EP1765551B1 - Device for generating a jet of dry ice particles - Google Patents

Device for generating a jet of dry ice particles Download PDF

Info

Publication number
EP1765551B1
EP1765551B1 EP05706835A EP05706835A EP1765551B1 EP 1765551 B1 EP1765551 B1 EP 1765551B1 EP 05706835 A EP05706835 A EP 05706835A EP 05706835 A EP05706835 A EP 05706835A EP 1765551 B1 EP1765551 B1 EP 1765551B1
Authority
EP
European Patent Office
Prior art keywords
expansion space
dry ice
ice particles
line
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05706835A
Other languages
German (de)
French (fr)
Other versions
EP1765551A1 (en
Inventor
Jens-Werner Kipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1765551A1 publication Critical patent/EP1765551A1/en
Application granted granted Critical
Publication of EP1765551B1 publication Critical patent/EP1765551B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2

Definitions

  • the invention relates to a device for generating a jet of dry ice particles, with a jet nozzle, a jet line for supplying a carrier gas to the jet nozzle and a supply line for liquid carbon dioxide, which opens into the jet line via a flash chamber and at the outlet of the expansion space in the beam line a cross-sectional constriction is provided.
  • the device is part of a blasting system that serves to rid large surfaces, such as the inner surfaces of pipes or boilers in industrial plants from stuck encrustations.
  • the liquid carbon dioxide is introduced from a supply line, which is formed for example by a capillary, in a relaxation space with a larger cross section, so that evaporated by the relaxation of a portion of the carbon dioxide, while another part of the carbon dioxide condenses due to the evaporative cooling to dry ice particles.
  • the relaxation space opens, preferably laterally, in a beam line, which is traversed by the carrier gas, for example compressed air or nitrogen.
  • a nozzle preferably a Laval nozzle is provided, so that the jet to high speeds, preferably at supersonic speed, is accelerated.
  • the relaxation space is formed by a pipe socket having an internal thread. This internal thread is to form disturbing edges, where the impact of the dry ice particles should form a crust of dry ice.
  • the object of the invention is to further improve this known method and the device in order to achieve an even more efficient production of dry ice particles with a high cleaning effect.
  • cross-sectional constriction is formed by a centrally and coaxially disposed in the outlet of the expansion space displacement body.
  • the relaxation room should have a certain minimum length. Due to the cross-sectional constriction according to the invention, this minimum length can be without loss of power reduce, so that a more compact and handy construction of the device is made possible.
  • the cross-sectional constriction should be at least 20% of the cross-sectional area of the expansion space.
  • the cross-sectional constriction is achieved by approximately streamlined structures, which are well flowed around by the dry ice particles and do not form a substantial impact surface for the dry ice particles.
  • a displacement body in the form of a cone, a sphere, a hemisphere or the like is provided on the center axis of the expansion space, the pointed or rounded side of which is directed upstream.
  • the outlet cross section of the expansion space is then formed by an annular gap between the wall of the expansion space and the displacement body.
  • axial bores can be provided in the displacement body.
  • the supply line for the liquid carbon dioxide and the expansion space are arranged coaxially in the interior of the jet line, so that the narrowed outlet of the expansion space is located centrally in the steel line.
  • the displacement body can protrude into this chamber or in the beam line.
  • the device shown has a jet nozzle 10, z.
  • a jet nozzle 10 As a convergent / divergent nozzle or Laval nozzle with which a beam of a carrier gas is to be generated, which has approximately sonic velocity or supersonic speed and the solid dry ice particles are added as a blasting agent.
  • the jet nozzle 10 is connected to a jet line 12, which in turn is connected to a pressure source, not shown, and is traversed by the carrier gas, for example compressed air with a pressure in the order of IMPa and a flow rate of for example 1 to 10 m 3 / min.
  • the carrier gas for example compressed air with a pressure in the order of IMPa and a flow rate of for example 1 to 10 m 3 / min.
  • liquid carbon dioxide is supplied from a high-pressure tank or cold tank, not shown.
  • the supply line 14 is formed for example as a capillary or throttled by an adjustable aperture, so that the throughput of liquid carbon dioxide, for example, in the order of 0.1 to 0.4 kg per cubic meter of carrier gas is (volume below atmospheric pressure).
  • the supply line 14 opens into a relaxation space 16 which is widened in cross-section and which is formed by the interior of a nozzle 18 which opens obliquely into the jet line 12.
  • a relaxation space 16 which is widened in cross-section and which is formed by the interior of a nozzle 18 which opens obliquely into the jet line 12.
  • part of the carbon dioxide is vaporized, and the resulting evaporative cooling condenses another part of the carbon dioxide to dry snow, that is to solid dry ice particles.
  • These dry ice particles are transported by the simultaneously formed gaseous carbon dioxide into the jet line 12 or sucked out of the expansion space 16 by the dynamic pressure of the carrier gas and are thus distributed in the carrier gas flow and finally discharged through the jet nozzle 10 at high speed onto a workpiece to be cleaned.
  • the throughput of liquid carbon dioxide and the carrier gas throughput can be regulated.
  • a conical displacement body 20 is arranged on the central axis of the nozzle 18, which is oriented coaxially to the nozzle 18 and its tip on the mouth of the supply line 14 in the Relaxation room 16 has.
  • the effluent from the expansion chamber 16 mixture of gaseous and solid carbon dioxide, possibly with certain amounts of liquid carbon dioxide is thus displaced by the displacer 20 and thus occurs only throttled in the beam line 12, since the displacement body 20 with the walls of the nozzle 18 forms a cross-sectional constriction.
  • the residence time of the dry ice particles is prolonged in the relaxation space 16 saturated with cold, gaseous carbon dioxide, so that the dry ice particles have time to grow by condensation.
  • the cross-sectional constriction produces an uneven flow profile with the flow velocity increasing from the expansion space 16 to the annular gap between the displacement body 20 and the wall of the nozzle 18. Furthermore, the cross-sectional constriction leads to a greater density at which the Trokkeneispumble are suspended in the gaseous medium. All this promotes the growth of very solid dry ice particles, which then develop a high cleaning effect due to their size and hardness.
  • the approximately streamlined shape of the conical combustion body 20 prevents that the grown dry ice particles are crushed on impact on the displacement body 20 again.
  • FIGS. 2 and 3 the displacement body 20 is shown enlarged.
  • Axial holes 22 in the displacement body 20 make it possible to optimally adjust the flow profile of the effluent from the expansion chamber 16 medium.
  • Radial lands 24 hold the body 20 in the center of the nozzle 18 and are shaped so that they form virtually no baffles for the dry ice particles.
  • FIGS. 4 to 7 show modified embodiments of the device. These examples differ from the device FIG. 1 just by a changed form of the displacement body.
  • a displacement body 26 a hemisphere whose rounded side facing the flow direction, that is to the mouth of the supply line 14.
  • a displacement body 28 is a ball.
  • FIGS. 6 and 7 show displacement body 30, 32 in the form of an ellipsoid or a spherical cap shield.
  • the displacement body 26, 28, 30 and 32 are mounted analogously to the displacement body 20 in the nozzle 18 and may optionally also have axial bores.
  • FIG. 8 shows a modified embodiment in which an ellipsoidally expanded chamber 34 is provided between the beam line 12 and the jet nozzle 10.
  • the liquid carbon dioxide supply line 14 here runs coaxially in the jet line 12 upstream of the chamber 34 and opens into the expansion space 16, which is here at the upstream end of the chamber 34 and opens axially into this chamber.
  • the outlet of the expansion space 36 is narrowed by the conical displacement body 20 in cross section.
  • this displacement body projects somewhat into the jet line 12 or into the chamber 34 and thus effects a good distribution of the dry ice particles in the widened chamber 34.
  • FIG. 9 shows an embodiment in which the nozzle 18 at its end facing the supply line 14 has a larger cross-section, downstream of which a conically tapering section 38 connects, which here forms the extent of the expansion chamber 16 and at the same time the cross-sectional constriction of this outlet.
  • the displacement body 20 is additionally provided downstream of the conically tapered portion 38.
  • the length of the cylindrical Enspannraumes 16 should, especially in small-sized devices in which the inner diameter of the beam line 12 is smaller than about 15 mm, not too small, so that the expansion chamber has a sufficient volume.
  • the diameter of the expansion space 16 is preferably greater than the diameter of the beam line 12.
  • the cross-sectional constriction at the outlet of the expansion space is typically between 20 and 50% of the cross-sectional area inside the expansion space 16.
  • the exact extent of the cross-sectional constriction is of the respective process parameters depending in particular on the pressure and flow rate of the carrier gas, the rate of liquid carbon dioxide, the temperature of the liquid carbon dioxide and the like. In general, a cross-sectional constriction of the order of 40% is appropriate.
  • the diameter of the beam line 12 may vary, for example, between 8 and 32 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cleaning In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

A method for generating a jet of dry ice particles, in which liquid carbon dioxide is expanded in an expansion space (12) in order to form dry ice particles which are then introduced into a flow of a carrier gas, and the discharge of the dry ice particles from the expansion space (16) is throttled by a constriction (20, 26; 28; 30; 32; 36; 38).

Description

Die Erfindung betrifft eine Vorrichtung zur Erzeugung eines Strahls von Trockeneispartikeln, mit einer Strahldüse, einer Strahlleitung zur Zufuhr eines Trägergases zu der Strahldüse und einer Zufuhrleitung für flüssiges Kohlendioxid, die über einen Entspannungsraum in die Strahlleitung mündet und bei der am Auslaß des Entspannungsraumes in die Strahlleitung eine Querschnittsverengung vorgesehen ist.The invention relates to a device for generating a jet of dry ice particles, with a jet nozzle, a jet line for supplying a carrier gas to the jet nozzle and a supply line for liquid carbon dioxide, which opens into the jet line via a flash chamber and at the outlet of the expansion space in the beam line a cross-sectional constriction is provided.

Eine solche Vorrichtung ist bekannt aus Swain. E. A.: "Annular CO2 Snow Cleaning Nozzle" XEROX DISCLOSURE JOURNAL, XEROX CORPORATION, STAMFORD, CONN. US, Bd 20, Nr. 6, November 1995 (1995-11) Seiten 481-484, XP000555735 .Such a device is known from Swain. EA: "Annular CO2 Snow Cleaning Nozzle" XEROX DISCLOSURE JOURNAL, XEROX CORPORATION, STAMFORD, CONN. US, Bd 20, No. 6, November 1995 (1995-11) pages 481-484, XP000555735 ,

Ein änliches Verfahren und eine zugehörige Vorrichtung werden in WO 2004/033 154 A1 beschrieben. Die Vorrichtung ist Teil einer Strahlanlage, die dazu dient, größere Oberflächen, beispielsweise die Innenflächen von Rohren oder Kesseln in Industrieanlagen, von festsitzenden Verkrustungen zu befreien. Das flüssige Kohlendioxid wird aus einer Zufuhrleitung, die beispielsweise durch eine Kapillare gebildet wird, in einen Entspannungsraum mit größerem Querschnitt eingeleitet, so daß durch die Entspannung ein Teil des Kohlendioxids verdampft, während ein anderer Teil des Kohlendioxids aufgrund der Verdunstungskälte zu Trockeneispartikeln kondensiert. Der Entspannungsraum mündet, vorzugsweise seitlich, in eine Strahlleitung, die von dem Trägergas, beispielsweise Druckluft oder Stickstoff, durchströmt wird. Durch den Sog des an der Mündung des Entspannungsraumes vorbeiströmenden Trägergases werden die Trockeneispartikel gleichsam aus dem Entspannungsraum abgesaugt und in der Trägergasströmung suspendiert. An der Mündung der Stahlleitung ist eine Düse, vorzugsweise eine Laval-Düse vorgesehen, so daß der Strahl auf hohe Geschwindigkeiten, vorzugsweise auf Überschallgeschwindigkeit, beschleunigt wird.A similar method and apparatus are disclosed in US Pat WO 2004/033 154 A1 described. The device is part of a blasting system that serves to rid large surfaces, such as the inner surfaces of pipes or boilers in industrial plants from stuck encrustations. The liquid carbon dioxide is introduced from a supply line, which is formed for example by a capillary, in a relaxation space with a larger cross section, so that evaporated by the relaxation of a portion of the carbon dioxide, while another part of the carbon dioxide condenses due to the evaporative cooling to dry ice particles. The relaxation space opens, preferably laterally, in a beam line, which is traversed by the carrier gas, for example compressed air or nitrogen. As a result of the suction of the carrier gas flowing past at the mouth of the expansion space, the dry ice particles are aspirated, as it were, from the expansion space and suspended in the carrier gas flow. At the mouth of the steel pipe, a nozzle, preferably a Laval nozzle is provided, so that the jet to high speeds, preferably at supersonic speed, is accelerated.

Bei einer in dieser Druckschrift beschriebenen Ausführungsform wird der Entspannungsraum durch einen Rohrstutzen gebildet, der ein Innengewinde aufweist. Dieses Innengewinde soll Störkanten bilden, an denen sich durch den Aufprall der Trockeneispartikel eine Kruste aus Trockeneis bilden soll.In an embodiment described in this document, the relaxation space is formed by a pipe socket having an internal thread. This internal thread is to form disturbing edges, where the impact of the dry ice particles should form a crust of dry ice.

Dahinter steht die Theorie, daß durch Abbröckeln dieser Kruste größere Trockeneispartikel entstehen. Als Alternative zu einem Innengewinde werden Störkanten erwähnt, die durch Einbauten wie beispielsweise ein Flügelrad oder eine Schnecke im Inneren des Entspannungsraumes gebildet werden. Dabei wurde bisher davon ausgegangen, daß die Störkanten zwar als Prallkörper für das Trockeneis dienen sollen, andererseits jedoch den Abtransport der Trockeneispartikel und des Gases aus dem Entspannungsraum nicht behindern sollten, weil sonst der Druck in dem Entspannungsraum zu groß würde und damit die Entspannung und Verdunstung des flüssigen Kohlendioxids behindert würde.Behind this is the theory that by crumbling of this crust larger dry ice particles arise. As an alternative to an internal thread disturbing edges are mentioned, which are formed by internals such as an impeller or a screw inside the expansion chamber. It was previously assumed that the Störkanten Although serve as a baffle for the dry ice, on the other hand, however, should not hinder the removal of the dry ice particles and the gas from the relaxation room, because otherwise the pressure in the relaxation room would be too large and thus the relaxation and evaporation the liquid carbon dioxide would be hindered.

Aufgabe der Erfindung ist es, dieses bekannte Verfahren und die Vorrichtung weiter zu verbessern, um eine noch effizientere Erzeugung von Trockeneispartikeln mit hoher Reinigungswirkung zu erreichen.The object of the invention is to further improve this known method and the device in order to achieve an even more efficient production of dry ice particles with a high cleaning effect.

Diese Aufgabe wird bei dem erfindungsgemäßen Verfahren dadurch gelöst, daß die Querschnittsverengung durch einen mittig und koaxial im Auslaß des Entspannungsraumes angeordneten Verdrängungskörper gebildet wird.This object is achieved in the inventive method in that the cross-sectional constriction is formed by a centrally and coaxially disposed in the outlet of the expansion space displacement body.

Es hat sich gezeigt, daß die Drosselung des Ausstroms aus dem Entspannungsraum die Bildung der Trockeneispartikel nicht behindert, sondern im Gegenteil begünstigt. Dies ist vermutlich darauf zurückzuführen, daß die Drosselung des Ausstroms das Wachstum der Trockeneispartikel durch Kondensation verstärkt, zumal durch die Drosselung auch die Verweilzeit der Trockeneispartikel im Entspannungsraum verlängert wird. Versuche, bei denen die Reinigungswirkung des in dieser Weise erzeugten Strahls bewertet wurde, haben gezeigt, daß durch die erfindungsgemäße Maßnahme eine Leistungsteigerung von 50 bis 100% erreicht werden kann. Neben der Entstehung größerer und härterer Trockeneispartikel wurde als weiterer vorteilhafter Effekt der Erfindung festgestellt, daß sich am Ausgang der Strahldüse auch ein gleichmäßigeres Strahlbild ergibt, all dies bei gleichbleibendem oder gar verringertem Verbrauch an flüssigem Kohlendioxid.It has been shown that the throttling of the outflow from the expansion space does not hinder the formation of the dry ice particles, but on the contrary favors. This is presumably due to the fact that the throttling of the outflow increases the growth of the dry ice particles by condensation, especially as the throttling also extends the residence time of the dry ice particles in the expansion space. Experiments in which the cleaning effect of the jet generated in this way was evaluated, have shown that by the measure according to the invention a performance increase of 50 to 100% can be achieved. In addition to the formation of larger and harder dry ice particles was found as a further advantageous effect of the invention that at the output of the jet nozzle also results in a more uniform spray pattern, all this with a constant or even reduced consumption of liquid carbon dioxide.

In WO 2004/033 154 A1 wurde außerdem erwähnt, daß der Entspannungsraum eine gewisse Mindestlänge haben sollte. Durch die erfindungsgemäße Querschnittsverengung läßt sich diese Mindestlänge ohne Leistungseinbuße reduzieren, so daß eine kompaktere und handlichere Konstruktion der Vorrichtung ermöglicht wird.In WO 2004/033 154 A1 was also mentioned that the relaxation room should have a certain minimum length. Due to the cross-sectional constriction according to the invention, this minimum length can be without loss of power reduce, so that a more compact and handy construction of the device is made possible.

Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüche.Advantageous embodiments of the invention will become apparent from the dependent claims.

Bevorzugt sollte die Querschnittsverengung mindestens 20% der Querschnittsfläche des Entspannungsraumes betragen.Preferably, the cross-sectional constriction should be at least 20% of the cross-sectional area of the expansion space.

Vorzugsweise wird die Querschnittsverengung durch annähernd stromlinienförmige Strukturen erreicht, die von den Trockeneispartikeln gut umströmt werden und keine wesentliche Prallfläche für die Trockeneispartikel bilden.Preferably, the cross-sectional constriction is achieved by approximately streamlined structures, which are well flowed around by the dry ice particles and do not form a substantial impact surface for the dry ice particles.

Gemäß einer Ausführungsform ist auf der Mittelachse des Entspannungsraumes ein Verdrängungskörper in der Form eines Kegels, einer Kugel, einer Halbkugel oder dergleichen vorgesehen, dessen zugespitzte oder abgerundete Seite stromaufwärts gerichtet ist. Der Auslaßquerschnitt des Entspannungsraumes wird dann durch einen Ringspalt zwischen der Wand des Entspannungsraumes und dem Verdrängungskörper gebildet. Zusätzlich können in dem Verdrängungskörper axiale Bohrungen vorgesehen sein.According to one embodiment, a displacement body in the form of a cone, a sphere, a hemisphere or the like is provided on the center axis of the expansion space, the pointed or rounded side of which is directed upstream. The outlet cross section of the expansion space is then formed by an annular gap between the wall of the expansion space and the displacement body. In addition, axial bores can be provided in the displacement body.

Gemäß einer weiteren Ausführungsform sind die Zufuhrleitung für das flüssige Kohlendioxid und der Entspannungsraum koaxial im Inneren der Strahlleitung angeordnet, so daß der verengte Auslaß des Entspannungsraumes mittig in der Stahlleitung liegt. In diesem Fall ist es zweckmäßig, die Strahlleitung in dem zwischen der Mündung des Entspannungsraumes und der Strahldüse gelegenen Abschnitt zu einer Kammer zu erweitern. Der Verdrängungskörper kann dabei in diese Kammer bzw. in die Strahlleitung hineinragen.According to a further embodiment, the supply line for the liquid carbon dioxide and the expansion space are arranged coaxially in the interior of the jet line, so that the narrowed outlet of the expansion space is located centrally in the steel line. In this case, it is expedient to expand the beam line in the section located between the mouth of the expansion space and the jet nozzle to a chamber. The displacement body can protrude into this chamber or in the beam line.

Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.In the following, embodiments of the invention will be explained in more detail with reference to the drawing.

Es zeigen.

Fig. 1
einen Längsschnitt durch eine Vorrichtung gemäß einem ersten Ausführungsbeispiel der Erfindung:
Fig. 2
eine Einzelheit aus Figur 1 in vergrößertem Meßstab:
Fig. 3
einen Schnitt längs der Linie III-III in Figur 2;
Fig. 4 bis 8
axiale Schnitte durch Vorrichtungen gemäß weiteren Ausführungsbeispielen der Erfindung; und
Fig, 9
einen axialen Schnitt durch eine Vorrichtung gemäß einem weiteren Ausführungsbeispiel.
Show it.
Fig. 1
a longitudinal section through a device according to a first embodiment of the invention:
Fig. 2
a detail FIG. 1 in enlarged scale:
Fig. 3
a section along the line III-III in FIG. 2 ;
Fig. 4 to 8
axial sections through devices according to further embodiments of the invention; and
Fig. 9
an axial section through a device according to another embodiment.

Die in Figur 1 gezeigte Vorrichtung weist eine Strahldüse 10 auf, z. B. eine konvergent/divergent-Düse oder Laval-Düse, mit der ein Strahl eines Trägergases erzeugt werden soll, der annähernd Schallgeschwindigkeit oder Überschallgeschwindigkeit hat und dem feste Trockeneispartikel als Strahlmittel zugesetzt sind. Die Strahldüse 10 ist an eine Strahlleitung 12 angeschlossen, die ihrerseits mit einer nicht gezeigten Druckquelle verbunden ist und von dem Trägergas, beispielsweise von Druckluft mit einem Druck in der Größenordnung von IMPa und einem Durchsatz von beispielsweise 1 bis 10 m3/min durchströmt wird.In the FIG. 1 The device shown has a jet nozzle 10, z. As a convergent / divergent nozzle or Laval nozzle with which a beam of a carrier gas is to be generated, which has approximately sonic velocity or supersonic speed and the solid dry ice particles are added as a blasting agent. The jet nozzle 10 is connected to a jet line 12, which in turn is connected to a pressure source, not shown, and is traversed by the carrier gas, for example compressed air with a pressure in the order of IMPa and a flow rate of for example 1 to 10 m 3 / min.

Ober eine Zufuhrleitung 14 wird flüssiges Kohlendioxid aus einem nicht gezeigten Hochdrucktank oder Kalttank zugeführt. Die Zufuhrleitung 14 ist beispielsweise als Kapillare ausgebildet oder durch eine einstellbare Blende gedrosselt, so daß der Durchsatz an flüssigem Kohlendioxid beispielsweise in der Größenordnung von 0,1 bis 0,4 kg pro Kubikmeter Trägergas liegt (Volumen unter Atmosphärendruck) liegt.Above a supply line 14, liquid carbon dioxide is supplied from a high-pressure tank or cold tank, not shown. The supply line 14 is formed for example as a capillary or throttled by an adjustable aperture, so that the throughput of liquid carbon dioxide, for example, in the order of 0.1 to 0.4 kg per cubic meter of carrier gas is (volume below atmospheric pressure).

Die Zufuhrleitung 14 mündet in einen im Querschnitt erweiterten Entspannungsraum 16, der durch das Innere eines schräg in die Strahlleitung 12 mündenden Stutzens 18 gebildet wird. Wenn sich das flüssige Kohlendioxid beim Eintritt in den Entspannungsraum 16 entspannt, wird ein Teil des Kohlendioxids verdampft, und durch die dabei entstehende Verdunstungskälte kondensiert ein anderer Teil des Kohlendioxids zu Trockenschnee, also zu festen Trockeneispartikeln. Diese Trockeneispartikel werden durch das gleichzeitig entstehende gasförmige Kohlendioxid in die Strahlleitung 12 transportiert bzw. durch den dynamischen Druck des Trägergases aus dem Entspannungsraum 16 abgesaugt und werden so in der Trägergasströmung verteilt und schließlich durch die Strahldüse 10 mit hoher Geschwindigkeit auf ein zu reinigendes Werkstück abgegeben. Vorzugsweise sind der Durchsatz an flüssigem Kohlendioxid sowie der Trägergasdurchsatz regelbar.The supply line 14 opens into a relaxation space 16 which is widened in cross-section and which is formed by the interior of a nozzle 18 which opens obliquely into the jet line 12. When the liquid carbon dioxide relaxes on entering the expansion space 16, part of the carbon dioxide is vaporized, and the resulting evaporative cooling condenses another part of the carbon dioxide to dry snow, that is to solid dry ice particles. These dry ice particles are transported by the simultaneously formed gaseous carbon dioxide into the jet line 12 or sucked out of the expansion space 16 by the dynamic pressure of the carrier gas and are thus distributed in the carrier gas flow and finally discharged through the jet nozzle 10 at high speed onto a workpiece to be cleaned. Preferably, the throughput of liquid carbon dioxide and the carrier gas throughput can be regulated.

Im stromabwärtigen Bereich des Entspannungsraumes 16, also dort, wo dieser Entspannungsraum in die Strahlleitung 12 mündet, ist auf der Mittelachse des Stutzens 18 ein kegelförmiger Verdrängungskörper 20 angeordnet, der koaxial zum Stutzen 18 orientiert ist und dessen Spitze auf die Mündung der Zufuhrleitung 14 in den Entspannungsraum 16 weist. Das aus dem Entspannungsraum 16 ausströmende Gemisch aus gasförmigem und festem Kohlendioxid , ggf. noch mit gewissen Anteilen an flüssigem Kohlendioxid, wird somit durch den Verdrängungskörper 20 verdrängt und tritt somit nur gedrosselt in die Strahlleitung 12 aus, da der Verdrängungskörper 20 mit den Wänden des Stutzens 18 eine Querschnittsverengung bildet. Hierdurch wird die Verweilzeit der Trockeneispartikel in dem mit kaltem, gasförmigem Kohlendioxid gesättigten Entspannungsraum 16 verlängert, so daß die Trockeneispartikel Zeit haben, durch Kondensation zu wachsen. Zugleich erzeugt die Querschnittsverengung ein ungleichmäßiges Strömungsprofil mit vom Entspannungsraum 16 zum Ringspalt zwischen dem Verdrängungskörper 20 und der Wand des Stutzens 18 zunehmender Strömungsgeschwindigkeit. Weiterhin führt die Querschnittsverengung zu einer größeren Dichte, mit der die Trokkeneispartikel in dem gasförmigen Medium suspendiert sind. All dies begünstigt das Wachstum von sehr festen Trockeneispartikeln, die dann aufgrund ihrer Größe und Härte eine hohe Reinigungswirkung entfalten. Die annähernd stromlinienförmige Gestalt des kegelförmigen Verbrennungskörpers 20 verhindert dabei, daß die gewachsenen Trockenneispartikel beim Aufprall auf den Verdrängungskörper 20 wieder zerschlagen werden.In the downstream region of the expansion chamber 16, ie where this expansion chamber opens into the jet line 12, a conical displacement body 20 is arranged on the central axis of the nozzle 18, which is oriented coaxially to the nozzle 18 and its tip on the mouth of the supply line 14 in the Relaxation room 16 has. The effluent from the expansion chamber 16 mixture of gaseous and solid carbon dioxide, possibly with certain amounts of liquid carbon dioxide is thus displaced by the displacer 20 and thus occurs only throttled in the beam line 12, since the displacement body 20 with the walls of the nozzle 18 forms a cross-sectional constriction. As a result, the residence time of the dry ice particles is prolonged in the relaxation space 16 saturated with cold, gaseous carbon dioxide, so that the dry ice particles have time to grow by condensation. At the same time, the cross-sectional constriction produces an uneven flow profile with the flow velocity increasing from the expansion space 16 to the annular gap between the displacement body 20 and the wall of the nozzle 18. Furthermore, the cross-sectional constriction leads to a greater density at which the Trokkeneispartikel are suspended in the gaseous medium. All this promotes the growth of very solid dry ice particles, which then develop a high cleaning effect due to their size and hardness. The approximately streamlined shape of the conical combustion body 20 prevents that the grown dry ice particles are crushed on impact on the displacement body 20 again.

In Figuren 2 und 3 ist der Verdrängungskörper 20 vergrößert dargestellt. Axiale Bohrungen 22 in dem Verdrängungskörper 20 ermöglichen es, das Strömungsprofil des aus dem Entspannungsraum 16 ausströmenden Mediums optimal einzustellen. Radiale Stege 24 halten den Verdungskörper 20 mittig in dem Stutzen 18 und sind so geformt, daß sie praktisch keine Prallflächen für die Trockeneispartikel bilden.In FIGS. 2 and 3 the displacement body 20 is shown enlarged. Axial holes 22 in the displacement body 20 make it possible to optimally adjust the flow profile of the effluent from the expansion chamber 16 medium. Radial lands 24 hold the body 20 in the center of the nozzle 18 and are shaped so that they form virtually no baffles for the dry ice particles.

Figuren 4 bis 7 zeigen abgewandelte Ausführungsbeispiele der Vorrichtung. Diese Beispiele unterscheiden sich von der Vorrichtung nach Figur 1 nur durch eine geänderte Form des Verdrängungskörpers. In Figur 4 ist als Verdrängungskörper 26 eine Halbkugel vorgesehen, deren abgerundete Seite gegen die Strömungsrichtung, also zur Mündung der Zufuhrleitung 14 weist. In Figur 5 ist als Verdrängungskörper 28 eine Kugel vorgesehen. Figuren 6 und 7 zeigen Verdrängungskörper 30, 32 in der Form eines Ellipsoids bzw. eines kugelkalottenförmigen Schildes. Die Verdrängungskörper 26, 28, 30 und 32 sind analog zu dem Verdrängungskörper 20 im Stutzen 18 befestigt und können wahlweise ebenfalls axiale Bohrungen aufweisen. FIGS. 4 to 7 show modified embodiments of the device. These examples differ from the device FIG. 1 just by a changed form of the displacement body. In FIG. 4 is provided as a displacement body 26, a hemisphere whose rounded side facing the flow direction, that is to the mouth of the supply line 14. In FIG. 5 is provided as a displacement body 28 is a ball. FIGS. 6 and 7 show displacement body 30, 32 in the form of an ellipsoid or a spherical cap shield. The displacement body 26, 28, 30 and 32 are mounted analogously to the displacement body 20 in the nozzle 18 and may optionally also have axial bores.

Figur 8 zeigt eine abgewandelte Ausführungsform, bei der zwischen der Strahlleitung 12 und der Strahldüse 10 eine ellipsoidförmig erweiterte Kammer 34 vorgesehen ist. Die Zufuhrleitung 14 für flüssiges Kohlendioxid verläuft hier koaxial in der Strahlleitung 12 stromaufwärts der Kammer 34 und mündet in den Entspannungsraum 16, der sich hier am stromaufwärtigen Ende der Kammer 34 befindet und sich axial in diese Kammer öffnet. Der Auslaß des Entspannungsraumes 36 ist durch den kegelförmigen Verdrängungskörper 20 im Querschnitt verengt. Dieser Verdrängungskörper ragt hier etwas in die Strahlleitung 12 bzw. in die Kammer 34 hinein und bewirkt so eine gute Verteilung der Trockeneispartikel in der erweiterten Kammer 34. FIG. 8 shows a modified embodiment in which an ellipsoidally expanded chamber 34 is provided between the beam line 12 and the jet nozzle 10. The liquid carbon dioxide supply line 14 here runs coaxially in the jet line 12 upstream of the chamber 34 and opens into the expansion space 16, which is here at the upstream end of the chamber 34 and opens axially into this chamber. The outlet of the expansion space 36 is narrowed by the conical displacement body 20 in cross section. Here, this displacement body projects somewhat into the jet line 12 or into the chamber 34 and thus effects a good distribution of the dry ice particles in the widened chamber 34.

Figur 9 zeigt eine Ausführungsform, bei der der Stutzen 18 an seinem der Zufuhrleitung 14 zugewandten Ende einen größeren Querschnitt hat, an den sich stromabwärts ein sich konisch verjüngender Abschnitt 38 anschließt, der hier den Ausmaß des Entspannungsraumes 16 und zugleich die Querschnittsverengung dieses Auslasses bildet. Bei dieser Ausführungsform ist stromabwärts des konisch verjüngten Abschnitts 38 zusätzlich noch der Verdrängungskörper 20 vorgesehen. Die Länge des zylindrischen Enspannungraumes 16 sollte, insbesondere bei kleinbauenden Vorrichtungen, bei denen der Innenduchmesser der Strahlleitung 12 kleiner als etwa 15 mm ist, nicht zu klein sein, damit der Entspannungsraum ein ausreichendes Volumen hat. Außerdem ist der Durchmesser des Entspannungsraumes 16 vorzugsweise größer als der Durchmesser der Strahlleitung 12. FIG. 9 shows an embodiment in which the nozzle 18 at its end facing the supply line 14 has a larger cross-section, downstream of which a conically tapering section 38 connects, which here forms the extent of the expansion chamber 16 and at the same time the cross-sectional constriction of this outlet. In this embodiment, the displacement body 20 is additionally provided downstream of the conically tapered portion 38. The length of the cylindrical Enspannraumes 16 should, especially in small-sized devices in which the inner diameter of the beam line 12 is smaller than about 15 mm, not too small, so that the expansion chamber has a sufficient volume. In addition, the diameter of the expansion space 16 is preferably greater than the diameter of the beam line 12.

Bei den gezeigten Ausführungsbeispielen beträgt die Querschnittsverengung am Auslaß des Entspannungsraumes typischerweise zwischen 20 und 50% der Querschnittsfläche im Inneren des Entspannungsraumes 16. Das genaue Ausmaß der Querschnittsverengung ist von den jeweiligen Verfahrensparametern abhängig, insbesondere vom Druck und Durchsatz des Trägergases, dem Durchsatz an flüssigem Kohlendioxid, der Temperatur des flüssigen Kohlendioxids und dergleichen. Im allgemeinen ist eine Querschnittsverengung in der Größenordnung von 40% zweckmäßig. Der Durchmesser der Strahlleitung 12 kann beispielsweise zwischen 8 und 32 mm variieren.In the embodiments shown, the cross-sectional constriction at the outlet of the expansion space is typically between 20 and 50% of the cross-sectional area inside the expansion space 16. The exact extent of the cross-sectional constriction is of the respective process parameters depending in particular on the pressure and flow rate of the carrier gas, the rate of liquid carbon dioxide, the temperature of the liquid carbon dioxide and the like. In general, a cross-sectional constriction of the order of 40% is appropriate. The diameter of the beam line 12 may vary, for example, between 8 and 32 mm.

Claims (7)

  1. A device for creating a jet of dry ice particles, comprising a blasting nozzle (10), a blasting line (12) for supplying a carrier gas to the blasting nozzle, and a supply line (14) for liquid carbon dioxide, which supply line opens into the blasting line (12) via an expansion space (16), a constriction being provided at an exit of the expansion space (16) into the blasting line (12), characterized in that the constriction is formed by a squeeze body (20; 26; 28; 30; 32) that is arranged centrally and coaxially in the exit of the expansion space (16).
  2. The device according to claim 1, characterized in that the constriction amounts to more than 20 % of the internal cross-sectional area of the expansion space (16).
  3. The device according to claim 2, characterized in that the constriction amounts to more than 40 % of the internal cross-sectional area of the expansion space (16).
  4. The device according to any of the claims 1 - 3, characterized in that the squeeze body (20; 26; 28; 30, 32) is shaped as a cone, a semi-sphere, a sphere, an ellipsoid or a bulged shield.
  5. The device according to claim 4, characterized in that the squeeze body (20; 26; 28; 20; 32) is acute or rounded on the side facing towards the expansion space (16).
  6. The device according to any of the claims 1 to 5, characterized in that the squeeze body (20, 26, 32) is blunt on the side facing away from the expansion space (16).
  7. The device according to any of the claims 1 to 6, characterized in that the supply line (14) and the expansion space (16) are arranged coaxially in the blasting line (12), and in that the blasting line (12) is enlarged to form a chamber (34) in a portion between the exit of the expansion space (16) and the blasting nozzle (10).
EP05706835A 2004-07-13 2005-01-03 Device for generating a jet of dry ice particles Not-in-force EP1765551B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202004011090 2004-07-13
DE102004051005A DE102004051005A1 (en) 2004-07-13 2004-10-20 Jet device for effective conversion of liquid carbon dioxide to dry snow or dry ice particles
PCT/EP2005/000031 WO2006005377A1 (en) 2004-07-13 2005-01-03 Method and device for generating dry ice particles

Publications (2)

Publication Number Publication Date
EP1765551A1 EP1765551A1 (en) 2007-03-28
EP1765551B1 true EP1765551B1 (en) 2008-11-26

Family

ID=34960593

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05706835A Not-in-force EP1765551B1 (en) 2004-07-13 2005-01-03 Device for generating a jet of dry ice particles

Country Status (6)

Country Link
US (1) US7708620B2 (en)
EP (1) EP1765551B1 (en)
JP (1) JP4580985B2 (en)
AT (1) ATE415243T1 (en)
DE (2) DE102004051005A1 (en)
WO (1) WO2006005377A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121114A2 (en) 2010-04-03 2011-10-06 Jens Werner Kipp Method and device for cleaning filters
DE102010060716A1 (en) 2010-11-22 2012-05-24 Jens-Werner Kipp Method for cleaning exhaust gas filters for diesel motor of e.g. motor vehicle, involves accelerating blasting medium in jet nozzles so that medium strikes filter, where filter is arranged in front of suction openings during blasting

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0821587A2 (en) 2007-12-10 2015-06-16 Jens Werner Kipp Dry Ice Blasting Device
US7753521B2 (en) 2008-03-31 2010-07-13 Johnson & Johnson Vision Care, Inc. Lenses for the correction of presbyopia and methods of designing the lenses
DE102008018933A1 (en) 2008-04-04 2009-10-08 Linde Aktiengesellschaft Adjustable device and method for cleaning surfaces
US20090307868A1 (en) * 2008-06-12 2009-12-17 Lee Tai-Cheung Cleaning assembly for a surface of a roller
US8268743B2 (en) * 2011-05-04 2012-09-18 Steag Energy Services Gmbh Pluggage removal method for SCR catalysts and systems
FR2977183B1 (en) 2011-06-29 2014-09-19 Air Liquide DEVICE FOR PROJECTING DRY ICE, IN PARTICULAR CARBON ICE
FR2979846B1 (en) * 2011-09-13 2014-09-05 Air Liquide DEVICE FOR PROJECTING DRY ICE, IN PARTICULAR CARBON ICE, AND NOZZLE FOR SUCH A DEVICE
CN102527660A (en) * 2012-02-15 2012-07-04 上海鸣华化工科技有限公司 Cleaning method using uniformly and stably jet cleaning agent formed by separately using liquid carbon dioxide or mixing liquid carbon dioxide and compressed gas
CN102580940A (en) * 2012-02-15 2012-07-18 上海鸣华化工科技有限公司 Uniformly and stably jetted liquid carbon dioxide cleaning spray gun
US8900372B2 (en) * 2012-11-07 2014-12-02 Trc Services, Inc. Cryogenic cleaning methods for reclaiming and reprocessing oilfield tools
US20170072536A1 (en) * 2015-09-16 2017-03-16 Michael Seago Injection Capable Blasting Equipment
BR112022013018A2 (en) 2019-12-31 2022-09-06 Cold Jet Llc METHOD AND APPARATUS FOR IMPROVED BLASTING FLOW

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4253610A (en) * 1979-09-10 1981-03-03 Larkin Joe M Abrasive blast nozzle
US5125979A (en) * 1990-07-02 1992-06-30 Xerox Corporation Carbon dioxide snow agglomeration and acceleration
DE4112890A1 (en) * 1991-04-19 1992-10-22 Abony Szuecs Eva METHOD AND DEVICE FOR CLEANING SURFACES, ESPECIALLY SENSITIVE SURFACES
JP2557383Y2 (en) * 1991-12-06 1997-12-10 大陽東洋酸素株式会社 Dry ice blast injection gun
US5779523A (en) * 1994-03-01 1998-07-14 Job Industies, Ltd. Apparatus for and method for accelerating fluidized particulate matter
US5975996A (en) * 1996-07-18 1999-11-02 The Penn State Research Foundation Abrasive blast cleaning nozzle
US6315639B1 (en) * 1997-12-05 2001-11-13 Jens Werner Kipp Blasting method for cleaning pipes
JP3509738B2 (en) * 2000-11-14 2004-03-22 株式会社アイテック Dry ice injection device
DE10126100A1 (en) * 2001-05-29 2002-12-05 Linde Ag Production of a coating or a molded part comprises injecting powdered particles in a gas stream only in the divergent section of a Laval nozzle, and applying the particles at a specified speed
US6659844B2 (en) * 2001-05-29 2003-12-09 General Electric Company Pliant coating stripping
DK1501655T3 (en) * 2002-09-20 2006-08-07 Jens-Werner Kipp Radiation method and device
JP2005111575A (en) * 2003-10-03 2005-04-28 Hitachi Industries Co Ltd Co2 snow jetting device and co2 snow jetting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121114A2 (en) 2010-04-03 2011-10-06 Jens Werner Kipp Method and device for cleaning filters
DE102010060716A1 (en) 2010-11-22 2012-05-24 Jens-Werner Kipp Method for cleaning exhaust gas filters for diesel motor of e.g. motor vehicle, involves accelerating blasting medium in jet nozzles so that medium strikes filter, where filter is arranged in front of suction openings during blasting

Also Published As

Publication number Publication date
JP4580985B2 (en) 2010-11-17
JP2008505772A (en) 2008-02-28
WO2006005377A1 (en) 2006-01-19
ATE415243T1 (en) 2008-12-15
US7708620B2 (en) 2010-05-04
US20080287040A1 (en) 2008-11-20
DE102004051005A1 (en) 2006-02-02
EP1765551A1 (en) 2007-03-28
DE502005006080D1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
EP1501655B1 (en) Method and device for jet cleaning
EP1765551B1 (en) Device for generating a jet of dry ice particles
EP0468024B1 (en) Injection device for on-line wet cleaning of compressors
EP2444161A1 (en) Atomizing nozzle for two substances
DE2252218A1 (en) FLUIDUM JET
DE19918257A1 (en) High pressure spray nozzle
DE2505483A1 (en) DEVICE FOR MAKING SNOW AND THEIR USE
EP2555858A1 (en) Spray system and method for spraying a secondary fluid into a primary fluid
EP2100659B1 (en) Device for creating and spraying an aerosol
EP2943680A1 (en) Device for spraying liquid into an operating space
DE2165340A1 (en) PROCESS AND DEVICE FOR IMPACT JET GRINDING OF FINE-GRAINED AND POWDERED SOLIDS
EP0375887B1 (en) Method and device for cutting and cleaning objects, and for controlled material removal by means of a water-abrasive mixture
EP2136965B1 (en) Apparatus and method for particle radiation by frozen gas particles
DE102010064406A1 (en) Apparatus and method for particle blasting using frozen gas particles
DE102005002365B3 (en) Jet process for surface cleaning involves expanding carbon dioxide in the mixing region into carrier gas at static pressure less than 70 per cent of overall pressure
DE10243693B3 (en) Process for cleaning electronic circuit boards comprises feeding a carrier gas under pressure through a jet line to a jet nozzle, introducing liquid carbon dioxide via a feed line, converting into dry snow, and injecting into the jet line
WO2003022525A2 (en) Blasting method and device
WO2018188915A1 (en) Fluid jet cutting device
DE2750718A1 (en) SPRAY DEVICE AND PROCEDURE FOR ITS OPERATION
DE2952876A1 (en) A blowing device having a low noise level
DE102019108289A1 (en) Device for generating a CO2 snow jet
DE10261013A1 (en) Spraying process for cleaning surfaces comprises removing carbon dioxide from a feed line via an expansion chamber with increasing cross-section and feeding it into a spray line
DE102008037088A1 (en) Nozzle element for discharging of carbon dioxide, has snow-generation channel, which has inlet opening for supplying fluid carbon dioxide
DE10305269A1 (en) Spraying process for cleaning surfaces comprises removing carbon dioxide from a feed line via an expansion chamber with increasing cross-section and feeding it into a spray line
DE102007038024A1 (en) Ring nozzle i.e. circular Laval nozzle, for performing pretreatment and dry cleaning of surface, blows mixture of propulsion gas and carbon dioxide-snow, where nozzle is cylindrically formed from nozzle inlet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070621

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: DEVICE FOR GENERATING A JET OF DRY ICE PARTICLES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006080

Country of ref document: DE

Date of ref document: 20090108

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090308

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090326

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090226

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090427

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090226

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

26N No opposition filed

Effective date: 20090827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006080

Country of ref document: DE

Representative=s name: PRUEFER & PARTNER GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006080

Country of ref document: DE

Representative=s name: WICKORD, WIRO, M.SC. (USA) DIPL.-ING. DR.-ING., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006080

Country of ref document: DE

Representative=s name: TARVENKORN & WICKORD PATENTANWAELTE PARTNERSCH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130125

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006080

Country of ref document: DE

Representative=s name: WICKORD, WIRO, M.SC. (USA) DIPL.-ING. DR.-ING., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006080

Country of ref document: DE

Representative=s name: TARVENKORN & WICKORD PATENTANWAELTE PARTNERSCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006080

Country of ref document: DE

Representative=s name: WICKORD, WIRO, M.SC. (USA) DIPL.-ING. DR.-ING., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006080

Country of ref document: DE

Representative=s name: TARVENKORN & WICKORD PATENTANWAELTE PARTNERSCH, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 415243

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006080

Country of ref document: DE

Representative=s name: TARVENKORN & WICKORD PATENTANWAELTE PARTNERSCH, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170126

Year of fee payment: 13

Ref country code: FR

Payment date: 20170124

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006080

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928