results show that inhibitors were successfully covalently attached to the fibrils, that the immobilized inhibitors were accessible to large molecules, that the inhibitors were available for specific enzyme binding, and when specifically eluted, that the enzymes remained active. In Fig. 10, there appears to be continued leaching of βG from βG-inhibitor Attorney OWkct No. 100647-03591 58 fibrils. This may be a result of a natural weak enzyme-inhibitor affinity rather than a shortcoming of the fibrils because the same phenomenon is not seen in Fig. 9 with AP- inhibitor fibrils.
2. FUNCTIONALIZED NANOTUBES AS SOLID SUPPORTS FOR
ANTIBODIES
[00239] It has been found that antibodies can be immobilized on fimctionalized nanotubes, and that such antibody nanotubes have unique advantages for many applications due to their high surface area per weight, electrical conductivity, and chemical and physical stability. For example, antibody nanotubes can be used as affinity reagents for molecular separations. Antibody nanotubes are also useful for analytical applications, including diagnostic immunoassays such as ECL-based immunoassays.
[00240] Antibodies can be immobilized either by covalent binding or non-covalent adsorption. Covalent immobilization was accomplished by various methods; including reductive animation of antibody carbohydrate groups, NHS ester activation of carboxylated fibrils (see Example 27, supra), and reaction of thiolated or maleimido fibrils with reduced or maleimido-modifϊed antibodies (see Examples 23 and 25 supra). [00241] The best method for attaching antibodies to nanotubes will depend on the application they are to be used in. For separations applications, the preferred method may be non-covalent adsorption because the capacity of protein binding seems to be the highest for this method. For methods involving ECL, where the electrical conductivity of the fibrils may be important, covalent methods may be preferred (the alkyl appendages are weak electrical conductors and can be expected to insulate the fibrils). Reductive amination may be the best way to covalently attach antibodies to fibrils because, by using this method, the antibodies are correctly oriented so that their binding sites are pointing outward (away from the fibrils). 3. ADDITION OF NAD+ TO FUNCTIONALIZED NANOTUBES
[00242] It has been found that cofactors such as NAD+ can be added to and used as a solid support for biospecific affinity chromatography of proteins that bind to enzyme cofactors. For example, NAD+ fibrils have been used as a solid support for the purification of dehydrogenases. The main advantage of using fibrils is their large amount of accessible surface area. An affinity matrix with high surface area is desirable because of the high potential capacity. The fibrils may either be a loose dispersion or fixed into a column or mat. Attorney DoWet No. 100647-03591 59
EXAMPLE 47 Affinity Chromatographic Separation of Dehydrogenases on NAD+ Fibrils
Preparation OfNAD+ Fibrils
[00243] Fibrils were oxidized to introduce carboxyl groups according to Examples 14 and 15. To the suspension of fibrils (31 mg) in sodium bicarbonate solution (3ml, 0.2 M, pH 8.6) was added N6-[aminohexyl]carbamoylmethyl)-nicotinamide adenine dinucleotide lithium salt solution (25 mg from Sigma in 5 ml sodium bicarbonate solution). The reaction mixture was stirred overnight at room temperature. The product fibrils were extensively washed with water, N,N-dimethylformarnide, and methanol. The elemental analysis data showed that the product fibrils contained 130 mmols of NAD molecules per gram of fibrils by nitrogen analysis and 147 mmols of NAD molecules per gram of fibrils by phosphorus analysis. Other NAD+ analogs having linkers terminating in an amino group can be used to prepare NAD+ fibrils. Affinity Separation
[00244] The NAD+ immobilized fibrils (0.26 mg) and plain fibrils (0.37 mg) were sonicated with 0.1% polyethylene glycol (PEG, MW 1000) in sodium phosphate (1 ml, 0.1 M, at pH 7.1) for 30 minutes at 4O0C, then incubated for 30 minutes at 4O0C. The fibril suspension was centrifuged and the supernatant were removed. The fibrils were incubated with the mixture of L-lactate dehydrogenase (LDH) in 0.1% PEG (1000) sodium phosphate buffer (250 μl, the ratio of the LDH solution and the 0.1% PEG buffer was 1 : 1) for 90 minutes at 40C. Then the mixtures were equilibrated for 30 minutes at room temperature. After the incubation of the fibrils with LDH, the fibrils were washed with 0.1% PEG (1000) in sodium phosphate buffer (5 X 1000 μl) and every washing took 15 minutes with rotation. The LDH was eluted with a 5 mM solution of NADH in 0.1% PEG (1000) sodium phosphate buffer (5 mM 3X1000 μl). During each elution wash the fibrils were rotated for 15 minutes. The LDH activity in the eluents was assayed by measuring the absorbance change at 340 nm during reduction of pyruvate. The assay mixture contained 0.1% PEG (1000) in sodium phosphate buffer (980 μl), pyruvate (3.3 μl, 100 mM stock solution), and each elution fraction (16.7 μl). The enzyme reaction is shown below:
LDH pyruvate + NADH > Lactate dehydrogenase + NAD+
[00245] The results showed that the capacity of LDH on the NAD+ immobilized fibrils was 484 nmols per gram of fibrils and the capacity of LDH on the plain fibrils Attorney DcWϊcet No. 100647-03591 60
(control) was 3.68 nmols per gram of fibrils. The nonspecific binding of LDH was 5.6%.
4. FUNCTIONALIZED NANOTUBES AS SOLID SUPPORTS FOR PROTEIN SYNTHESIS
EXAMPLE 48
Use of Functionalized Fibrils as Solid Support for Peptide Synthesis
[00246] To a mixture of amino fibrils (400 mg) and a 4-(hydroxymethyl)- phenoxyacetic acid suspension (255 mg, 1.4 mmol) in methylene chloride (20 ml) were added l-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, 268 mg, 1.40 mmol) and 1- hydroxybenzotriazole hydrate (HOBT, 189 mg, 1.4mmol). The reaction mixture was stirred overnight at room temperature under argon gas. The product fibrils were extensively washed with methylene chloride, methanol and water, then dried under vacuum to get fibrils. To the suspension of fibrils in N,N-dimethylformamide (DMF, 2 ml) and methylene chloride (8 ml) were added N-(9-fluorenylmethoxycarbonyl)-O-butyl-L-serine (215 mg, 0.56 mmol), 1,3- dicyclohexylcarbodiimide (DCC, 115 mg, 0.56 mmol) and 4 dimethylaminopyridine (DMAP, 3.4 mg, 0.028 mmol). The reaction mixture was stirred overnight at room temperature and the product fibrils were treated with 20% piperidine in DMF (5 X 40 ml, each time soaked 1 min.). The product fibrils were then extensively washed with DMF, water, sodium hydroxide (IN), methanol and methylene chloride. The product Fib-Handle- Ser(O+)-COOH (ninhydrin test was positive) was dried under vacuum. For synthesis of dipeptide, the same procedure was used to add arginine. The amino acid analysis data of Fib- Handle-Ser(O+)- Arg(Nε-2,2,5,7,8-pentamethylchrornan-6-sulfonyi) shows that it contains 6.5 μmol serine per gram fibrils and 7.6 μmol arginine per gram fibrils. Any other peptide can be made by the same method.
5. BIOTINYLATED FIBRILS AND BIOTINYLATED ALKYL FIBRILS
[00247] It has been found that fibril surfaces can be functionalized by biotinylation or by both alkylation and biotinylation. The fibrils containing such modifications can then bind any streptavidin conjugated substances such as streptavidin beads and streptavidin enzymes. [00248] Fibrils offer great advantages as solid carriers because of their high surface area. Beads, which can be made strongly magnetic, are extremely useful in separation assays. The biotinylated fibrils described herein combine the advantages of both the fibrils and the beads. The biotinylated alkyl fibrils are an extension of the same concept but exhibit
KL32423199 ] Attorney Doϊϋk No. 100647-03591 61 the additional protein adsorption property of alkyl fibrils.
[00249] The streptavidin- and biotin-coated fibrils can be used in diagnostics and can be used as capture agents for assays such as electrocherailuminescence assays.
[00250] A novel feature of this invention is the combination of two solid carriers on one fibril to create a bifunctional fibril. Moreover, the disclosed process increases the surface area for beads and magnifies fibril magnetization.
EXAMPLE 49 Preparation of Biotinylated Fibrils
[00251 ] Biotinylated fibrils were prepared by mixing 2.4 mg of amino fibrils prepared as described in Example 16 and 9 mg of NHS ester long chain biotin in buffer 0.2 M NaHCO3 at a pH of 8.15. The mixture was rotated at room temperature for four hours and washed with the same buffer twice.
EXAMPLE 50 Preparation of Biotinylated Alkyl Fibrils
[00252] Biotinylated alkyl fibrils were prepared by a two step reaction. First, 4.25 mg of bifunctional fibrils (containing both amino and carboxyl) and 25 mg of NHS ester long chain biotin were mixed. The fibrils were washed and dried under vacuum. [00253] The second reaction was carried out by mixing 4 mg of biotinylated bifunctional fibrils with 11 mg ofEDC (l-ethyl-3-3-dimethylaminopropyl)carbodiimide), 7.5 mg of DMAP (4-dimethylaminopyridine) and 10 μl OfNH2(CH2)VCH3 in 0.5 ml of DMF. The mixture was stirred at room temperature overnight. The final biotinylated alkyl fibrils were washed by CH2Cl2, MeOH, and dH2O.
EXAMPLE 51
Biotinylated Fibrils as a Solid Support in Assays
[00254] Biotinylated fibrils can be used in assays involving formats that require streptavidin-biotin or avidin-biotin interactions. Biotinylated fibrils could, for example, be further derivatized with streptavidin. Biotin covalently linked to fibrils (see Example 50) could form strong non-covalent binding interactions with streptavidin. Because streptavidin is a tetrameric protein with four equivalent binding sites, streptavidin bound to biotinylated fibrils would almost certainly have unoccupied binding sites to which additional biotinylated reagents could bind. Thus, biotinylated fibrils would be converted to streptavidin-coated fibrils. [00255] There are a number of analytical tests that could be performed with such Attorney DcMet No. 100647-03591 62 fibril-biotin-streptavidin (FBS) supports. For example, a biotinylated anti-analyte antibody could be captured on the FBS support (either before or after the antibody has complexed to an analyte). Assays using biotinylated anti-analyte antibodies are well established. Such assays include competitive assays where the analyte of interest competes with a labeled analyte for binding to the anti-analyte antibody. Free (unbound) analyte and free (unbound) labeled analyte can be washed from the fibril immobilized antibody. The washing step depends on the fibrils being physically separated from the solution phase by common practices involving centrifugation, filtration, or by attraction to a magnet. [00256] Besides a competition assay, a sandwich type immunoassay could be carried out on FBS supports. Sandwich immunoassays are well known in the field of diagnostics. Such assays involve an analyte being bound simultaneously by two antibodies; a first "primary" antibody which is captured on a solid surface by for example being labeled with biotin, and a "secondary" antibody which is not captured by a solid surface but is labeled with a reporter group. Such a sandwich assay could be carried out using fibrils as a solid capture support whereby the fibrils are captured as described in the previous paragraph. Hence, in such an assay, the fibril would have covalently linked to it biotin, which would be bound to streptavidin, which would in turn be bound to a biotinylated primary antibody, which would be bound to analyte (if present), which would be bound to a labeled secondary antibody.
[00257] Similarly, DNA probe assays could be carried out using FBS supports.
Biotinylated single stranded DNA can be bound to FBS supports and competitive hybridization can occur between complementary single stranded analyte DNA molecules and complementary labeled oligonucleotides.
[00258] Another type of biotinylated fibrils, biotinylated alkylated fibrils, can be used in immunoassays and DNA probe assays. As described in Example 51, bifunctional fibrils can be modified by covalent attachment of biotin to one type of functional group and alkyl chains to the other type of functional group. The resultant alkylated, biotinylated fibrils can be used both in specific association with streptavidin or avidin (via biotin) and also for adsorption of proteins (via the alkyl chains).
[00259] Alkyl fibrils could be used in conjunction with other solid supports, such as streptavidin-coated magnetic beads. One advantage of fibrils over such beads is that they have a much higher surface area (per unit weight). Thus, if fibrils could be attached to the outside surface of the magnetic beads, this would dramatically improve the surface area and hence the binding capacity of the beads. It is envisioned that alkylated, biotinylated fibrils Attorney DoTKet No. 100647-03591 63 could be mixed with streptavidin-coated beads resulting in high affinity streptavidin(bead)- biotin(fibril) interactions and hence fibril-coated beads with an extremely high surface area. Because alkyl fibrils can bind proteins by adsorption, the fibril-coated beads could be further derivatized with adsorbed proteins including streptavidin and antibodies. As described above, streptavidin or antibody coated fibrils can be used in immunoassays and DNA probe assays. Thus, fibril-coated beads could improve the properties of the beads by dramatically increasing their surface area such that fewer beads would be required in a given assay to give the same result.
6. 3-DIMENSIONAL STRUCTURES
[00260] The oxidized fibrils are more easily dispersed in aqueous media than unoxidized fibrils. Stable, porous 3-dimensional structures with meso- and macropores (pores >2 nm) are very useful as catalysts or chromatography supports. Since fibrils can be dispersed on an individualized basis, a well-dispersed sample which is stabilized by crosslinks allows one to construct such a support. Functionalized fibrils are ideal for this application since they are easily dispersed in aqueous or polar media and the functionality provides cross-link points. Additionally, the functionality provides points to support the catalytic or chromatographic sites. The end result is a rigid, 3-dimensional structure with its total surface area accessible with functional sites on which to support the active agent. [00261] Typical applications for these supports in catalysis include their use as a highly porous support for metal catalysts laid down by impregnation, e.g., precious metal hydrogenation catalysts. Moreover, the ability to anchor molecular catalysts by tether to the support via the functionality combined with the very high porosity of the structure allows one to carry out homogeneous reactions in a heterogeneous manner. The tethered molecular catalyst is essentially dangling in a continuous liquid phase, similar to a homogeneous reactor, in which it can make use of the advantages in selectivities and rates that go along with homogeneous reactions. However, being tethered to the solid support allows easy separation and recovery of the active, and in many cases, very expensive catalyst. [00262] These stable, rigid structures also permits carrying out heretofore very difficult reactions, such as asymmetric syntheses or affinity chromatography by attaching a suitable enantiomeric catalyst or selective substrate to the support. Derivatization through Metallo-Pc or Metallo-porphyrin complexes also allows for retrieval of the ligand bonded to the metal ion, and furthermore, any molecule which is bonded to the ligand through the secondary derivatives. For example, in the case where the 3-dimensional structure of functionalized fibrils is an electrode, or part of an electrode, and the functionalization has Attorney DδTIcet No. 100647-03591 64 resulted from adsorption of Co(II)Pc, electrochemical oxidation of Co(II) to Co(III) in the presence of nicotinic acid will produce a non-labile Co(III)-pyridyl complex with a carboxylic acid as the pendent group. Attaching a suitable antigen, antibody, catalytic antibody, or other site-specific trapping agent will permit selective separations of molecules (affinity chromatography) which are otherwise very difficult to achieve. After washing the electrode to remove occluded material, the Co(III) complex containing the target molecule can be electrochemically reduced to recover the labile Co(II) complex. The ligand on Co(II) containing the target molecule can then be recovered by mass action substitution of the labile Co(II) ligand, thereby effecting a separation and recovery of molecules which are otherwise very difficult or expensive to perform (e.g., chiral drugs).
[00263] Previously, it was believed that the pores within the functionalized carbon fibril mats were too small to allow significant flow and thus would not be useful as flow through electrodes. There were also problems associated with the use of particulate carbon or other carbon based materials (such as Reticulated Vitreous Carbon (RVC)) as electrode materials. For example, the porous electrode materials could not be formed in situ, packed too densely and formed voids or channels, were subject to dimensional instability during changes in solvent and flow conditions, and were unable to form very thin electrodes. The use of functionalized carbon fibrils as electrodes in a flow cell solved such problems. [00264] The functionalized carbon fibrils used as electrodes in a flow cell can be modified by surface treatment with electroactive agents. The fibrils can also be modified with non-electroactive materials that may serve a catalytic or electrocatalytic function or serve to inhibit unwanted reactions or adsorption of materials from the flowing stream. [00265] These flow through electrodes are useful in separation techniques such as electrochromatography, electrochemically modulated affinity chromatography, electrosynthesis or electrochemically modulated ion exchange chromatography. They can also be used in diagnostic devices that separate and/or analyze material trapped on the carbon fibril mat.
[00266] Composite mats composed of functionalized carbon fibrils and other fibers or particulates can also be used. These fibers or particulates can be added to the suspension to alter the final porosity or conductivity of the carbon fibril mat.
EXAMPLE 52
Use of Iron Phthalocyanine Functionalized Fibrils as Electrodes in a Flow Cell
[00267] Graphitic fibrils were modified by adsorbing Iron(III)phthalocyanine-bis-
KU .2423199 1 Attorney DόTϊcet No. 100647-03591 65 pyridine (FePc-2Py) (Aldrich 41,016-0). 0.403 grams of fibrils and 0.130 grams of FePc-2Py were added to 150 mis of absolute EtOH and sonicated with a 450 Watt Branson probe sonicator for 5 min. The resulting slurry was filtered onto a 0.45 μm MSI nylon Filter in a 47 mm Millipore membrane vacuum filter manifold, rinsed with water and dried in a vacuum oven overnight at 35°C. The final weight was 0.528 grams, indicating substantial adsorption. A spectrophotometric analysis of the filtrate accounted for the remaining FeP-2Py. [00268] 5 mgs of the FePc-2Py modified fibrils were dispersed in 10 mis of DI water with sonication. The dispersion was deposited onto a piece of 200 mesh stainless steel (SS) woven screen held in a 25 mm membrane filter manifold and allowed to dry at room temperature. A 0.5 inch diameter disk of the SS screen supported fibril mat was cut using an arch punch.
[00269] A electrochemical flow cell was constructed from a 13 mm, plastic, Swinney type membrane filter holder by placing a 13 mm diameter disk of gold mesh (400 mesh, Ladd Industries) on top of the membrane support and making electrical contact to the screen with a platinum wire, insulated with Teflon® heat shrink tubing that was fed through the wall of the filter holder for external connection as the working electrode of a three electrode potentiostat circuit. The gold mesh was fixed in place with a minimal amount of epoxy around the outer edge. A strip of gold foil was fashioned into a ring and placed in the bottom, down stream section of the filter holder and connected with an insulated Pt wire lead for connection as the counter electrode of a three electrode potentiostat circuit. A ring of 0.5mm diameter silver wire, electrochemically oxidized in IM HCl, was placed in the top section of the filter holder with an insulated lead for connection as the reference electrode. [00270] The 0.5 inch diameter disk of FePc-2Py modified CN was placed in the flow cell, which was then connected to the appropriate leads of an EG&G PAR 273 potentiostat. The flow cell was connected to a Sage syringe pump filled with 0.1M KCl in 0.1M potassium phosphate buffer at pH 7.0. Cyclic voltammograms (CVs) were recorded under no flow (static) and flow (0.4 mls/min.) at a potential scan rate of 20 mv/sec. (see Fig. 6). The CVs were nearly identical with and without flow and showed two persistent, reversible oxidation and reduction waves consistent with surface confined FePc-2Py. The persistence of the redox peaks under fluid flow conditions demonstrates that the FePc-2Py is strongly bound to the carbon fibrils and that the use of iron phthalocyanine modified fibrils function well as a flow through electrode material. [00271] Another example of 3 -dimensional structures are fibril-ceramic composites.
KU 2423199 1 Attorney DSilcet No. 100647-03591 66
EXAMPLE 53 Preparation of Alumina-Fibril Composites (185-02-01)
[00272] One g of nitric acid oxidized fibrils (185-01-02) was highly dispersed in 100 cc DI water using and U/S disintegrator. The fibril slurry was heated to 900C and a solution of 0.04 mol aluminum tributoxide dissolved in 20 cc propanol was slowly added. Reflux was continued for 4 hr, after which the condenser was removed to drive out the alcohol. After 30 min the condenser was put back and the slurry refluxed at 1000C overnight. A black sol with uniform appearance was obtained. The sol was cooled to RT and after one week, a black gel with a smooth surface was foπned. The gel was heated at 3000C in air for 12 hr. [00273] The alumina-fibril composites were examined by SEM. Micrographs of cracked surfaces showed a homogeneous dispersion of fibrils in the gel.
EXAMPLE 54 Preparation of Silica-Fibril Composites (173-85-03)
[00274] Two g of nitric acid oxidized fibrils (173-83-03) were highly dispersed on
200 cc ethanol using ultrasonification. A solution of 0.1 mol tetraethoxysilane dissolved in
50 cc ethanol was slowly added to the slurry at RT, followed by 3 cc cone. HCl. The mixture was heated to 850C and maintained at that temperature until the volume was reduced to 100 cc. The mixture was cooled and set aside until it formed a black solid gel. The gel was heated at 3000C in air.
[00275] The silica-fibril composites were examined by SEM. Micrographs of cracked surfaces showed a homogeneous dispersion of fibrils in the gel.
[00276] Similar preparations with other ceramics, such as zirconia, titania, rare earth oxides as well as ternary oxides can be prepared.
7. INCORPORATION OF GRAPHITIC NANOTUBES ONTO POLYMER
BEADS
[00277] Polymer beads, especially magnetic polymer beads containing an Fβ3θ4 core, such as those manufactured by Dynal and others, have many uses in diagnostics. These beads suffer, however, from having a low surface area compared to that available from nanotubes. Functionalized fibrils can be incorporated onto the surface of beads, which allows the polymer/fibril composites to be used as solid supports for separations or analytical application (e.g., electrochemiluminescence.assays, enzyme immobilization).
EXAMPLE 55 Attachment of Functionalized Fibrils to Functionalized Beads
[00278] 7.5 mg of magnetic tosyl-activated Dynabeads M-450 (30 mg/ml) beads Attorney DoTKet No. 100647-03591 67
(Dynal, Oslo, Norway) were washed three times with 0.1 M sodium phosphate buffer, pH
7.5. Then 0.9 ml of 0.1 M sodium phosphate buffer, pH 8.4 was added to the beads and 0.1 ml of amine fibrils were added. The mixture was allowed to rotate for 16-24 hours at room temperature.
[00279] When viewed under the microscope clumps of fibrils with beads on the surface of the Fibrils were evident.
[00280] One skilled in the art will appreciate that any of the process disclosed in the previous Examples 1-55 may be repeated within routine experimentation with single walled carbon nanotubes having diameters less than 5 nanometers to obtain the desired functionalization result.
EXAMPLE 56
Demonstration of methylene blue absorption
[00281 ] SWNT (University of Kentucky) were treated with 6M HCl for 72 hours to remove any metallic impurities. The acid washed nanotubes dispersed in DI water with sonication and filtered. This was repeated 4 times to rinse to a neutral pH. [00282] The SWNT were resuspended in DI water and dispersed with sonication. 2X serial dilutions were made into 8 PP centrifuge tubes. Aliquots of methylene blue solution were added and the tubes placed on a rotator to agitate for 4 hours. The tubes were then spun in a centrifuge for 4 minutes resulting in the SWNT being pelleted at the bottom of the tubes. The tubes with the highest concentrations of SWNT had a clear filtrate and the two with the lowest SWNT concentration were similar in color to the control MB solution. The 6 tubes at intermediate SWNT concentrations showed increasing blue color as the concentration decreased.
Demonstration of Iron Phthalocyanine absorption
[00283] SWNT (University of Kentucky) were treated with 6M HCl for 72 hours to remove any metallic impurities. The acid washed nanotubes dispersed in DI water with sonication and filtered. This was repeated 4 times to rinse to a neutral pH. [00284] 7 mg of Fe Phthalocyanine - bis pyridine (FePc-2Py) was dissolved with 40 mis EtOH with sonication. 22 mg of SWNT were added and sonication continued for 5 minutes. Solution was allowed to cool and repeated sonication. Hot solution was filtered onto 0.45 micron PVDF membrane to dryness and then rinsed with fresh EtOH. Filtered to dryness. Dry weight = 27 mg. 5 mg of FePc-2Py was adsorbed on the SWNT. [00285] Filter membrane with SWNT/FePC attached was placed in 40 mis of DI water and sonicated to lift SWNT from membrane. Membrane removed from the suspension Attorney DdCKet No. 100647-03591 68 and 20 mg of Whatman #42 filter paper added. Sonicated 2 x 5' at high power (40% duty cycle) to pulp the WH42 paper to act as binder for SWNT. Suspended material filtered onto
0.45 micron PVDF filter and washed 3X with DI water. Filtered to dryness. Dried on hot plate @ 150C for 1 hour. Dried SWNT/WH42 mat separated from membrane as an intact mat - 36 mm diameter; approx 25 micron thick). Sheet resistivity measured to be 1500 ohm/square. Final weight of mat 45 mg; wt of WH42 component = 20 mg; wt of SWNT =
22 mg; wt of FePc-2Py estimated to be 5 mg adsorbed onto surface of SWNT.
Electrochemistry of adsorbed FePc-2Py on SWNT
[00286] Electrodes were fashioned by pressing sections of the mat between 400 x 400 mesh SS mesh to serve as current collector. One edge of the SS mesh was attached to a Cu wire inserted into a glass pipette. Any exposed Cu was insulated with epoxy. The electrode was heated at IOOC for 1 hour to cure the 5 minute epoxy.
[00287] The electrode was examined by cyclic voltammetry vs a SS mesh counter and an Ag/AgCl reference electrode. The electrolyte was isotonic borate buffered saline. Two peaks were observed, one near -.-4 that was obscured by the H2 evolution current. The second peak was centered about +0.1 V vs Ag/Ag/Cl. Peak currents for the peak centered at
+0.1 V vs Ag/AgCl were linear with scan rate, consistent with a surface confined electroactive agent. The cyclic voltammogram traces were repeatable showing that the
FePc-2PY was strongly confined to the electrode and not lost to the electrolyte.
[00288] As illustrated by the foregoing description and examples, the invention has application in the formulation of a wide variety of functionalized nanotubes and uses therefor.
[00289] The terms and expressions which have been employed are used as terms of description and not of limitations, and there is no intention in the use of such terms or expressions of excluding any equivalents of the features shown and described as portions thereof, its being recognized that various modifications are possible within the scope of the invention.

Claims

Attorney DiMet No. 100647-03591 69
WHAT IS CLAIMED IS:
2. A composition of matter of the formula
[CnHLjRm
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O.ln, m is a number less than 0.5n, each of R is the same and is selected from SO3H, COOH, NH2, OH, R'CHOH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR'3, Si<OR')yR'3-y, Si(O- SiR'2)OR', R", Li, A1R'2, Hg-X, TlZ2 and Mg-X, y is an integer equal to or less than 3,
R' is hydrogen, alkyl, aryl, cycloalkyl, aralkyl, cycloaryl, or poly(alkylether),
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl,
X is a halide, and
Z is carboxylate or trifluoroacetate.
3. A composition of matter of the formula
[CnHL}Rm
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O.ln and m is a number less than 0.5n, each of R may be the same or different and is selected from SO3H, COOH, NH2, OH, R'CHOH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR's, Si(OR')yR'3-y, Si(O~SiR'2)OR' , R", Li, A1R'2) Hg-X, TlZ2 and Mg-X, y is an integer equal to or less than 3,
R' is selected from hydrogen, alkyl, aryl, cycloalkyl, aralkyl, cycloaryl, or poly(alkylether),
R" is a fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl,
X is a halide,
Z is carboxylate or trifluoroacetate, and further provided that where each of R is an oxygen-containing group COOH is not present.
4. A composition of matter of the formula Attorney DδSKet No. 100647-03591 70
[CnHL} [R'-A]m
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O.ln, m is a number less than 0.5n, each of R' is alkyl, aryl, cycloalkyl, aralkyl, cycloaryl, or poly(alkylether), A is selected from
O O O O O
. H Il 1 II Il
OY , NHY , C-OY, C-NR' Y , C-SY , C-Y , -CR' 2-OY , N=Y , -NHCY or C=Y ,
Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, a nucleotide, an oligonucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R'-N(R')2, R'SH, R'CHO, R'CN, R'X, R'N+(R')3X~ R'SiR's, R'Si-(OR'7yR'3_y, R'Si<O-SiR'2)OR\ R'-R", R'-N-CO, (C2H4O)WH, (C3H6O7WH, (C2H4O)W-R\ (C3H6O)W-R', R', and
y is an integer equal to or less than 3,
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl,
X is a halide,
Z is carboxylate or trifluoroacetate, and w is an integer greater than one and less than 200.
5. The composition of claim 3 wherein
R' is H, and
Y is an amino acid selected from the group consisting of lysine, serine, threonine, tyrosine, aspartic acid and glutamic acid.
6. A composition of matter of the formula Attorney DMet No. 100647-03591 71
[CπHL} PT-AJn,
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O.ln, m is a number less than 0.5n, a is an integer less than 10, each of A is selected from
O O O O O
Il Il Il Il |[
OY, NHY, C-OY, C-NR'Y, C-SY, C-Y, -CR'2-OY, N=Y, -NHCY or C=Y,
Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, a nucleotide, an oligonucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R'-N(R')2, R'SH, R'CHO, R'CN, R'X, R9N+(R1J3XT, R'SiR'3, R'Si-(OR')yR'3-y, R'Si(O-SiR'2)OR', R' -R", R' -N-CO, (C2H4O)WH, (C3H6O7wH, <C2H4O)W-R', (C3H6O)W-R'5 R', and
y is an integer equal to or less than 3, R' is alkyl, aryl, cycloalkyl, aralkyl or cycloaryl, R" is fluoroalkyl, fiuoroaryl, fluorocycloalkyl or fluoroaralkyl, X is a halide,
X' is a polynuclear aromatic, polyheteronuclear aromatic or metallopolyheteronuclear aromatic moiety or is a planar metal tetrathiooxalate, Z is carboxylate or trifluoroacetate, and w is an integer greater than one and less than 200.
7. A method of forming a composition of matter of the formula wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O.ln, m is a number less than 0.5n, R' is hydrogen, alkyl, aryl, cycloalkyl, aralkyl, cycloaryl, or poly(alkylether), Attorney DόTIcet No. 100647-03591
72 comprising the step of reacting the surface carbons with a compound having the formula R5CH2OH in the presence of a free radical initiator under conditions sufficient to form functionalized nanotubes having the formula [CnHi.:H:CH(R')OH]m.
8. The method of claim 6 wherein said free radical initiator is benzoyl peroxide.
9. A method of forming a composition of matter of the formula
[CnHL}Am
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O.ln, m is a number less than 0.5n, each of A is selected from
O O O O O
Il Il Il Il Il
OY, NHY, C-OY, C-NR' Y, C-SY, C-Y, -CR'2-OY , N=Y, -NHCY or C=Y ,
Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, an oligonucleotide, a nucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R'-N(R')2, R'SH, R'CHO, R'CN, R'X, R'SiR'3, R'-*?(R')£C, R'-R", R' -N-CO, (C2H4θ)wH, <C3H6O)WH, (C2H4O)W-R', (C3H6O)W-R', R', and
R' is hydrogen, alkyl, aryl, cycloalkyl, aralkyl or cycloaryl,
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl,
X is a halide,
Z is carboxylate or trifluoroacetate, and w is an integer greater than one and less than 200, comprising the steps of: (a) reacting the surface carbons with at least one appropriate reagent under conditions sufficient to form substituted single walled carbon nanotubes having the formula [CnHi3Rm, wherein each of R is the same and is selected from SO3H, COOH, NH2, OH, CH(R')OH, CHO, CN, COCl, halide,
KM 2423199.1 Attorney DSSKet No. 100647-03591
73
COSH, SH, COOR', SR', SiR'3, Si(OR'}yR'3-y, Si(O- SiR'2)OR', R", Li, AlR'z, Hg-X, TlZ2 and Mg-X, and y is an integer equal to or less than 3; and
(b) reacting the substituted single walled carbon nanotubes [CnHL]Rm with at least one appropriate reagent under conditions sufficient to form functionalized single walled carbon nanotubes having the formula [CnHL]A1n.
10. A method of fonning a composition of matter of the formula
[CnHL} Am
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O.ln, m is a number less than 0.5n, each of A is selected from O O O O O
Il Il Il Il Il
OY, NHY , C-OY , C-NR'Y , C-SY , C-Y , -CR' 2-0Y , N=Y , -NHCY or C=Y ,
Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, an oligonucleotide, a nucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R'-N(R')2, R'SH, R'CHO, R'CN, R'X, R'SiR'3, R5N+(R^3X", R'-R", R'-N-CO, (C2H4O)WH, (C3H6O)WH, (C2H4O)W-R', (C3H6O)W-R\ R', and
R' is hydrogen, alkyl, aryl, cycloalkyl, aralkyl or cycloaryl,
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl,
X is a halide,
Z is carboxylate or trifluoroacetate, and w is an integer greater than one and less than 200, comprising the steps of: (a) reacting the surface carbons with at least one appropriate reagent under conditions sufficient to form substituted single walled carbon nanotubes having the formula [CnHL]Rm, Attorney Dofϊcet No. 100647-03591
74 wherein each of R is selected from SO3H, COOH, NH2, OH, CH(R')OH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR's, Si(OR')yR'3-y, Si(O-SiR' 2)0R\ R", Li, A1R'2, Hg- X, TIZ2 and Mg-X, and y is an integer equal to or less than 3; and
(b) reacting the substituted single walled carbon nanotubes [CnHiJ-Rm with at least one appropriate reagent under conditions sufficient to form functionalized single walled carbon nanotubes having the formula [CnH^A1n .
11. A method of forming a composition of matter of the formula
[CnHJ An,
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O. In, m is a number less than 0.5n, each of A is selected from 0 0 0 0 O
Il Il Il Il Il
OY, NHY , C-OY , C-HR'Y, C-SY , C-Y, -CR'2-0Y, N=Y, -NHCY or C=Y ,
Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, an oligonucleotide, a nucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R'-N(R')2, R'SH, R'CHO, R'CN, R'X, R'SiR'3, R' -N+(RO3X", R' -R", R' -N-CO, (C2H4O)WH, (C3H6O)WH, (C2H4O)W-R', (C3H6OVR', R', and
R' is hydrogen, alkyl, aryl, cycloalkyl, aralkyl or cycloaryl,
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl,
X is a halide,
Z is carboxylate or trifluoroacetate, and w is an integer greater than one and less than 200, comprising the step of reacting substituted single walled carbon nanotubes
KL3 2423199 1 Attorney DδTϊcet No. 100647-03591
75
[CnHL]Rm with at least one appropriate reagent under conditions sufficient to form fϊmctionalized single walled carbon nanotubes having the formula [CnHJAm, where each of R is the same and is selected from SO3H, COOH, NH2, OH, CH(R')OH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR'3, Si(OR')yR'3.y, Si<O-SiR'2)OR\ R", Li, A1R'2, Hg- X, TlZ2 and Mg-X, and y is an integer equal to or less than 3.
12. A method of forming a composition of matter of the formula
[CnHL} Am
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O. In, m is a number less than 0.5n, each of A is selected from
O O O O O
Il Il Il Il Il
OY , NHY, C-OY , C-NR'Y, C-SY, C-Y, -CR'2-0Y, N=Y, -NHCY or C=Y,
Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, an oligonucleotide, a nucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R'-N(R')2, R'SH, R'CHO, R'CN, R'X, R'SiR'3j R-N+(R')3X", R' -R", R'-N-CO, (C2H4O)WH, <C3H6O)WH, (C2H4O)W-R', (C3H6O)W-R', R', and
R' is hydrogen, alkyl, aryl, cycloalkyl, aralkyl or cycloaryl,
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl,
X is a halide,
Z is carboxylate or trifluoroacetate, and w is an integer greater than one and less than 200, comprising the step of reacting substituted single walled carbon nanotubes [CnHiJRm with at least one appropriate reagent under conditions sufficient to form functionalized single walled carbon nanotubes having the formula [CnHJA1n, where each of R is the same and is selected from SO3H, COOH, NH2, OH, CH(R')0H, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR'3, Si{OR')yR'3-y, Si(O-SiR'2)OR', R", Li, A1R'2, Hg- Attorney D<3icet No. 100647-03591 76
X, TlZ2 and Mg-X, and y is an integer equal to or less than 3.
13. A method of forming a composition of matter of the formula [C11HLJ [R' -A]n,
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O.ln, m is a number less than 0.5n,
R' is alkyl, aryl, cycloalkyl, aralkyl, cycloaryl, or poly(alkyether),
X is a halide, each of A is selected from
O O O O O
11 9 Il Il II
OY, NHY, C-OY, C-NR'Y, C-SY, C-Y, -CR'2-OY, N=Y , -NHCY or C=Y,
Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, an oligonucleotide, a nucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R'-NH2, R'SH, R'CHO, R'CN, R'X, R'SiR's, R'R", R' -N-CO, (C2H4O7WH, (C3H6O)WH, <C2H4O)W-R\ (C3H6O)W-R', R', and
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl, and
Z is carboxylate or trifluoroacetate, comprising the step of reacting substituted single walled carbon nanotubes having the formula [CnHL]-[R'-R]m with at least one appropriate reagent under conditions sufficient to form functionalized single walled carbon nanotubes having the formula [CnHL}[R'-A]m, where each of R is the same and is selected from SO3H, COOH, NH2, OH, CH(R')OH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR'3j Si{OR'3yR'3.y, Si(O- SiR'2)OR', R", Li, A1R'2, Hg-X, TlZ2 and Mg-X, and y is an integer equal to or less than 3.
14. A method of forming a composition of matter of the formula [CnH1J [X'-RJ,,,
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, Attorney DδT&et No. 100647-03591
77 n is an integer, L is a number less than 0. In, m is a number less than 0.5n, a is zero or an integer less than 10, each ofR is selected from SO3H, COOH, NH2, OH, CH(R')OH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR'3, Si(OR)yR'3-y, Si(O-SiR'2)OR', R", Li, A1R'2) Hg-X, TlZ2 and Mg-X, y is an integer equal to or less than 3,
R' is alkyl, aryl, cycloalkyl, aralkyl or cycloaryl, X is a halide,
X' is a polynuclear aromatic, polyheteronuclear aromatic or metallopolyheteronuclear aromatic moiety or is a planar metal tetrathiooxalate,
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl, and
Z is carboxylate or trifluoroacetate, comprising the step of adsorbing at least one appropriate macrocyclic compound onto the surface of the single walled carbon nanotube under conditions sufficient to form a functionalized single walled carbon nanotube having the formula [CnHL][X'-Ra]m
15. A method of forming a composition of matter of the formula wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O.ln, m is a number less than 0.5n, a is an integer less than 10, each of A is selected from 0 0 0 0 O
II Il Il V Il
OY, NHY, C-OY, C-NR' Y, C-SY, C-Y , -CR'2-0Y, N=Y , -NHCY or C=Y ,
Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, an oligonucleotide, a nucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R' -NH2, R'SH, R'CHO, R'CN, R'X, R'SiR'3, R'-R", R'-N-CO, (C2H4θ)wH, <C3H6O)WH, <C2H4O)W-R\ (C3H6O)W-R', R', and
R' is hydrogen, alkyl, aryl, cycloalkyl, aralkyl or cycloaryl, Attorney lWket No. 100647-03591 78
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl, X is a halide,
X' is a polynuclear aromatic, polyheteronuclear aromatic or metallopolyheteronuclear aromatic moiety or is a planar metal tetrathiooxalate, Z is carboxylate or trifluoroacetate, and w is an integer greater than one and less than 200, comprising the steps of:
(a) adsorbing at least one appropriate macrocyclic compound onto the surface of the single walled carbon nanotube under conditions sufficient to form a substituted single walled carbon nanotube having the formula [CnHJ[X'-Ra]m5 where each of R is selected from SO3H, COOH, NH2, OH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR'3, Si(OR')yR'3.y, Si(O- SiR'2)OR', R", Li, A1R'2, Hg-X, TlZ2 and Mg-X, and y is an integer equal to or less than 3; and
(b) reacting the substituted nanotubes [CnHJ [X'-Ra]m with at least one appropriate reagent under conditions sufficient to form a functionalized single walled carbon nanotube having the formula [CnHJ [X'-Aa]m.
16. A method of forming a composition of matter of the formula [CnHJ [X'-AJm
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, wherein n is an integer, L is a number less than O. In, m is a number less than 0.5n, a is an integer less than 10, each of A is selected from
O O O O O
Il Il 9 Il Il
OY, NHΪ , C-OY, C-NR'Y , C-SY, C-Y , -CR' 2-0Y, N=Y, -NHCY or C=Y,
Y is an appropriate functional group of a protein, a peptide, an amino acid, an enzyme, an antibody, an oligonucleotide, a nucleotide, an antigen, or an enzyme substrate, enzyme inhibitor or the transition state analog of an enzyme substrate or is selected from R'- OH, R' -NH2, R'SH, R'CHO, R'CN, R'X, R'SiR'3, R'-R", R'-N-CO, (C2H4O7wH, <C3H6O)WH, (C2H4OVR', (C3H6O)W-R', R', and Attorney ϋofket No. 100647-03591 79
R' is alkyl, aryl, cycloalkyl, aralkyl or cycloaryl,
R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl,
X is a halide,
X' is a polynuclear aromatic, polyheteronuclear aromatic or metallopolyheteronuclear aromatic moiety or is a planar metal tetrathiooxalate,
Z is carboxylate or trifluoroacetate, and w is an integer greater than one and less than 200, comprising the step of reacting substituted single walled carbon nanotubes [CnHJ [X'-Ra]m with at least one appropriate reagent under conditions sufficient to form a functionalized single walled carbon nanotubes/having the formula [CnHJ [X'-AJm, where each ofR is selected from SO3H, COOH, NH2, OH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR'3, Si{O-SiR'2)OR', R", Li, A1R'2, Hg-X, TlZ2 and Mg-X, and y is an integer equal to or less than 3.
17. A method for forming a composition of matter of the formula O
Il
[cnHL÷fCNHR/NH2) π, wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is an integer, L is a number less than O. In and m is a number less that 0.5n,
R' is alkyl, aryl, cycloalkyl or cycloaryl, comprising the steps of: reacting the surface carbons with at least one appropriate reagent under conditions sufficient to form functionalized single walled carbon nanotubes having the formula [CnHL](COOH)m; and reacting the functionalized single walled carbon nanotubes with a compound having two or more amino groups under conditions sufficient to form functionalized single walled carbon nanotubes having the formula o
Il
[CnHL÷fCNHR'NH2) m. Attorney Dofϊcet No. 100647-03591 80
18. A method of forming a composition of matter of the formula
[CnHJRm
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n in an integer, L is a number less than O.ln, m is a number less than 0.5n, each ofR is the same and is selected from SO3H, COOH, NH2, OH, CH(R')OH, CHO, CN, COCl, halide, COSH, SH, COOR', SR1, SiR'a, Si(OR')yR3.y, Si<O- SiIV2)OR', R", Li, A1R'2, Hg-X, TlZ2 and Mg-X, y is an integer equal to or less than 3, R' is hydrogen, alkyl, aryl, cycloalkyl, aralkyl or cycloaryl, R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl or fluoroaralkyl, X is a halide, and
Z is carboxylate or trifluoroacetate, comprising the step of reacting the surface carbons with at least one enzyme capable of accepting the single walled carbon nanotube as a substrate and of performing a chemical reaction resulting in a composition of matter of the formula [CnHiJRm5 in aqueous suspension under conditions acceptable for the at least one enzyme to carry out the reaction.
19. The method of claim 17 wherein Rm is -OH and the enzyme is a cytochrome p450 enzyme or a peroxidase.
20. A method for forming a composition of matter of the formula
[CnHLKNH2)m
wherein the carbon atoms, Cn, are surface carbons of a substantially cylindrical, single walled carbon nanotube having a diameter less than 5 nanometers, n is in an integer, L is a number less than O.ln and m is a number less than 0.5n, comprising the steps of: reacting the surface carbons with nitric acid and sulfuric acid to form nitrated single walled carbon nanotubes; and reducing the nitrated single walled carbon nanotubes to form [CnHLHNH2)m-
21. A method of uniformly substituting the surface of single walled carbon nanotubes having diameters less than 5 nanometers with a functional group comprising contacting said single walled carbon nanotubes having diameters of less than 5 Attorney DT^ket No. 100647-03591 81 nanometers with an effective amount of reactant capable of uniformly substituting a functional group onto the surface of said single walled carbon nanotubes.
22. The method of claim 20, wherein the reactant is a phthalocyanine.
23. The method of claim 20, wherein the reactant is nickel (II) phthalocyaninetetrasulfonic acid (tetrasodium salt) or 1,4,8,11,15, 18,22,25 -octabutoxy- 29H,3 lH-phthalocyanine.
24. A surface-modified single walled carbon nanotube having a diameter less than 5 nanometers made by the method comprising contacting said single walled carbon nanotube with an effective amount of a reactant for substituting a functional group onto the surface of said single walled carbon nanotube.
25. The surface-modified single walled carbon nanotube of claim 23, wherein the reactant is a phthalocyanine.
26. The surface-modified single walled carbon nanotube of claim 23, wherein the reactant is nickel (II) phthalocyaninetetra-sulfonic acid (tetrasodium salt) or 1 ,4,8, 11 , 15, 18,22,25-octabutoxy-29H,3 lH-phthalocyanine.
27. A method for linking a protein to a nanotube comprising the steps of: contacting a single walled carbon nanotube having a diameter less than 5 nanometers bearing an NHS ester group with a protein under conditions sufficient to form a covalent bond between the NHS ester and the amine group of the protein.
28. An electrode comprising functionalized single walled carbon nanotubes having diameters less than 5 nanometers.
29. The electrode of claim 27 wherein the electrode is a porous flow through electrode.
30. An electrode as recited in claim 27, wherein the functionalized single walled carbon nanotubes are phthalocyanine substituted nanotubes.
31. A porous material comprising a multiplicity of functionalized single walled carbon nanotube networks, wherein said functionalized single walled carbon nanotube network comprise at least two functional fibrils linked at functional groups by at least one linker moiety, wherein said linker moiety is either bifunctional or polyfunctional.
32. A method for separating a solute of interest from a sample comprising the steps of: physically or chemically modifying the surface carbons of a single walled carbon nanotube having a diameter less than 5 nanometers with at least one appropriate reagent under conditions sufficient to form functionalized single walled carbon nanotubes; Attorney DWket No. 100647-03591 82 immobilizing a substance capable of binding the solute of interest on the functionalized single walled carbon nanotubes; and exposing the substituted single walled carbon nanotubes to the fraction containing the solute of interest under conditions sufficient for the solute of interest to bind the substance immobilized on the functionalized single walled carbon nanotubes.
33. The method of claim 31 wherein the solute of interest is a protein.
34. The method of claim 31 , further comprising the step of recovering the functionalized single walled carbon nanotubes.
35. The method of claim 31, wherein the functionalized single walled carbon nanotubes are in the form of a porous mat.
36. The method of claim 31, wherein the functionalized single walled carbon nanotubes are in the form of a packed column.
37. The method of claim 31, wherein the binding is reversible.
38. The method of claim 31, wherein the binding is an ionic interaction.
39. The method of claim 31, wherein the binding is a hydrophobic interaction.
40. The method of claim 31, wherein the binding is through specific molecular recognition.
41. A polymer bead comprising an essentially spherical bead with a diameter of less than 25 μ to which is linked a plurality of functionalized single walled carbon nanotubes having diameters less than 5 nanometers.
42. The polymer bead of claim 40 wherein the bead is magnetic.
43. A method for catalyzing a reaction wherein at least one reactant is converted to at least one product comprising the steps of: physically or chemically modifying the surface carbons of a single walled carbon nanotube having a diameter less than 5 nanometers with at least one appropriate reagent under conditions sufficient to form functionalized single walled carbon nanotubes; immobilizing a biocatalyst capable of catalyzing a reaction on the functionalized single walled carbon nanotubes; and contacting the functionalized single walled carbon nanotubes with the reactant(s) under conditions sufficient for the reactants(s) to be converted to the product(s).
44. The method of claim 42, further comprising the step of recovering the functionalized single walled carbon nanotubes after the reaction is complete. Attorney No. 100647-03591 83
45. The method of claim 42 wherein the functionalized single walled carbon nanotubes are in the form of a porous mat.
46. The method of claim 42 wherein the functionalized single walled carbon nanotubes are in the form of a packed column.
47. A method for synthesizing a peptide comprising the step of attaching the terminal amino acid of the peptide to a single walled carbon nanotube having a diameter less than 5 nanometers via a reversible linker.
48. The method of claim 46 wherein the linker is 4- (hydroxymethyl)phenoxyacetic acid.
EP05857879A 2004-06-23 2005-06-23 Functionalized single walled carbon nanotubes Withdrawn EP1776125A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87543504A 2004-06-23 2004-06-23
PCT/US2005/022413 WO2006130150A2 (en) 2004-06-23 2005-06-23 Functionalized single walled carbon nanotubes

Publications (2)

Publication Number Publication Date
EP1776125A2 true EP1776125A2 (en) 2007-04-25
EP1776125A4 EP1776125A4 (en) 2012-01-25

Family

ID=37482092

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05857879A Withdrawn EP1776125A4 (en) 2004-06-23 2005-06-23 Functionalized single walled carbon nanotubes

Country Status (7)

Country Link
EP (1) EP1776125A4 (en)
JP (1) JP2008513318A (en)
KR (1) KR20070030282A (en)
CN (1) CN101432227A (en)
AU (1) AU2005332329A1 (en)
CA (1) CA2571575A1 (en)
WO (1) WO2006130150A2 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947247B2 (en) 2005-03-29 2011-05-24 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
CA2602599A1 (en) 2005-03-29 2006-10-19 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
US7951351B2 (en) 2006-03-29 2011-05-31 Hyperion Catalysis International, Inc. Method for preparing uniform single walled carbon nanotubes
WO2008156021A1 (en) * 2007-06-21 2008-12-24 National University Corporation Nagoya University Method for introducing foreign substance into cell having cell wall
SG175115A1 (en) 2009-04-17 2011-11-28 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
KR100936167B1 (en) * 2009-05-29 2010-01-12 한국과학기술원 Carbon nanotube bulk material and fabricating method thereof
US8841454B2 (en) 2009-07-17 2014-09-23 Exxonmobil Research And Engineering Company Functionalized carbon nanostructures which are soluble in hydrocarbons and method for preparation
US8435931B2 (en) 2009-07-17 2013-05-07 Exxonmobil Research And Engineering Company Reduced friction lubricating oils containing functionalized carbon nanomaterials
JP5150772B2 (en) * 2010-02-04 2013-02-27 独立行政法人科学技術振興機構 Method for producing selectively chemically modified carbon nanotubes
CN102335434A (en) * 2010-07-23 2012-02-01 复旦大学 Targeting carbon nanotube drug carrier with specific monoclonal antibody and its preparation method
KR101281733B1 (en) * 2010-11-18 2013-07-04 한국과학기술원 Methods for the preparation of carbon nanotubes covalentely modified by poly(aryleneether)s
JP5429893B2 (en) * 2011-11-02 2014-02-26 独立行政法人物質・材料研究機構 Preparation of bioreactive carbon nanotubes by functionalizing redox proteins by non-covalent bonding
CN104302576B (en) 2012-04-16 2017-03-08 赛尔斯通股份有限公司 For catching and sealing up for safekeeping carbon and the method and system for reducing the quality of oxycarbide in waste gas stream
JP6328611B2 (en) 2012-04-16 2018-05-23 シーアストーン リミテッド ライアビリティ カンパニー Method and structure for reducing carbon oxides with non-ferrous catalysts
CN104302575B (en) 2012-04-16 2017-03-22 赛尔斯通股份有限公司 Method for producing solid carbon by reducing carbon dioxide
NO2749379T3 (en) 2012-04-16 2018-07-28
US9475699B2 (en) 2012-04-16 2016-10-25 Seerstone Llc. Methods for treating an offgas containing carbon oxides
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
JP6284934B2 (en) 2012-07-12 2018-02-28 シーアストーン リミテッド ライアビリティ カンパニー Solid carbon product containing carbon nanotubes and method of forming the same
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
MX2015000580A (en) 2012-07-13 2015-08-20 Seerstone Llc Methods and systems for forming ammonia and solid carbon products.
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
CN104936893A (en) 2012-11-29 2015-09-23 赛尔斯通股份有限公司 Reactors and methods for producing solid carbon materials
US10115844B2 (en) 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
EP3113880A4 (en) 2013-03-15 2018-05-16 Seerstone LLC Carbon oxide reduction with intermetallic and carbide catalysts
EP3129135A4 (en) 2013-03-15 2017-10-25 Seerstone LLC Reactors, systems, and methods for forming solid products
WO2014150944A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Methods of producing hydrogen and solid carbon
WO2014151898A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Systems for producing solid carbon by reducing carbon oxides
KR102095282B1 (en) * 2015-12-31 2020-04-01 기초과학연구원 Photoluminescent Carbon Nano-structure and Fabrication Method Thereof
CN106058034B (en) * 2016-07-12 2023-04-28 北京服装学院 Preparation method of (1, 3-disulfide-2-carbonyl) fused naphthalimide/carbon nano tube composite thermoelectric material
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
CN106809817B (en) * 2017-01-16 2019-01-11 东华大学 A kind of preparation method of porous carbon nanotube
CN106841344B (en) * 2017-04-07 2018-12-11 西北师范大学 The preparation and application of a kind of poroid single-walled carbon nanotube and its modified electrode
US10865502B2 (en) 2018-05-14 2020-12-15 Global Graphene Group, Inc. Continuous graphene fibers from functionalized graphene sheets
US10927478B2 (en) 2018-05-21 2021-02-23 Global Graphene Group, Inc. Fabric of continuous graphene fiber yarns from functionalized graphene sheets
US10934637B2 (en) 2018-05-21 2021-03-02 Global Graphene Group, Inc. Process for producing fabric of continuous graphene fiber yarns from functionalized graphene sheets
CN108636363B (en) * 2018-05-25 2019-12-27 湖南大学 Glutamic acid modified carbon nanotube composite material and preparation method and application thereof
CN110564016B (en) * 2019-08-27 2022-06-14 山东大展纳米材料有限公司 High-reinforcement rubber latex wet mixing composite material and preparation process thereof
CN111019934A (en) * 2019-12-31 2020-04-17 广东工业大学 Enzyme immobilized composite material and preparation method thereof
CN111135344A (en) * 2020-02-27 2020-05-12 福州大学 Scaffold for repairing carbon nano tube/collagen-based cartilage of composite albumin and preparation method thereof
TWI813493B (en) * 2021-07-20 2023-08-21 友達光電股份有限公司 Display device
CN114518453B (en) * 2022-01-26 2023-05-16 东北农业大学 Multi-wall carbon nano tube compound and preparation method and application thereof
CN115057992A (en) * 2022-06-15 2022-09-16 上海理工大学 Method for controlling thickness of super-crosslinked polymer nanotube tube wall
CN115228437B (en) * 2022-08-18 2023-10-31 四川轻化工大学 Surface modification method for making active carbon surface positive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018059A1 (en) * 1994-12-08 1996-06-13 Hyperion Catalysis International, Inc. Functionalized fibrils
WO1997032571A1 (en) * 1996-03-06 1997-09-12 Hyperion Catalysis International, Inc. Functionalized nanotubes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2363415C3 (en) * 1972-12-22 1978-06-01 Kureha Kagaku Kogyo K.K., Tokio Process for the surface treatment of carbon fibers
JPS5116219B2 (en) * 1972-12-22 1976-05-22
JPS59112068A (en) * 1982-12-17 1984-06-28 三菱レイヨン株式会社 Surface treatment of carbon fiber
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US5611964A (en) * 1984-12-06 1997-03-18 Hyperion Catalysis International Fibril filled molding compositions
CA1321863C (en) * 1986-06-06 1993-09-07 Howard G. Tennent Carbon fibrils, method for producing the same, and compositions containing same
JPH0293032A (en) * 1988-09-28 1990-04-03 Honda Motor Co Ltd Fiber reinforced light alloy composite material
KR100775878B1 (en) * 1998-09-18 2007-11-13 윌리엄 마쉬 라이스 유니버시티 Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof and use of derivatized nanotubes
GB2413123B (en) * 2001-01-29 2005-12-07 Univ Rice William M Process for derivatizing carbon nanotubes with diazonium species and compositions thereof
JP3670982B2 (en) * 2001-05-14 2005-07-13 独立行政法人科学技術振興機構 Manufacturing method of carbon nanoring
US7147894B2 (en) * 2002-03-25 2006-12-12 The University Of North Carolina At Chapel Hill Method for assembling nano objects
JP3764986B2 (en) * 2002-11-18 2006-04-12 独立行政法人科学技術振興機構 Production method of soluble carbon nanotube
US7374649B2 (en) * 2002-11-21 2008-05-20 E. I. Du Pont De Nemours And Company Dispersion of carbon nanotubes by nucleic acids
US7498423B2 (en) * 2002-11-21 2009-03-03 E.I. Du Pont De Nemours & Company Carbon nanotube-nucleic acid complexes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018059A1 (en) * 1994-12-08 1996-06-13 Hyperion Catalysis International, Inc. Functionalized fibrils
WO1997032571A1 (en) * 1996-03-06 1997-09-12 Hyperion Catalysis International, Inc. Functionalized nanotubes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GEMA DE LA TORRE ET AL: "A survey on the functionalization of single-walled nanotubes. The chemical attachment of phthalocyanine moieties; A survey on the functionalization of single-walled nanotubes", NANOTECHNOLOGY, IOP, BRISTOL, GB, vol. 14, no. 7, 1 July 2003 (2003-07-01), pages 765-771, XP020067591, ISSN: 0957-4484, DOI: 10.1088/0957-4484/14/7/312 *
HONGJIE DAI ET AL: "SINGLE-WALL NANOTUBES PRODUCED BY METAL-CATALYZED DISPROPORTIONATION OF CARBON MONOXIDE", CHEMICAL PHYSICS LETTERS, ELSEVIER BV, NL, vol. 260, no. 3/04, 27 September 1996 (1996-09-27), pages 471-475, XP000610009, ISSN: 0009-2614, DOI: 10.1016/0009-2614(96)00862-7 *
R.J. CHEN ET AL.: "Noncovalent sidewall functionalization of Single-walled carbon nanotubes for protein immobilization", J. AM. CHEM. SOC., vol. 123, 18 April 2001 (2001-04-18), pages 3838-3839, XP002665834, *
See also references of WO2006130150A2 *

Also Published As

Publication number Publication date
JP2008513318A (en) 2008-05-01
AU2005332329A1 (en) 2006-12-07
CA2571575A1 (en) 2006-12-07
KR20070030282A (en) 2007-03-15
CN101432227A (en) 2009-05-13
WO2006130150A9 (en) 2009-06-11
WO2006130150A2 (en) 2006-12-07
EP1776125A4 (en) 2012-01-25
WO2006130150A3 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
CA2247820C (en) Functionalized nanotubes
EP1776125A2 (en) Functionalized single walled carbon nanotubes
US20040202603A1 (en) Functionalized nanotubes
CA2207282C (en) Functionalized nanotubes
WO1996018059A9 (en) Functionalized fibrils
Chen et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization
CA2248893C (en) Graphitic nanotubes in luminescence assays
US7780939B2 (en) Sidewall derivatized carbon nanotubes
US6841139B2 (en) Methods of chemically derivatizing single-wall carbon nanotubes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070118

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20090416

RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 3/12 20060101ALI20090617BHEP

Ipc: B05D 3/00 20060101ALI20090617BHEP

Ipc: A61L 33/00 20060101ALI20090617BHEP

Ipc: A61F 2/00 20060101AFI20090617BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: D01F 11/14 20060101ALI20111215BHEP

Ipc: D01F 11/12 20060101ALI20111215BHEP

Ipc: B01J 21/18 20060101ALI20111215BHEP

Ipc: B01J 31/00 20060101ALI20111215BHEP

Ipc: C01B 31/02 20060101ALI20111215BHEP

Ipc: B05D 3/12 20060101ALI20111215BHEP

Ipc: B05D 3/00 20060101ALI20111215BHEP

Ipc: A61L 33/00 20060101ALI20111215BHEP

Ipc: A61F 2/00 20060101AFI20111215BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20111223

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120321