EP1774301A2 - Tomographe a rayons x assiste par ordinateur ainsi que procede pour examiner une piece a controler a l'aide d'un tomographe a rayons x assiste par ordinateur - Google Patents

Tomographe a rayons x assiste par ordinateur ainsi que procede pour examiner une piece a controler a l'aide d'un tomographe a rayons x assiste par ordinateur

Info

Publication number
EP1774301A2
EP1774301A2 EP05773890A EP05773890A EP1774301A2 EP 1774301 A2 EP1774301 A2 EP 1774301A2 EP 05773890 A EP05773890 A EP 05773890A EP 05773890 A EP05773890 A EP 05773890A EP 1774301 A2 EP1774301 A2 EP 1774301A2
Authority
EP
European Patent Office
Prior art keywords
detector
ray
computer tomograph
detector array
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05773890A
Other languages
German (de)
English (en)
Inventor
Geoffrey Harding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Detection Inc
Original Assignee
Yxlon International Security GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yxlon International Security GmbH filed Critical Yxlon International Security GmbH
Publication of EP1774301A2 publication Critical patent/EP1774301A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/20Sources of radiation
    • G01N2223/201Sources of radiation betatron
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Definitions

  • the invention relates to an X-ray computer tomograph having an X-ray source which generates a fan beam and a 2-dimensional energy-resolving detector array, which are arranged on a gantry.
  • the invention relates to a method for examining a test piece with an X-ray computer tomograph.
  • DE 100 09 285 A1 discloses a computer tomograph for determining the pulse transmission spectrum in a test area.
  • an X-ray source with a primary collimator is arranged on a gantry rotatable about an axis, with which a fan beam is generated.
  • a detector array Opposite the x-ray source lies a detector array, likewise attached to the gantry, for detecting the x-rays passing through an examination area.
  • a secondary collimator is arranged, which transmits only X-ray radiation from a specific scatter voxel from the examination area into an assigned column of the detector array.
  • the object of the invention is therefore to overcome the aforementioned disadvantages.
  • the omission of the secondary collimator increases the leakage flux, so that a lower tube power is required or a shorter test time is required for a test part
  • there is no undesirable background to scattered radiation originating from lamellae of the secondary collimator moderate X-ray computer tomograph too cheaper than its predecessor with secondary collimator, because on the one hand material costs are saved and on the other hand, the gantry has to move much less mass in its rotation, which leads to cheaper drives and bearings.
  • the pulse transmission spectrum lies between 0.2 and 2 n ⁇ f 1 .
  • the molecular structure functions of the materials that are of interest in the security field - for example, in the security control of baggage at airports - are of interest. Above this range, the peak information and the intensity of molecular structure functions are negligible for these materials.
  • a further advantageous embodiment of the invention provides that the energy of the X-radiation is between 100 and 500 keV. With such a high-energy X-ray radiation, the examination area is increased both in the security control and in the non-destructive analysis. In addition, this energy also has a positive effect on the required size of the individual detector elements of the detector array.
  • a further advantageous development of the invention provides that the detector array is arranged on a cylinder jacket surface about a central axis running perpendicular to the fan beam through the X-ray source. This makes it possible to use known arrangements of detector arrays arranged on a gantry. Thus, not all parts of the known X-ray computer tomograph need to be completely redesigned.
  • h ⁇ 0.2 * aresine (g max * ⁇ ) * Z P.
  • the detector resolution thus achieved achieves an acceptable detector element height at very high x-ray energies and a conventional distance of the measuring point from the detector. It is advantageous if a pixellated detector array is used as detector array with a number of 5 to 50 detector elements in the direction of the Y-axis, preferably of 15 detector elements.
  • a further advantageous development of the invention provides that the gantry for receiving the scattering data is rotated about an axis which is perpendicular to the plane of the fan beam. If scattering radiation from other scatter voxels should also fall in a detector element during a recording without rotation of the gantry, this is compensated by the rotation, since by the scatter voxel. always another Partial beam passes. The scattered radiation emanating from the scatter voxel thus changes constantly, so that an additional calculation is possible on account of the multiplicity of data obtained during the rotation of the gantry.
  • Fig. 1 is a perspective, schematic view of an X-ray computed tomography according to the invention.
  • FIG. 2 shows a view perpendicular to the plane of the fan beam of the X-ray computer tomograph from FIG. 1.
  • Fig. 1 the schematic structure of an X-ray computed tomography according to the invention is shown in a greatly simplified manner.
  • computer tomography by means of coherently scattered X-ray guides, spatially resolved diffraction patterns can be reconstructed on the basis of the scattered and detected X-ray radiation.
  • a fan beam 2 is used, which is produced by an X-ray source 1.
  • the fan beam 2 is generated regularly by a slit diaphragm as a primary collimator (not shown). It completely penetrates the test piece 4 over its entire width.
  • the conventional and known examination method is between the test part 4 and a detector array 5 a sec.
  • the detector array 5 has a series of elements in a 2-dimensional structure. It is made from a material which has the capability of energy-resolving detection, for example from CdZnTe.
  • the detector elements of the detector array 5 are arranged on a cylinder jacket surface.
  • the axis of the cylinder jacket passes through the X-ray source 1 and runs parallel to the Y-axis, ie perpendicular to the fan beam 2.
  • the dashed line indicates the Z-axis, in the illustrated case the line of sight 3 between the detector element, in the coordinate origin is arranged, and the X-ray source 1 corresponds.
  • the detector array 5 has lines that extend parallel to the X-axis and columns that extend parallel to the Y-axis.
  • the primary radiation elements 6 are arranged on the X-axis. With these, the X-ray radiation passing directly through the X-ray source 1 through the test piece 4, which was thus not scattered, is detected.
  • the scattering radiation elements 7 only X-ray radiation is detected which has undergone coherent scattering within the scattering voxel S.
  • the width B of a "strip" of an object radiating coherent scattered radiation into a certain detector column is ⁇ Z p * ⁇
  • the entire detector array 5 extends, in the X direction, so far that the entire fan beam 2 passing through the test piece 4 is detected.
  • 50 detector elements regularly extend, since the coherent scattered radiation decreases in its intensity towards larger scattering angles.
  • the coherently scattered X-ray radiation from a scatter voxel S around a certain observation point P results, on the basis of the specified scattering angle-dependent intensity of the coherently scattered X-ray images, that significant scattering radiation is detected only in the given scattering angle range to ⁇ . From the observation point P, a cone thus results, in the region of which in the detector array 5 coherently scattered X-ray quanta from the scatter voxel S are detected.
  • the radius R of this region is for small angles proportional to the product ⁇ * Z p due to the proximity at small angles, where Z p represents the coordinate of the observation point P with respect to the origin of the coordinate system.
  • this distance Z p is approximately 2 m, so that the radius R is approximately 1 cm.
  • the detector resolution depends on this radius R. It is the finer, the more detector elements in a column of the detector array 5 within this radius R are arranged.
  • FIG. 2 shows schematically how the X-ray source 1 and the detector array 5 are fastened to a gantry (not shown) which can be rotated around the test part 4.
  • a gantry (not shown) which can be rotated around the test part 4.
  • the gantry is rotated about an imaging angle ⁇ about an axis parallel to the Y axis
  • Detector array 5 is read out for each value of the imaging angle ⁇ , so that a 4-dimensional data set results for each imaging angle ⁇ .
  • This data set S raw ( ⁇ , E, x, y) next to Angle of projection ⁇ also depends on the energy E of the X-ray quantum detected in the energy-detecting detector element and on the X and Y coordinates of the detecting detector element.
  • the second step requires an estimate of the multiple scattering component. This can be obtained from measurements or photon transport simulations with typical test piece geometries. It is also possible to include this second step in the iterative construction under an estimate of the multiple-scattering component, which is based on the current object distribution.
  • forward projection data stemming from an assumed material distribution whose molecular structure function is known are compared with the measured scatter data. The deviations between these two data sets are iteratively subjected to backprojections into the object space.
  • An object matrix ⁇ mol is written with data of the backprojection of the data S ( ⁇ lf E 1 , X 1 , y ⁇ from the first projection into the object space taking into account the geometrical assumptions from X-ray source 1 and detector array 5, with the angular steps which were carried out in the measurement. leads by using the values of the object matrix ⁇ mol of flexibils ⁇ step.
  • the difference between the forward projection data and the measured data is used in a difference matrix which is subsequently used for a back projection. Repeated iterative forward and backward projections are performed until all the image data has been used once. This procedure is repeated several times, the weighting being reduced each time until the mean square error sum of the difference matrix is no longer reduced in the next iteration step.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

L'invention concerne un tomographe à rayons X assisté par ordinateur, comprenant une source de rayons X (1) qui génère un faisceau de rayons X en éventail, ainsi qu'un réseau de détecteurs bidimensionnel (5) à résolution en énergie, ces dispositifs étant placés de part et d'autre d'un support mobile de sorte que le rayonnement laser traverse intégralement une zone d'exploration et qu'une rangée d'éléments de détection (6) se situe dans le plan du faisceau en éventail (2), plusieurs autres rangées d'éléments de détection (7) se raccordant à cette première rangée dans au moins une direction perpendiculairement au faisceau en éventail (2). Pendant la mesure, aucun collimateur secondaire n'est placé entre la zone d'exploration et le réseau de détecteurs (5) et on a la relation suivante pour la largeur (B) des éléments de détection : B = ZP * arcsin (qmax * ?), qmax représentant la transmission d'impulsion, ? la longueur d'onde du rayonnement laser et ZP la distance du point de mesure au détecteur.
EP05773890A 2004-07-23 2005-07-25 Tomographe a rayons x assiste par ordinateur ainsi que procede pour examiner une piece a controler a l'aide d'un tomographe a rayons x assiste par ordinateur Withdrawn EP1774301A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004035943A DE102004035943B4 (de) 2004-07-23 2004-07-23 Röntgencomputertomograph sowie Verfahren zur Untersuchung eines Prüfteils mit einem Röntgencomputertomographen
PCT/EP2005/008082 WO2006010588A2 (fr) 2004-07-23 2005-07-25 Tomographe a rayons x assiste par ordinateur ainsi que procede pour examiner une piece a controler a l'aide d'un tomographe a rayons x assiste par ordinateur

Publications (1)

Publication Number Publication Date
EP1774301A2 true EP1774301A2 (fr) 2007-04-18

Family

ID=35509657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05773890A Withdrawn EP1774301A2 (fr) 2004-07-23 2005-07-25 Tomographe a rayons x assiste par ordinateur ainsi que procede pour examiner une piece a controler a l'aide d'un tomographe a rayons x assiste par ordinateur

Country Status (5)

Country Link
US (1) US7583783B2 (fr)
EP (1) EP1774301A2 (fr)
CN (1) CN101088007A (fr)
DE (1) DE102004035943B4 (fr)
WO (1) WO2006010588A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8000435B2 (en) * 2006-06-22 2011-08-16 Koninklijke Philips Electronics N.V. Method and system for error compensation
DE102009036579A1 (de) * 2009-08-07 2011-02-17 Wenzel Volumetrik Gmbh Röntgendetektorvorrichtung
WO2013103408A1 (fr) 2011-10-07 2013-07-11 Duke University Appareil d'imagerie par diffusion de rayons x à ouverture codée et procédé s'y rapportant
US10004464B2 (en) 2013-01-31 2018-06-26 Duke University System for improved compressive tomography and method therefor
WO2015012850A1 (fr) * 2013-07-25 2015-01-29 Analogic Corporation Génération de signature de diffraction d'un élément à l'intérieur d'un objet
WO2015023741A1 (fr) 2013-08-13 2015-02-19 Duke University Éclairage structuré pour imagerie moléculaire volumétrique
EP3102109B1 (fr) * 2014-06-16 2017-11-08 Koninklijke Philips N.V. Acquisition de données hybride de tomodensitométrie (tdm)
US10987071B2 (en) * 2017-06-29 2021-04-27 University Of Delaware Pixelated K-edge coded aperture system for compressive spectral X-ray imaging
US10789738B2 (en) * 2017-11-03 2020-09-29 The University Of Chicago Method and apparatus to reduce artifacts in a computed-tomography (CT) image by iterative reconstruction (IR) using a cost function with a de-emphasis operator
WO2020028412A1 (fr) * 2018-07-31 2020-02-06 Lam Research Corporation Détermination d'un angle d'inclinaison dans des réseaux à motifs de structures à rapport d'aspect élevé
CN113552640A (zh) * 2020-04-02 2021-10-26 同方威视技术股份有限公司 射线检查系统及散射校正方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608965A1 (de) * 1986-03-18 1987-10-01 Philips Patentverwaltung Verfahren zur bestimmung der raeumlichen struktur in einer schicht eines untersuchungsbereiches
US5319547A (en) * 1990-08-10 1994-06-07 Vivid Technologies, Inc. Device and method for inspection of baggage and other objects
DE4101544A1 (de) * 1991-01-19 1992-07-23 Philips Patentverwaltung Roentgengeraet
US5414623A (en) * 1992-05-08 1995-05-09 Iowa State University Research Foundation Optoelectronic system for implementation of iterative computer tomography algorithms
DE4441843A1 (de) * 1994-11-24 1996-05-30 Philips Patentverwaltung Anordnung zum Messen des Impulsübertragungsspektrums von elastisch gestreuten Röntgenquanten
GB2297835A (en) * 1995-02-08 1996-08-14 Secr Defence Three dimensional detection of contraband using x rays
US5717733A (en) * 1995-05-31 1998-02-10 Quanta Vision, Inc. X-ray and neutron diffractometric imaging of the internal structure of objects
RU2145485C1 (ru) * 1998-03-12 2000-02-20 Кванта Вижн, Инк. Ультрамалоугловая рентгеновская томография
DE19947537A1 (de) * 1999-10-02 2001-04-05 Philips Corp Intellectual Pty Gitter zur Absorption von Röntgenstrahlung
DE10009285A1 (de) * 2000-02-28 2001-08-30 Philips Corp Intellectual Pty Computertomograph zur Ermittlung des Impulsübertrags-Spektrums in einem Untersuchungsbereich
US6535571B2 (en) * 2000-03-27 2003-03-18 Siemens Aktiengesellschaft Detector for an X-ray computed tomography apparatus
DE10055739B4 (de) * 2000-11-10 2006-04-27 Siemens Ag Streustrahlungskorrekturverfahren für eine Röntgen-Computertomographieeinrichtung
DE50100675D1 (de) * 2001-03-14 2003-10-30 Yxlon Int X Ray Gmbh Anordnung zum Messen des Impulsübertragungsspektrums von in einem Untersuchungsbereich für Behältnisse elastisch gestreuten Röntgenquanten
JP4216078B2 (ja) * 2001-04-03 2009-01-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ パルス運動量移動スペクトルを決定するコンピュータ断層撮影装置
US6751288B1 (en) * 2002-10-02 2004-06-15 The United States Of America As Represented By The United States Department Of Energy Small angle x-ray scattering detector
DE10252662A1 (de) * 2002-11-11 2004-05-27 Philips Intellectual Property & Standards Gmbh Computertomographie-Verfahren mit kohärenten Streustrahlen und Computertomograph
WO2004105610A1 (fr) * 2003-05-28 2004-12-09 Philips Intellectual Property & Standards Gmbh Tomodensitometrie par diffusion coherente d'un faisceau en eventail
US20070019782A1 (en) * 2003-10-14 2007-01-25 Udo Van Stevendaal Fan-beam coherent-scatter computed tomography

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006010588A2 *

Also Published As

Publication number Publication date
DE102004035943B4 (de) 2007-11-08
CN101088007A (zh) 2007-12-12
US7583783B2 (en) 2009-09-01
WO2006010588A2 (fr) 2006-02-02
US20070153970A1 (en) 2007-07-05
WO2006010588A3 (fr) 2006-03-30
DE102004035943A1 (de) 2006-02-16

Similar Documents

Publication Publication Date Title
EP1774301A2 (fr) Tomographe a rayons x assiste par ordinateur ainsi que procede pour examiner une piece a controler a l'aide d'un tomographe a rayons x assiste par ordinateur
DE102006017290B4 (de) Fokus/Detektor-System einer Röntgenapparatur, Röntgen-System und Verfahren zur Erzeugung von Phasenkontrastaufnahmen
DE69931096T2 (de) Vorrichtung und Verfahren für zwei-Energien Röntgenstrahlungs-Bilderzeugung
DE102006063048B3 (de) Fokus/Detektor-System einer Röntgenapparatur zur Erzeugung von Phasenkontrastaufnahmen
DE102011004598B4 (de) Verfahren und Computersystem zur Streustrahlkorrektur in einem Multi-Source-CT
EP0153786B1 (fr) Appareil à rayons X
DE102011056347A1 (de) Integrierte Röntgendetektoranordnung und Verfahren zur Herstellung derselben
EP0242895B1 (fr) Procédé pour la détermination de la structure spatiale dans une couche de la zone examinée
EP0028431B1 (fr) Dispositif pour la mesure de la répartition de densité d'un rayonnement dispersé dans une zône plane à examiner
DE102012104608A1 (de) Vielpunkt-Röntgen-Phasenkontrast-Bildgebungsssystem
DE3911976C2 (de) Verfahren zum Erzeugen von Röntgenbildern eines Untersuchungsobjektes in einem Computertomographen und Computertomograph
DE102009028104A1 (de) Bildrekonstruktionsverfahren für energiereiches Doppelenergie-CT-System
DE102011076346A1 (de) Verfahren und Computertomographiesystem zur Erzeugung tomographischer Bilddatensätze
EP3825736A1 (fr) Système de détecteur imageur destiné au rayonnement gamma à l'aide des processus de diffusion compton uni et bidirectionnels
DE102011076351A1 (de) Verfahren und Computertomographiesystem zur Erzeugung tomographischer Bilddatensätze
DE2821083A1 (de) Anordnung zur ermittlung der raeumlichen absorptionsverteilung in einem ebenen untersuchungsbereich
DE102007058447A1 (de) Röntgendetektor, Röntgengerät und Verfahren zur Erfassung einer Röntgenstrahlung
EP0259921A2 (fr) Procédé pour formation en 2 dimensions des images de profil Compton
DE102015225395A1 (de) Ermittlung einer räumlichen Verteilung eines Materialeigenschaftswerts auf Basis einer Einzelenergie-Bildaufnahme
DE102012204350B4 (de) Verfahren zur Energie-Kalibrierung quantenzählender Röntgendetektoren in einem Dual-Source Computertomographen
EP0057957B1 (fr) Dispositif d'examen non médical d'un corps
DE102011006579A1 (de) Verfahren zur Erzeugung von Bilddaten eines Untersuchungsobjekts, Projektionsdatenverarbeitungseinrichtung, Röntgensystem und Computerprogramm
DE2831038C2 (de) Strahlendiagnostikgerät für die Erzeugung von Schichtbildern
DE102004043693A1 (de) Detektoranordnung für ein medizinisches Diagnosegerät sowie medizinisches bildgebendes Diagnoseverfahren
DE102015217617A1 (de) Verfahren zum Korrigieren von Röntgenbilddaten umfassend Information bezüglich eines Zerfallsprozesses eines radioaktiven Materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070223

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GE HOMELAND PROTECTION, INC.

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080401

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110201