EP1765956B1 - Fischer-tropsch synthesis method with improved control - Google Patents

Fischer-tropsch synthesis method with improved control Download PDF

Info

Publication number
EP1765956B1
EP1765956B1 EP05771067A EP05771067A EP1765956B1 EP 1765956 B1 EP1765956 B1 EP 1765956B1 EP 05771067 A EP05771067 A EP 05771067A EP 05771067 A EP05771067 A EP 05771067A EP 1765956 B1 EP1765956 B1 EP 1765956B1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
carbon monoxide
synthesis gas
fischer
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05771067A
Other languages
German (de)
French (fr)
Other versions
EP1765956A1 (en
Inventor
Marie-Claire Marion
Eric Lemaire
Jean-Marc Schweitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Eni SpA
Original Assignee
IFP Energies Nouvelles IFPEN
Eni SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34947124&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1765956(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by IFP Energies Nouvelles IFPEN, Eni SpA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1765956A1 publication Critical patent/EP1765956A1/en
Application granted granted Critical
Publication of EP1765956B1 publication Critical patent/EP1765956B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen

Definitions

  • the invention relates to the field of liquid hydrocarbon production processes comprising a Fischer-Tropsch synthesis step. It relates more particularly to an improved Fischer-Tropsch synthesis process that maximizes production and minimizes production costs.
  • Fischer-Tropsch synthesis is a reaction that makes it possible to synthesize paraffinic, olefinic liquid hydrocarbons and / or oxygenated derivatives from a synthesis gas, the latter being obtained, for example, from natural gas or coal. This reaction, exploited industrially in Europe during the Second World War and also in South Africa since the 1950s, has regained a spectacular renewal of interest since the 1980s to 1990, following the evolution of oil and gas costs, but also for environmental reasons.
  • One of the concerns of those skilled in the art using such methods is to maximize the conversion rate reagents, that is to say maximize the conversion rate of carbon monoxide to liquid hydrocarbons. It is often difficult to maximize the conversion rate of the reactants in a single reactor and in a single pass, that is to say in a single passage of said reagents in said reactor. Indeed, by seeking a high level of conversion, the operation of the catalyst used during the synthesis can be degraded given the operating conditions and, in particular, high partial pressures of water. For example, a marked decrease in selectivity can be observed in products having at least five carbon atoms when, using a cobalt-based catalyst, the carbon monoxide conversion level is increased to above about 80%. weight.
  • one solution may consist in carrying out said synthesis in several steps, for example using several reactors in series.
  • Another solution may be to carry out the Fischer-Tropsch synthesis in a single reactor by implementing an internal recycling loop around said reactor, which may make it possible to maintain a moderate conversion level, for example of the order of 60 to 70% by weight, while achieving a high overall conversion level, for example greater than or equal to 90% conversion.
  • the use ratio is generally defined as the stoichiometric ratio (or molar ratio) between hydrogen and carbon monoxide consumed by the Fischer-Tropsch synthesis.
  • the usage ratio is generally variable. This ratio may depend on the nature of the catalyst as well as the operating conditions used during the synthesis. This usage ratio can change over time, depending for example on the stability of the catalyst. This usage ratio can also reflect the selectivity of the catalyst. For example, in the case of a Fischer-Tropsch process using a cobalt catalyst and aimed at producing long chain paraffinic hydrocarbons, the duty ratio can range from 2.0 to 2.3 mol.
  • the ratio of hydrogen and carbon monoxide introduced into a reaction zone where Fischer-Tropsch synthesis is performed plays on the reaction mechanisms of said synthesis, in particular on the kinetics and selectivity of the catalyst used.
  • margin of error is a function of the control system implemented and the response times of the adjustment means. Said margin of error is less than or equal to plus or minus 5%, preferably less than or equal to plus or minus 2%, more preferably less than or equal to plus or minus 1%, for example less than or equal to more than less than 0.5%.
  • concentration ratios A1 and A2 can then be determined by simple calculation from the concentration measurements.
  • A1 corresponds to a molar ratio of hydrogen and carbon monoxide concentrations in the feed of the Fischer-Tropsch synthesis step (b).
  • This feed is generally a mixture comprising the synthesis gas produced in step (a) and the effluent enriched in hydrogen and carbon monoxide recycled during step (e).
  • A2 corresponds, for its part, to a molar ratio of concentrations of hydrogen and carbon monoxide in any of the gaseous effluents obtained in steps (b) to (e).
  • A2 is calculated from measurements made at any gaseous flow from the gaseous effluent obtained in step (b) and directed to the recycled effluent during step (e). These streams generally have concentrations of hydrogen and carbon monoxide in the same proportions.
  • the concentrations of hydrogen and / or carbon monoxide in the synthesis gas obtained in step (a) are adjusted so as to keep the difference between the two substantially constant.
  • This adjustment can be carried out by any means known to those skilled in the art, such as, for example, by means of a control system or a connected automaton, on the one hand, to the means for measuring the concentrations of hydrogen and carbon monoxide. carbon at the base of which are calculated the A1 and A2 ratios, and secondly to means for adjusting the concentrations of hydrogen and / or carbon monoxide in the synthesis gas obtained in step (a)
  • the regulation of the method of the invention makes adjustments in step (a) of the process in order to enrich the synthesis gas with carbon monoxide or to deplete it in hydrogen so as to minimize or maintain constant the difference between A1 and A2.
  • the regulation of the process of the invention makes adjustments in step (a) of the process in order to enrich the synthesis gas with hydrogen or to deplete it in carbon monoxide so as to equalize A1 and A2.
  • the implementation of the method of the invention advantageously avoids having to perform the regulation with respect to a given value of the duty ratio.
  • the regulation is done by minimizing or maintaining a constant value of the difference between two concentration ratios, in this case those measured by A1 and A2.
  • the concentrations of hydrogen and / or carbon monoxide in the synthesis gas obtained in step (a) are adjusted so as to maintain substantially constant between the two ratios A1 and A2.
  • the concentrations of hydrogen and / or carbon monoxide in the synthesis gas obtained in step (a) can be adjusted so as to keep the difference between the two ratios A1 and A2 constant.
  • This mode makes it possible to adjust the selectivity of the reaction to obtain the desired product distribution.
  • the aging of the catalyst over time may induce a change in the duty ratio giving rise to a change in the product distribution.
  • the ratio of use in the reaction zone of the Fischer-Tropsch synthesis step (b) may vary over time. For example, this ratio of use tends to increase with time, which may reflect some deactivation of the catalyst, and more particularly a decrease in its selectivity to long-chain hydrocarbon products. Similarly, the use ratio can increase with temperature, which favors the formation of light products at the expense of heavy products. There can therefore also be an impact of any change in capacity, in terms of changes in space velocity and / or change in operating temperature, on the duty ratio in the Fischer-Tropsch synthesis reaction zone.
  • the process of the invention is carried out so as to regulate the operating conditions in order to regulate the H2 / CO concentration ratio at a level corresponding to a required duty ratio in accordance with a targeted product distribution.
  • the present invention may advantageously be used in processes for converting natural gas into liquid hydrocarbons, processes known as "gas to liquid", or abbreviated to GTL. These processes have a natural gas recovery pathway that allows, among other things, to produce high quality, sulfur-free diesel fuels from natural gas. These processes generally use a catalyst based on cobalt or iron, preferably based on cobalt.
  • the method of the invention therefore comprises a step (a) of generating the synthesis gas essentially comprising carbon monoxide and hydrogen.
  • This generation of a synthesis gas can be made from natural gas, coal or obtained by any other transformation route known to those skilled in the art, for example by decomposition of methanol in the presence of copper-based catalyst.
  • the generation of a synthesis gas is made from natural gas.
  • this step (a) may comprise a step of reforming with methane vapor or a partial oxidation step of methane, or a combination of these two steps, such as the autothermal reforming process, for example, the ATR process marketed by the company TOPSOE.
  • This first step may comprise a combination of a methane steam reforming step with a partial methane oxidation step.
  • this embodiment provides a means of adjusting the concentrations of hydrogen and carbon monoxide in the synthesis gas, in particular the ratio of concentrations of hydrogen and carbon monoxide, H2 / CO. These means generally result from the implementation of a conversion reaction of carbon monoxide in the presence of water to carbon dioxide and hydrogen.
  • the step (a) of generating a synthesis gas may comprise means dedicated to adjusting the concentrations of hydrogen and / or carbon monoxide in the synthesis gas.
  • these means may be controlled flow injection means of water and / or carbon dioxide.
  • step (a) comprises an autothermal reforming
  • the injection of controlled rate steam is particularly well suited.
  • step (a) of generating a synthesis gas is followed by a step (a ') dedicated to adjusting the concentrations of hydrogen and / or monoxide. of carbon in the synthesis gas.
  • step (a ') can be carried out from a feed of all or part of the synthesis gas produced in step (a).
  • step (a ') is carried out from a feed of a portion of the synthesis gas produced in step (a), which may range from 1 to 50% by weight, preferably 10 to 30% by weight. % by weight of the synthesis gas produced in step (a).
  • this step (a ') may comprise the use of a means for extracting hydrogen or carbon monoxide, such as, for example, a membrane which preferably extracts hydrogen from a mixture comprising hydrogen and carbon monoxide.
  • a means for extracting hydrogen or carbon monoxide such as, for example, a membrane which preferably extracts hydrogen from a mixture comprising hydrogen and carbon monoxide.
  • This step (a ') can comprise the implementation of means allowing a supplementation of hydrogen or carbon monoxide, such as, for example, a hydrogen make-up line from a catalytic reforming auxiliary unit.
  • This adjustment can also be achieved through the control system which is one of the objects of the invention.
  • the concentration ratio H2 / CO at the output of step (a') can equal to, greater than or less than the ratio of H2 / CO concentrations in the synthesis gas from step (a).
  • step (a ') makes it possible to improve the regulation of the concentration ratio H2 / CO of the supply of the reaction section of step (b). Indeed, even if it is often possible to adjust this H2 / CO concentration ratio directly during step (a) for generating the synthesis gas, the regulation actions on this step (a) can have significant response times that may be too slow to establish a regulation effective or even incompatible with the control system of the present invention.
  • the preferred embodiment implementing a step (a ') provides flexibility in the operation of the method of the invention. The adjustments made in this step (a ') are simple and fast corrective actions, which considerably improves the overall performance of the method of the invention.
  • the Fischer-Tropsch synthesis step (b) of the process according to the invention is carried out from a feed comprising at least a part of the synthesis gas resulting from steps (a) or (a ') and allowing the production an effluent comprising synthetic liquid hydrocarbons and at least one gaseous effluent.
  • step (b) Thanks to the H2 / CO concentration ratio control system in step (b), the operation of this Fischer-Tropsch synthesis step is optimized.
  • the Fischer-Tropsch synthesis step (b) is carried out in a reaction zone comprising one or more suitable reactors, the technology of which is known to those skilled in the art. It may be, for example, fixed bed multitubular reactors, moving bed reactors or bubble column type reactors, known in English as “slurry bubble column", or abbreviated as "SBC”. .
  • step (b) uses one or more bubble column type reactors.
  • the synthesis being strongly exothermic, this mode of realization allows, among other things, to improve the thermal control of the reactor, especially in the case of high capacity units.
  • the catalyst used in this step (b) is generally any catalytic solid known to those skilled in the art for performing the Fischer-Tropsch synthesis.
  • the catalyst used in this step (b) comprises cobalt or iron, more preferably cobalt.
  • the catalyst used in this step (b) is generally a supported catalyst.
  • the support may be, for example, based on alumina, silica or titanium.
  • the conditions of temperature and pressure are variable and adapted to the catalyst used in this step (b).
  • the pressure can generally be between 0.1 and 10 MPa.
  • the temperature can generally be between 200 and 400 ° C.
  • the temperature is preferably between about 200 and 250 ° C and the pressure is preferably between about 1 and 4 MPa.
  • the feed of step (b) of the invention comprises carbon monoxide and hydrogen with a ratio of molar concentrations H2 / CO which may be between 0.5 and 3, preferably between 1 and 2 , 5, more preferably between 2.0 and 2.3.
  • the liquid effluent from step (b) comprising synthetic liquid hydrocarbons is generally intended to be treated in various purification and / or conversion stages with a view to producing, for example, fuels and in particular diesel fuel. of very high quality.
  • a gaseous effluent obtained during step (b) is condensed.
  • This effluent may comprise all or part of the effluent obtained in step (b).
  • This condensation step can be carried out so as to achieve a temperature ranging from -20 to 300 ° C, preferably from 0 to 200 ° C, more preferably from 30 to 60 ° C.
  • the condensation step (c) is carried out so as to condense at least a portion of the effluent sent in said step, which makes it possible to obtain a two-phase flow.
  • the condensed portion may represent at most 50%, preferably at most 15% by weight, of the portion of the effluent sent in the condensation step.
  • the condensation step (c) can be carried out by any means known to those skilled in the art such as, for example, a conventional air-condenser or a conventional water-heat exchanger, preferably an air condenser.
  • the condensed effluent is sent during step (c) to a separation zone making it possible to obtain a gaseous effluent enriched with carbon monoxide and hydrogen. , an aqueous phase and liquid hydrocarbons.
  • the separation zone in which the separation step (d) is carried out can be equipped by any means known to those skilled in the art, such as, for example, by one or more separation flasks.
  • step (e) at least a portion of the gaseous effluent enriched in carbon monoxide and hydrogen obtained during step (d) is recycled to step (b) of synthesis.
  • Fischer-Tropsch synthesis at least a portion of the gaseous effluent enriched in carbon monoxide and hydrogen obtained during step (d) is recycled to step (b) of synthesis.
  • the portion of the enriched gaseous effluent recycled to the Fischer-Tropsch synthesis stage (b) may comprise at least 50% by volume, preferably at least 75% by volume, more preferably at least 85% by volume.
  • the portion of the enriched effluent recycled to step (b) may have a flow rate ranging from 0 (excluded) to 2 times, preferably from 0.5 to 1.5 times that of the synthesis gas resulting from the step (a) or (a ').
  • the portion of the effluent enriched with carbon monoxide and hydrogen is compressed by any means known to those skilled in the art at a pressure ranging from 0.1 to 10 MPa, preferably from 1 to 4 MPa, more preferably from 2 to 3 MPa.
  • the recycling step (e) may comprise means for extracting carbon dioxide.
  • These means can be any means known to those skilled in the art, such as, for example, washing with an aqueous solution of amines.
  • the extraction of carbon dioxide can be partial or total. This extraction can be carried out on all or part of the recycled enriched effluent.
  • the recycled enriched effluent may be optionally heated or cooled by any means known to those skilled in the art.
  • a hydrocarbon feedstock is sent via a conduit 1 into a synthesis gas generation zone 2, said gas then being fed into a conduit 3.
  • the generation zone 2 is equipped with means for adjust the hydrogen and carbon monoxide concentrations of the synthesis gas thus produced.
  • These means are diagrammatically represented by a hydrogen supply duct 4 equipped with a valve 5 and a hydrogen evacuation duct 6 equipped with a valve 7.
  • the two valves 5 and 7 can be operated at the same time. distance by a PLC 51.
  • the synthesis gas is sent through the conduit 3 and a conduit 11 into a Fischer-Tropsch synthesis reactor 12.
  • This reactor is equipped with a discharge pipe 13 of an effluent comprising liquid hydrocarbons to unrepresented purification and / or conversion steps.
  • a gaseous effluent is also discharged through a conduit 21 of the Fischer-Tropsch synthesis reactor 12. This gaseous effluent is directed to a cooling unit 22.
  • the cooled effluent is directed by a conduit 31 to separation means, in this case a separator tank 32.
  • An aqueous effluent enriched with water is withdrawn at the bottom of this flask via a conduit 33.
  • a liquid effluent enriched in hydrocarbons is also withdrawn by a conduit 34.
  • an effluent enriched in carbon monoxide and hydrogen is discharged through a conduit 35.
  • Part of the enriched effluent is sent, via a conduit 41, to a compressor 42.
  • the other part of the enriched effluent is discharged through a conduit 43.
  • the part of the enriched and compressed effluent is sent, via a conduit 44, to means 45 for extracting carbon dioxide before being recycled to the Fischer-Tropsch synthesis reactor via a conduit 46 through through the conduit 11.
  • the carbon dioxide is extracted via a conduit 47.
  • a programmable controller 51 makes it possible to regulate the opening and the closing of the valves 5 and 7 as a function of the measurements of concentrations of hydrogen and of carbon monoxide produced by means of chromatographic analyzers 52 and 53 respectively located on the conduits 11 and 41.
  • the valves 5 and 7, and the analyzers 52 and 53 are connected to the programmable controller 51 respectively via the lines 54, 55, 56 and 57.
  • the Figure 2 contains elements already represented in Figure 1 .
  • the embodiment shown in FIG. Figure 2 comprises adjustment means 61 for the ratio of the concentrations of hydrogen and carbon monoxide in the synthesis gas, said means being dissociated from the zone 2 for generating the synthesis gas.
  • These adjustment means are connected to the synthesis gas generation zone 2 via a conduit 62.
  • Means (4, 5, 6 and 7) for adjusting the hydrogen and carbon monoxide concentrations of the Figure 1 are replaced in the Figure 2 by a hydrogen supply duct 63 equipped with a valve 64 and a hydrogen evacuation duct 65 equipped with a valve 66.
  • the two valves 64 and 66 are operated remotely by a programmable controller.
  • the programmable logic controller 51 makes it possible to regulate the opening and the closing of the valves 64 and 66 as a function of the measurements of concentrations of hydrogen and carbon monoxide. carbon generated by chromatographic analyzers 52 and 53 which are, in this embodiment, respectively located on the ducts 11 and 43.
  • the valves 64 and 66, and the analyzers 52 and 53 are connected to the programmable controller 51 respectively via lines 54, 55, 56 and 57.
  • the Figure 3 contains elements already represented in Figure 2 .
  • the adjustment means 61 for the ratio of the concentrations of hydrogen and carbon monoxide in the synthesis gas are directly connected to the synthesis gas duct 3 via a supply duct 71 and a exhaust duct 72.
  • step of adjusting the ratio of the concentrations of hydrogen and carbon monoxide is implemented only on a portion of the synthesis gas produced in step (a).
  • the programmable logic controller 51 makes it possible to regulate the opening and the closing of the valves 64 and 66 as a function of the measurements of concentrations of hydrogen and of carbon monoxide produced by means of chromatographic analyzers 52 and 53 which are in this case, respectively located on the ducts 11 and 46.
  • the valves 64 and 66, and the analyzers 52 and 53 are connected to the programmable controller 51 respectively via the lines 54, 55, 56 and 57.
  • the scheme of the figure 3 was used as a basis for these examples.
  • the reaction section of the Fischer-Tropsch synthesis used in these examples was fed with a synthesis gas comprising hydrogen and carbon monoxide.
  • This synthesis gas is produced by a generating device and an adjustment device making it possible to maintain the hydrogen / monoxide concentration ratio H2 / CO at a value determined by a programmable logic controller. carbon of this synthesis gas.
  • the recycling rate defined by the ratio of the flow rate in the recycling loop to the flow rate of synthesis gas leaving the synthesis gas generation zone, is maintained around a value equal to 1.0.
  • the Fischer-Tropsch synthesis reaction is carried out at 220 ° C. and at 2 MPa, in the presence of a cobalt catalytic solid. Under the conditions used in the reaction zone, the duty ratio is about 2.10 and the initial conversion level per pass is 60% by weight.
  • the Fischer-Tropsch reaction section is fed with a synthesis gas having a ratio of molar concentrations H2 / CO equal to 2.0.
  • the Fischer-Tropsch reaction section is fed with a synthesis gas having a ratio of molar concentrations H2 / CO equal to 2.2.
  • the method implemented corresponds to the diagram of the figure 3 wherein the control system according to the invention (adjustment means 61, PLC 51, valves 64 and 66) is not implemented (comparative cases).
  • the Fischer-Tropsch reaction section is fed with a synthesis gas having a ratio of molar concentrations H2 / CO regulated thanks inter alia to the adjustment means 61, to the controller 51 and to the valves 64 and 66 according to the invention ( figure 3 ).
  • Table 1 1st case 2nd case 3 rd case H2 / CO ratio in synthesis gas (3) 2.0 2.2 2.0 Initial H2 / CO ratio in the feed of the Fischer-Tropsch reaction zone (11) 2.0 2.2 2.1 Initial conversion of carbon monoxide (% by weight) 60 60 60 H2 / CO ratio of use 2.1 2.1 2.1 H2 / CO A2 ratio of the gaseous effluent of the Fischer-Tropsch synthesis (21) 1.85 2.35 2.1 H2 / CO ratio A1 in the feed of the Fischer-Tropsch reaction zone (11), immediately after mixing between synthesis gas (3) and recycling (46). 1.92 2.27 2.1
  • Figure 4 shows the impact of H2 / CO concentration ratio on carbon monoxide conversion.
  • Figure 5 shows the impact of the H2 / CO concentration ratio on the selectivity to hydrocarbons having at least five carbon atoms.
  • the control method according to the invention not only allows a stable operation, but it also allows, in a simple, fast and precise way, to adjust the ratio of H2 / CO concentrations in the reactor to a level approximately equal to the usage ratio. .
  • This operation thus makes it possible to obtain a good compromise between the conversion of carbon monoxide and the selectivity into hydrocarbons having at least 5 carbon atoms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The inventive method for producing liquid hydrocarbons by Fischer-Tropsch involves a stage (a) for generating a syngas, a stage (b) for carrying out a Fischer-Tropsch synthesis, a stage (c) for condensing a gas flow obtained at the stage (b), a stage (d) for separating the flow condensed at the stage (c), thereby obtaining a gas flow enriched in hydrocarbons and hydrogen and a stage (e) for recycling at least a part of the enriched gas flow obtained at the stage (d) towards the Fischer-Tropsch synthesis stage (b). Said method is characterised in that it consists 1) in determining two molar ratios A1 and A2 between hydrogen and carbon monoxide (H2/CO), wherein A1 is the value of said ratio in the supply of the synthesis stage (b) and A2 is the value of said ration in any of different gas flows obtained at the stages from (b) to (e), 2) in comparing the A1 and A2 ratios and 3) in adjusting the hydrogen and/or carbon monoxide concentration in the syngas in such a way that a substentially constant deviation between two A1 and A2 ratios is maintained.

Description

Domaine de l'inventionField of the invention

L'invention concerne le domaine des procédés de production d'hydrocarbures liquides comprenant une étape de synthèse Fischer-Tropsch. Elle concerne plus particulièrement un procédé amélioré de synthèse Fischer-Tropsch permettant de maximiser la production et de minimiser les coûts de production.The invention relates to the field of liquid hydrocarbon production processes comprising a Fischer-Tropsch synthesis step. It relates more particularly to an improved Fischer-Tropsch synthesis process that maximizes production and minimizes production costs.

Art antérieurPrior art

La synthèse d'hydrocarbures à partir d'un mélange constitué de monoxyde de carbone et d'hydrogène, plus communément appelé gaz de synthèse, est connue depuis longtemps.The synthesis of hydrocarbons from a mixture of carbon monoxide and hydrogen, more commonly known as synthesis gas, has been known for a long time.

On peut citer en particulier les travaux de F. Fischer et H. Tropsch qui, dès 1923, ont donné leur nom à cette transformation chimique, bien connue sous le nom de synthèse Fischer-Tropsch. La synthèse Fischer-Tropsch est une réaction qui permet de synthétiser des hydrocarbures liquides paraffiniques, oléfiniques et/ou des dérivés oxygénés à partir d'un gaz de synthèse, ce dernier étant par exemple obtenu à partir de gaz naturel ou de charbon. Cette réaction, exploitée industriellement en Europe pendant la seconde guerre mondiale et également en Afrique du Sud depuis les années 1950, a retrouvé un spectaculaire regain d'intérêt depuis les années 1980 à 1990, suite aux évolutions des coûts du pétrole et du gaz, mais aussi pour des motifs environnementaux.We can cite in particular the works of F. Fischer and H. Tropsch which, since 1923, gave their name to this chemical transformation, well known under the name of Fischer-Tropsch synthesis. Fischer-Tropsch synthesis is a reaction that makes it possible to synthesize paraffinic, olefinic liquid hydrocarbons and / or oxygenated derivatives from a synthesis gas, the latter being obtained, for example, from natural gas or coal. This reaction, exploited industrially in Europe during the Second World War and also in South Africa since the 1950s, has regained a spectacular renewal of interest since the 1980s to 1990, following the evolution of oil and gas costs, but also for environmental reasons.

Une des préoccupations de l'homme du métier mettant en oeuvre de tels procédés est de maximiser le taux de conversion des réactifs, c'est à dire maximiser le taux de conversion du monoxyde de carbone en hydrocarbures liquides. Il est souvent difficile de maximiser le taux de conversion des réactifs dans un seul réacteur et en une seule passe, c'est à dire en un seul passage desdits réactifs dans ledit réacteur. En effet, en recherchant un niveau de conversion élevé, le fonctionnement du catalyseur mis en oeuvre lors de la synthèse peut être dégradé compte tenu des conditions opératoires et, en particulier, des pressions partielles d'eau élevées. Par exemple, on peut observer une nette diminution de la sélectivité en produits possédant au moins cinq atomes de carbones lorsque, en utilisant un catalyseur à base de cobalt, on pousse le niveau de conversion du monoxyde de carbone au delà d'environ 80 % en poids.One of the concerns of those skilled in the art using such methods is to maximize the conversion rate reagents, that is to say maximize the conversion rate of carbon monoxide to liquid hydrocarbons. It is often difficult to maximize the conversion rate of the reactants in a single reactor and in a single pass, that is to say in a single passage of said reagents in said reactor. Indeed, by seeking a high level of conversion, the operation of the catalyst used during the synthesis can be degraded given the operating conditions and, in particular, high partial pressures of water. For example, a marked decrease in selectivity can be observed in products having at least five carbon atoms when, using a cobalt-based catalyst, the carbon monoxide conversion level is increased to above about 80%. weight.

Pour réaliser une conversion maximale du monoxyde de carbone lors de la synthèse Fischer-Tropsch, une solution peut consister à réaliser ladite synthèse en plusieurs étapes, par exemple en utilisant plusieurs réacteurs en série. Une autre solution peut consister à réaliser la synthèse Fischer-Tropsch dans un seul réacteur en mettant en oeuvre une boucle de recyclage interne autour dudit réacteur, ce qui peut permettre de conserver un niveau de conversion par passe modéré, par exemple de l'ordre de 60 à 70 % en poids, tout en atteignant un niveau de conversion global élevé, par exemple supérieur ou égale à 90% de conversion.To achieve maximum conversion of carbon monoxide during Fischer-Tropsch synthesis, one solution may consist in carrying out said synthesis in several steps, for example using several reactors in series. Another solution may be to carry out the Fischer-Tropsch synthesis in a single reactor by implementing an internal recycling loop around said reactor, which may make it possible to maintain a moderate conversion level, for example of the order of 60 to 70% by weight, while achieving a high overall conversion level, for example greater than or equal to 90% conversion.

Il est connu, de la demande de brevet internationale WO 02/38699 ,de mettre en oeuvre un procédé pour produire des hydrocarbures liquides par synthèse Fischer-Tropsch comprenant au moins les étapes suivantes :

  • une étape (a) de génération d'un gaz de synthèse comprenant essentiellement du monoxyde de carbone et de l'hydrogène,
  • une étape (b) de synthèse Fischer-Tropsch, à partir d'une alimentation comprenant au moins une partie du gaz de synthèse, permettant la production d'un effluent comprenant des hydrocarbures liquides de synthèse et d'au moins un effluent gazeux,
  • une étape (c) de condensation de l'effluent gazeux obtenu lors de l'étape (b),
  • une étape (d) de séparation de l'effluent condensé lors de l'étape (c) permettant d'obtenir un effluent gazeux enrichi en monoxyde de carbone et en hydrogène, une phase aqueuse et des hydrocarbures liquides, et
  • une étape (e) de recyclage d'au moins une partie de l'effluent gazeux enrichi obtenu lors de l'étape (d) vers l'étape (b) de synthèse Fischer-Tropsch.
It is known, from the international patent application WO 02/38699 , to implement a process for producing liquid hydrocarbons by Fischer-Tropsch synthesis comprising at least the following steps:
  • a step (a) of generating a synthesis gas essentially comprising carbon monoxide and hydrogen,
  • a Fischer-Tropsch synthesis step (b), from a feed comprising at least a portion of the synthesis gas, allowing the production of an effluent comprising synthetic liquid hydrocarbons and at least one gaseous effluent,
  • a step (c) of condensation of the gaseous effluent obtained during step (b),
  • a step (d) for separating the condensed effluent during step (c) making it possible to obtain a gaseous effluent enriched with carbon monoxide and hydrogen, an aqueous phase and liquid hydrocarbons, and
  • a step (e) of recycling at least a portion of the enriched gaseous effluent obtained in step (d) to the Fischer-Tropsch synthesis step (b).

Dans ce type de procédé, on définit généralement le rapport d'usage comme le rapport stoechiométrie (ou rapport molaire) entre l'hydrogène et le monoxyde de carbone consommés par la synthèse Fischer-Tropsch. Le rapport d'usage est généralement variable. Ce rapport peut dépendre de la nature du catalyseur ainsi que des conditions opératoires utilisées lors de la synthèse. Ce rapport d'usage peut évoluer dans le temps, en fonction par exemple de la stabilité du catalyseur. Ce rapport d'usage peut également refléter la sélectivité du catalyseur. Par exemple, dans le cas d'un procédé Fischer-Tropsch utilisant un catalyseur à base de cobalt et visant à produire des hydrocarbures paraffiniques à longues chaînes, le rapport d'usage peut varier entre 2,0 et 2,3 en moles.In this type of process, the use ratio is generally defined as the stoichiometric ratio (or molar ratio) between hydrogen and carbon monoxide consumed by the Fischer-Tropsch synthesis. The usage ratio is generally variable. This ratio may depend on the nature of the catalyst as well as the operating conditions used during the synthesis. This usage ratio can change over time, depending for example on the stability of the catalyst. This usage ratio can also reflect the selectivity of the catalyst. For example, in the case of a Fischer-Tropsch process using a cobalt catalyst and aimed at producing long chain paraffinic hydrocarbons, the duty ratio can range from 2.0 to 2.3 mol.

Par ailleurs, le rapport entre l'hydrogène et le monoxyde de carbone introduits dans une zone réactionnelle où est réalisée une synthèse Fischer-Tropsch joue sur les mécanismes réactionnelles de ladite synthèse, en particulier sur la cinétique et la sélectivité du catalyseur mis en oeuvre.Moreover, the ratio of hydrogen and carbon monoxide introduced into a reaction zone where Fischer-Tropsch synthesis is performed plays on the reaction mechanisms of said synthesis, in particular on the kinetics and selectivity of the catalyst used.

Il est donc important pour l'homme du métier de bien contrôler le rapport entre l'hydrogène et le monoxyde de carbone introduits dans la zone réactionnelle où est opérée la synthèse Fischer-Tropsch.It is therefore important for those skilled in the art to control the ratio of hydrogen and carbon monoxide introduced into the reaction zone where the Fischer-Tropsch synthesis is carried out.

Description détaillée de l'inventionDetailed description of the invention

Un objet de l'invention concerne donc un procédé de production d'hydrocarbures liquides par synthèse Fischer-Tropsch comprenant une étape (a) de génération d'un gaz de synthèse comprenant essentiellement du monoxyde de carbone et de l'hydrogène, une étape (b) de synthèse Fischer-Tropsch, à partir d'une alimentation comprenant au moins une partie du gaz de synthèse, permettant la production d'un effluent comprenant des hydrocarbures liquides de synthèse et d'au moins un effluent gazeux, une étape (c) de condensation de l'effluent gazeux obtenu lors de l'étape (b), une étape (d) de séparation de l'effluent condensé lors de l'étape (c) permettant d'obtenir un effluent gazeux enrichi en monoxyde de carbone et en hydrogène, une phase aqueuse et des hydrocarbures liquides, et une étape (e) de recyclage d'au moins une partie de l'effluent gazeux enrichi obtenu lors de l'étape (d) vers l'étape (b) de synthèse Fischer-Tropsch, dans lequel :

  1. 1) on détermine deux rapports molaires de concentrations, A1 et A2, entre l'hydrogène et le monoxyde de carbone (H2/CO), A1 étant la valeur dudit rapport dans l'alimentation de l'étape (b) de synthèse, et A2 la valeur dudit rapport dans un quelconque des effluents gazeux obtenus lors des étapes (b) à (e),
  2. 2) on compare les rapports A1 et A2, et
  3. 3) on ajuste les concentrations en hydrogène et/ou en monoxyde de carbone dans le gaz de synthèse de manière à maintenir sensiblement constant l'écart entre les deux rapports A1 et A2.
An object of the invention therefore relates to a method for producing liquid hydrocarbons by Fischer-Tropsch synthesis comprising a step (a) of generating a synthesis gas essentially comprising carbon monoxide and hydrogen, a step ( b) Fischer-Tropsch synthesis, from a feed comprising at least a portion of the synthesis gas, allowing the production of an effluent comprising synthetic liquid hydrocarbons and at least one gaseous effluent, a step (c) ) of condensation of the gaseous effluent obtained during step (b), a step (d) of separation of the effluent condensed in step (c) to obtain a gaseous effluent enriched with carbon monoxide and in hydrogen, an aqueous phase and liquid hydrocarbons, and a step (e) for recycling at least a portion of the enriched gaseous effluent obtained during step (d) to step (b) of synthesis Fischer-Tropsch, in which:
  1. 1) two molar ratios of concentrations, A1 and A2, are determined between hydrogen and carbon monoxide (H2 / CO), A1 being the value of said ratio in the feed of step (b) of synthesis, and A2 the value of said ratio in any of the gaseous effluents obtained during steps (b) to (e),
  2. 2) comparing the ratios A1 and A2, and
  3. 3) the concentrations of hydrogen and / or carbon monoxide are adjusted in the synthesis gas so as to keep the difference between the two ratios A1 and A2 substantially constant.

Par maintenir sensiblement constant l'écart entre A1 et A2, on entend généralement la possibilité d'une marge d'erreur par rapport à l'écart entre A1 et A2 souhaité. Cette marge d'erreur est fonction du système de régulation mis en oeuvre et des temps de réponses des moyens d'ajustement. Ladite marge d'erreur est inférieure ou égale à plus ou moins 5%, de préférence inférieure ou égale à plus ou moins 2%, de manière plus préférée inférieure ou égale à plus ou moins 1 %, par exemple inférieure ou égale à plus ou moins 0,5%.Keeping the difference between A1 and A2 substantially constant is generally understood to mean the possibility of a margin of error with respect to the difference between A1 and A2 desired. This margin The error is a function of the control system implemented and the response times of the adjustment means. Said margin of error is less than or equal to plus or minus 5%, preferably less than or equal to plus or minus 2%, more preferably less than or equal to plus or minus 1%, for example less than or equal to more than less than 0.5%.

La détermination des concentrations molaires en hydrogène et en monoxyde de carbone peut être réalisée à partir de tout moyen connu de l'homme du métier, tel que par exemple des analyses chromatographiques. Ces rapports de concentrations A1 et A2 peuvent être ensuite déterminés par simple calcul à partir des mesures de concentrations.The determination of the molar concentrations of hydrogen and carbon monoxide can be carried out using any means known to those skilled in the art, such as, for example, chromatographic analyzes. These concentration ratios A1 and A2 can then be determined by simple calculation from the concentration measurements.

A1 correspond à un rapport molaire de concentrations en hydrogène et monoxyde de carbone dans l'alimentation de l'étape (b) de synthèse Fischer-Tropsch. Cette alimentation est généralement un mélange comprenant le gaz de synthèse produit à l'étape (a) et l'effluent enrichi en hydrogène et en monoxyde de carbone recyclé lors de l'étape (e).A1 corresponds to a molar ratio of hydrogen and carbon monoxide concentrations in the feed of the Fischer-Tropsch synthesis step (b). This feed is generally a mixture comprising the synthesis gas produced in step (a) and the effluent enriched in hydrogen and carbon monoxide recycled during step (e).

A2 correspond, quant à lui, à un rapport molaire de concentrations en hydrogène et monoxyde de carbone dans un quelconque des effluents gazeux obtenus lors des étapes (b) à (e). Généralement, A2 est calculé à partir de mesures effectuées au niveau de tout flux gazeux issu de l'effluent gazeux obtenu lors de l'étape (b) et orienté vers l'effluent recyclé lors de l'étape (e). Ces flux présentent généralement des concentrations en hydrogène et en monoxyde de carbone dans les mêmes proportions.A2 corresponds, for its part, to a molar ratio of concentrations of hydrogen and carbon monoxide in any of the gaseous effluents obtained in steps (b) to (e). Generally, A2 is calculated from measurements made at any gaseous flow from the gaseous effluent obtained in step (b) and directed to the recycled effluent during step (e). These streams generally have concentrations of hydrogen and carbon monoxide in the same proportions.

Plus précisément, le rapport de concentrations A2 peut être calculé sur la base de mesures effectuées sur au moins un des effluents suivants :

  • l'effluent gazeux obtenu lors de l'étape (b),
  • l'effluent refroidi obtenu lors de l'étape (c), de préférence sur la partie gazeuse de cet effluent,
  • l'effluent gazeux enrichi en monoxyde de carbone et en hydrogène obtenu lors de l'étape (d), ou
  • l'effluent recyclé vers l'étape (b) de synthèse Fischer-Tropsch.
More specifically, the concentration ratio A2 can be calculated on the basis of measurements made on at least one of the following effluents:
  • the gaseous effluent obtained during step (b),
  • the cooled effluent obtained during step (c), preferably on the gaseous part of this effluent,
  • the gaseous effluent enriched in carbon monoxide and hydrogen obtained during step (d), or
  • the effluent recycled to the Fischer-Tropsch synthesis step (b).

Selon l'invention, après comparaison de A1 et A2, on ajuste les concentrations en hydrogène et/ou en monoxyde de carbone dans le gaz de synthèse obtenu à l'étape (a) de manière à maintenir sensiblement constant l'écart entre les deux rapports A1 et A2.According to the invention, after comparing A1 and A2, the concentrations of hydrogen and / or carbon monoxide in the synthesis gas obtained in step (a) are adjusted so as to keep the difference between the two substantially constant. A1 and A2 reports.

Cet ajustement peut être réalisé par tout moyen connu de l'homme du métier, telle que, par exemple, grâce à un système de régulation ou un automate connecté, d'une part, aux moyens de mesures des concentrations en hydrogène et en monoxyde de carbone à la base desquelles sont calculées les rapports A1 et A2, et d'autre part à des moyens d'ajustement des concentrations en hydrogène et/ou en monoxyde de carbone dans le gaz de synthèse obtenu à l'étape (a)This adjustment can be carried out by any means known to those skilled in the art, such as, for example, by means of a control system or a connected automaton, on the one hand, to the means for measuring the concentrations of hydrogen and carbon monoxide. carbon at the base of which are calculated the A1 and A2 ratios, and secondly to means for adjusting the concentrations of hydrogen and / or carbon monoxide in the synthesis gas obtained in step (a)

Dans le cas particulier où l'on souhaite minimiser l'écart entre les deux rapports A1 et A2, lorsqu'une perturbation, une phase transitoire ou un démarrage entraîne que le rapport de concentrations A1 devient inférieur au rapport de concentrations A2, la régulation du procédé de l'invention procède à des ajustements au niveau de l'étape (a) du procédé afin d'enrichir le gaz de synthèse en monoxyde de carbone ou de l'appauvrir en hydrogène de manière à minimiser ou maintenir constant l'écart entre A1 et A2. Inversement, si le rapport de concentrations A1 devient supérieur au rapport de concentrations A2, la régulation du procédé de l'invention procède à des ajustements au niveau de l'étape (a) du procédé afin d'enrichir le gaz de synthèse en hydrogène ou de l'appauvrir en monoxyde de carbone de manière à égaliser A1 et A2.In the particular case where it is desired to minimize the difference between the two ratios A1 and A2, when a disturbance, a transient phase or a start causes the concentration ratio A1 to become lower than the concentration ratio A2, the regulation of the method of the invention makes adjustments in step (a) of the process in order to enrich the synthesis gas with carbon monoxide or to deplete it in hydrogen so as to minimize or maintain constant the difference between A1 and A2. Conversely, if the ratio of concentrations A1 becomes greater than the ratio of concentrations A2, the regulation of the process of the invention makes adjustments in step (a) of the process in order to enrich the synthesis gas with hydrogen or to deplete it in carbon monoxide so as to equalize A1 and A2.

La mise en oeuvre du procédé de l'invention permet avantageusement d'éviter d'avoir à réaliser la régulation par rapport à une valeur donnée du rapport d'usage. En effet, dans le cadre de la présente invention, la régulation se fait par minimisation ou maintien à une valeur constante de l'écart entre deux rapports de concentrations, en l'occurrence ceux mesurés par A1 et A2.The implementation of the method of the invention advantageously avoids having to perform the regulation with respect to a given value of the duty ratio. Indeed, in the context of the present invention, the regulation is done by minimizing or maintaining a constant value of the difference between two concentration ratios, in this case those measured by A1 and A2.

De préférence, on ajuste les concentrations en hydrogène et/ou en monoxyde de carbone dans le gaz de synthèse obtenu à l'étape (a) de manière à maintenir sensiblement constant entre les deux rapports A1 et A2Preferably, the concentrations of hydrogen and / or carbon monoxide in the synthesis gas obtained in step (a) are adjusted so as to maintain substantially constant between the two ratios A1 and A2.

Alternativement, on peut ajuster les concentrations en hydrogène et/ou en monoxyde de carbone dans le gaz de synthèse obtenu à l'étape (a) de manière à maintenir constant l'écart entre les deux rapports A1 et A2. Dans ce cas, on préfère maintenir l'écart entre les deux rapports A1 et A2 à une valeur constante inférieure à 0,5, de préférence inférieure à 0,2. Ce mode permet de régler la sélectivité de la réaction pour obtenir la distribution de produits souhaitée. Par exemple, le vieillissement du catalyseur dans le temps peut induire une variation du rapport d'usage donnant lieu à une modification de la distribution des produits. Ainsi, pour maintenir la distribution des produits, il peut être intéressant de maintenir constant l'écart entre les deux rapports A1 et A2 à une valeur constante inférieure à 0,5, de préférence inférieure à 0,2.Alternatively, the concentrations of hydrogen and / or carbon monoxide in the synthesis gas obtained in step (a) can be adjusted so as to keep the difference between the two ratios A1 and A2 constant. In this case, it is preferred to maintain the difference between the two ratios A1 and A2 at a constant value of less than 0.5, preferably less than 0.2. This mode makes it possible to adjust the selectivity of the reaction to obtain the desired product distribution. For example, the aging of the catalyst over time may induce a change in the duty ratio giving rise to a change in the product distribution. Thus, in order to maintain the distribution of the products, it may be advantageous to keep the difference between the two ratios A1 and A2 constant at a constant value of less than 0.5, preferably less than 0.2.

Le rapport d'usage dans la zone réactionnelle de l'étape (b) de synthèse Fischer-Tropsch peut varier au cours du temps. A titre d'exemple, ce rapport d'usage a tendance à augmenter avec le temps, ce qui peut traduire une certaine désactivation du catalyseur, et plus particulièrement une baisse de sa sélectivité en produits hydrocarbonés à longue chaîne. De même, le rapport d'usage peut augmenter avec la température, ce qui favorise la formation de produits légers au détriment des produits lourds. Il peut donc y avoir également un impact de tout changement de capacité, en termes de modification de vitesse spatiale et/ou de modification de température opératoire, sur le rapport d'usage dans la zone réactionnelle de synthèse Fischer-Tropsch.The ratio of use in the reaction zone of the Fischer-Tropsch synthesis step (b) may vary over time. For example, this ratio of use tends to increase with time, which may reflect some deactivation of the catalyst, and more particularly a decrease in its selectivity to long-chain hydrocarbon products. Similarly, the use ratio can increase with temperature, which favors the formation of light products at the expense of heavy products. There can therefore also be an impact of any change in capacity, in terms of changes in space velocity and / or change in operating temperature, on the duty ratio in the Fischer-Tropsch synthesis reaction zone.

De préférence, le procédé de l'invention est mis en oeuvre de manière à régler les conditions opératoires afin de réguler le rapport de concentration H2/CO à un niveau correspondant à un rapport d'usage requis en concordance avec une distribution de produits visée.Preferably, the process of the invention is carried out so as to regulate the operating conditions in order to regulate the H2 / CO concentration ratio at a level corresponding to a required duty ratio in accordance with a targeted product distribution.

La présente invention peut avantageusement être mise en oeuvre dans les procédés de conversion de gaz naturel en hydrocarbures liquides, procédés connus sous l'appellation anglo-saxonne "gas to liquid", ou en abrégé GTL. Ces procédés présentent une voie de valorisation du gaz naturel qui permet, entre autre, de produire des carburants diesels de très bonne qualité, sans soufre, à partir de gaz naturel. Ces procédés mettent généralement en oeuvre un catalyseur à base de cobalt ou de fer, de préférence à base de cobalt.The present invention may advantageously be used in processes for converting natural gas into liquid hydrocarbons, processes known as "gas to liquid", or abbreviated to GTL. These processes have a natural gas recovery pathway that allows, among other things, to produce high quality, sulfur-free diesel fuels from natural gas. These processes generally use a catalyst based on cobalt or iron, preferably based on cobalt.

Etape (a) :Step (a):

Le procédé de l'invention comporte donc une étape (a) de génération du gaz de synthèse comprenant essentiellement du monoxyde de carbone et de l'hydrogène.The method of the invention therefore comprises a step (a) of generating the synthesis gas essentially comprising carbon monoxide and hydrogen.

Cette génération d'un gaz de synthèse peut être réalisée à partir de gaz naturel, de charbon ou obtenue par tout autre voie de transformation connue de l'homme du métier, par exemple par décomposition du méthanol en présence de catalyseur à base de cuivre. De préférence, la génération d'un gaz de synthèse est réalisée à partir de gaz naturel.This generation of a synthesis gas can be made from natural gas, coal or obtained by any other transformation route known to those skilled in the art, for example by decomposition of methanol in the presence of copper-based catalyst. Preferably, the generation of a synthesis gas is made from natural gas.

Dans le cas où l'étape (a) de génération d'un gaz de synthèse est réalisée par conversion du gaz naturel, cette étape (a) peut comporter une étape de réformage à la vapeur du méthane ou une étape d'oxydation partielle du méthane, ou bien une combinaison de ces deux étapes, tel que le procédé de reformage autotherme, par exemple, le procédé ©ATR commercialisé par la société TOPSOE.In the case where the step (a) for generating a synthesis gas is carried out by conversion of the natural gas, this step (a) may comprise a step of reforming with methane vapor or a partial oxidation step of methane, or a combination of these two steps, such as the autothermal reforming process, for example, the ATR process marketed by the company TOPSOE.

Cette première étape peut comporter une combinaison d'une étape de reformage à la vapeur du méthane avec une étape d'oxydation partielle du méthane. Outre son intérêt énergétique, puisqu'il combine une réaction endothermique et une réaction exothermique qui globalement lui confère une certaine autonomie énergétique, ce mode de réalisation fourni un moyen d'ajustement des concentrations en hydrogène et en monoxyde de carbone dans le gaz de synthèse, en particulier du rapport de concentrations de l'hydrogène et du monoxyde de carbone, H2/CO. Ces moyens découlent généralement de la mise en oeuvre d'une réaction de conversion du monoxyde de carbone en présence d'eau en dioxyde de carbone et en hydrogène.This first step may comprise a combination of a methane steam reforming step with a partial methane oxidation step. In addition to its energetic interest, since it combines an endothermic reaction and an exothermic reaction which generally gives it a certain energy autonomy, this embodiment provides a means of adjusting the concentrations of hydrogen and carbon monoxide in the synthesis gas, in particular the ratio of concentrations of hydrogen and carbon monoxide, H2 / CO. These means generally result from the implementation of a conversion reaction of carbon monoxide in the presence of water to carbon dioxide and hydrogen.

L'étape (a) de génération d'un gaz de synthèse peut comporter des moyens dédiés à l'ajustement des concentrations d'hydrogène et/ou de monoxyde de carbone dans le gaz de synthèse. Par exemple, ces moyens peuvent être des moyens d'injection à débit contrôlé d'eau et/ou de dioxyde de carbone. Dans le cas où l'étape (a) comporte un reformage autotherme, l'injection de vapeur d'eau à débit contrôlé est particulièrement bien adaptée.The step (a) of generating a synthesis gas may comprise means dedicated to adjusting the concentrations of hydrogen and / or carbon monoxide in the synthesis gas. For example, these means may be controlled flow injection means of water and / or carbon dioxide. In the case where step (a) comprises an autothermal reforming, the injection of controlled rate steam is particularly well suited.

Selon un mode préférée du procédé de l'invention, l'étape (a) de génération d'un gaz de synthèse est suivie d'une étape (a') dédiée à l'ajustement des concentrations d'hydrogène et/ou de monoxyde de carbone dans le gaz de synthèse.According to a preferred embodiment of the process of the invention, step (a) of generating a synthesis gas is followed by a step (a ') dedicated to adjusting the concentrations of hydrogen and / or monoxide. of carbon in the synthesis gas.

Cette étape (a') peut être réalisée à partir d'une alimentation de tout ou partie du gaz de synthèse produit à l'étape (a). De préférence, l'étape (a') est réalisée à partir d'une alimentation d'une partie du gaz de synthèse produit à l'étape (a), pouvant aller de 1 et 50 % en poids, de préférence 10 à 30 % en poids du gaz de synthèse produit à l'étape (a).This step (a ') can be carried out from a feed of all or part of the synthesis gas produced in step (a). Preferably, step (a ') is carried out from a feed of a portion of the synthesis gas produced in step (a), which may range from 1 to 50% by weight, preferably 10 to 30% by weight. % by weight of the synthesis gas produced in step (a).

De préférence, cette étape (a') peut comporter la mise en oeuvre d'un moyen d'extraction de l'hydrogène ou du monoxyde de carbone, telle que, par exemple, une membrane qui extrait préférentiellement l'hydrogène d'un mélange comprenant de l'hydrogène et du monoxyde de carbone.Preferably, this step (a ') may comprise the use of a means for extracting hydrogen or carbon monoxide, such as, for example, a membrane which preferably extracts hydrogen from a mixture comprising hydrogen and carbon monoxide.

Cette étape (a') peut comporter la mise en oeuvre de moyens permettant un appoint en hydrogène ou en monoxyde de carbone, tel que, par exemple, une ligne d'appoint en hydrogène provenant d'une unité annexe de reformage catalytique.This step (a ') can comprise the implementation of means allowing a supplementation of hydrogen or carbon monoxide, such as, for example, a hydrogen make-up line from a catalytic reforming auxiliary unit.

Les moyens dédiés à l'ajustement des concentrations d'hydrogène et/ou de monoxyde de carbone dans le gaz de synthèse, qu'ils soient indissociables de l'étape (a) de génération du gaz de synthèse ou qu'ils soient dissociés et intégrés dans une étape (a') séparée de l'étape (a), permettent ainsi de modifier la composition, en particulier les concentrations en hydrogène et/ou en monoxyde de carbone, du gaz de synthèse produit lors de l'étape (a). Cet ajustement peut également être réalisé par l'intermédiaire du système de régulation qui constitue un des objets de l'invention.The means dedicated to the adjustment of the concentrations of hydrogen and / or carbon monoxide in the synthesis gas, whether they are inseparable from the step (a) for generating the synthesis gas or that they are dissociated and integrated in a step (a ') separated from step (a), thus make it possible to modify the composition, in particular the concentrations of hydrogen and / or carbon monoxide, of the synthesis gas produced during step (a) ). This adjustment can also be achieved through the control system which is one of the objects of the invention.

Ainsi on obtient un ajustement du rapport de concentrations molaires H2/CO de l'alimentation de la section réactionnelle de l'étape (b) qui peut être avantageusement régulé à un niveau sensiblement égal au rapport d'usage de la réaction mise en oeuvre dans ladite section réactionnelle.Thus an adjustment is obtained of the molar concentration ratio H2 / CO of the supply of the reaction section of step (b) which can be advantageously regulated at a level substantially equal to the utilization ratio of the reaction used in said reaction section.

Dans le cas où les moyens d'ajustement sont dissociés et intégrés dans une étape (a') séparée de l'étape (a), le rapport de concentrations H2/CO en sortie de l'étape (a') peut être égal, supérieur ou inférieur au rapport de concentrations H2/CO dans le gaz de synthèse issu de l'étape (a).In the case where the adjustment means are dissociated and integrated in a step (a ') separated from step (a), the concentration ratio H2 / CO at the output of step (a') can equal to, greater than or less than the ratio of H2 / CO concentrations in the synthesis gas from step (a).

Dans ce même cas, l'étape (a') permet d'améliorer la régulation du rapport de concentrations H2/CO de l'alimentation de la section réactionnelle de l'étape (b). En effet, même s'il est souvent possible de réaliser l'ajustement de ce rapport de concentrations H2/CO directement lors de l'étape (a) de génération du gaz de synthèse, les actions de régulation sur cette étape (a) peuvent présenter des temps de réponse importants qui peuvent s'avérer trop lents pour l'établissement d'une régulation efficace, voire même incompatible avec le système de régulation de la présente invention. Le mode de réalisation préféré mettant en oeuvre une étape (a') apporte de la souplesse dans le fonctionnement du procédé de l'invention. Les ajustements réalisés au niveau de cette étape (a') sont des actions correctives simples et rapides, ce qui améliore considérablement les performances globales du procédé de l'invention.In this same case, step (a ') makes it possible to improve the regulation of the concentration ratio H2 / CO of the supply of the reaction section of step (b). Indeed, even if it is often possible to adjust this H2 / CO concentration ratio directly during step (a) for generating the synthesis gas, the regulation actions on this step (a) can have significant response times that may be too slow to establish a regulation effective or even incompatible with the control system of the present invention. The preferred embodiment implementing a step (a ') provides flexibility in the operation of the method of the invention. The adjustments made in this step (a ') are simple and fast corrective actions, which considerably improves the overall performance of the method of the invention.

Etape (b) :Step (b):

L'étape (b) de synthèse Fischer-Tropsch du procédé de selon l'invention est réalisée à partir d'une alimentation comprenant au moins une partie du gaz de synthèse issu des étapes (a) ou (a') et permettant la production d'un effluent comprenant des hydrocarbures liquides de synthèse et d'au moins un effluent gazeux.The Fischer-Tropsch synthesis step (b) of the process according to the invention is carried out from a feed comprising at least a part of the synthesis gas resulting from steps (a) or (a ') and allowing the production an effluent comprising synthetic liquid hydrocarbons and at least one gaseous effluent.

Grâce au système de régulation du rapport de concentrations H2/CO dans l'étape (b), le fonctionnement de cette étape de synthèse Fischer-Tropsch est optimisé.Thanks to the H2 / CO concentration ratio control system in step (b), the operation of this Fischer-Tropsch synthesis step is optimized.

L'étape (b) de synthèse Fischer-Tropsch est mise en oeuvre dans une zone réactionnelle comprenant un ou plusieurs réacteurs adaptés, dont la technologie est connue de l'homme de métier. Il peut s'agir, par exemple, de réacteurs à lit fixe multitubulaire, de réacteurs à lit mobile ou de réacteurs de type colonne à bulles, connu en anglais sous l'appellation de "slurry bubble column", ou en abrégé "SBC".The Fischer-Tropsch synthesis step (b) is carried out in a reaction zone comprising one or more suitable reactors, the technology of which is known to those skilled in the art. It may be, for example, fixed bed multitubular reactors, moving bed reactors or bubble column type reactors, known in English as "slurry bubble column", or abbreviated as "SBC". .

Selon un mode préféré de l'invention, l'étape (b) met en oeuvre un ou plusieurs réacteurs de type colonne à bulles. La synthèse étant fortement exothermique, ce mode de réalisation permet, entre autre, d'améliorer le contrôle thermique du réacteur, notamment dans le cas des unités de fortes capacités.According to a preferred embodiment of the invention, step (b) uses one or more bubble column type reactors. The synthesis being strongly exothermic, this mode of realization allows, among other things, to improve the thermal control of the reactor, especially in the case of high capacity units.

Le catalyseur mis en oeuvre dans cette étape (b) est généralement tout solide catalytique connu de l'homme du métier permettant de réaliser la synthèse Fischer-Tropsch. De préférence, le catalyseur mis en oeuvre dans cette étape (b) comporte du cobalt ou du fer, de manière plus préférée du cobalt.The catalyst used in this step (b) is generally any catalytic solid known to those skilled in the art for performing the Fischer-Tropsch synthesis. Preferably, the catalyst used in this step (b) comprises cobalt or iron, more preferably cobalt.

Le catalyseur mis en oeuvre dans cette étape (b) est généralement un catalyseur supporté. Le support peut être, à titre d'exemple, à base d'alumine, de silice ou de titane.The catalyst used in this step (b) is generally a supported catalyst. The support may be, for example, based on alumina, silica or titanium.

Les conditions de température et de pression sont variables et adaptées au catalyseur mis en oeuvre dans cette étape (b). La pression peut être généralement comprise entre 0,1 et 10 MPa. La température peut être généralement comprise entre 200 et 400°C.The conditions of temperature and pressure are variable and adapted to the catalyst used in this step (b). The pressure can generally be between 0.1 and 10 MPa. The temperature can generally be between 200 and 400 ° C.

Dans le cas où le catalyseur mis en oeuvre dans l'étape (b) est à base de cobalt, la température est de préférence comprise entre environ 200 et 250°C et la pression est de préférence comprise entre environ 1 et 4 MPa.In the case where the catalyst used in step (b) is based on cobalt, the temperature is preferably between about 200 and 250 ° C and the pressure is preferably between about 1 and 4 MPa.

L'alimentation de l'étape (b) de l'invention comporte du monoxyde de carbone et de l'hydrogène avec un rapport de concentrations molaires H2/CO qui peut être compris entre 0,5 et 3, de préférence entre 1 et 2,5, de manière plus préférée entre 2,0 et 2,3.The feed of step (b) of the invention comprises carbon monoxide and hydrogen with a ratio of molar concentrations H2 / CO which may be between 0.5 and 3, preferably between 1 and 2 , 5, more preferably between 2.0 and 2.3.

L'effluent liquide issu de l'étape (b) comprenant les hydrocarbures liquides de synthèse est généralement destiné à être traité dans diverses étapes de purification et/ou de conversion en vue de produire, par exemple, des carburants et en particulier du carburant diesel de très haute qualité.The liquid effluent from step (b) comprising synthetic liquid hydrocarbons is generally intended to be treated in various purification and / or conversion stages with a view to producing, for example, fuels and in particular diesel fuel. of very high quality.

Etape (c) :Step (c):

Selon l'invention, lors de l'étape (c), on condense un effluent gazeux obtenu lors de l'étape (b). Cet effluent peut comporter la totalité ou une partie de l'effluent obtenu lors de l'étape (b). Cette étape de condensation peut être réalisé de manière à atteindre une température allant de -20 à 300°C, de préférence allant de 0 à 200 °C, de manière plus préférée allant de 30 à 60 °C.According to the invention, during step (c), a gaseous effluent obtained during step (b) is condensed. This effluent may comprise all or part of the effluent obtained in step (b). This condensation step can be carried out so as to achieve a temperature ranging from -20 to 300 ° C, preferably from 0 to 200 ° C, more preferably from 30 to 60 ° C.

De préférence, l'étape (c) de condensation est réalisée de manière à condenser au moins une partie de l'effluent envoyé dans ladite étape, ce qui permet d'obtenir un flux biphasique. La partie condensée peut représenter au plus 50 %, de préférence au plus 15 % en poids, de la partie de l'effluent envoyé dans l'étape de condensation.Preferably, the condensation step (c) is carried out so as to condense at least a portion of the effluent sent in said step, which makes it possible to obtain a two-phase flow. The condensed portion may represent at most 50%, preferably at most 15% by weight, of the portion of the effluent sent in the condensation step.

L'étape (c) de condensation peut être mise en oeuvre par tout moyen connu par l'homme du métier tel que, par exemple, un aérocondenseur ou un échangeur de chaleur à eau classique, de préférence par un aérocondenseur.The condensation step (c) can be carried out by any means known to those skilled in the art such as, for example, a conventional air-condenser or a conventional water-heat exchanger, preferably an air condenser.

Etape (d) :Step (d):

Selon l'invention, lors de l'étape (d) de séparation, on envoie l'effluent condensé lors de l'étape (c) dans une zone de séparation permettant d'obtenir un effluent gazeux enrichi en monoxyde de carbone et en hydrogène, une phase aqueuse et des hydrocarbures liquides.According to the invention, during the separation step (d), the condensed effluent is sent during step (c) to a separation zone making it possible to obtain a gaseous effluent enriched with carbon monoxide and hydrogen. , an aqueous phase and liquid hydrocarbons.

La zone de séparation dans laquelle est mise en oeuvre l'étape (d) de séparation peut être équipée par tout moyen connu de l'homme du métier, tel que, par exemple, par un ou plusieurs ballons de séparation.The separation zone in which the separation step (d) is carried out can be equipped by any means known to those skilled in the art, such as, for example, by one or more separation flasks.

Etape (e) :Step (e):

Selon l'invention, lors de l'étape (e) on recycle au moins une partie de l'effluent gazeux enrichi en monoxyde de carbone et en hydrogène obtenu lors de l'étape (d) vers l'étape (b) de synthèse Fischer-Tropsch.According to the invention, during step (e) at least a portion of the gaseous effluent enriched in carbon monoxide and hydrogen obtained during step (d) is recycled to step (b) of synthesis. Fischer-Tropsch synthesis.

La partie de l'effluent gazeux enrichi recyclée vers l'étape (b) de synthèse Fischer-Tropsch peut comporter au moins 50 % en volume, de préférence, au moins 75 % en volume, de manière plus préférée au moins 85 % en volume de l'effluent enrichi en monoxyde de carbone et en hydrogène obtenu lors de l'étape (d).The portion of the enriched gaseous effluent recycled to the Fischer-Tropsch synthesis stage (b) may comprise at least 50% by volume, preferably at least 75% by volume, more preferably at least 85% by volume. the effluent enriched in carbon monoxide and hydrogen obtained in step (d).

La partie de l'effluent enrichi recyclée vers l'étape (b) peut avoir un débit allant de 0 (exclu) à 2 fois, de préférence de 0,5 à 1,5 fois celui du gaz de synthèse issu de l'étape (a) ou (a').The portion of the enriched effluent recycled to step (b) may have a flow rate ranging from 0 (excluded) to 2 times, preferably from 0.5 to 1.5 times that of the synthesis gas resulting from the step (a) or (a ').

De préférence, la partie de l'effluent enrichi en monoxyde de carbone et en hydrogène est comprimé par tout moyen connu par l'homme du métier à une pression pouvant aller de 0,1 à 10 MPa, de préférence de 1 à 4 MPa, de manière plus préférée de 2 à 3 MPa.Preferably, the portion of the effluent enriched with carbon monoxide and hydrogen is compressed by any means known to those skilled in the art at a pressure ranging from 0.1 to 10 MPa, preferably from 1 to 4 MPa, more preferably from 2 to 3 MPa.

De préférence, l'étape (e) de recyclage peut comporter des moyens d'extractions du dioxyde de carbone. Ces moyens peuvent être tout moyen connu de l'homme du métier, tel que, par exemple, un lavage par une solution aqueuse d'amines.Preferably, the recycling step (e) may comprise means for extracting carbon dioxide. These means can be any means known to those skilled in the art, such as, for example, washing with an aqueous solution of amines.

L'extraction du dioxyde de carbone peut être partielle ou totale. Cette extraction peut être réalisée sur tout ou partie de l'effluent enrichi recyclé.The extraction of carbon dioxide can be partial or total. This extraction can be carried out on all or part of the recycled enriched effluent.

L'effluent enrichi recyclé peut être éventuellement réchauffé ou refroidi par tout moyen connu de l'homme du métier.The recycled enriched effluent may be optionally heated or cooled by any means known to those skilled in the art.

Pour une meilleure compréhension, trois modes de réalisation du procédé de l'invention sont illustrés dans les Figures 1, 2 et 3.

  • La Figure 1 représente schématiquement un mode de réalisation correspondant à une version de base du procédé de l'invention.
  • La Figure 2 représente schématiquement un mode de réalisation préférée du procédé de l'invention dans lequel une étape séparée (a') d'ajustement du rapport des concentrations d'hydrogène et de monoxyde de carbone est mise en oeuvre après l'étape (a) de génération du gaz de synthèse.
  • La Figure 3 représente schématiquement un autre mode de réalisation préférée dans lequel l'étape (a') d'ajustement du rapport des concentrations d'hydrogène et de monoxyde de carbone est mise en oeuvre que sur une partie du gaz de synthèse produit lors de l'étape (a).
  • La Figure 4 représente, dans le cadre de l'exemple ci-après, l'impact du rapport molaire H2/CO sur la conversion du monoxyde de carbone.
  • La Figure 5 représente, dans le cadre de l'exemple ci-après, l'impact du rapport molaire H2/CO sur la sélectivité en hydrocarbures ayant au moins cinq atomes de carbone.
For a better understanding, three embodiments of the method of the invention are illustrated in the Figures 1 , 2 and 3 .
  • The Figure 1 schematically represents an embodiment corresponding to a basic version of the method of the invention.
  • The Figure 2 schematically represents a preferred embodiment of the process of the invention in which a separate step (a ') of adjusting the ratio of the concentrations of hydrogen and carbon monoxide is carried out after step (a) of generating synthesis gas.
  • The Figure 3 schematically represents another preferred embodiment in which the step (a ') of adjusting the ratio of the concentrations of hydrogen and carbon monoxide is carried out only on a part of the synthesis gas produced during the step (at).
  • The Figure 4 represents, in the context of the example below, the impact of the molar ratio H2 / CO on the conversion of carbon monoxide.
  • The Figure 5 represents, in the context of the example below, the impact of the H2 / CO molar ratio on the selectivity to hydrocarbons having at least five carbon atoms.

Les modes de réalisation illustrés dans les Figures 1 à 3 sont donnés à titre d'exemple et ne présentent aucun caractère limitatif. Ces illustrations du procédé de l'invention ne comportent pas la totalité des composantes nécessaires à sa mise en oeuvre. Seuls les éléments nécessaires à la compréhension de l'invention y sont représentés, l'homme du métier étant capable de compléter cette représentation pour mettre en oeuvre l'invention.The embodiments illustrated in the Figures 1 to 3 are given by way of example and are not limiting in nature. These illustrations of the method of the invention do not include all the components necessary for its implementation. Only the elements necessary for the understanding of the invention are represented therein, the person skilled in the art being able to complete this representation to implement the invention.

Description détaillée des figuresDetailed description of the figures

Dans la Figure 1, une charge hydrocarbonée est envoyée par l'intermédiaire d'un conduit 1 dans une zone de génération d'un gaz de synthèse 2, ledit gaz étant ensuite envoyé dans un conduit 3. La zone de génération 2 est équipée de moyens permettant d'ajuster les concentrations en hydrogène et en monoxyde de carbone du gaz de synthèse ainsi produit. Ces moyens sont représentés schématiquement par un conduit d'alimentation 4 en hydrogène équipé d'une vanne 5 et d'un conduit d'évacuation 6 de l'hydrogène équipé d'une vanne 7. Les deux vannes 5 et 7 peuvent être opérées à distance par un automate programmable 51.In the Figure 1 a hydrocarbon feedstock is sent via a conduit 1 into a synthesis gas generation zone 2, said gas then being fed into a conduit 3. The generation zone 2 is equipped with means for adjust the hydrogen and carbon monoxide concentrations of the synthesis gas thus produced. These means are diagrammatically represented by a hydrogen supply duct 4 equipped with a valve 5 and a hydrogen evacuation duct 6 equipped with a valve 7. The two valves 5 and 7 can be operated at the same time. distance by a PLC 51.

Le gaz de synthèse est envoyé par l'intermédiaire du conduit 3 et d'un conduit 11 dans un réacteur de synthèse Fischer-Tropsch 12. Ce réacteur est équipé d'un conduit d'évacuation 13 d'un effluent comprenant des hydrocarbures liquides vers des étapes de purification et/ou de conversion non représentées.The synthesis gas is sent through the conduit 3 and a conduit 11 into a Fischer-Tropsch synthesis reactor 12. This reactor is equipped with a discharge pipe 13 of an effluent comprising liquid hydrocarbons to unrepresented purification and / or conversion steps.

Un effluent gazeux est également évacué par un conduit 21 du réacteur de synthèse Fischer-Tropsch 12. Cet effluent gazeux est dirigé vers une unité de refroidissement 22.A gaseous effluent is also discharged through a conduit 21 of the Fischer-Tropsch synthesis reactor 12. This gaseous effluent is directed to a cooling unit 22.

L'effluent refroidi est dirigé par un conduit 31 vers des moyens de séparation, en l'occurrence un ballon séparateur 32. Un effluent aqueux enrichi en eau est soutiré en fond de ce ballon par un conduit 33. Un effluent liquide enrichi en hydrocarbures est également soutiré par un conduit 34. En tête du ballon séparateur, un effluent enrichi en monoxyde de carbone et en hydrogène est évacué par un conduit 35.The cooled effluent is directed by a conduit 31 to separation means, in this case a separator tank 32. An aqueous effluent enriched with water is withdrawn at the bottom of this flask via a conduit 33. A liquid effluent enriched in hydrocarbons is also withdrawn by a conduit 34. At the top of the separator flask, an effluent enriched in carbon monoxide and hydrogen is discharged through a conduit 35.

Une partie de l'effluent enrichi est envoyée, par l'intermédiaire d'un conduit 41, vers un compresseur 42. L'autre partie de l'effluent enrichie est évacuée par l'intermédiaire d'un conduit 43. Après compression, la partie de l'effluent enrichi et comprimée est envoyée, par l'intermédiaire d'un conduit 44, vers des moyens d'extractions 45 du dioxyde de carbone avant d'être recyclé dans le réacteur de synthèse Fischer-Tropsch via un conduit 46 par l'intermédiaire du conduit 11. Le dioxyde de carbone est extrait via un conduit 47.Part of the enriched effluent is sent, via a conduit 41, to a compressor 42. The other part of the enriched effluent is discharged through a conduit 43. After compression, the part of the enriched and compressed effluent is sent, via a conduit 44, to means 45 for extracting carbon dioxide before being recycled to the Fischer-Tropsch synthesis reactor via a conduit 46 through through the conduit 11. The carbon dioxide is extracted via a conduit 47.

Un automate programmable 51 permet de réguler l'ouverture et la fermeture des vannes 5 et 7 en fonction des mesures de concentrations d'hydrogène et de monoxyde de carbone réalisées grâce à des analyseurs chromatographiques 52 et 53 localisés respectivement sur les conduits 11 et 41. Les vannes 5 et 7, et les analyseurs 52 et 53 sont reliés à l'automate programmable 51 respectivement via les lignes 54, 55, 56 et 57.A programmable controller 51 makes it possible to regulate the opening and the closing of the valves 5 and 7 as a function of the measurements of concentrations of hydrogen and of carbon monoxide produced by means of chromatographic analyzers 52 and 53 respectively located on the conduits 11 and 41. The valves 5 and 7, and the analyzers 52 and 53 are connected to the programmable controller 51 respectively via the lines 54, 55, 56 and 57.

La Figure 2 comporte des éléments déjà représentés à la Figure 1. En plus de ces éléments, le mode de réalisation représenté à la Figure 2 comporte des moyens d'ajustement 61 du rapport des concentrations d'hydrogène et de monoxyde de carbone dans le gaz de synthèse, lesdits moyens étant dissociés de la zone 2 de génération du gaz de synthèse. Ces moyens d'ajustement sont reliés à la zone de génération d'un gaz de synthèse 2 par l'intermédiaire d'un conduit 62.The Figure 2 contains elements already represented in Figure 1 . In addition to these elements, the embodiment shown in FIG. Figure 2 comprises adjustment means 61 for the ratio of the concentrations of hydrogen and carbon monoxide in the synthesis gas, said means being dissociated from the zone 2 for generating the synthesis gas. These adjustment means are connected to the synthesis gas generation zone 2 via a conduit 62.

Les moyens (4, 5, 6 et 7) permettant d'ajuster les concentrations en hydrogène et en monoxyde de carbone de la Figure 1 sont remplacés dans la Figure 2 par un conduit d'alimentation 63 en hydrogène équipé d'une vanne 64 et d'un conduit d'évacuation 65 de l'hydrogène équipé d'une vanne 66. Les deux vannes 64 et 66 sont opérées à distance par un automate programmable.Means (4, 5, 6 and 7) for adjusting the hydrogen and carbon monoxide concentrations of the Figure 1 are replaced in the Figure 2 by a hydrogen supply duct 63 equipped with a valve 64 and a hydrogen evacuation duct 65 equipped with a valve 66. The two valves 64 and 66 are operated remotely by a programmable controller.

L'automate programmable 51 permet de réguler l'ouverture et la fermeture des vannes 64 et 66 en fonction des mesures de concentrations d'hydrogène et de monoxyde de carbone réalisées grâce à des analyseurs chromatographiques 52 et 53 qui sont, dans ce mode de réalisation, localisés respectivement sur les conduits 11 et 43. Les vannes 64 et 66, et les analyseurs 52 et 53 sont reliés à l'automate programmable 51 respectivement via les lignes 54, 55, 56 et 57.The programmable logic controller 51 makes it possible to regulate the opening and the closing of the valves 64 and 66 as a function of the measurements of concentrations of hydrogen and carbon monoxide. carbon generated by chromatographic analyzers 52 and 53 which are, in this embodiment, respectively located on the ducts 11 and 43. The valves 64 and 66, and the analyzers 52 and 53 are connected to the programmable controller 51 respectively via lines 54, 55, 56 and 57.

La Figure 3 comporte des éléments déjà représentés à la Figure 2. A la différence du mode de réalisation de la Figure 2, les moyens d'ajustement 61 du rapport des concentrations d'hydrogène et de monoxyde de carbone dans le gaz de synthèse sont directement reliés au conduit de gaz de synthèse 3 par l'intermédiaire d'un conduit d'alimentation 71 et d'un conduit d'évacuation 72.The Figure 3 contains elements already represented in Figure 2 . Unlike the embodiment of the Figure 2 , the adjustment means 61 for the ratio of the concentrations of hydrogen and carbon monoxide in the synthesis gas are directly connected to the synthesis gas duct 3 via a supply duct 71 and a exhaust duct 72.

Ainsi l'étape d'ajustement du rapport des concentrations d'hydrogène et de monoxyde de carbone n'est mise en oeuvre que sur une partie du gaz de synthèse produit lors de l'étape (a).Thus the step of adjusting the ratio of the concentrations of hydrogen and carbon monoxide is implemented only on a portion of the synthesis gas produced in step (a).

Dans ce mode de réalisation, l'automate programmable 51 permet de réguler l'ouverture et la fermeture des vannes 64 et 66 en fonction des mesures de concentrations d'hydrogène et de monoxyde de carbone réalisées grâce à des analyseurs chromatographiques 52 et 53 qui sont, dans ce cas, localisés respectivement sur les conduits 11 et 46. Les vannes 64 et 66, et les analyseurs 52 et 53 sont reliés à l'automate programmable 51 respectivement via les lignes 54, 55, 56 et 57.In this embodiment, the programmable logic controller 51 makes it possible to regulate the opening and the closing of the valves 64 and 66 as a function of the measurements of concentrations of hydrogen and of carbon monoxide produced by means of chromatographic analyzers 52 and 53 which are in this case, respectively located on the ducts 11 and 46. The valves 64 and 66, and the analyzers 52 and 53 are connected to the programmable controller 51 respectively via the lines 54, 55, 56 and 57.

ExemplesExamples

Le schéma de la figure 3 a servi de base à ces exemples. La section réactionnelle de la synthèse Fischer-Tropsch utilisée dans ces exemples a été alimentée par un gaz de synthèse comprenant de l'hydrogène et du monoxyde de carbone. Ce gaz de synthèse est produit par un dispositif de génération et un dispositif d'ajustement permettant soit de maintenir constant, soit d'ajuster à une valeur déterminée par un automate programmable, le rapport de concentrations H2/CO de l'hydrogène et du monoxyde de carbone de ce gaz de synthèse.The scheme of the figure 3 was used as a basis for these examples. The reaction section of the Fischer-Tropsch synthesis used in these examples was fed with a synthesis gas comprising hydrogen and carbon monoxide. This synthesis gas is produced by a generating device and an adjustment device making it possible to maintain the hydrogen / monoxide concentration ratio H2 / CO at a value determined by a programmable logic controller. carbon of this synthesis gas.

Le taux de recyclage, défini par le rapport du débit dans la boucle de recyclage sur le débit de gaz de synthèse en sortie de la zone de génération du gaz de synthèse, est maintenu autour d'une valeur égale à 1,0.The recycling rate, defined by the ratio of the flow rate in the recycling loop to the flow rate of synthesis gas leaving the synthesis gas generation zone, is maintained around a value equal to 1.0.

La réaction de synthèse Fischer-Tropsch est réalisée à 220°C et à 2 MPa, en présence d'un solide catalytique à base de cobalt. Dans les conditions mise en oeuvre dans la zone réactionnelle, le rapport d'usage est d'environ 2,10 et le niveau de conversion initiale par passe de 60 % en poids.The Fischer-Tropsch synthesis reaction is carried out at 220 ° C. and at 2 MPa, in the presence of a cobalt catalytic solid. Under the conditions used in the reaction zone, the duty ratio is about 2.10 and the initial conversion level per pass is 60% by weight.

Dans un premier cas, la section réactionnelle Fischer-Tropsch est alimentée par un gaz de synthèse présentant un rapport de concentrations molaires H2/CO égal à 2,0.In a first case, the Fischer-Tropsch reaction section is fed with a synthesis gas having a ratio of molar concentrations H2 / CO equal to 2.0.

Dans un second cas, la section réactionnelle Fischer-Tropsch est alimentée par un gaz de synthèse présentant un rapport de concentrations molaires H2/CO égal à 2,2.In a second case, the Fischer-Tropsch reaction section is fed with a synthesis gas having a ratio of molar concentrations H2 / CO equal to 2.2.

Dans ces deux premiers cas, le procédé mis en oeuvre correspond au schéma de la figure 3 dans lequel le système de régulation selon l'invention (moyens d'ajustement 61, automate 51, vannes 64 et 66) n'est pas mis en oeuvre (cas comparatifs).In these first two cases, the method implemented corresponds to the diagram of the figure 3 wherein the control system according to the invention (adjustment means 61, PLC 51, valves 64 and 66) is not implemented (comparative cases).

Dans un troisième cas (selon l'invention), la section réactionnelle Fischer-Tropsch est alimentée par un gaz de synthèse présentant un rapport de concentrations molaires H2/CO régulé grâce entre autre aux moyens d'ajustement 61, à l'automate 51 et aux vannes 64 et 66 selon l'invention (figure 3).In a third case (according to the invention), the Fischer-Tropsch reaction section is fed with a synthesis gas having a ratio of molar concentrations H2 / CO regulated thanks inter alia to the adjustment means 61, to the controller 51 and to the valves 64 and 66 according to the invention ( figure 3 ).

Les performances obtenues dans ces trois cas sont présentées dans le tableau 1 ci-dessous. Tableau 1 1er cas 2ème cas 3ème cas Rapport H2/CO dans le gaz de synthèse (3) 2,0 2,2 2,0 Rapport H2/CO initial dans l'alimentation de la zone réactionnelle Fischer-Tropsch (11) 2,0 2,2 2,1 Conversion initiale du monoxyde de carbone (% en poids) 60 60 60 Rapport H2/CO d'usage 2,1 2,1 2,1 Rapport H2/CO A2 de l'effluent gazeux de la synthèse Fischer-Tropsch (21) 1,85 2,35 2,1 Rapport H2/CO A1 dans l'alimentation de la zone réactionnelle Fischer-Tropsch (11), aussitôt après mélange entre gaz de synthèse (3) et recyclage (46). 1,92 2,27 2,1 The performances obtained in these three cases are presented in Table 1 below. Table 1 1st case 2nd case 3 rd case H2 / CO ratio in synthesis gas (3) 2.0 2.2 2.0 Initial H2 / CO ratio in the feed of the Fischer-Tropsch reaction zone (11) 2.0 2.2 2.1 Initial conversion of carbon monoxide (% by weight) 60 60 60 H2 / CO ratio of use 2.1 2.1 2.1 H2 / CO A2 ratio of the gaseous effluent of the Fischer-Tropsch synthesis (21) 1.85 2.35 2.1 H2 / CO ratio A1 in the feed of the Fischer-Tropsch reaction zone (11), immediately after mixing between synthesis gas (3) and recycling (46). 1.92 2.27 2.1

Par ailleurs, la Figure 4 montre l'impact du rapport de concentrations H2/CO sur la conversion du monoxyde de carbone.Moreover, the Figure 4 shows the impact of H2 / CO concentration ratio on carbon monoxide conversion.

De même, la Figure 5 montre l'impact du rapport de concentrations H2/CO sur la sélectivité en hydrocarbures ayant au moins cinq atomes de carbone.Similarly, Figure 5 shows the impact of the H2 / CO concentration ratio on the selectivity to hydrocarbons having at least five carbon atoms.

On observe dans le 1ercas, où A2 < A1, que le système évolue vers une charge de moins en moins riche en hydrogène, de façon divergente et que l'impact sur l'activité ou la productivité est négatif (baisse du niveau de conversion).In Case 1 is observed, where A2 <A1, the system evolves towards a load less rich in hydrogen, divergently and the impact on the activity or productivity is negative (decrease in the level of conversion).

On observe dans le 2ème cas, où A2 > A1, que le système évolue vers une charge de plus en plus riche en hydrogène, de façon divergente et que l'impact sur la sélectivité de la réaction est négatif.In the 2nd case, where A2> A1, we observe that the system evolves towards a load that is increasingly rich in hydrogen, in a divergent manner and that the impact on the selectivity of the reaction is negative.

On observe dans le 3ème cas que, grâce au procédé de régulation selon la présente invention, le fonctionnement de l'unité reste stable et est optimisé en ce qui concerne la conversion et la sélectivité.Is observed in the 3 rd case that, thanks to the regulation method according to the present invention, the operation of the unit remains stable and is optimized as regards conversion and selectivity.

De cet exemple, il est possible de conclure qu'en maintenant le rapport de concentrations mesuré au niveau de A1 à une valeur égale à celui mesuré au niveau de A2 permet d'obtenir un régime stable, c'est à dire dans lequel le rapport de concentrations H2/CO est maintenu constant dans le réacteur de synthèse Fischer-Tropsch.From this example, it can be concluded that keeping the ratio of concentrations measured at A1 to a value equal to that measured at A2 makes it possible to obtain a steady state, ie in which the ratio concentrations of H2 / CO are kept constant in the Fischer-Tropsch synthesis reactor.

Le procédé de régulation selon l'invention permet non seulement un fonctionnement stable, mais il permet également, de manière simple, rapide et précise, de régler le rapport de concentrations H2/CO dans le réacteur à un niveau approximativement égal au rapport d'usage. Ce fonctionnement permet ainsi d'obtenir un bon compromis entre la conversion du monoxyde de carbone et la sélectivité en hydrocarbures ayant au moins 5 atomes de carbones.The control method according to the invention not only allows a stable operation, but it also allows, in a simple, fast and precise way, to adjust the ratio of H2 / CO concentrations in the reactor to a level approximately equal to the usage ratio. . This operation thus makes it possible to obtain a good compromise between the conversion of carbon monoxide and the selectivity into hydrocarbons having at least 5 carbon atoms.

Claims (12)

  1. A process for the production of liquid hydrocarbons by the Fischer-Tropsch process comprising a step a) for generating a synthesis gas essentially comprising carbon monoxide and hydrogen, a step b) for Fischer-Tropsch synthesis starts from a supply comprising at least a portion of the synthesis gas, to produce an effluent comprising synthesized liquid hydrocarbons and at least one gaseous effluent, a step c) for condensing the gaseous effluent obtained during step b), a step d) for separating the effluent condensed during step c) to obtain a gaseous effluent enriched in carbon monoxide and hydrogen, an aqueous phase and liquid hydrocarbons, and a step e) for recycling at least a portion of the enriched gaseous effluent obtained during step d) to the Fischer-Tropsch synthesis step b), characterized in that:
    1) two molar ratio of concentrations, A1 and A2, arc determined between the hydrogen and the carbon monoxide (H2/CO), A1 being the value of said ratio in the supply to the synthesis step b), and A2 being the value of said ratio in any of the gaseous effluents obtained during steps b) to c);
    2) comparing ratios A1 and A2; and
    3) adjusting the concentrations of hydrogen and/or carbon monoxide in the synthesis gas to keep the difference between the two ratios A1 and A2 substantially constant.
  2. A process according to claim 1, in which the ratio of concentrations A2 is calculated on the basis of measurements carried out on:
    • the gaseous effluent obtained during step b);
    • the cooled effluent obtained during step c);
    • the carbon monoxide- and hydrogen-enriched gaseous effluent obtained during step d); or
    • the effluent recycled to Fischer-Tropsch synthesis step b).
  3. A process according to claim 1 or claim 2, in which the concentrations of hydrogen and/or carbon monoxide in the synthesis gas obtained in step a) are adjusted to minimize the difference between the two ratios A1 and A2.
  4. A process according to any one of claims 1 to 3, in which the operating conditions are adjusted to adjust the ratio of concentrations H2/CO to a level corresponding to a required application ratio in agreement with an envisaged product distribution.
  5. A process according to any one of claims 1 to 4, in which the synthesis gas is generated from natural gas.
  6. A process according to any one of claims 1 to 5, in which step a) for generating synthesis gas is followed by a step a') dedicated to adjusting the concentrations of hydrogen and/or carbon monoxide in the synthesis gas.
  7. A process according to claim 6, in which step a') is carried out starting from a supply of a portion of the synthesis gas produced in step a) of 1% to 50% by weight of the synthesis gas produced in step a).
  8. A process according to claim 6 or claim 7, in which step a') comprises the use of a means for extracting hydrogen or carbon monoxide.
  9. A process according to claim 8, in which step a') comprises the use of a membrane which extracts hydrogen from a mixture comprising hydrogen and carbon monoxide.
  10. A process according to any one of claims 1 to 9, in which step b) uses one or more slurry bubble column type reactors.
  11. A process according to any one of claims 1 to 10, in which the catalyst employed in step b) comprises cobalt or iron.
  12. A process according to any one of claims 1 to 11, in which the catalyst used in step b) is based on cobalt, the temperature of step b) is in the range from about 200°C to 250°C, and the pressure in step b) is in the range from about 1 to 4 MPa.
EP05771067A 2004-05-19 2005-05-17 Fischer-tropsch synthesis method with improved control Expired - Fee Related EP1765956B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0405551A FR2870544B1 (en) 2004-05-19 2004-05-19 FISCHER-TROPSCH SYNTHESIS PROCESS INCLUDING IMPROVED REGULATION
PCT/FR2005/001234 WO2005123882A1 (en) 2004-05-19 2005-05-17 Fischer-tropsch synthesis method with improved control

Publications (2)

Publication Number Publication Date
EP1765956A1 EP1765956A1 (en) 2007-03-28
EP1765956B1 true EP1765956B1 (en) 2010-08-04

Family

ID=34947124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05771067A Expired - Fee Related EP1765956B1 (en) 2004-05-19 2005-05-17 Fischer-tropsch synthesis method with improved control

Country Status (6)

Country Link
US (1) US7776932B2 (en)
EP (1) EP1765956B1 (en)
DE (1) DE602005022712D1 (en)
FR (1) FR2870544B1 (en)
WO (1) WO2005123882A1 (en)
ZA (1) ZA200609577B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2908421B1 (en) * 2006-11-13 2009-02-06 Inst Francais Du Petrole METHOD FOR OPTIMIZING THE OPERATION OF A HYDROCARBON SYNTHESIS UNIT FROM SYNTHESIS GAS.
US20100175320A1 (en) * 2006-12-29 2010-07-15 Pacific Renewable Fuels Llc Energy efficient system and process for the continuous production of fuels and energy from syngas
FR2946659B1 (en) * 2009-06-10 2011-07-01 Inst Francais Du Petrole METHOD FOR OPTIMIZING THE OPERATION OF A HYDROCARBON SYNTHESIS UNIT FROM SYNTHESIS GAS BY CONTROLLING THE PARTIAL CO 2 PRESSURE
PE20141819A1 (en) 2012-02-24 2014-12-08 Sasol Technology Propietary Ltd FISCHER-TROPSCH SYNTHESIS
GB201206196D0 (en) 2012-04-05 2012-05-23 Ingengtl Production of liquid hydrocarbons
CN114061035B (en) * 2021-11-02 2023-01-13 青岛海尔空调器有限总公司 Method and device for controlling defrosting of electrochemical air conditioner and electrochemical air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023276A (en) * 1982-09-30 1991-06-11 Engelhard Corporation Preparation of normally liquid hydrocarbons and a synthesis gas to make the same, from a normally gaseous hydrocarbon feed
GB0023781D0 (en) * 2000-09-28 2000-11-08 Kvaerner Process Tech Ltd Process
GB0027575D0 (en) * 2000-11-10 2000-12-27 Sasol Tech Pty Ltd Production of liquid hydrocarbon roducts

Also Published As

Publication number Publication date
WO2005123882A1 (en) 2005-12-29
FR2870544A1 (en) 2005-11-25
US20080200569A1 (en) 2008-08-21
DE602005022712D1 (en) 2010-09-16
ZA200609577B (en) 2008-04-30
FR2870544B1 (en) 2006-06-30
EP1765956A1 (en) 2007-03-28
US7776932B2 (en) 2010-08-17

Similar Documents

Publication Publication Date Title
FR2895747A1 (en) PROCESS FOR PRODUCING HYDROCARBONS FROM NATURAL GAS
RU2414445C2 (en) Method of starting process for producing hydrocarbons from synthetic gas
EP1765956B1 (en) Fischer-tropsch synthesis method with improved control
CA2567893C (en) Process for the adjustment of the superior heating power of gas in the lng chain
NL1027592C2 (en) ADJUSTMENT OF THE CO2 EMISSIONS OF A FISCHER-TROPSCH INSTALLATION BY THE APPLICATION OF MULTIPLE REACTORS.
RU2417973C2 (en) Method of starting up process of producing hydrocarbons from synthetic gas
EP2678268A1 (en) Method for producing methanol or hydrocarbons from a carbon material, including a reforming step, the operating conditions of which are selectively adjusted
EP1742901A1 (en) System and process for synthesis of methanol
EA008283B1 (en) Integrated process for making acetic acid and methanol
CA2669301C (en) Method for optimising the operation of a unit for the synthesis of hydrocarbons from a synthesis gas
FR2825995A1 (en) An installation for the production of synthesis gas comprises a vapor reforming reactor and a carbon dioxide conversion reactor, each heated by a hot gas current
US20100184873A1 (en) Multi stage process for producing hydrocarbons from syngas
EP1448749B1 (en) Method for converting synthetic gas in series-connected reactors
AU2008346799B8 (en) Acetylene enhanced conversion of syngas to Fischer-Tropsch hydrocarbon products
RU2414446C2 (en) Method of starting process for producing hydrocarbons from synthetic gas
CA2316730C (en) Installation and process for the production of synthetic gas including at least one gas turbine
WO2007066036A2 (en) Method for synthesising methanol or oxo alcohols used for recycling a residual gas
FR2800725A1 (en) PROCESS AND PLANT FOR THE PRODUCTION OF PURE HYDROGEN FROM A GAS CONTAINING HELIUM
FR2969998A1 (en) Preparing methanol comprises obtaining a first stream of synthesis gas comprising e.g. hydrogen, adding hydrogen in the first synthesis gas stream to form second synthesis gas stream, and producing methanol from second synthesis gas stream
FR2878858A1 (en) Treatment of gas associated with crude hydrocarbon liquid (I) exiting offshore oil field comprises producing synthesis gas comprising hydrogen and carbon monoxide, and carrying out Fischer-Tropsch reaction in presence of oxygen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT NL

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT NL

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REF Corresponds to:

Ref document number: 602005022712

Country of ref document: DE

Date of ref document: 20100916

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: GTL.F1 AG

Effective date: 20110504

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602005022712

Country of ref document: DE

Effective date: 20110504

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IFP ENERGIES NOUVELLES

Owner name: ENI S.P.A.

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

APBY Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602005022712

Country of ref document: DE

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20170215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PLAE Information related to rejection of opposition modified

Free format text: ORIGINAL CODE: 0009299REJO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

D27O Information related to the rejection of opposition deleted
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ENI S.P.A.

Owner name: IFP ENERGIES NOUVELLES

PLAG Information modified related to despatch of communication that opposition is rejected

Free format text: ORIGINAL CODE: EPIDOSCREJ1

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180620

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210526

Year of fee payment: 17

Ref country code: IT

Payment date: 20210520

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210729

Year of fee payment: 17

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: GTL.F1 AG

Effective date: 20110504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005022712

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

PLAE Information related to rejection of opposition modified

Free format text: ORIGINAL CODE: 0009299REJO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220517

R27O Information related to the rejection of opposition modified: opposition rejected

Effective date: 20180319