EP1766301B1 - Coeur de pompe a chaleur compact de type eau/eau, et pompe a chaleur comportant un tel coeur de pompe - Google Patents

Coeur de pompe a chaleur compact de type eau/eau, et pompe a chaleur comportant un tel coeur de pompe Download PDF

Info

Publication number
EP1766301B1
EP1766301B1 EP05772999A EP05772999A EP1766301B1 EP 1766301 B1 EP1766301 B1 EP 1766301B1 EP 05772999 A EP05772999 A EP 05772999A EP 05772999 A EP05772999 A EP 05772999A EP 1766301 B1 EP1766301 B1 EP 1766301B1
Authority
EP
European Patent Office
Prior art keywords
heat pump
heat
pump core
exchangers
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05772999A
Other languages
German (de)
English (en)
Other versions
EP1766301A1 (fr
Inventor
Georges Favier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fessart Philippe
Horps Michel
Original Assignee
Fessart Philippe
Horps Michel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fessart Philippe, Horps Michel filed Critical Fessart Philippe
Priority to PL05772999T priority Critical patent/PL1766301T3/pl
Publication of EP1766301A1 publication Critical patent/EP1766301A1/fr
Application granted granted Critical
Publication of EP1766301B1 publication Critical patent/EP1766301B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements

Definitions

  • the invention relates to water / water type heat pumps.
  • This equipment makes it possible to capture the thermal energy available in the air, in the upper layers of the earth or in open water, to concentrate this energy and to return it in this concentrated form (at a higher temperature) to supply a hot water heating circuit.
  • water / water is meant a type of heat pump in which the heat capture circuit and the heat return circuit (heating) are both liquid circulating circuits, as opposed to water / air systems.
  • air / air it being understood that, depending on the needs, the water may be replaced or supplemented by another liquid.
  • water is often added ethylene glycol or other additive acting as antifreeze.
  • COP coefficient of performance
  • a heat pump comprises a compressor block and two heat exchangers respectively connected to the collection and heat recovery networks.
  • the heat exchangers are also coupled to the compressor and the refrigerant circuit associated therewith, comprising a condenser, a pressure reducer and an evaporator.
  • the compressor concentrates the captured energy on the condenser side and restores the energy to the heating circuit on the evaporator side.
  • the overall performance of the heat pump is even better than the heat exchange is complete and all the actions of the compressor and heat exchangers operate with the best possible thermal insulation vis-à-vis the environment outside.
  • heat pump core which constitutes an integrated assembly intended to be associated with the various elements of the heat capture and recovery circuits (piping, circulation pumps, thermostatic sensor, etc.) as well as 'to the power and control equipment of the system.
  • connections between compressor and heat exchangers, and between heat exchangers and input / output ports of the collection and heat recovery networks are made by means of copper tubes, assembled by soldering.
  • copper is characterized by a high thermal conductivity, which is not sought in this application because it generates losses by heat exchange with the environment
  • brazing is to assemble different metals by providing a third metal (silver solder, in the case of a brazing) brought to a temperature above its melting point. Since the elements of the compressor are generally made of black steel and the exchangers are made of black steel or stainless steel, and these elements are connected to each other by copper tubes, we will find us at the place of the brazed connections in the presence of continuity solutions steel / copper or stainless steel / copper, with further interposition of the filler metal.
  • the copper bonds are generally made so as to provide the whole with a certain flexibility, thanks to rather long connections and / or a particular geometry (lyres, coils, etc.) to better disperse the stresses resulting in particular from the propagation of vibrations in the copper pipes.
  • the object of the present invention is to remedy these drawbacks by proposing an optimized heat pump core both from the point of view of efficiency and compactness and reliability of operation.
  • the heat pump core of the invention is a pump core of water / water type as described above and disclosed by the EP-A-0 035 656 above, that is to say comprising, more precisely and in a manner known per se: a compressor block, comprising a closed circuit charged with refrigerant with compressor, condenser, expander and evaporator; an input socket and an output socket to a heat collection network; an input socket and an output socket to a heat transfer network; a first heat exchanger, coupled on the primary side to the evaporator of the compressor block and the secondary side to the taps of the heat collection network; and a second heat exchanger, coupled on the primary side to the condenser of the compressor block and on the secondary side to the outlets of the heat transfer network.
  • the connecting pipes between the heat exchangers and the compressor block, and / or the connection pipes between the heat exchangers and the heat recovery and collection system taps are tubes of unbrazed connection, formed by welded stainless steel tubes.
  • the vibrations generated by the compressor can not cause deterioration of these assemblies, and the mechanical strength, the geometry and the flexibility of the tubes and the stainless steel exchangers can be defined so as to absorb without rupture these vibrations by short links and small diameter, as opposed to the copper links used until now.
  • the welding is advantageously performed by orbital TIG welding, which is a perfectly controlled technique that can be implemented automatically, thus with precise control of the various parameters and excellent reproducibility, again leading to an increase in overall reliability. of the device.
  • the automatic TIG orbital welding makes it possible to limit to a minimum the temperature rise of the compressor body, thus avoiding any embrittlement thereof.
  • the heat exchangers are stainless steel tubular exchangers.
  • This type of exchanger which is perfectly suitable for a heat pump according to the invention where the various connections are soldered connections, can advantageously replace solder-assembled plate heat exchangers hitherto generally used in the field of pumps. heat. Even if they ensure a good heat exchange, plate heat exchangers are indeed fragile and do not support long water loaded with mineral salts, which can cause clogging by accumulation of deposits or solid impurities. Finally, their behavior in the presence of continuous vibrations remains limited.
  • This sealed confinement enclosure may in particular comprise a support base, supporting the compressor block and the heat exchangers, and a cover attached to this support base, the support base and the cover being permanently joined to each other, for example by welding if they are metal. It is understood that this "support base” may constitute all or part of any one or some of the faces of the assembly, and not only its lower part.
  • the residual free space of the confinement chamber may be filled with an insulating material, the support base then comprising an occultable orifice for introducing this insulating material.
  • the internal atmosphere of the confinement chamber may be under vacuum, or filled with an insulating dry gas, the support base then comprising an occultable orifice, in communication with said atmosphere, for the application of the vacuum or the introduction of the gas.
  • the catches of the heat collection network, the outlets of the heat transfer network, and the said occultable port (s) are grouped on the support base.
  • the invention also covers, as such, a heat pump comprising, in combination, a pump core as above associated with coupling members, comprising at least one circulator, a heat capture circuit and a heat recovery circuit, as well as thermal regulating members, and power supply members of the assembly.
  • reference numeral 10 denotes the compressor unit, which is an assembly with a closed circuit, charged with refrigerant, comprising a compressor 11, an evaporator 12, a condenser 13 and a pressure regulator 14.
  • the compressor motor is for example an electric motor powered from the outside by the mains.
  • a first heat exchanger 20 is coupled on the primary side to the evaporator 12 of the compressor block 10 via two links 21 and 22. On the secondary side, it is connected to receptacles 23, 24 for fluid inlet and outlet intended to be connected. a heat collection network; the connections to the sockets 23, 24 are made by pipes 25, 26.
  • a second heat exchanger 30 is coupled on the primary side to the condenser 13 of the compressor block 10 via two links 31 and 32. On the secondary side, it is connected to fluid inlet and outlet taps 33, 34 intended to be connected to a heat transfer network (heating network); the connections to the taps 33, 34 are produced by tubes 35, 36.
  • the exchangers 20 and 30 are preferably twisted tubular exchangers made of welded stainless steel, the size of which is adapted to the power of the compressor to guarantee optimum exchange both towards the heating circuit and from the heat capture circuit.
  • the links 21, 22, 31, 32 between the compressor 10 and the heat exchangers 20 and 30, as well as the connections 25, 26, 35, 36 between the exchangers 20 and 30 and the sockets 23, 24, 33, 34 inlet and outlet networks of heat capture and return are provided by means of welded stainless steel tubes.
  • the diameter of these tubes is optimized to ensure this connection without creating any obstacle for the fluid (refrigerant, or fluid flowing in the networks), with a length and a geometry studied to achieve this connection by the shortest path possible.
  • the exchangers can be simply suspended by the tubes 21, 22, 25, 26 (or 31, 32, 35, 36, respectively), which hold them in place without having to it is necessary to provide support for mounting brackets to the frame or similar means, thermal bridge generators.
  • a small diameter tube 16 which may also be made of spiral or multispire-shaped stainless steel, provides sealed access for refrigerant charging of the compressor and control of this charge. Outside the enclosure, this stainless steel tube may be extended with a copper tube allowing the connection to the reserve of refrigerant gas by methods commonly used by refrigeration.
  • the various elements of the heat pump core that have just been described are grouped inside a housing 40 consisting of a support base 41 and a cover 42.
  • all the inputs and outputs that are useful and all access to the elements of the pump core are grouped at the support base 41, including the sockets 23, 24, 33, 34 to the heat capture and recovery networks.
  • the support base occupies the whole lower part of the whole. But it can also occupy all or part of any one or some faces of the assembly, as needed in the realization of the heat pump.
  • the cover 42 can therefore be easily sealed, formed in one piece, for example metal, without any crossing. It can be sealed to the support base 41 to form an envelope completely isolating the heat pump core from its environment.
  • this waterproof fastening can even be advantageously achieved by welding of the two elements so as to constitute a single functional block, not removable.
  • Other permanent joining solutions may be envisaged, for example gluing, when the cover and / or base support are not made of a metal material suitable for welding.
  • an insulating material is introduced through the orifice 44 to completely fill the internal volume of the pump core, for example a powdery material or an expandable foam, which will minimize the undesirable thermal exchanges and increase all the performance of the system.
  • this lining reduces the transmission of mechanical and acoustic vibrations produced by the compressor to the outside.
  • the sealed enclosure can finally be drawn to vacuum or filled with a dry gas providing better thermal insulation characteristics than air, for example argon or sulfur hexafluoride.
  • a dry gas providing better thermal insulation characteristics than air, for example argon or sulfur hexafluoride.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Central Heating Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

  • L'invention concerne les pompes à chaleur de type eau/eau.
  • Ces équipements permettent de capter l'énergie thermique disponible dans l'air, dans les couches supérieures de la terre ou encore dans de l'eau libre, de concentrer cette énergie et de la restituer sous cette forme concentrée (à température plus élevée) pour alimenter un circuit de chauffage à eau chaude.
  • Par « eau/eau » on entendra un type de pompe à chaleur dans lequel le circuit de captage de chaleur et le circuit de restitution de chaleur (chauffage) sont tous deux des circuits où circule un liquide, par opposition aux systèmes « eau/air » ou « air/air », étant bien entendu qu'en fonction des besoins l'eau peut être remplacée ou complétée par un autre liquide. En particulier, dans le circuit de captage de chaleur l'eau est souvent additionnée d'éthylène-glycol ou autre additif faisant fonction d'antigel.
  • L'intérêt d'une pompe à chaleur réside dans le fait que l'énergie nécessaire pour son alimentation est inférieure à l'énergie restituée dans le circuit de chauffage. On désigne par « coefficient de performance » (COP) le ratio entre l'énergie restituée et l'énergie consommée par le système, ratio qui peut atteindre typiquement une valeur de 5 avec les meilleurs systèmes actuellement disponibles sur le marché.
  • Plus précisément, une pompe à chaleur comporte un bloc compresseur et deux échangeurs de chaleur reliés respectivement aux réseaux de captage et de restitution de chaleur. Les échangeurs de chaleur sont par ailleurs couplés au compresseur et au circuit frigorigène associé à ce dernier, comprenant un condenseur, un détendeur et un évaporateur. Le compresseur concentre côté condenseur l'énergie captée et restitue côté évaporateur l'énergie à restitue au circuit de chauffage.
  • La performance globale de la pompe à chaleur est d'autant meilleure que l'échange thermique est complet et que l'ensemble des actions du compresseur et des échangeurs s'opèrent avec la meilleure isolation thermique possible vis-à-vis de l'environnement extérieur.
  • Le compresseur, son circuit de fluide frigorigène associé ainsi que les deux échangeurs de chaleur sont regroupés en un même bloc fonctionnel, ci-après désigné « coeur de pompe à chaleur », qui constitue un ensemble intégré destiné à être par ailleurs associé aux différents éléments des circuits de captage et de restitution de chaleur (tuyauterie, pompes de circulation, capteur thermostatique, etc.) ainsi qu'aux équipements d'alimentation et de régulation du système.
  • De tels ensembles intégrés sont par example décrits par les EP-A-0 035 656 , DE-A-198 20 818 et WO-A-91/05977 . Dans les coeurs de pompe à chaleur proposés jusqu'à présent, les différents éléments sont reliés entre eux par des tubes assemblés selon les techniques usuelles bien connues des chauffagistes et frigoristes.
  • Plus précisément, les liaisons entre compresseur et échangeurs, et entre échangeurs et prises d'entrée/sortie des réseaux de captage et de restitution de chaleur, y sont réalisées au moyen de tubes en cuivre, assemblés par brasage.
  • Toutefois, dans l'application aux pompes à chaleur, l'utilisation de tubes en cuivre, et l'assemblage des tubes par brasage, n'est pas sans présenter certains inconvénients.
  • En premier lieu, le cuivre se caractérise par une grande conductibilité thermique, qui n'est pas recherchée dans cette application puisqu'elle est génératrice de pertes par échanges thermiques avec l'environnement
  • En second lieu, les assemblages réalisés par brasage, s'ils garantissent une bonne étanchéité, ne sont pas d'une résistance mécanique et à la corrosion très élevée. En effet comme on le sait, le brasage consiste à assembler des métaux différents par apport d'un métal tiers (brasure à l'argent, dans le cas d'un brasage fort) porté à une température supérieure à son point de fusion. Du fait que les éléments du compresseur sont généralement en acier noir et les échangeurs en acier noir ou acier inoxydable, et que ces éléments sont reliés entre eux par des tubes en cuivre, on va se trouver à l'endroit des liaisons brasées en présence de solutions de continuité acier/cuivre ou acier inox/cuivre, avec en outre interposition du métal d'apport.
  • Or ces liaisons sont sujettes en provenance du compresseur à des vibrations qui conduiraient rapidement à des fuites ou même des détériorations dans le cas d'un assemblage trop rigide.
  • Pour éviter cet recueil, les liaisons en cuivre sont généralement réalisées de manière à procurer à l'ensemble une certaine souplesse, grâce à des liaisons assez longues et/ou une géométrie particulière (lyres, serpentins, etc.) permettant de mieux disperser les contraintes résultant notamment de la propagation des vibrations dans les canalisations en cuivre.
  • L'augmentation des longueurs de tubes a cependant pour effet d'augmenter la surface d'échange avec l'atmosphère ambiante, donc les pertes, et aussi d'augmenter inutilement le volume de gaz frigorigène du circuit du compresseur.
  • La présente invention a pour objet de remédier à ces inconvénients, en proposant un coeur de pompe à chaleur optimisé tant du point de vue du rendement que de la compacité et de la fiabilité de fonctionnement.
  • Le coeur de pompe à chaleur de l'invention est un coeur de pompe de type eau/eau tel que décrit plus haut et divulgué par le EP-A-0 035 656 précité, c'est-à-dire comprenant, plus précisément et de manière en elle-même connue : un bloc compresseur, comprenant un circuit fermé chargé de fluide frigorigène avec compresseur, condenseur, détendeur et évaporateur ; une prise d'entrée et une prise de sortie vers un réseau de captage de chaleur ; une prise d'entrée et une prise de sortie vers un réseau de restitution de chaleur ; un premier échangeur de chaleur, couplé côté primaire à l'évaporateur du bloc compresseur et côté secondaire aux prises du réseau de captage de chaleur; et un second échangeur de chaleur, couplé côté primaire au condenseur du bloc compresseur et côté secondaire aux prises du réseau de restitution de chaleur.
  • De façon caractéristique de l'invention, les tubulures de liaison entre les échangeurs de chaleur et le bloc compresseur, et/ou les tubulures de liaison entre les échangeurs de chaleur et les prises des réseaux de captage et de restitution de chaleur sont des tubulures de liaison non brasées, formées par des tubes en acier inoxydable soudés.
  • En remplaçant les tubes en cuivre utilisés jusqu'à présent par des tubes en acier, et en remplaçant les assemblages brasés par des assemblages soudés, les diverses liaisons ainsi réalisées au sein du coeur de pompe à chaleur ne présentent plus de solution de continuité, ce qui leur procure une qualité de résistance mécanique - notamment aux vibrations - et une qualité de résistance à la corrosion incomparablement supérieures à ce qu'elles étaient avec des assemblages brasés.
  • En effet, dans le cas d'un soudage, si celui-ci est bien réalisé, en termes de tenue mécanique et d'étanchéité le résultat est équivalent à celui du tube d'origine.
  • En particulier, les vibrations engendrées par le compresseur ne peuvent pas entraîner de détérioration de ces assemblages, et la tenue mécanique, la géométrie et la souplesse des tubes et des échangeurs en acier inoxydable peuvent être définies de façon à absorber sans rupture ces vibrations par des liaisons courtes et de faible diamètre, à l'opposé des liaisons en cuivre utilisées jusqu'à présent.
  • Cette réduction dimensionnelle permet d'abaisser d'autant les échanges thermiques du fluide avec l'environnement, donc les pertes, ainsi que le volume de fluide frigorigène nécessaire. De plus, outre la moindre surface exposée, les échanges thermiques seront également réduits par le fait que l'acier est bien moins bon conducteur de chaleur que le cuivre et qu'aucune patte de fixation au châssis n'est plus nécessaire pour le maintien des échangeurs (suppression des ponts thermiques lorsque les échangeurs de chaleur sont essentiellement dépourvus de telles pattes).
  • Il est ainsi possible d'augmenter notablement le coefficient de performance de la pompe à chaleur, typiquement de 1 à 2 points, c'est-à-dire qu'il devient possible d'atteindre des valeurs de COP de l'ordre de 6 à 7, performances bien au-dessus des meilleurs systèmes proposés jusqu'à présent.
  • Le soudage est avantageusement réalisé par soudage TIG orbital, qui est une technique parfaitement maîtrisée pouvant être mise en oeuvre de façon automatique, donc avec un contrôle précis des différents paramètres et une excellente reproductibilité, conduisant ici encore à un accroissement de la fiabilité d'ensemble de l'appareil. De plus, le soudage automatique TIG orbital permet de limiter au minimum l'élévation de température du corps de compresseur, évitant ainsi toute fragilisation de celui-ci.
  • De préférence, les échangeurs de chaleur sont des échangeurs tubulaires en acier inoxydable.
  • Ce type d'échangeur, qui convient parfaitement à une pompe à chaleur selon l'invention où les différentes liaisons sont des liaisons soudées, peut remplacer avantageusement les échangeurs à plaques assemblés par brasage jusqu'à présent généralement utilisés dans le domaine des pompes à chaleur. Même s'ils assurent un bon échange thermique, les échangeurs à plaques sont en effet fragiles et ne supportent pas longtemps une eau chargée en sels minéraux, qui peut provoquer un bouchage par accumulation de dépôts ou d'impuretés solides. Enfin, leur tenue en présence de vibrations continues reste limitée.
  • Du fait de l'accroissement considérable de fiabilité, il devient inutile de ménager une possibilité d'accès aux différents éléments internes du coeur de pompe après fabrication. Ces différents éléments (bloc compresseur, échangeurs de chaleur, tubulures de liaison entre échangeurs et bloc compresseur, et tubulures de liaison entre échangeurs et prises des réseaux de captage et de restitution de chaleur) peuvent donc être confinés dans une enceinte formant un unique bloc fonctionnel étanche et isotherme.
  • Cette enceinte étanche de confinement peut en particulier comprendre une base support, supportant le bloc compresseur et les échangeurs de chaleur, et un capot rapporté sur cette base support, la base support et le capot étant solidarisés entre eux de manière permanente, par exemple par soudage s'ils sont en métal. Il est entendu que cette "base support" peut constituer tout ou partie de l'une quelconque ou de certaines de faces de l'ensemble, et pas seulement sa partie inférieure.
  • L'espace libre résiduel de l'enceinte de confinement peut être rempli d'un matériau isolant, la base support comportant alors un orifice occultable d'introduction de ce matériau isolant.
  • L'atmosphère interne de l'enceinte de confinement peut être sous vide, ou remplie d'un gaz sec isolant, la base support comportant alors un orifice occultable, en communication avec ladite atmosphère, pour l'application du vide ou l'introduction du gaz.
  • De préférence, les prises du réseau de captage de chaleur, les prises du réseau de restitution de chaleur, et le(s)dit(s) orifice(s) occultable(s) sont regroupés sur la base support.
  • L'invention couvre également, en tant que telle, une pompe à chaleur comprenant, en combinaison, un coeur de pompe tel que ci-dessus associé à des organes de couplage, comprenant au moins un circulateur, à un circuit de captage de chaleur et à un circuit de restitution de chaleur, ainsi que des organes de régulation thermique, et des organes d'alimentation électrique de l'ensemble.
  • On va maintenant décrire un exemple de pompe à chaleur réalisée selon les enseignements de l'invention, en référence à la figure unique annexée qui est une vue schématique, en perspective cavalière, des différents éléments constituant ce coeur de pompe.
  • Sur la figure, la référence 10 désigne le bloc compresseur, qui est un ensemble avec un circuit fermé, chargé en fluide frigorigène, comprenant un compresseur 11, un évaporateur 12, un condenseur 13 et un détendeur 14. Le moteur du compresseur est par exemple un moteur électrique alimenté de l'extérieur par le secteur.
  • Un premier échangeur de chaleur 20 est couplé côté primaire à l'évaporateur 12 du bloc compresseur 10 via deux liaisons 21 et 22. Côté secondaire, il est relié à des prises 23, 24 d'entrée et de sortie de fluide destinées à être reliées à un réseau de captage de chaleur ; les liaisons aux prises 23, 24 sont réalisées par des tubulures 25, 26.
  • Un second échangeur de chaleur 30 est couplé côté primaire au condenseur 13 du bloc compresseur 10 via deux liaisons 31 et 32. Côté secondaire, il est relié à des prises 33, 34 d'entrée et de sortie de fluide destinées à être reliées à un réseau de restitution de chaleur (réseau de chauffage) ; les liaisons aux prises 33, 34 sont réalisées par des tubulures 35, 36.
  • Les échangeurs 20 et 30 sont de préférence des échangeurs tubulaires torsadés en acier inoxydable soudé, dont la taille est adaptée à la puissance du compresseur pour garantir un échange optimum tant vers le circuit de chauffage que depuis le circuit de captage de chaleur.
  • De façon caractéristique de l'invention, les liaisons 21, 22, 31, 32 entre le compresseur 10 et les échangeurs de chaleur 20 et 30, ainsi que les liaisons 25, 26, 35, 36 entre les échangeurs 20 et 30 et les prises 23, 24, 33, 34 d'entrée et de sortie des réseaux de captage et de restitution de chaleur, sont assurées au moyen de tubes en acier inoxydable soudés. Le diamètre de ces tubes est optimisé pour assurer cette liaison sans créer d'entrave pour le fluide (fluide frigorigène, ou fluide circulant dans les réseaux), avec une longueur et une géométrie étudiées pour réaliser cette liaison par le plus court chemin possible. De plus, grâce à l'excellente solidité mécanique des liaisons soudées, les échangeurs peuvent être simplement suspendus par les tubes 21, 22, 25, 26 (ou 31, 32, 35, 36, respectivement), qui les retiennent en place sans qu'il soit nécessaire de prévoir pour les soutenir des pattes de fixation au châssis ou moyens analogues, générateurs de ponts thermiques.
  • Un tube de petit diamètre 16, qui peut également être réalisé en acier inoxydable en forme de spire ou de multispire, assure un accès étanche pour le chargement du compresseur en fluide frigorigène et le contrôle de cette charge. À l'extérieur de l'enceinte, ce tube en acier inoxydable pourra être prolongé d'un tube en cuivre permettant la jonction à la réserve de gaz frigorigène par des méthodes habituellement utilisées par les frigoristes.
  • Les différents éléments du coeur de pompe à chaleur que l'on vient de décrire sont regroupés à l'intérieur d'un boîtier 40 constitué d'une base support 41 et d'un capot 42. Avantageusement, toutes les entrées et sorties utiles et tous les accès aux éléments du coeur de pompe sont regroupés au niveau de la base support 41, notamment les prises 23, 24, 33, 34 aux réseaux de captage et de restitution de chaleur. On y trouve également la traversée 43 pour l'alimentation électrique du compresseur 11, ainsi qu'un orifice occultable 44 permettant la communication avec le volume intérieur de l'enceinte une fois le capot 42 fermé, et une traversée 45 pour la conduite 16 de charge du fluide frigorigène. Sur la figure 1 la base support occupe toute la partie inférieure de l'ensemble. Mais elle peut aussi bien occuper tout ou partie de l'une quelconque ou de certaines faces de l'ensemble, suivant le besoin dans la réalisation de la pompe à chaleur.
  • Le capot 42 peut donc être aisément rendu étanche, formé d'une seule pièce, par exemple métallique, sans aucune traversée. Il peut être fixé de façon étanche à la base support 41 pour constituer une enveloppe isolant complètement le coeur de pompe à chaleur de son environnement. Lorsque le capot et la base support sont tous deux réalisés en métal, cette fixation étanche peut même être avantageusement réalisée par soudage des deux éléments de manière à constituer un bloc fonctionnel unique, non démontable. D'autres solutions de solidarisation permanente peuvent être envisagées, par exemple un collage, lorsque capot et/ou base support ne sont pas réalisés en un matériau métallique apte au soudage.
  • Avantageusement, après fermeture de l'enveloppe, on introduit par l'orifice 44 une matière isolante venant remplir complètement le volume intérieur du coeur de pompe, par exemple une matière pulvérulente ou une mousse expansible, qui va minimiser les échanges thermiques non souhaitables et accroître d'autant les performances du système. En outre, ce garnissage réduit la transmission des vibrations mécaniques et acoustiques produites par le compresseur vers l'extérieur.
  • Après remplissage, l'enceinte étanche peut enfin être tirée au vide ou remplie d'un gaz sec procurant des caractéristiques d'isolement thermique meilleures que l'air, par exemple l'argon ou l'hexafluorure de soufre.
  • Enfin, pour le cas où la base support est constituée de la face inférieure et dans la mesure où les tubes 26 et 36 conduisant aux points hauts respectifs des circuits de captage de chaleur et de chauffage ne sont pas coudés, il est possible d'y glisser des systèmes de purge comprenant un purgeur automatique 46 relié à une conduite 48 se terminant en partie basse, hors du bloc 40, par un évent 50 monté sur un manchon 52 emboîté à l'embouchure de la conduite homologue 26 ou 36. Ces systèmes de purge, mis en place depuis l'extérieur (comme on peut le voir sur la vue éclatée de la figure), peuvent être aisément remplacés plus tard, si nécessaire.

Claims (12)

  1. Un coeur de pompe à chaleur de type eau/eau, comprenant :
    - un bloc compresseur (10), comprenant un circuit fermé chargé de fluide frigorigène avec compresseur (11), condenseur (13), détendeur (14) et évaporateur (12),
    - une prise d'entrée (23) et une prise de sortie (24) vers un réseau de captage de chaleur,
    - une prise d'entrée (33) et une prise de sortie (34) vers un réseau de restitution de chaleur,
    - un premier échangeur de chaleur (20), couplé côté primaire à l'évaporateur du bloc compresseur et côté secondaire aux prises du réseau de captage de chaleur, et
    - un second échangeur de chaleur (30), couplé côté primaire au condenseur du bloc compresseur et côté secondaire aux prises du réseau de restitution de chaleur,
    caractérisé en ce que les tubulures de liaison (21, 22, 31, 32) entre les échangeurs de chaleur et le bloc compresseur, et/ou les tubulures de liaison (25, 26, 35, 36) entre les échangeurs de chaleur et les prises des réseaux de captage et de restitution de chaleur sont des tubulures de liaison non brasées, formées par des tubes en acier inoxydable soudés.
  2. Le coeur de pompe à chaleur de la revendication 1, dans lequel les tubes en acier inoxydable soudés sont des tubes soudés par soudage TIG orbital.
  3. Le coeur de pompe à chaleur de la revendication 1, dans lequel les échangeurs de chaleur (20, 30) sont des échangeurs tubulaires en acier inoxydable.
  4. Le coeur de pompe à chaleur de la revendication 1, dans lequel le bloc compresseur, les échangeurs de chaleur, les tubulures de liaison entre échangeurs de chaleur et bloc compresseur et entre échangeurs de chaleur et prises des réseaux de captage et de restitution de chaleur, sont enfermés dans une enceinte étanche de confinement (40).
  5. Le coeur de pompe à chaleur de la revendication 1, dans lequel les échangeurs de chaleur sont essentiellement dépourvus de pattes support de fixation au châssis.
  6. Le coeur de pompe à chaleur de la revendication 4, dans lequel l'enceinte étanche de confinement (40) comprend une base support (41) formant au moins une partie d'au moins une des faces de l'ensemble, supportant le bloc compresseur et les échangeurs de chaleur, et un capot (42) rapporté sur cette base support.
  7. Le coeur de pompe à chaleur de la revendication 6, dans lequel la base support (41) et le capot (42) sont solidarisés entre eux de manière permanente.
  8. Le coeur de pompe à chaleur de la revendication 6, dans lequel l'espace libre résiduel de l'enceinte de confinement est rempli d'un matériau isolant, et la base support (41) comporte un orifice occultable (44) d'introduction de ce matériau isolant.
  9. Le coeur de pompe à chaleur de la revendication 6, dans lequel l'atmosphère interne de l'enceinte de confinement est sous vide, et la base support (41) comporte un orifice occultable (44), en communication avec ladite atmosphère, pour l'application de ce vide.
  10. Le coeur de pompe à chaleur de la revendication 6, dans lequel l'atmosphère interne de l'enceinte de confinement est remplie d'un gaz sec isolant, et la base support (41) comporte un orifice occultable (44), en communication avec ladite atmosphère, pour l'introduction de ce gaz.
  11. Le coeur de pompe à chaleur des revendications 8 à 10, dans lequel les prises (23, 24) du réseau de captage de chaleur, les prises (33, 34) du réseau de restitution de chaleur, et le(s)dit(s) orifice(s) occultable(s) (44) sont regroupés sur la base support (41).
  12. Une pompe à chaleur, caractérisée en ce qu'elle comprend, en combinaison :
    - un coeur de pompe à chaleur selon l'une des revendications 1 à 11,
    - des organes, comprenant au moins un circulateur, de couplage à un circuit de captage de chaleur,
    - des organes, comprenant au moins un circulateur, de couplage à un circuit de restitution de chaleur,
    - des organes de régulation thermique, et
    - des organes d'alimentation électrique de l'ensemble.
EP05772999A 2004-06-14 2005-05-30 Coeur de pompe a chaleur compact de type eau/eau, et pompe a chaleur comportant un tel coeur de pompe Not-in-force EP1766301B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05772999T PL1766301T3 (pl) 2004-06-14 2005-05-30 Rdzeń kompaktowej pompy ciepła typu woda/woda, oraz pompa ciepła zawierająca ten rdzeń pompy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0406398A FR2871559B1 (fr) 2004-06-14 2004-06-14 Coeur de pompe a chaleur compact de type eau/eau
PCT/FR2005/001323 WO2006005832A1 (fr) 2004-06-14 2005-05-30 Coeur de pompe a chaleur compact de type eau/eau, et pompe a chaleur comportant un tel coeur de pompe

Publications (2)

Publication Number Publication Date
EP1766301A1 EP1766301A1 (fr) 2007-03-28
EP1766301B1 true EP1766301B1 (fr) 2009-01-07

Family

ID=34946198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05772999A Not-in-force EP1766301B1 (fr) 2004-06-14 2005-05-30 Coeur de pompe a chaleur compact de type eau/eau, et pompe a chaleur comportant un tel coeur de pompe

Country Status (11)

Country Link
US (1) US20080196872A1 (fr)
EP (1) EP1766301B1 (fr)
CN (1) CN100351590C (fr)
AT (1) ATE420328T1 (fr)
CA (1) CA2569914A1 (fr)
DE (1) DE602005012270D1 (fr)
DK (1) DK1766301T3 (fr)
ES (1) ES2321316T3 (fr)
FR (1) FR2871559B1 (fr)
PL (1) PL1766301T3 (fr)
WO (1) WO2006005832A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010139B4 (de) * 2007-02-28 2021-02-11 Stiebel Eltron Gmbh & Co. Kg Wärmepumpenvorrichtung
US9404650B2 (en) * 2009-06-30 2016-08-02 M. Alexandre Lapierre Boiler with improved hot gas passages
US10428745B2 (en) * 2013-02-19 2019-10-01 Ford Global Technologies, Llc Charge motion control valve and intake runner system
JP6288377B2 (ja) * 2015-07-03 2018-03-07 三菱電機株式会社 ヒートポンプ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475920A (en) * 1968-05-06 1969-11-04 Gen Motors Corp Keeping insulation dry
DE2842893A1 (de) * 1978-10-02 1980-04-17 Kueppersbusch Waermepumpenheizungssystem
DE3007675A1 (de) * 1980-02-29 1981-09-10 Al-Ko Polar Gmbh Maschinenfabrik, 8876 Jettingen-Scheppach Waermepumpe
FR2546281B1 (fr) * 1983-05-18 1990-04-06 Fonderie Soc Gen De Element de circuit de fluide, pompe a chaleur le comprenant, et son procede de fabrication
US4843832A (en) * 1987-03-12 1989-07-04 Takenaka Komuten Co., Ltd. Air conditioning system for buildings
SE8903385L (sv) * 1989-10-13 1991-04-14 Ivt Ind Vaermepumpanlaeggning med koeldmediekretsen anordnad som en utbytbar enhet samt anordning foer genomfoerande av enhetsbyte
US5080325A (en) * 1990-11-14 1992-01-14 Air Products And Chemicals, Inc. Corrosion resistant stainless steel valve or fitting
US5299731A (en) * 1993-02-22 1994-04-05 L'air Liquide Corrosion resistant welding of stainless steel
US5396039A (en) * 1993-11-24 1995-03-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for assembling piping or components by TIG welding
US5642622A (en) * 1995-08-17 1997-07-01 Sunpower, Inc. Refrigerator with interior mounted heat pump
DE19711621A1 (de) * 1997-03-20 1998-09-24 Emerson Electric Gmbh Druckdichtes Gehäuse und Verfahren zu seiner Herstellung
DE19820818C2 (de) * 1998-05-09 2002-12-05 Viessmann Werke Kg Wärmepumpe
US6634182B2 (en) * 1999-09-17 2003-10-21 Hitachi, Ltd. Ammonia refrigerator
JP2002107010A (ja) * 2000-09-29 2002-04-10 Fuji Koki Corp レシーバドライヤ
FR2841331B1 (fr) * 2002-06-21 2005-02-25 Mota Echangeurs multitubulaires et procede de fabrication de ces echangeurs

Also Published As

Publication number Publication date
EP1766301A1 (fr) 2007-03-28
PL1766301T3 (pl) 2009-06-30
DK1766301T3 (da) 2009-05-11
US20080196872A1 (en) 2008-08-21
ES2321316T3 (es) 2009-06-04
ATE420328T1 (de) 2009-01-15
WO2006005832A1 (fr) 2006-01-19
DE602005012270D1 (de) 2009-02-26
FR2871559A1 (fr) 2005-12-16
CA2569914A1 (fr) 2006-01-19
CN100351590C (zh) 2007-11-28
FR2871559B1 (fr) 2006-09-22
CN1712866A (zh) 2005-12-28

Similar Documents

Publication Publication Date Title
EP1766301B1 (fr) Coeur de pompe a chaleur compact de type eau/eau, et pompe a chaleur comportant un tel coeur de pompe
FR3024534A1 (fr) Dispositif de stockage d'energie par materiau a changement de phase et un procede de stockage associe
EP3085108A1 (fr) Enceinte acoustique comprenant une paroi externe non conductrice de la chaleur, un haut-parleur électrodynamique et un circuit électronique de commande
EP1444473A1 (fr) Module d'echange de chaleur comportant un radiateur principal et un radiateur secondaire
WO2004044512A1 (fr) Module d'echange de chaleur comportant un radiateur principal et deux radiateur secondaire
EP3516217B1 (fr) Compresseur d'hydrogene a hydrure metallique
EP4083489A1 (fr) Connecteur
FR2465322A1 (fr) Pole pour batteries haute temperature
WO2020115428A1 (fr) Batterie modulaire comprenant un systeme de conditionnement thermique
FR2461903A1 (fr) Capteur pour l'utilisation de l'energie solaire et appareil comportant de tels capteurs
FR3043187B1 (fr) Batterie thermique a chaleur latente pour automobile
FR3076345A1 (fr) Installation hydraulique a protection capacitive contre le gel
FR2742856A1 (fr) Echangeur de chaleur pour vehicule automobile comportant une structure maillee tridimensionnelle permeable
FR3092642A1 (fr) Elément d’isolation thermique et ensemble comprenant un tel élément
EP3214398B1 (fr) Dispositif de stockage d'énergie par matériau à changement de phase incluant une charge électrique intégrée dans le circuit du fluide caloporteur
FR2533364A1 (fr) Dispositif de repartition de la chaleur pour composants electroniques du type comportant au moins un element chaud et un element froid tels que les tubes a ondes progressives et procede de realisation d'un tel dispositif
WO2004051147A1 (fr) Echangeur de chaleur et dispositif de production d'eau chaude sanitaire
FR2858846A1 (fr) Installation combinee de chauffage central et de chauffage d'eau sanitaire
FR3055407A1 (fr) Dispositif de stockage de liquide pour delivrer de l'eau chaude sanitaire
FR2930021A1 (fr) Echangeur de chaleur comprenant une solution metastable.
FR3118142A1 (fr) Dispositif et procédé de réfrigération à dilution
EP4361492A1 (fr) Dispositif de stockage de fluide cryogénique
FR3100571A1 (fr) Canalisation pour une turbomachine d’aéronef
FR2956732A1 (fr) Dispositif d'echange thermique, notamment pour une centrale nucleaire.
FR2865270A3 (fr) Echangeur bithermique, notamment pour appareil de chauffage de l'eau

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070330

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005012270

Country of ref document: DE

Date of ref document: 20090226

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2321316

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

26N No opposition filed

Effective date: 20091008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100525

Year of fee payment: 6

Ref country code: ES

Payment date: 20100520

Year of fee payment: 6

Ref country code: LU

Payment date: 20100526

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100520

Year of fee payment: 6

Ref country code: NL

Payment date: 20100520

Year of fee payment: 6

Ref country code: PL

Payment date: 20100524

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111201

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 420328

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110530

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20121116

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: HADES SAS, FR

Effective date: 20121022

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140520

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140522

Year of fee payment: 10

Ref country code: DE

Payment date: 20140521

Year of fee payment: 10

Ref country code: IT

Payment date: 20140526

Year of fee payment: 10

Ref country code: SE

Payment date: 20140520

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140519

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140527

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005012270

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150530

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150530

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531