EP1774568A1 - Light source with electron cyclotron resonance - Google Patents

Light source with electron cyclotron resonance

Info

Publication number
EP1774568A1
EP1774568A1 EP05763741A EP05763741A EP1774568A1 EP 1774568 A1 EP1774568 A1 EP 1774568A1 EP 05763741 A EP05763741 A EP 05763741A EP 05763741 A EP05763741 A EP 05763741A EP 1774568 A1 EP1774568 A1 EP 1774568A1
Authority
EP
European Patent Office
Prior art keywords
enclosure
light source
magnet
antenna
source according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05763741A
Other languages
German (de)
French (fr)
Inventor
Pascal Sortais
Xavier Pellet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1774568A1 publication Critical patent/EP1774568A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field

Definitions

  • the invention relates to a light source powered by ultra high frequency, comprising a transmitter creating, via at least one antenna, an ultra high frequency electromagnetic wave in a sealed enclosure, having a wall transparent to light and containing a gas at low pressure, the source comprising magnetic means intended to create a static magnetic field inside the enclosure, the respective values of the static magnetic field and the frequency of the electromagnetic wave being predetermined, so as to cause inside the enclosure a cyclotron resonance of electrons.
  • UV sources visible or ultraviolet (UV) powered by ultra high frequency conventionally include a transmitter creating an ultra high frequency electromagnetic wave in a sealed enclosure, transparent to light and containing a gas at low pressure.
  • An ultra high frequency discharge ionizes the gas and accelerates the electrons.
  • the energetic electrons ionize the gas, so as to create a stationary plasma.
  • light radiation is emitted.
  • the document GB2375603 describes a UV light source comprising control means making it possible to optimize the intensity of the UV radiation emitted, in particular in the UVC band of the ultraviolet spectrum.
  • the document US Pat. No. 6,657,206 describes a system for generating UV radiation comprising a microwave chamber in which a plasma lamp is arranged.
  • a microwave generator is coupled to the microwave chamber to excite the plasma in the plasma lamp which thereby emits UV radiation.
  • UV light is used, for example, for characterization, imaging, photolithography, disinfection or for the production of ozone. In most applications, high gloss is desired.
  • known sources often have a low yield and / or have significant costs due to a limited lifespan.
  • conventional light sources based on gas discharges, include electrodes in contact with the plasma.
  • the wear of the electrodes due to bombardment by plasma ions, limits the life of the light sources.
  • Document GB1020224 describes an ultraviolet lamp with electron cyclotron resonance intended to create a particular plasma at high temperature and far ultraviolet radiation.
  • the plasma is created in a discharge tube containing a gas at low pressure.
  • Two electrodes are placed inside the tube to create the plasma by means of a low frequency subsidiary discharge.
  • Two coils surround the outer periphery of the discharge tube and create an axial magnetic field limiting the plasma essentially to the central axis of the tube.
  • the tube passes through side walls of a waveguide coupled to a high frequency source, so as to project electromagnetic radiation into the plasma, perpendicular to the magnetic field.
  • a beam of parallel ultraviolet rays is emitted through an opening arranged in the center of one of the electrodes. This lamp is difficult to implement.
  • the document US Pat. No. 3,911,318 describes a method and an apparatus for generating high power UV and visible electromagnetic radiation.
  • the device is powered by a radio frequency generator creating a radio frequency field inside a quartz or fused silica plasma tube allowing UV radiation to escape.
  • the gas pressure in the tube is sufficient to support the generation of a plasma by microwave.
  • the device comprises Helmholz coils creating inside the tube a static magnetic field.
  • a mesh screen serving as a waveguide makes it possible to confine the radiofrequency radiation.
  • the device allows to illuminate only in a limited solid angle.
  • the device is bulky.
  • the object of the invention is to remedy these drawbacks and, in particular, to make it possible to produce a light source without an electrode, and in particular a compact UV source, providing a high light intensity and having a high efficiency.
  • the magnetic means consist of at least one permanent magnet substantially enveloped by the enclosure and by the fact that the emitter, the antenna and the magnet are arranged relative to the enclosure so as to release for light a solid angle of at least 2 ⁇ steradians.
  • Figures 1 to 5 show, in section, five particular embodiments of a light source according to the invention.
  • FIG. 6 represents, as a function of time, three particular embodiments of the radiofrequency power supplying the light source according to the invention.
  • the light source shown in Figure 1 comprises an enclosure 1, having substantially the shape of a sealed bulb, having an outer wall transparent to light.
  • the enclosure 1 contains a low pressure gas, for example one or more rare gases at a total pressure of 2 ⁇ bar, deuterium or a metal vapor, for example sodium, zinc or mercury.
  • the pressure in the enclosure 1 can be the vapor pressure of the mercury at ambient temperature which is of the order of 2 ⁇ bar.
  • the wall of the enclosure 1 can be transparent only in one desired spectral band, for example in a visible band or in a UV band.
  • the materials used for the light sources have a cut-off wavelength situated in the UV band of the electromagnetic spectrum, for example at 150 nm.
  • a single permanent magnet 2 and an antenna 3 connected to a transmitter 4 penetrate, in a sealed manner, into the enclosure 1.
  • the permanent magnet 2 and the antenna 3 are then partially arranged inside. of enclosure 1 and partly outside of enclosure 1.
  • the parts disposed outside of enclosure 1 are arranged in a housing 5, in which the transmitter 4 is also housed.
  • the transmitter 4 may, for example, be a magnetron or a transmitter based on transistors, of the type used in portable telephones, capable of operating at low voltage, for example at 3V.
  • the transmitter has, for example, a power between 1 Watt and 300W, depending on the type of transmitter.
  • the magnet 2 creates, inside the enclosure 1, a static magnetic field.
  • the emitter 4 enables the light source to be supplied by an ultra high frequency electromagnetic wave created in the enclosure 1.
  • the ultra high frequency electromagnetic wave makes it possible to ionize the gas and accelerate the electrons.
  • the frequency of the ultra high frequency electromagnetic wave is between 300MHz and 300GHz.
  • the electrons are subjected to a force perpendicular to their speed.
  • the trajectories of the electrons are then substantially circular or in the form of spirals which are characterized, in a known manner, by a radius of gyration, inversely proportional to the magnetic field, and by a cyclotron frequency which is proportional to the field magnetic.
  • the electrons are then confined by the static magnetic field.
  • the radius of gyration and the cyclotron frequency are, in principle, defined only in a uniform field, while the magnetic field created by a magnet 2 whose dimensions are of the order of those of enclosure 1, in fact presents a gradient in enclosure 1.
  • the radius of gyration and the cyclotron frequency make it possible to estimate certain orders of magnitude, in particular the respective values of the static magnetic field and the frequency of the electromagnetic wave. These values are predetermined so as to cause a cyclotron resonance of electrons inside the enclosure, at least in a resonance zone arranged in the enclosure.
  • the magnetic field must be strong enough so that the radius of gyration is less than the dimension of the enclosure 1.
  • 0.1 Tesla for example, makes it possible to confine the electrons in an enclosure 1 having dimensions of a few decimeters, which corresponds to the typical dimension of a light source.
  • the cyclotron frequency in a field of 0.1 Tesla is of the order of 2 GHz.
  • the frequency of the ultra high frequency electromagnetic wave corresponds to the cyclotron frequency
  • a resonance effect is obtained.
  • the resonance relationship between the static magnetic field B and the frequency f of the ultra high frequency electromagnetic wave, B f.2. ⁇ .m / e, depends only on the ratio of mass m and charge e of l 'electron.
  • the static magnetic field is 0.1 Tesla
  • the frequency of the ultra high frequency electromagnetic wave is then about 2 GHz.
  • the static magnetic field is 0.0875 Tesla and the frequency of the ultra high frequency electromagnetic wave is 2.45 GHz, which is a frequency usually used in ultra high frequency sources.
  • the static magnetic field having a gradient the resonance conditions are not necessarily fulfilled in the entire space of the enclosure.
  • the maximum resonance zone can take any shape, defined by the distributions of the static magnetic field and the ultra high frequency electromagnetic wave.
  • the shape of the enclosure is preferably adapted to the distribution of the field of the magnet 2 used and the antenna 3 is arranged so that all the space delimited by the enclosure 1 receives the electromagnetic wave. ultra high frequency.
  • the electrons can, a priori, gain or lose energy under the effect of the electromagnetic wave, according to the orientation of their speed compared to the electric field of the wave.
  • the electrons collide with the plasma ions in the resonance zone.
  • the energy balance of the electrons is positive and can be between 1 electronvolt and a few tens of electronvolts per electron, for example 50eV. This balance determines the energy supply of the light source. The energy is then emitted during radiative inelastic collisions with the ions, in the visible spectrum and, in particular, in the UV spectrum.
  • the light efficiency of the light source is significantly higher than that of known light sources, which makes it possible to obtain a predetermined brightness at very low power supply.
  • the accelerated electrons further ionize the gas, so as to increase the electron density.
  • a plasma serves as a screen for frequencies below the plasma cutoff frequency, which depends on the square root of the electron density in the plasma.
  • the cutoff frequency increases correspondingly until the cutoff frequency reaches the value of the frequency of the injected ultra high frequency electromagnetic wave.
  • the plasma then reaches an electronic saturation density, typically after a few tens of microseconds.
  • the minimum pressure required for starting is around 0.4 ⁇ bar.
  • the emitter 4, the antenna 3 and the magnet 2 are arranged, with respect to the enclosure 1, so as to release for light a large solid angle of illumination, greater than 2 ⁇ steradians.
  • the light L is emitted all around an axis of rotation R. Only the housing 5 limits the solid angle of illumination of the light source. This gives a large field of illumination.
  • This light source has the advantage of being able to operate at low temperature, for example at room temperature. However, maximum intensity is obtained at a higher temperature, for example of the order of 40 ° C.
  • the enclosure 1 substantially envelops the magnet 2 and the antenna 3 which allows the gas disposed in the enclosure to absorb the electromagnetic radiation emitted by the antenna 3 very effectively.
  • the resonance zone arranged in the enclosure 1 automatically constitutes a radiation screen making it possible to limit the ultra high frequency electromagnetic radiation outside the light source.
  • the light source provides radiation in the visible spectrum and in the UV spectrum, corresponding to emission lines of the atoms and ions of the gas.
  • the 254nm line of the non-ionized mercury atom can reach ten times the brightness of a standard UV lamp.
  • the emission lines of ions with wavelengths less than 200nm are particularly intense.
  • the once-ionized mercury lines having wavelengths of 164.9nm and 194.2nm, are about five times more intense than the line at 254nm of the non-ionized mercury atom.
  • the choice of gas and pressure in the enclosure makes it possible to adapt the spectrum of the source to its use, in particular to the desired UV regime. For example, the higher the pressure, the more dominated the lines emitted at long wavelengths, that is to say emission lines of non-ionized atoms.
  • Knowledge of the atomic spectra of the atoms constituting the gas and of the ion spectra of the atoms ionized one or more times thus makes it possible to obtain the desired radiation.
  • the radiation created is characterized by the corresponding atomic and ionic lines.
  • the enclosure 1 can comprise, as shown in FIG. 1, a fluorescent coating 6 transforming an ultraviolet radiation into visible radiation.
  • the magnet 2 simultaneously constitutes the antenna 3 of the transmitter 4.
  • the enclosure 1 comprises an external housing 7 for the magnet 2.
  • the enclosure 1 substantially enveloping the magnet 2 constituting the antenna 3, the light is always emitted in a large solid angle.
  • the light source shown in Figure 2 has a mesh 8 end of protection against ultra high frequency radiation, which allows to meet safety standards even in the case of operation at high power of the transmitter 4.
  • Such a grid 8 can also be provided in the embodiment of FIG. 1 and in the other embodiments described below.
  • the fine mesh 8 can be placed outside the enclosure 1, as shown in FIG. 2, or inside the enclosure 1, so as to surround the resonance zone in which the antenna 3 is placed. .
  • the magnet 2 and the antenna 3 of the transmitter 4 are disposed entirely inside the enclosure 1.
  • the magnet 2 and the antenna 3 are completely surrounded by the gas and do not imitate the solid angle at which the source radiates. Only the housing 5 limits the field of illumination.
  • the enclosure 1 comprises a transparent conductive coating 9 on an internal face or an external face of the wall of the enclosure 1, surrounding the antenna 3 and thus constituting a radiation protection screen at ultra high frequency.
  • the enclosure 1 has a tubular shape and four magnets 2 are arranged at the ends of the tubular enclosure 1, in the enclosure 1, on either side of the central axis of the enclosure, so as to create a magnetic trap for the electrons and ions of the plasma. To constitute such a trap, at least two magnets 2 are necessary.
  • the antenna 3 is arranged along the enclosure 1, on one side of the latter.
  • the tubular enclosure 1 makes it possible to obtain light in a large solid angle, at least equal to 2 ⁇ steradians.
  • the light source according to the invention can be of any dimensions and very particularly of very small dimensions if the wavelength of the injected electromagnetic wave and the static magnetic field are adapted to source dimensions.
  • the source shown in Figures 1 to 3 for example, can have dimensions of the order of a centimeter, the frequency of the electromagnetic wave being of the order of 30 GHz and the static magnetic field being of the order of 1 Tesla.
  • the ultra high frequency transmitter 4 may, for example, include a microelectronic circuit providing a power less than or equal to 1 Watt.
  • a plurality of light sources can, for example, be grouped in the form of an array.
  • the lifespan of the source is limited by the lifespan of the emitter 4 which is typically significantly greater than the lifespan of a conventional light source, for example that of an incandescent or fluorescent bulb.
  • the efficiency of the coupling of the ultra high frequency electromagnetic wave and the plasma is very high thanks to the cyclotronic resonance of electrons.
  • the light efficiency of the source is therefore very good.
  • the energy of the ultra high frequency electromagnetic wave is mainly transferred to the electrons, not to the ions, and is therefore directly useful for radiative and ionizing collisions, without heating the plasma, which allows the light source to be used at low consumption.
  • a modulation of the power P of the radiofrequency wave injected into the enclosure for example in the form of pulses of any shape and frequency. These pulses are preferably rectangular as shown in FIG. 6.
  • the three curves P1, P2 and P3 correspond to the same average power Pmn and, thus, to the same average light intensity.
  • a predetermined continuous power is injected into the enclosure 1.
  • the continuous power (P1) is equal to the average power Pmn.
  • the average power Pmn injected is preferably between 10 and 1000W.
  • Curve P2 represents rectangular pulses with maximum power Pmax2, for example with a frequency of 50Hz, and having a duty cycle such that the average power Pmn injected into the enclosure 1 is the same as that of the curve P1.
  • the curve P3 has a frequency two times lower than that of the curve P2 (in the example 50 Hz) and a maximum power Pmax3 of the rectangular pulses twice as high as that of the curve P2.
  • the average power Pmn of the curves P2 and P3 is effectively equal.
  • the maximum powers of the curves P1, P2 and P3 being different, the curves P1, P2 and P3 correspond to different light spectra.
  • the series of rectangular pulses is not necessarily periodic. Indeed, it is possible to envisage injecting a series of pulses each having a duration of the order of a microsecond, for example. The duration of a pulse and / or the time difference between two successive pulses can be adjusted. Thus, the light signal obtained makes it possible to code information, for example of the Morse type.
  • the shape of the enclosure 1 can, for example, be a tubular shape (Figure 4), a hollow cylinder, an ovoid ( Figures 1 to 3) or a swollen tube comprising the magnet 2 and / or the antenna 3 to inside or outside the space filled with gas.
  • Figure 4 a tubular shape
  • Figures 1 to 3 a hollow cylinder
  • Figures 1 to 3 a swollen tube
  • the magnet 2 When the magnet 2 is placed outside the space filled with the gas, it is still substantially enveloped by the enclosure 1, for example by placing the magnet 2 in an external housing, as shown in the Figure 2.
  • An external housing can also be envisaged for other forms of the enclosure 1, for example for a tubular enclosure.
  • Figure 5 Another example is shown in Figure 5, where the magnet 2 is arranged in the center of the enclosure 1 which has the shape of a hollow cylinder.
  • the assembly constituted by the enclosure 1 and the magnet 2 is preferably surrounded by a grid 8 of protection against ultra high frequency radiation.
  • the permanent magnet 2 can in particular be arranged so that the enclosure 1 envelops the magnet, that the magnet 2 is placed inside the enclosure 1 ( Figures 1 and 3 ) or outside the enclosure 1 in an external housing ( Figure 2), while being enveloped by the enclosure 1.
  • a large solid angle can be released for the light L.
  • the enclosure 1 comprises a fine protective mesh 8
  • the magnet 2 can then be placed inside the mesh 8 (FIG. 2), while, the mesh constituting a resonance cage, the Helmholz coils could not be disposed inside the mesh because of the incompatibility of the coils and the radiofrequency field.
  • the minimum dimensions of the resonance cage are determined by the resonance frequency. For example, for a resonance frequency of 2.45 GHz, the resonance cage must have minimum dimensions between 6cm and 10cm.
  • the use of a permanent magnet then makes it possible to reduce the dimensions of the entire light source to the dimensions of the resonance cage, while the Helmholz coils would be added to the dimensions of the resonance cage.
  • Helmholz coils require additional electrical connections. This improves the compactness of the light source, which is particularly necessary in the case of a portable light source or for the integration of the source in other devices.
  • the invention is not limited to the particular embodiments shown in the figures.
  • the fine protective mesh may cover the enclosure and / or the assembly formed by the enclosure and the antennas and possibly the magnets.
  • the operation of the light source is independent of the geometric shape of the magnet and the enclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Plasma Technology (AREA)

Abstract

The invention relates to a light source comprising an emitter (4) which, by means of at least one antenna (3), creates a high-frequency electromagnetic wave in a sealed chamber (1) and which powers the lamp. According to the invention, the chamber (1) is equipped with a wall that is transparent to the light and contains a low-pressure gas. A permanent magnet (2) creates a static magnetic field inside the chamber (1). The respective values of the static magnetic field and the frequency of the electromagnetic wave are determined such as to cause an electron cyclotron resonance inside the chamber (1). Moreover, the emitter (4), the antenna (3) and the magnet (2) are disposed in relation to the chamber (1) such as to clear a solid angle of at least 2 Π steradians for the light. The antenna (3) can be disposed inside the chamber (1) and, optionally, can comprise the magnet (2). The magnet is essentially sheathed by the chamber (1).

Description

Source lumineuse à résonance cyclotronique d'électronsLight source with cyclotron electron resonance
Domaine technique de l'inventionTechnical field of the invention
L'invention concerne une source lumineuse alimentée par ultra haute fréquence, comportant un émetteur créant, par l'intermédiaire d'au moins une antenne, une onde électromagnétique ultra haute fréquence dans une enceinte étanche, ayant une paroi transparente à la lumière et contenant un gaz à basse pression, la source comportant des moyens magnétiques destinés à créer à l'intérieur de l'enceinte un champ magnétique statique, les valeurs respectives du champ magnétique statique et de la fréquence de l'onde électromagnétique étant prédéterminées, de manière à provoquer à l'intérieur de l'enceinte une résonance cyclotronique d'électrons.The invention relates to a light source powered by ultra high frequency, comprising a transmitter creating, via at least one antenna, an ultra high frequency electromagnetic wave in a sealed enclosure, having a wall transparent to light and containing a gas at low pressure, the source comprising magnetic means intended to create a static magnetic field inside the enclosure, the respective values of the static magnetic field and the frequency of the electromagnetic wave being predetermined, so as to cause inside the enclosure a cyclotron resonance of electrons.
État de la techniqueState of the art
Les sources de lumière, visible ou ultraviolette (UV), alimentées par ultra haute fréquence comportent classiquement un émetteur créant une onde électromagnétique ultra haute fréquence dans une enceinte étanche, transparente à la lumière et contenant un gaz à basse pression. Une décharge à ultra haute fréquence permet d'ioniser le gaz et d'accélérer les électrons. Les électrons énergétiques ionisent le gaz, de manière à créer un plasma stationnaire. Lors de collisions entre les électrons et les ions, un rayonnement lumineux est émis. Le document GB2375603 décrit une source lumineuse UV comportant des moyens de contrôle permettant d'optimiser l'intensité du rayonnement UV émis, notamment dans la bande UVC du spectre ultraviolet.Light sources, visible or ultraviolet (UV), powered by ultra high frequency conventionally include a transmitter creating an ultra high frequency electromagnetic wave in a sealed enclosure, transparent to light and containing a gas at low pressure. An ultra high frequency discharge ionizes the gas and accelerates the electrons. The energetic electrons ionize the gas, so as to create a stationary plasma. During collisions between electrons and ions, light radiation is emitted. The document GB2375603 describes a UV light source comprising control means making it possible to optimize the intensity of the UV radiation emitted, in particular in the UVC band of the ultraviolet spectrum.
Le document US6657206 décrit un système de génération de rayonnement UV comportant une chambre à micro-ondes dans laquelle est disposée une lampe à plasma. Un générateur à micro-ondes est couplé à la chambre à micro-ondes pour exciter le plasma dans la lampe à plasma qui émet, ainsi, un rayonnement UV.The document US Pat. No. 6,657,206 describes a system for generating UV radiation comprising a microwave chamber in which a plasma lamp is arranged. A microwave generator is coupled to the microwave chamber to excite the plasma in the plasma lamp which thereby emits UV radiation.
La lumière UV est utilisée, par exemple, pour la caractérisation, l'imagerie, la photolithographie, la désinfection ou pour la production d'ozone. Dans la plupart des applications, une forte brillance est souhaitée. Cependant les sources connues ont souvent un rendement faible et/ou présentent des coûts importants du fait d'une durée de vie limitée.UV light is used, for example, for characterization, imaging, photolithography, disinfection or for the production of ozone. In most applications, high gloss is desired. However, known sources often have a low yield and / or have significant costs due to a limited lifespan.
Par ailleurs, les sources de lumière classiques, à base de décharges gazeuses, comportent des électrodes en contact avec le plasma. L'usure des électrodes, due au bombardement par les ions du plasma, limite la durée de vie des sources de lumière.Furthermore, conventional light sources, based on gas discharges, include electrodes in contact with the plasma. The wear of the electrodes, due to bombardment by plasma ions, limits the life of the light sources.
Le document GB1020224, par exemple, décrit une lampe ultraviolette à résonance cyclotronique d'électrons destinée à créer un plasma particulier à haute température et un rayonnement ultraviolet lointain. Le plasma est créé dans un tube à décharge contenant un gaz à basse pression. Deux électrodes sont disposées à l'intérieur du tube pour créer le plasma par l'intermédiaire d'une décharge subsidiaire basse fréquence. Deux bobines entourent la périphérie extérieure du tube à décharge et créent un champ magnétique axial limitant le plasma essentiellement à l'axe central du tube. Le tube traverse les parois latérales d'un guide d'onde couplé à une source haute fréquence, de manière à projeter un rayonnement électromagnétique dans le plasma, perpendiculairement au champ magnétique. Un faisceau de rayons ultraviolets parallèles est émis à travers une ouverture disposée au centre d'une des électrodes. Cette lampe est difficile à mettre en œuvre.Document GB1020224, for example, describes an ultraviolet lamp with electron cyclotron resonance intended to create a particular plasma at high temperature and far ultraviolet radiation. The plasma is created in a discharge tube containing a gas at low pressure. Two electrodes are placed inside the tube to create the plasma by means of a low frequency subsidiary discharge. Two coils surround the outer periphery of the discharge tube and create an axial magnetic field limiting the plasma essentially to the central axis of the tube. The tube passes through side walls of a waveguide coupled to a high frequency source, so as to project electromagnetic radiation into the plasma, perpendicular to the magnetic field. A beam of parallel ultraviolet rays is emitted through an opening arranged in the center of one of the electrodes. This lamp is difficult to implement.
Le document US3,911 ,318 décrit une méthode et un appareil pour générer un rayonnement électromagnétique UV et visible de haute puissance. L'appareil est alimenté par un générateur radio-fréquence créant un champ radio-fréquence à l'intérieur d'un tube à plasma en quartz ou en silice fondue permettant au rayonnement UV de s'échapper. La pression de gaz dans le tube est suffisante pour soutenir la génération d'un plasma par micro-onde. L'appareil comporte des bobines de Helmholz créant à l'intérieur du tube un champ magnétique statique. Un écran à mailles servant de guide d'onde permet de confiner le rayonnement radiofréquence. L'appareil permet d'illuminer seulement dans un angle solide limité. De plus, l'appareil est encombrant.The document US Pat. No. 3,911,318 describes a method and an apparatus for generating high power UV and visible electromagnetic radiation. The device is powered by a radio frequency generator creating a radio frequency field inside a quartz or fused silica plasma tube allowing UV radiation to escape. The gas pressure in the tube is sufficient to support the generation of a plasma by microwave. The device comprises Helmholz coils creating inside the tube a static magnetic field. A mesh screen serving as a waveguide makes it possible to confine the radiofrequency radiation. The device allows to illuminate only in a limited solid angle. In addition, the device is bulky.
Objet de l'inventionSubject of the invention
L'invention a pour but de remédier à ces inconvénients et, en particulier, de permettre de réaliser une source de lumière sans électrode, et notamment une source UV compacte, fournissant une forte intensité de lumière et présentant un haut rendement.The object of the invention is to remedy these drawbacks and, in particular, to make it possible to produce a light source without an electrode, and in particular a compact UV source, providing a high light intensity and having a high efficiency.
Selon l'invention, ce but est atteint par les revendications annexées et, en particulier, par le fait que les moyens magnétiques sont constitués par au moins un aimant permanent enveloppé sensiblement par l'enceinte et par le fait que l'émetteur, l'antenne et l'aimant sont disposés par rapport à l'enceinte de manière à libérer pour la lumière un angle solide d'au moins 2π stéradians.According to the invention, this object is achieved by the appended claims and, in particular, by the fact that the magnetic means consist of at least one permanent magnet substantially enveloped by the enclosure and by the fact that the emitter, the antenna and the magnet are arranged relative to the enclosure so as to release for light a solid angle of at least 2π steradians.
Description sommaire des dessinsBrief description of the drawings
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :Other advantages and characteristics will emerge more clearly from the description which follows of particular embodiments of the invention given by way of nonlimiting examples and represented in the appended drawings, in which:
Les figures 1 à 5 représentent, en coupe, cinq modes de réalisation particuliers d'une source lumineuse selon l'invention.Figures 1 to 5 show, in section, five particular embodiments of a light source according to the invention.
La figure 6 représente, en fonction du temps, trois modes de réalisation particuliers de la puissance radiofréquence alimentant la source lumineuse selon l'invention.FIG. 6 represents, as a function of time, three particular embodiments of the radiofrequency power supplying the light source according to the invention.
Description de modes particuliers de réalisationDescription of particular embodiments
La source lumineuse représentée sur la figure 1 comporte une enceinte 1 , ayant sensiblement la forme d'une ampoule, étanche, ayant une paroi externe transparente à la lumière. L'enceinte 1 contient un gaz à basse pression, par exemple un ou plusieurs gaz rares à une pression totale de 2μbar, du deutérium ou une vapeur de métal, par exemple du sodium, du zinc ou du mercure.The light source shown in Figure 1 comprises an enclosure 1, having substantially the shape of a sealed bulb, having an outer wall transparent to light. The enclosure 1 contains a low pressure gas, for example one or more rare gases at a total pressure of 2 μbar, deuterium or a metal vapor, for example sodium, zinc or mercury.
Lorsque le gaz est une vapeur de mercure, la pression dans l'enceinte 1 peut être la pression de vapeur du mercure à température ambiante qui est de l'ordre de 2μbar. La paroi de l'enceinte 1 peut être transparente uniquement dans une bande spectrale souhaitée, par exemple dans une bande visible ou dans une bande UV. Typiquement, les matériaux utilisés pour les sources lumineuses ont une longueur d'onde de coupure située dans la bande UV du spectre électromagnétique, par exemple à 150 nm.When the gas is a mercury vapor, the pressure in the enclosure 1 can be the vapor pressure of the mercury at ambient temperature which is of the order of 2 μbar. The wall of the enclosure 1 can be transparent only in one desired spectral band, for example in a visible band or in a UV band. Typically, the materials used for the light sources have a cut-off wavelength situated in the UV band of the electromagnetic spectrum, for example at 150 nm.
Sur la figure 1 , un seul aimant 2 permanent et une antenne 3 reliée à un émetteur 4 pénètrent, de manière étanche, dans l'enceinte 1. L'aimant 2 permanent et l'antenne 3 sont alors disposés en partie à l'intérieur de l'enceinte 1 et en partie à l'extérieur de l'enceinte 1. Les parties disposées à l'extérieur de l'enceinte 1 sont disposées dans un boîtier 5, dans lequel est également logé l'émetteur 4. Celui-ci peut, par exemple, être un magnétron ou un émetteur à base de transistors, du type de ceux utilisés dans les téléphones portables, pouvant fonctionner à basse tension, par exemple à 3V. L'émetteur a, par exemple, une puissance comprise entre 1 Watt et 300W, selon le type d'émetteur.In FIG. 1, a single permanent magnet 2 and an antenna 3 connected to a transmitter 4 penetrate, in a sealed manner, into the enclosure 1. The permanent magnet 2 and the antenna 3 are then partially arranged inside. of enclosure 1 and partly outside of enclosure 1. The parts disposed outside of enclosure 1 are arranged in a housing 5, in which the transmitter 4 is also housed. may, for example, be a magnetron or a transmitter based on transistors, of the type used in portable telephones, capable of operating at low voltage, for example at 3V. The transmitter has, for example, a power between 1 Watt and 300W, depending on the type of transmitter.
L'aimant 2 crée, à l'intérieur de l'enceinte 1 , un champ magnétique statique. L'émetteur 4 permet d'alimenter la source de lumière par une onde électromagnétique ultra haute fréquence créée dans l'enceinte 1. L'onde électromagnétique ultra haute fréquence permet d'ioniser le gaz et d'accélérer les électrons. La fréquence de l'onde électromagnétique ultra haute fréquence est comprise entre 300MHz et 300GHz.The magnet 2 creates, inside the enclosure 1, a static magnetic field. The emitter 4 enables the light source to be supplied by an ultra high frequency electromagnetic wave created in the enclosure 1. The ultra high frequency electromagnetic wave makes it possible to ionize the gas and accelerate the electrons. The frequency of the ultra high frequency electromagnetic wave is between 300MHz and 300GHz.
Dans le champ magnétique statique, les électrons sont soumis à une force perpendiculaire à leur vitesse. Les trajectoires des électrons sont alors sensiblement circulaires ou sous forme de spirales qui sont caractérisées, de manière connue, par un rayon de giration, inversement proportionnel au champ magnétique, et par une fréquence cyclotron qui est proportionnelle au champ magnétique. Les électrons sont alors confinés par le champ magnétique statique.In the static magnetic field, the electrons are subjected to a force perpendicular to their speed. The trajectories of the electrons are then substantially circular or in the form of spirals which are characterized, in a known manner, by a radius of gyration, inversely proportional to the magnetic field, and by a cyclotron frequency which is proportional to the field magnetic. The electrons are then confined by the static magnetic field.
Le rayon de giration et la fréquence cyclotron sont, en principe, définis uniquement dans un champ uniforme, tandis que le champ magnétique créé par un aimant 2 dont les dimensions sont de l'ordre de celles de l'enceinte 1 , présente en fait un gradient dans l'enceinte 1. Cependant, le rayon de giration et la fréquence cyclotron permettent d'estimer certains ordres de grandeur, en particulier les valeurs respectives du champ magnétique statique et de la fréquence de l'onde électromagnétique. Ces valeurs sont prédéterminées de manière à provoquer à l'intérieur de l'enceinte une résonance cyclotronique d'électrons, au moins dans une zone de résonance disposée dans l'enceinte.The radius of gyration and the cyclotron frequency are, in principle, defined only in a uniform field, while the magnetic field created by a magnet 2 whose dimensions are of the order of those of enclosure 1, in fact presents a gradient in enclosure 1. However, the radius of gyration and the cyclotron frequency make it possible to estimate certain orders of magnitude, in particular the respective values of the static magnetic field and the frequency of the electromagnetic wave. These values are predetermined so as to cause a cyclotron resonance of electrons inside the enclosure, at least in a resonance zone arranged in the enclosure.
Le champ magnétique doit être suffisamment fort pour que le rayon de giration soit inférieur à la dimension de l'enceinte 1. Un champ magnétique de l'ordre deThe magnetic field must be strong enough so that the radius of gyration is less than the dimension of the enclosure 1. A magnetic field of the order of
0,1 Tesla, par exemple, permet de confiner les électrons dans une enceinte 1 ayant des dimensions de quelques décimètres, ce qui correspond à la dimension typique d'une source lumineuse. La fréquence cyclotron dans un champ de 0,1 Tesla est de l'ordre de 2 GHz.0.1 Tesla, for example, makes it possible to confine the electrons in an enclosure 1 having dimensions of a few decimeters, which corresponds to the typical dimension of a light source. The cyclotron frequency in a field of 0.1 Tesla is of the order of 2 GHz.
Lorsque la fréquence de l'onde électromagnétique ultra haute fréquence correspond à la fréquence cyclotron, on obtient un effet de résonance. La relation de résonance entre le champ magnétique statique B et la fréquence f de l'onde électromagnétique ultra haute fréquence, B=f.2.π.m/e, dépend uniquement du rapport de la masse m et de la charge e de l'électron. Lorsque le champ magnétique statique est de 0,1 Tesla, la fréquence de l'onde électromagnétique ultra haute fréquence est alors environ 2 GHz. On obtient ainsi une résonance cyclotronique d'électrons à l'intérieur de l'enceinte. De préférence, le champ magnétique statique est de 0,0875 Tesla et la fréquence de l'onde électromagnétique ultra haute fréquence est de 2,45 GHz, ce qui est une fréquence habituellement utilisée dans les sources ultra haute fréquence. Le champ magnétique statique présentant un gradient, les conditions de résonance ne sont pas forcément remplies dans la totalité de l'espace de l'enceinte. La zone de résonance maximale peut prendre une forme quelconque, définie par les distributions du champ magnétique statique et de l'onde électromagnétique ultra haute fréquence. La forme de l'enceinte est, de préférence, adaptée à la distribution du champ de l'aimant 2 utilisé et l'antenne 3 est disposée de manière à ce que tout l'espace délimité par l'enceinte 1 reçoive l'onde électromagnétique ultra haute fréquence.When the frequency of the ultra high frequency electromagnetic wave corresponds to the cyclotron frequency, a resonance effect is obtained. The resonance relationship between the static magnetic field B and the frequency f of the ultra high frequency electromagnetic wave, B = f.2.π.m / e, depends only on the ratio of mass m and charge e of l 'electron. When the static magnetic field is 0.1 Tesla, the frequency of the ultra high frequency electromagnetic wave is then about 2 GHz. One thus obtains a cyclotronic resonance of electrons inside the enclosure. Preferably, the static magnetic field is 0.0875 Tesla and the frequency of the ultra high frequency electromagnetic wave is 2.45 GHz, which is a frequency usually used in ultra high frequency sources. The static magnetic field having a gradient, the resonance conditions are not necessarily fulfilled in the entire space of the enclosure. The maximum resonance zone can take any shape, defined by the distributions of the static magnetic field and the ultra high frequency electromagnetic wave. The shape of the enclosure is preferably adapted to the distribution of the field of the magnet 2 used and the antenna 3 is arranged so that all the space delimited by the enclosure 1 receives the electromagnetic wave. ultra high frequency.
Il est à noter que les électrons peuvent, a priori, gagner ou perdre de l'énergie sous l'effet de l'onde électromagnétique, suivant l'orientation de leur vitesse par rapport au champ électrique de l'onde. De plus, les électrons subissent des collisions avec les ions du plasma, dans la zone de résonance. Cependant, les électrons étant confinés par le champ magnétique statique, il s'avère qu'après un grand nombre de passages dans la zone soumise à l'onde électromagnétique, le bilan en énergie des électrons est positif et peut être compris entre 1 électronvolt et quelques dizaines d'électronvolts par électron, par exemple 50eV. Ce bilan détermine l'alimentation en énergie de la source de lumière. L'énergie est ensuite émise lors de collisions inélastiques radiatives avec les ions, dans le spectre visible et, en particulier, dans le spectre UV.It should be noted that the electrons can, a priori, gain or lose energy under the effect of the electromagnetic wave, according to the orientation of their speed compared to the electric field of the wave. In addition, the electrons collide with the plasma ions in the resonance zone. However, the electrons being confined by the static magnetic field, it turns out that after a large number of passages in the zone subjected to the electromagnetic wave, the energy balance of the electrons is positive and can be between 1 electronvolt and a few tens of electronvolts per electron, for example 50eV. This balance determines the energy supply of the light source. The energy is then emitted during radiative inelastic collisions with the ions, in the visible spectrum and, in particular, in the UV spectrum.
L'efficacité lumineuse de la source lumineuse, supérieure à 100 lumens par Watt, est nettement plus élevée que celle des sources lumineuses connues, ce qui permet d'obtenir une luminosité prédéterminée à très basse puissance d'alimentation. Lors d'une phase de démarrage de la source de lumière, les électrons accélérés ionisent davantage le gaz, de manière à augmenter la densité électronique. Or, de manière connue, un plasma sert d'écran pour les fréquences inférieures à la fréquence de coupure du plasma, qui dépend de la racine carrée de la densité électronique dans le plasma. La densité augmentant lors de la phase de démarrage, la fréquence de coupure augmente de manière correspondante jusqu'à ce que la fréquence de coupure atteigne la valeur de la fréquence de l'onde électromagnétique ultra haute fréquence injectée. Le plasma atteint alors une densité électronique de saturation, typiquement après quelques dizaines de microsecondes. La pression minimale nécessaire pour le démarrage est de l'ordre de 0,4 μbar.The light efficiency of the light source, greater than 100 lumens per Watt, is significantly higher than that of known light sources, which makes it possible to obtain a predetermined brightness at very low power supply. During a start-up phase of the light source, the accelerated electrons further ionize the gas, so as to increase the electron density. However, in known manner, a plasma serves as a screen for frequencies below the plasma cutoff frequency, which depends on the square root of the electron density in the plasma. As the density increases during the start-up phase, the cutoff frequency increases correspondingly until the cutoff frequency reaches the value of the frequency of the injected ultra high frequency electromagnetic wave. The plasma then reaches an electronic saturation density, typically after a few tens of microseconds. The minimum pressure required for starting is around 0.4 μbar.
Dans la source lumineuse représentée à la figure 1 , l'émetteur 4, l'antenne 3 et l'aimant 2 sont disposés, par rapport à l'enceinte 1 , de manière à libérer pour la lumière un grand angle solide d'illumination, supérieur à 2π stéradians. En effet, sur la figure 1 , la lumière L est émise tout autour d'un axe de rotation R. Seul le boîtier 5 limite l'angle solide d'illumination de la source lumineuse. On obtient alors un grand champ d'illumination. Cette source lumineuse présente l'avantage de pouvoir fonctionner à basse température, par exemple à température ambiante. Cependant, une intensité maximale est obtenue à une température plus élevée, par exemple de l'ordre de 40°C.In the light source represented in FIG. 1, the emitter 4, the antenna 3 and the magnet 2 are arranged, with respect to the enclosure 1, so as to release for light a large solid angle of illumination, greater than 2π steradians. In fact, in FIG. 1, the light L is emitted all around an axis of rotation R. Only the housing 5 limits the solid angle of illumination of the light source. This gives a large field of illumination. This light source has the advantage of being able to operate at low temperature, for example at room temperature. However, maximum intensity is obtained at a higher temperature, for example of the order of 40 ° C.
Sur la figure 1 , l'enceinte 1 enveloppe sensiblement l'aimant 2 et l'antenne 3 ce qui permet au gaz disposé dans l'enceinte d'absorber le rayonnement électromagnétique émis par l'antenne 3 de manière très efficace. De plus, la zone de résonance disposée dans l'enceinte 1 constitue automatiquement un écran de rayonnement permettant de limiter le rayonnement électromagnétique ultra haute fréquence à l'extérieur de la source lumineuse. La source lumineuse fournit un rayonnement dans le spectre visible et dans le spectre UV, correspondant à des raies d'émissions des atomes et des ions du gaz. La raie à 254nm de l'atome de mercure non ionisé peut atteindre dix fois la brillance d'une lampe UV standard. Les raies d'émission des ions ayant des longueurs d'onde inférieures à 200nm sont particulièrement intenses. Les raies du mercure ionisé une fois, ayant des longueurs d'onde de 164,9nm et 194,2nm, sont environ cinq fois plus intenses que la raie à 254nm de l'atome de mercure non ionisé. Le choix du gaz et de la pression dans l'enceinte permet d'adapter le spectre de la source à son utilisation, notamment au régime UV souhaité. Par exemple, plus la pression est élevée, plus les raies émises à des longueurs d'ondes longues, c'est-à-dire des raies d'émissions d'atomes non ionisés dominent. La connaissance des spectres atomiques des atomes constituant le gaz et des spectres ioniques des atomes ionisés une ou plusieurs fois permet ainsi d'obtenir le rayonnement souhaité. Le rayonnement créé est caractérisé par les raies atomiques et ioniques correspondantes.In Figure 1, the enclosure 1 substantially envelops the magnet 2 and the antenna 3 which allows the gas disposed in the enclosure to absorb the electromagnetic radiation emitted by the antenna 3 very effectively. In addition, the resonance zone arranged in the enclosure 1 automatically constitutes a radiation screen making it possible to limit the ultra high frequency electromagnetic radiation outside the light source. The light source provides radiation in the visible spectrum and in the UV spectrum, corresponding to emission lines of the atoms and ions of the gas. The 254nm line of the non-ionized mercury atom can reach ten times the brightness of a standard UV lamp. The emission lines of ions with wavelengths less than 200nm are particularly intense. The once-ionized mercury lines, having wavelengths of 164.9nm and 194.2nm, are about five times more intense than the line at 254nm of the non-ionized mercury atom. The choice of gas and pressure in the enclosure makes it possible to adapt the spectrum of the source to its use, in particular to the desired UV regime. For example, the higher the pressure, the more dominated the lines emitted at long wavelengths, that is to say emission lines of non-ionized atoms. Knowledge of the atomic spectra of the atoms constituting the gas and of the ion spectra of the atoms ionized one or more times thus makes it possible to obtain the desired radiation. The radiation created is characterized by the corresponding atomic and ionic lines.
Pour constituer une source de lumière visible, l'enceinte 1 peut comporter, comme représenté à la figure 1 , un revêtement fluorescent 6 transformant un rayonnement ultraviolet en rayonnement visible.To constitute a visible light source, the enclosure 1 can comprise, as shown in FIG. 1, a fluorescent coating 6 transforming an ultraviolet radiation into visible radiation.
Dans la source lumineuse représentée à la figure 2, l'aimant 2 constitue simultanément l'antenne 3 de l'émetteur 4. L'enceinte 1 comporte un logement 7 externe pour l'aimant 2. Ainsi, l'aimant 2 est disposé en totalité à l'extérieur de l'enceinte 1 et n'est pas soumis à l'action du plasma lors du fonctionnement de la source lumineuse. L'enceinte 1 enveloppant sensiblement l'aimant 2 constituant l'antenne 3, la lumière est toujours émise dans un grand angle solide. La source lumineuse représentée à la figure 2 comporte un grillage 8 fin de protection contre le rayonnement à ultra haute fréquence, ce qui permet de respecter les normes de sécurité même dans le cas d'un fonctionnement à haute puissance de l'émetteur 4. Un tel grillage 8 peut également être prévu dans le mode de réalisation de la figure 1 et dans les autres modes de réalisation décrits ci-dessous. Le grillage 8 fin peut être disposé à l'extérieur de l'enceinte 1 , comme représenté à la figure 2, ou l'intérieur de l'enceinte 1 , de manière à envelopper la zone de résonance dans laquelle est disposée l'antenne 3.In the light source shown in FIG. 2, the magnet 2 simultaneously constitutes the antenna 3 of the transmitter 4. The enclosure 1 comprises an external housing 7 for the magnet 2. Thus, the magnet 2 is arranged in all outside the enclosure 1 and is not subjected to the action of the plasma during the operation of the light source. The enclosure 1 substantially enveloping the magnet 2 constituting the antenna 3, the light is always emitted in a large solid angle. The light source shown in Figure 2 has a mesh 8 end of protection against ultra high frequency radiation, which allows to meet safety standards even in the case of operation at high power of the transmitter 4. Such a grid 8 can also be provided in the embodiment of FIG. 1 and in the other embodiments described below. The fine mesh 8 can be placed outside the enclosure 1, as shown in FIG. 2, or inside the enclosure 1, so as to surround the resonance zone in which the antenna 3 is placed. .
Dans le mode de réalisation particulier représenté à la figure 3, l'aimant 2 et l'antenne 3 de l'émetteur 4 sont disposés en totalité à l'intérieur de l'enceinte 1. Ainsi, l'aimant 2 et l'antenne 3 sont complètement entourés par le gaz et ne imitent pas l'angle solide dans lequel la source rayonne. Seul le boîtier 5 limite le champ d'illumination. Sur la figure 3, l'enceinte 1 comporte un revêtement conducteur transparent 9 sur une face interne ou une face externe de la paroi de l'enceinte 1 , entourant l'antenne 3 et constituant, ainsi, un écran de protection contre le rayonnement à ultra haute fréquence.In the particular embodiment represented in FIG. 3, the magnet 2 and the antenna 3 of the transmitter 4 are disposed entirely inside the enclosure 1. Thus, the magnet 2 and the antenna 3 are completely surrounded by the gas and do not imitate the solid angle at which the source radiates. Only the housing 5 limits the field of illumination. In FIG. 3, the enclosure 1 comprises a transparent conductive coating 9 on an internal face or an external face of the wall of the enclosure 1, surrounding the antenna 3 and thus constituting a radiation protection screen at ultra high frequency.
Dans le mode de réalisation particulier représenté à la figure 4, l'enceinte 1 a une forme tubulaire et quatre aimants 2 sont disposés aux extrémités de l'enceinte 1 tubulaire, dans l'enceinte 1 , de part et d'autre de l'axe central de l'enceinte, de manière à créer un piège magnétique pour les électrons et les ions du plasma. Pour constituer un tel piège, au moins deux aimants 2 sont nécessaires. Dans le mode particulier de réalisation représenté, l'antenne 3 est disposée le long de l'enceinte 1 , d'un côté de celle-ci. L'enceinte 1 tubulaire permet d'obtenir la lumière dans un grand angle solide, au moins égal 2π stéradians.In the particular embodiment shown in Figure 4, the enclosure 1 has a tubular shape and four magnets 2 are arranged at the ends of the tubular enclosure 1, in the enclosure 1, on either side of the central axis of the enclosure, so as to create a magnetic trap for the electrons and ions of the plasma. To constitute such a trap, at least two magnets 2 are necessary. In the particular embodiment shown, the antenna 3 is arranged along the enclosure 1, on one side of the latter. The tubular enclosure 1 makes it possible to obtain light in a large solid angle, at least equal to 2π steradians.
La source lumineuse selon l'invention peut être de dimensions quelconques et tout particulièrement de dimensions très petites si l'on adapte la longueur d'onde de l'onde électromagnétique injectée et le champ magnétique statique aux dimensions de la source. Ainsi, la source représentée aux figures 1 à 3, par exemple, peut avoir des dimensions de l'ordre du centimètre, la fréquence de l'onde électromagnétique étant de l'ordre de 30 GHz et le champ magnétique statique étant de l'ordre de 1 Tesla. L'émetteur 4 ultra haute fréquence peut, par exemple, comporter un circuit microélectronique fournissant une puissance inférieure ou égale à 1 Watt. Une pluralité de sources lumineuses peut, par exemple, être regroupée sous forme d'un réseau.The light source according to the invention can be of any dimensions and very particularly of very small dimensions if the wavelength of the injected electromagnetic wave and the static magnetic field are adapted to source dimensions. Thus, the source shown in Figures 1 to 3, for example, can have dimensions of the order of a centimeter, the frequency of the electromagnetic wave being of the order of 30 GHz and the static magnetic field being of the order of 1 Tesla. The ultra high frequency transmitter 4 may, for example, include a microelectronic circuit providing a power less than or equal to 1 Watt. A plurality of light sources can, for example, be grouped in the form of an array.
La durée de vie de la source est limitée par la durée de vie de l'émetteur 4 qui est typiquement nettement supérieure à la durée de vie d'une source de lumière classique, par exemple celle d'une ampoule incandescente ou fluorescente.The lifespan of the source is limited by the lifespan of the emitter 4 which is typically significantly greater than the lifespan of a conventional light source, for example that of an incandescent or fluorescent bulb.
L'efficacité du couplage de l'onde électromagnétique ultra haute fréquence et du plasma est très élevée grâce à la résonance cyclotronique d'électrons.The efficiency of the coupling of the ultra high frequency electromagnetic wave and the plasma is very high thanks to the cyclotronic resonance of electrons.
L'efficacité lumineuse de la source est, ainsi, très bonne. L'énergie de l'onde électromagnétique ultra haute fréquence est essentiellement transférée aux électrons, et non aux ions, et est donc directement utile pour les collisions radiatives et ionisantes, sans chauffer le plasma, ce qui permet d'utiliser la source lumineuse à basse consommation.The light efficiency of the source is therefore very good. The energy of the ultra high frequency electromagnetic wave is mainly transferred to the electrons, not to the ions, and is therefore directly useful for radiative and ionizing collisions, without heating the plasma, which allows the light source to be used at low consumption.
II est également possible de réaliser une modulation de la puissance P de l'onde radiofréquence injectée dans l'enceinte 1 , par exemple sous forme d'impulsions de forme et fréquence quelconques. Ces impulsions sont, de préférence, rectangulaires comme représenté à la figure 6. Les trois courbes P1 , P2 et P3 correspondent à une même puissance moyenne Pmn et, ainsi, à une même intensité lumineuse moyenne. En effet, selon la courbe P1 une puissance continue prédéterminée est injectée dans l'enceinte 1. La puissance continue (P1 ) est égale à la puissance moyenne Pmn. La puissance moyenne Pmn injectée est, de préférence, comprise entre 10 et 1000W. La courbe P2 représente des impulsions rectangulaires ayant une puissance maximale Pmax2, par exemple avec une fréquence de 50Hz, et ayant un rapport cyclique tel que la puissance moyenne Pmn injectée dans l'enceinte 1 est la même que celle de la courbe P1. La courbe P3 présente une fréquence deux fois plus faible que celle de la courbe P2 (dans l'exemple 50Hz) et une puissance maximale Pmax3 des d'impulsions rectangulaires deux fois plus élevée que celle de la courbe P2. Ainsi, la puissance moyenne Pmn des courbes P2 et P3 est effectivement égale. Cependant, les puissances maximales des courbes P1 , P2 et P3 étant différentes, les courbes P1 , P2 et P3 correspondent à des spectres de lumière différents.It is also possible to carry out a modulation of the power P of the radiofrequency wave injected into the enclosure 1, for example in the form of pulses of any shape and frequency. These pulses are preferably rectangular as shown in FIG. 6. The three curves P1, P2 and P3 correspond to the same average power Pmn and, thus, to the same average light intensity. Indeed, according to the curve P1 a predetermined continuous power is injected into the enclosure 1. The continuous power (P1) is equal to the average power Pmn. The average power Pmn injected is preferably between 10 and 1000W. Curve P2 represents rectangular pulses with maximum power Pmax2, for example with a frequency of 50Hz, and having a duty cycle such that the average power Pmn injected into the enclosure 1 is the same as that of the curve P1. The curve P3 has a frequency two times lower than that of the curve P2 (in the example 50 Hz) and a maximum power Pmax3 of the rectangular pulses twice as high as that of the curve P2. Thus, the average power Pmn of the curves P2 and P3 is effectively equal. However, the maximum powers of the curves P1, P2 and P3 being different, the curves P1, P2 and P3 correspond to different light spectra.
La suite d'impulsions rectangulaires n'est pas nécessairement périodique. En effet, on peut envisager d'injecter une suite d'impulsions ayant chacune une durée de l'ordre de la microseconde, par exemple. La durée d'une impulsion et/ou l'écart temporel entre deux impulsions successives peut être modulé. Ainsi, le signal lumineux obtenu permet de coder une information, par exemple du type Morse.The series of rectangular pulses is not necessarily periodic. Indeed, it is possible to envisage injecting a series of pulses each having a duration of the order of a microsecond, for example. The duration of a pulse and / or the time difference between two successive pulses can be adjusted. Thus, the light signal obtained makes it possible to code information, for example of the Morse type.
La forme de l'enceinte 1 peut, par exemple, être une forme tubulaire (figure 4), un cylindre creux, un ovoïde (figures 1 à 3) ou un tube renflé comportant l'aimant 2 et/ou l'antenne 3 à l'intérieur ou à l'extérieur de l'espace rempli avec le gaz. Lorsque l'aimant 2 est disposé à l'extérieur de l'espace rempli avec le gaz, il est tout de même enveloppé sensiblement par l'enceinte 1 , par exemple en disposant l'aimant 2 dans un logement externe, comme représenté à la figure 2. Un logement externe peut également être envisagé pour d'autres formes de l'enceinte 1 , par exemple pour une enceinte tubulaire. Un autre exemple est représenté à la figure 5, où l'aimant 2 est disposé au centre de l'enceinte 1 qui présente la forme d'un cylindre creux. L'ensemble constitué par l'enceinte 1 et l'aimant 2 est, de préférence, entouré par un grillage 8 de protection contre le rayonnement à ultra haute fréquence. Contrairement aux bobines de Helmholz, l'aimant 2 permanent peut notamment être disposé de manière à ce que l'enceinte 1 enveloppe l'aimant, que l'aimant 2 soit disposé à l'intérieur de l'enceinte 1 (figures 1 et 3) ou à l'extérieur de l'enceinte 1 dans un logement externe (figure 2), tout en étant enveloppé par l'enceinte 1. Ainsi, peut être libéré un grand angle solide pour la lumière L. De plus, lorsque l'enceinte 1 comporte un grillage fin 8 de protection, l'aimant 2 peut alors être disposé à l'intérieur du grillage 8 (figure 2), tandis que, le grillage constituant une cage de résonance, les bobines de Helmholz ne pourraient pas être disposées à l'intérieur du grillage à cause de l'incompatibilité des bobines et du champ radiofréquence. Or, les dimensions minimales de la cage de résonance sont déterminées par la fréquence de résonance. Par exemple, pour une fréquence de résonance de 2,45 GHz, la cage de résonance doit avoir des dimensions minimales comprises entre 6cm et 10cm. L'utilisation d'un aimant permanent permet alors de réduire les dimensions de l'ensemble de la source de lumière aux dimensions de la cage de résonance, tandis que les bobines de Helmholz s'ajouteraient aux dimensions de la cage de résonance.The shape of the enclosure 1 can, for example, be a tubular shape (Figure 4), a hollow cylinder, an ovoid (Figures 1 to 3) or a swollen tube comprising the magnet 2 and / or the antenna 3 to inside or outside the space filled with gas. When the magnet 2 is placed outside the space filled with the gas, it is still substantially enveloped by the enclosure 1, for example by placing the magnet 2 in an external housing, as shown in the Figure 2. An external housing can also be envisaged for other forms of the enclosure 1, for example for a tubular enclosure. Another example is shown in Figure 5, where the magnet 2 is arranged in the center of the enclosure 1 which has the shape of a hollow cylinder. The assembly constituted by the enclosure 1 and the magnet 2 is preferably surrounded by a grid 8 of protection against ultra high frequency radiation. Unlike the Helmholz coils, the permanent magnet 2 can in particular be arranged so that the enclosure 1 envelops the magnet, that the magnet 2 is placed inside the enclosure 1 (Figures 1 and 3 ) or outside the enclosure 1 in an external housing (Figure 2), while being enveloped by the enclosure 1. Thus, a large solid angle can be released for the light L. In addition, when the enclosure 1 comprises a fine protective mesh 8, the magnet 2 can then be placed inside the mesh 8 (FIG. 2), while, the mesh constituting a resonance cage, the Helmholz coils could not be disposed inside the mesh because of the incompatibility of the coils and the radiofrequency field. However, the minimum dimensions of the resonance cage are determined by the resonance frequency. For example, for a resonance frequency of 2.45 GHz, the resonance cage must have minimum dimensions between 6cm and 10cm. The use of a permanent magnet then makes it possible to reduce the dimensions of the entire light source to the dimensions of the resonance cage, while the Helmholz coils would be added to the dimensions of the resonance cage.
De plus, les bobines de Helmholz nécessitent des connexions électriques supplémentaires. On améliore, ainsi, la compacité de la source lumineuse, qui est particulièrement nécessaire pour le cas d'une source lumineuse portable ou pour l'intégration de la source dans d'autres dispositifs.In addition, Helmholz coils require additional electrical connections. This improves the compactness of the light source, which is particularly necessary in the case of a portable light source or for the integration of the source in other devices.
L'invention n'est pas limitée aux modes de réalisation particuliers représentés aux figures. Le grillage fin de protection peut recouvrir l'enceinte et/ou l'ensemble constitué par l'enceinte et les antennes et éventuellement les aimants. Le fonctionnement de la source lumineuse est indépendant de la forme géométrique de l'aimant et de l'enceinte. The invention is not limited to the particular embodiments shown in the figures. The fine protective mesh may cover the enclosure and / or the assembly formed by the enclosure and the antennas and possibly the magnets. The operation of the light source is independent of the geometric shape of the magnet and the enclosure.

Claims

Revendications claims
1. Source lumineuse alimentée par ultra haute fréquence, comportant un émetteur (4) créant, par l'intermédiaire d'au moins une antenne (3), une onde électromagnétique ultra haute fréquence dans une enceinte (1) étanche, ayant une paroi transparente à la lumière et contenant un gaz à basse pression, la source comportant des moyens magnétiques destinés à créer à l'intérieur de l'enceinte (1) un champ magnétique statique, les valeurs respectives du champ magnétique statique et de la fréquence de l'onde électromagnétique étant prédéterminées, de manière à provoquer à l'intérieur de l'enceinte une résonance cyclotronique d'électrons, source caractérisée en ce que les moyens magnétiques sont constitués par au moins un aimant (2) permanent enveloppé sensiblement par l'enceinte (1) et en ce que l'émetteur (4), l'antenne (3) et l'aimant (2) sont disposés par rapport à l'enceinte (1) de manière à libérer pour la lumière un angle solide d'au moins 211 stéradians.1. Light source powered by ultra high frequency, comprising a transmitter (4) creating, via at least one antenna (3), an ultra high frequency electromagnetic wave in a sealed enclosure (1), having a transparent wall in the light and containing a gas at low pressure, the source comprising magnetic means intended to create inside the enclosure (1) a static magnetic field, the respective values of the static magnetic field and the frequency of the electromagnetic wave being predetermined, so as to cause inside the enclosure a cyclotronic resonance of electrons, source characterized in that the magnetic means consist of at least one permanent magnet (2) enveloped substantially by the enclosure ( 1) and in that the emitter (4), the antenna (3) and the magnet (2) are arranged relative to the enclosure (1) so as to release for light a solid angle of at least minus 211 steradians.
2. Source de lumière selon la revendication 1 , caractérisée en ce que l'antenne (3) est disposée à l'intérieur de l'enceinte (1).2. Light source according to claim 1, characterized in that the antenna (3) is arranged inside the enclosure (1).
3. Source de lumière selon l'une des revendications 1 et 2, caractérisée en ce que l'aimant (2) constitue l'antenne (3).3. Light source according to one of claims 1 and 2, characterized in that the magnet (2) constitutes the antenna (3).
4. Source de lumière selon l'une quelconque des revendications 1 à 3, caractérisée en ce que l'aimant (2) est disposé à l'intérieur de l'enceinte (1).4. Light source according to any one of claims 1 to 3, characterized in that the magnet (2) is arranged inside the enclosure (1).
5. Source de lumière selon l'une quelconque des revendications 1 à 3, caractérisée en ce que l'aimant (2) est disposé à l'extérieur de l'enceinte (1). 5. Light source according to any one of claims 1 to 3, characterized in that the magnet (2) is arranged outside the enclosure (1).
6. Source de lumière selon la revendication 5, caractérisée en ce que l'enceinte (1) comporte un logement (7) externe pour l'aimant (2).6. Light source according to claim 5, characterized in that the enclosure (1) comprises an external housing (7) for the magnet (2).
7. Source de lumière selon la revendication 1 , caractérisée en ce que l'aimant (2) et l'antenne (3) pénètrent dans l'enceinte (1) de manière étanche.7. Light source according to claim 1, characterized in that the magnet (2) and the antenna (3) penetrate into the enclosure (1) in a sealed manner.
8. Source de lumière selon l'une quelconque des revendications 1 à 7, caractérisée en ce que l'enceinte (1 ) comporte un revêtement fluorescent (6) transformant un rayonnement ultraviolet en rayonnement visible.8. Light source according to any one of claims 1 to 7, characterized in that the enclosure (1) comprises a fluorescent coating (6) transforming ultraviolet radiation into visible radiation.
9. Source de lumière selon l'une quelconque des revendications 1 à 8, caractérisée en ce que l'enceinte (1 ) comporte un revêtement conducteur transparent (9).9. Light source according to any one of claims 1 to 8, characterized in that the enclosure (1) comprises a transparent conductive coating (9).
10. Source de lumière selon l'une quelconque des revendications 1 à 9, caractérisée en ce que la source comporte un grillage (8) fin de protection contre le rayonnement ultra haute fréquence.10. Light source according to any one of claims 1 to 9, characterized in that the source comprises a grid (8) end of protection against ultra high frequency radiation.
11. Source de lumière selon l'une quelconque des revendications 1 à 10, caractérisée en ce que l'enceinte (1) a une forme choisie parmi les formes tubulaires, les cylindres creux et les ovoïdes. 11. Light source according to any one of claims 1 to 10, characterized in that the enclosure (1) has a shape chosen from tubular shapes, hollow cylinders and ovoids.
EP05763741A 2004-04-29 2005-04-28 Light source with electron cyclotron resonance Withdrawn EP1774568A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0404551A FR2869719B1 (en) 2004-04-29 2004-04-29 LIGHT SOURCE WITH ELECTRON CYCLOTRONIC RESONANCE
PCT/FR2005/001063 WO2005117069A1 (en) 2004-04-29 2005-04-28 Light source with electron cyclotron resonance

Publications (1)

Publication Number Publication Date
EP1774568A1 true EP1774568A1 (en) 2007-04-18

Family

ID=34944832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05763741A Withdrawn EP1774568A1 (en) 2004-04-29 2005-04-28 Light source with electron cyclotron resonance

Country Status (6)

Country Link
US (1) US20070273262A1 (en)
EP (1) EP1774568A1 (en)
JP (1) JP2007535103A (en)
CN (1) CN1950926A (en)
FR (1) FR2869719B1 (en)
WO (1) WO2005117069A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104731A2 (en) 2005-03-31 2006-10-05 Wms Gaming Inc. Wagering games with unlockable bonus rounds
FR2884043A1 (en) * 2005-04-01 2006-10-06 Pascal Sortais RADIOFREQUENCY-POWERED LIGHT SOURCE FOR PROCESSING SUBSTANCES AND METHOD FOR USING SAME
CN101243541B (en) * 2006-03-14 2010-10-06 Lg电子株式会社 Device for preventing leakage of material inside bulb for plasma lighting system
US8461761B2 (en) 2007-11-16 2013-06-11 Ceravision Limited Lucent plasma crucible
DK2287888T3 (en) * 2007-11-16 2012-07-02 Ceravision Ltd Microwave powered light source
GB0908727D0 (en) * 2009-05-20 2009-07-01 Ceravision Ltd Light source
US20090173958A1 (en) * 2008-01-04 2009-07-09 Cree, Inc. Light emitting devices with high efficiency phospor structures
JP5557851B2 (en) 2008-11-14 2014-07-23 セラビジョン・リミテッド Microwave light source with solid dielectric waveguide
US8405290B2 (en) 2008-11-14 2013-03-26 Ceravision Limited Light source for microwave powered lamp
TWI466167B (en) * 2009-03-12 2014-12-21 Ceravision Ltd Light source powered by microwave energy
GB0907947D0 (en) * 2009-05-08 2009-06-24 Ceravision Ltd Light source
FR3005783A1 (en) * 2013-05-17 2014-11-21 Thales Sa LOW CONSUMPTION PLASMA LIGHTING LAMP
CN106102301B (en) * 2016-07-29 2019-01-29 中国原子能科学研究院 It can high voltage bearing electrostatic deflection plates in compact superconduction bevatron

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461656A (en) 1992-02-28 1995-10-24 Ruxam, Inc. Microwave X-ray source and methods of sterilization
WO1996005600A1 (en) 1994-08-11 1996-02-22 Ruxam, Inc. A portable x-ray source and method for radiography
US6327338B1 (en) 1992-08-25 2001-12-04 Ruxan Inc. Replaceable carbridge for an ECR x-ray source

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911318A (en) * 1972-03-29 1975-10-07 Fusion Systems Corp Method and apparatus for generating electromagnetic radiation
DE2748347A1 (en) * 1977-10-28 1979-05-03 Gte Laboratories Inc Solid state microwave power source for electrodeless light source - has impedance matching section with transmission line to match impedance during warm up and running of lamp avoiding excessive voltage
DE4202734A1 (en) * 1992-01-31 1993-08-05 Leybold Ag Radiation source esp. for radiation-induced etching and CVD installations - comprises adjustable spectrum obtd. by system parameter variation
US5412289A (en) * 1993-12-15 1995-05-02 General Electric Company Using a magnetic field to locate an amalgam in an electrodeless fluorescent lamp
JPH07263160A (en) * 1994-03-25 1995-10-13 Daihen Corp Microwave excited light source
JP2001210489A (en) * 1999-11-16 2001-08-03 Victor Co Of Japan Ltd Microwave discharge light source device and picture display device using the same
US6559460B1 (en) * 2000-10-31 2003-05-06 Nordson Corporation Ultraviolet lamp system and methods
JP2004220918A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Bulb-shaped electrodeless fluorescent lamp and lighting device for electrodeless fluorescent lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461656A (en) 1992-02-28 1995-10-24 Ruxam, Inc. Microwave X-ray source and methods of sterilization
US6327338B1 (en) 1992-08-25 2001-12-04 Ruxan Inc. Replaceable carbridge for an ECR x-ray source
WO1996005600A1 (en) 1994-08-11 1996-02-22 Ruxam, Inc. A portable x-ray source and method for radiography

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2005117069A1

Also Published As

Publication number Publication date
US20070273262A1 (en) 2007-11-29
CN1950926A (en) 2007-04-18
WO2005117069A1 (en) 2005-12-08
FR2869719B1 (en) 2007-03-30
JP2007535103A (en) 2007-11-29
WO2005117069A8 (en) 2006-05-04
FR2869719A1 (en) 2005-11-04

Similar Documents

Publication Publication Date Title
EP1774568A1 (en) Light source with electron cyclotron resonance
EP0013242A1 (en) Generator for very high frequency electromagnetic waves
FR2726729A1 (en) DEVICE FOR PRODUCING A PLASMA FOR DISSOCIATION BETWEEN THE ZONES OF PROPAGATION AND ABSORPTION OF MICROWAVES
EP2338318B1 (en) Low-power gaseous plasma source
EP0184475A1 (en) Method and apparatus for igniting a hyperfrequency ion source
Guivan et al. Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures
EP0384813A1 (en) Electron gun with a beam modulated by an optical device
EP2873090B1 (en) Glow-discharge lamp
FR2529400A1 (en) GAS LASER WITH EXCITATION BY TRANSVERSE ELECTRIC DISCHARGE TRIGGERED BY PHOTOIONIZATION
Treshchalov et al. Spectroscopic diagnostics of a pulsed discharge in high-pressure argon
El-Dakrouri et al. VUV emission from a novel DBD-based radiation source
EP1247332B1 (en) Microwave pulse generator incorporating a pulse compressor
WO2021094666A1 (en) Generator of flashes of light
JPH1021885A (en) No-electrode discharge lamp
FR2680275A1 (en) ION SOURCE WITH ELECTRONIC CYCLOTRONIC RESONANCE OF THE WAVEGUIDE TYPE.
JP2005519437A (en) Discharge light source with electron beam excitation
FR2888397A1 (en) ELECTRONIC CYCLOTRONIC RESONANCE LUMINOUS APPARATUS
Shuaibov et al. A xenon-iodine electric discharge bactericidal lamp
FR2883410A1 (en) PHOTON SOURCE COMPRISING A MULTICHARGED ION PLASMA SOURCE WITH ELECTRONIC CYCLOTRON RESONANCE.
Panchenko et al. Planar KrCl* excilamp pumped by transverse self-sustained discharge with optical system for radiation concentration
JPH07263160A (en) Microwave excited light source
Mizojiri et al. Emission properties of antenna-excited microwave discharge lamps filled with extremely high pressure mercury
Shuaibov et al. Emissivity of the pulsed capacitive discharge in helium-iodine and neon-iodine mixtures
Sentis et al. Discharge properties of a formed-ferrite plasma light source in the VUV region
FR2980912A1 (en) Gas discharge lamp, has casing comprising active gas containing oxygen and/or nitrogen oxide, where mixture of plasma gas and active gas emits UV or visible radiation and mercury content in casing is zero

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071106