EP1763885B1 - Composant radio-optique - Google Patents

Composant radio-optique Download PDF

Info

Publication number
EP1763885B1
EP1763885B1 EP05757025A EP05757025A EP1763885B1 EP 1763885 B1 EP1763885 B1 EP 1763885B1 EP 05757025 A EP05757025 A EP 05757025A EP 05757025 A EP05757025 A EP 05757025A EP 1763885 B1 EP1763885 B1 EP 1763885B1
Authority
EP
European Patent Office
Prior art keywords
radiation
channel
layers
angle
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05757025A
Other languages
German (de)
English (en)
Other versions
EP1763885A1 (fr
Inventor
Leo Cussen
Thomas Krist
Ferenc Mezei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Original Assignee
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH filed Critical Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Publication of EP1763885A1 publication Critical patent/EP1763885A1/fr
Application granted granted Critical
Publication of EP1763885B1 publication Critical patent/EP1763885B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators

Definitions

  • the invention relates to a radiation-optical component for influencing X-ray, synchrotron and neutron radiation with respect to their wavelength spectrum and divergence critical angle ⁇ ⁇ with at least one channel of width d and length L up to a critical angle of incidence ⁇ c to the layer surface radiation-reflecting layers on radiation-transparent substrates and with radiation-absorbing layers.
  • a neutron optical device assembly with a kinked channel with two parallel opposite superspeakers known in which to achieve a wide range of application, the beam paths of different moderators, each serving to produce a type of neutron, are brought together, so that a superimposed neutron beam with a multi-spectrum arises.
  • a targeted adjustment of individual wavelength ranges within the intended spectrum of a single moderator does not take place.
  • the divergence limit angle ⁇ is the maximum radiation angle with which the beam can still pass through the channel unhindered.
  • the collimators with radiation-absorbing inner walls are so-called "Soller collimators". They have a triangular transmission profile (cf. FIG. 1 to the prior art). The radiation with the angle of incidence 0 ° is best, that with the divergence limit angle ⁇ ⁇ is transmitted the worst. In between there is a linear dependence. Due to the triangular transmission function but in the interval ⁇ ⁇ only 50% of the radiation is transmitted. However, a high radiation intensity on the sample is often desirable.
  • the inner walls or the entire walls of the channel can be made of plastic films which are coated with a radiation-absorbing layer. The radiation is transmitted in air. Alternatively, silicon substrates may also be coated with a radiation-absorbing layer. The radiation is then transmitted through the silicon.
  • a neutron polarizer known as a radiation optical device having as active elements a diagonal plate formed polarizer which works in transmission by passing only one spin component and the other reflects, and walls which work in reflection and both spin components up to a certain critical angle reflect.
  • the purpose of a neutron polarizer is to transmit only one spin component and to absorb the other in order to polarize the neutron beam. Only spine-selective reflective layers (D) are described, which are arranged only at a tilt angle to the imaginary channel axis.
  • Layer (A) is a neutron-conducting layer consisting of a wedge-shaped silicon layer, on the first side surface of which a neutron-angle-selectively reflecting layer adjoins, which in turn is adjoined by a neutron-absorbing layer, which is adjoined by an angle-selectively reflecting layer ,
  • the other side surface which has an angle of attack of a few tenths of a degree to the first side surface, is provided with a spinnenektiv reflecting layer.
  • the (imaginary) channel walls are covered with an angle-selectively reflecting layer (B).
  • the object of the present invention is therefore to provide a radiation-optical component of the type described above in such a way that a maximum proportion of the test procedure on a sample of desired radiation with specifically predetermined parameter properties with respect to wavelength and divergence is transmitted and can reach the sample, without being influenced by the radiation-optical component and thus disturbed in the correlation of its characteristic parameters become.
  • the radiation-optical component should be as simple as possible in the construction, handling and maintenance.
  • the solution according to the invention for this task is shown alternatively for the generic radiation-optical component in three independent claims. Advantageous developments can be found in the dependent claims. These will be explained in more detail below in connection with the invention.
  • the radiation-optical component according to the invention is based on the basic idea of influencing only that portion of the radiation which is not required on the sample.
  • the required proportion on the other hand, remains unaffected and thus unchanged even in its characteristic parameter correlation wavelength / angle of incidence.
  • the achieved transmission intensity is similar to that of a known collimator with a rectangular transmission profile, but without causing a half-way change in the parameter correlation.
  • the radiation-optical component according to the invention thus operates in the function of a filter. If a specific wavelength range is to be transmitted, this is a "wavelength filter". In a fixed channel structure, radiation above a predetermined cut-off wavelength is reflected and absorbed.
  • the wavelengths below the cut-off wavelength are transmitted with different intensity (intensity zero at the cut-off wavelength, then increasing). With a doubling of the critical angle of incidence ⁇ c , until the reflection takes place, the cut-off wavelength changes twice. If, on the other hand, a specific divergence is to be set, ie a filtering out of the radiation not required on the sample is carried out outside the divergence limiting angle ⁇ ⁇ , it is accordingly possible to speak of an "angle filter". Due to the correlation of wavelength and angle of incidence in the radiation, this is the same structural design of the radiation-optical component according to the invention. Which parameter - wavelength or divergence - in which range is set depends on the (static or dynamic) dimensioning of the one or the plurality of parallel channels in length L and width d and the angular orientation of the radiation-reflecting layers.
  • at least two angularly oriented mirror systems extend over the entire channel cross-section, the radiation incident on the mirror systems being transmitted below the angle of incidence ⁇ c and being reflected above it and absorbed in a radiation-absorbing layer. From this radiation-absorbing layer, the inner walls of the channel arranged orthogonally to the axial channel plane are occupied by the extent of the radiation-reflecting layers along the channel axis.
  • At least two mirror-symmetrically oriented mirror systems are used, through which the incident radiation is transmitted up to an angle of incidence or a wavelength and initially reflected above it and absorbed at another location.
  • Each radiation-reflecting layer includes a radiation-absorbing layer which occurs in accordance with the reflection angles and which suppresses the respectively reflected radiation by absorption.
  • the two mirror systems are arranged in the vertical axial channel plane, the unwanted radiation components in the horizontal channel plane are filtered out and absorbed on the respective opposite channel wall, with an arrangement in the horizontal axial channel plane corresponding in the vertical channel plane.
  • a combination of two mirror systems oriented at right angles to one another therefore makes it possible to filter the radiation over the entire beam cross section or in both perpendicular directions to the propagation direction of the radiation with respect to the divergence.
  • a pair of mirror systems is sufficient.
  • a device for hiding or stopping a particle beam is indeed from the DE 33 03 572 C2 known.
  • two aperture surfaces are set over the cross section of the channel at an angle, but each aperture surface covers only half the channel cross section.
  • Both diaphragm surfaces are made of a radiation-absorbing material (graphite) and serve the pure radiation absorption of the incident radiation.
  • the transmission is set by the acute angle of the two diaphragm surfaces to each other. If they touch, if the transmission is zero, if they are parallel, the transmission is maximal. Wavelength- or angle-dependent reflection is not used in this device. Furthermore, it is from the publication III of F. Mezei: "Very high reflectivity mirrors and their applications" (Charles Majkrzak, Editor, Proc.
  • SPIE 983, pp. 10-17 (1989 ) although known for a film-coated neutron optical component, to arrange a mirror obliquely at an angle ⁇ through the channel cross-section.
  • the component described there serves exclusively for the polarization of the transmitted radiation, so that the known arrangement is based on other physical approaches.
  • the at least two radiation-reflecting layers on radiation-transmissive substrates there are different possibilities.
  • they can be arranged one behind the other in the channel (V-shape), wherein the first mirror system to one side and the second mirror system to the other side inclined transversely through the channel.
  • V-shape the channel
  • the lateral inner walls over the entire length L must be coated according to radiation absorbing.
  • a significantly shorter construction results when the two radiation-reflecting layers are arranged on radiation-transparent substrates cross-penetrating each other in the channel (X-shape).
  • the channel points then only the length L of a tilted mirror system and must be coated only on this length L radiation absorbing.
  • an embodiment is provided in the manner of "benders", wherein one or more successive stacks of curved radiation-reflecting layers are arranged on radiation-transmissive substrates orthogonal to at least one axial channel plane over the entire width d of the channel K. wherein the two stacks may have opposite angles of curvature to the channel axis, so that at least two angularly oriented mirror systems extend over the entire channel cross-section, the radiation incident on the mirror systems transmitting below the angle of incidence ⁇ c and reflecting above it and absorbing it in non-curved, radiation-absorbing layers becomes. These occupy the interior walls of the channel orthogonal to the channel plane parallel to and subsequent to the two stacks of curved reflective layers.
  • the principle of action and the range of applications are identical to those of the first invention alternative.
  • the radiation-reflecting layers and the radiation-absorbing layers are in turn arranged spatially separated from one another. It is advantageous in the second alternative, the relatively small length L of Channel.
  • a Bender is for example from the DE 198 44 300 C2 known and consists of the curved beam guidance of neutrons from curved, alternately radiation-reflecting and -absorb Schlden layers.
  • the radiation-reflecting elements of the radiation-absorbing layers are spatially separated from one another. There are no radiation-absorbing layers between the curved radiation-reflecting layers. In addition, only the radiation-reflecting layers are curved along the channel axis.
  • the radiation-absorbing layers are again in a first embodiment on the inner surface of the channel and thus run without bending.
  • the radiation-absorptive effective zone is divided into one or more sections, each extending over the channel cross-section, wherein z. B. in two stacks behind the first curved stack, one half of the filtered radiation and after the second, oppositely curved stack, the other half of the filtered radiation is absorbed.
  • a collimator can still be provided in front of the first stack of curved radiation-reflecting layers, or the collimator between the two stacks can be dispensed with.
  • the function of the radiation-optical component according to the invention in the application form as an angle filter for targeted radiation collimation is given in the proposed configurations in each case for exactly one wavelength. If the angle filter is also to be used for a different wavelength, the distance between the radiation-absorbing layers and the tilt angle of the radiation-reflecting surfaces must be adjusted accordingly. Since both adjustments are in a proportional relationship, the channel can simply be made wider or narrower for adaptation to the respective wavelength and at the same time the tilt angle of the radiation-reflecting surfaces can be changed. This is achieved when the end-points of the radiation-reflecting layers are pivotally connected to the inner walls of the channel. Corresponding to the channel width, the mirror systems are then aligned angularly over the entire channel cross section.
  • the channel width can be varied with the corresponding frequency. Due to the articulated fixed connection of the mirror systems with the channel wall whose angular arrangement in the channel cross section with the same frequency is varied. Thus, a dynamic geometry adaptation for influencing different wavelengths in the radiation can take place. A collimation at a "white" beam (all wavelengths simultaneously) can not be performed with the claimed radiation-optical component with the straight plates, but in the design with the Bendern. Further explanations of the invention in its alternatives and to all mentioned embodiments are given in the following specific description part.
  • the radiation-transmissive substrates for the radiation-reflecting layers are usually made of rigid silicon or quartz.
  • An application of the radiation-reflecting layers on metal or plastic films is also possible if either a self-supporting layer thickness or a supporting backing layer is galvanized or the films are stretched.
  • the radiation-reflecting layers generally have layer thicknesses between 1 .mu.m and 50 .mu.m, the substrates between 5 .mu.m and 1000 .mu.m.
  • this is just a numerical example illustrating the dimensional ranges. Other dimensions and embodiments are readily possible within the scope of the present invention.
  • the FIG. 1 The above shows the state of the art schematically the geometry of a radiation-optical component SB for influencing X-ray or synchrotron radiation and neutron radiation, with a single channel K with radiation-absorbing walls (hereinafter "radiation-absorbing channel” K).
  • the radiation-absorbing channel K is generally rectangular or square and has a length L and a width d .
  • the channel K On its inner walls IW , the channel K has radiation-absorbing layers SA , which absorb radiation at all angles.
  • the transmission diagram corresponding to the absorbing channel K (transmission intensity TI over angle of incidence ⁇ of the radiation) is shown.
  • Complete absorption occurs at the divergence critical angles ⁇ ⁇ . In between there is a linear course, so that a total of a triangular transmission curve is formed. Outside this triangle curve, complete absorption occurs (shown in dashed lines).
  • the prior art shows schematically the geometry of a radiation-optical component SB having a channel K with radiation-reflecting walls (hereinafter "radiation-reflecting channel” K).
  • radiation-reflecting channel K K There are the same geometry ratios as in the radiation-absorbing channel K according to FIG. 1 , However, on the surface of its inner walls IW , the channel K has radiation-reflecting layers SR , which reflects radiation up to a critical angle of incidence ⁇ ⁇ c . Below the radiation-reflecting layers SR are directly on the inner walls IW of the channel K radiation-absorbing layers SA, which absorb the non-reflected at the radiation-reflecting layers SR and thus transmitted radiation.
  • the corresponding transmission diagram (transmission intensity TI over incident angle ⁇ of the radiation) is in FIG. 2 shown below.
  • a rectangular transmission profile results.
  • the radiation is completely reflected and opposite to the triangular profile of the absorbing channel according to FIG. 1 below transmits a maximum of twice the radiation intensity.
  • only half is transmitted uninfluenced. The other half is reflected on the inner walls of the channel K in the direction of the channel axis KA and thus disturbed in their parameter correlation between wavelength and divergence (above the dashed line), which may be undesirable for use on the sample.
  • a radiation-reflecting layer SR 1 , SR 2 on a radiation-transparent substrate SS 1 , SS 2 forms a mirror system SP 1 , SP 2 , both mirror systems SP 1 , SP 2 form a pair P i .
  • the two radiation-reflecting layers SR 1 , SR 2 are arranged one behind the other in VF orm. They each connect to the inner wall IW of the channel K at the tilt angle ⁇ ⁇ .
  • FIG. 3 not shown is a possible arrangement of two orthogonally aligned pairs P i , so that in two mutually orthogonal axial channel planes KE complete interference of the incident radiation can take place.
  • the transmission diagram (transmission intensity TI versus angle of incidence ⁇ of the radiation) for the radiation-optical component SB according to the invention is shown in FIG FIG. 4 shown.
  • the distance from ⁇ ⁇ to ⁇ ⁇ is ⁇ c .
  • a transmission without any influence on the transmitted radiation takes place between the divergence critical angles - ⁇ and + ⁇ .
  • the rectangular transmission behavior of the radiation-optical component SB according to the invention can be seen. It can be clearly seen that the rectangular transmission region for the radiation-optical component SB according to the invention is limited only slightly by the triangular transmission. The undisturbed fraction grows with the ratio ⁇ / ⁇ .
  • FIG. 5 schematically a first possibility of the parallel arrangement of a plurality of pairs P i is shown in each case two mirror systems SP 1 , SP 2 , with which the required length L for absorption of the channel K can be shortened accordingly.
  • Inverse proportionality applies: half length L for two pairs P i , third length L for three pairs P i , quarter length L for four pairs P i, etc.
  • the FIG. 6 shows another possibility in which each second pair P i is rotated by 180 °, so that always show two pairs P i with the tilting tips to each other. The effect is identical, there are optionally manufacturing advantages.
  • FIG. 7 shows you one FIG. 3 analogous construction with the difference that the two radiation-reflecting layers SR 1 , SR 2 are arranged on radiation-transparent substrates SS 1 , SS 2 cross-penetrating each other in the channel K.
  • the transmission diagram is identical to the transmission diagram according to FIG. 4 Since the operating principle is the same. It shows only in the simple embodiment halving the length L relative to the arrangement in V- shape according to FIG. 3 , In contrast, there is a higher manufacturing cost in the production of the X-shaped radiation-reflecting layers SR 1 , SR 2 .
  • the "X" will be made of four correspondingly in the center abutting mirror surfaces.
  • a further shortening of the length L of the channel K can in turn be achieved by a parallel arrangement of several pairs P i of X- shaped arranged radiation-reflecting layers SR 1 , SR 2 with the interposition of radiation-absorbing intermediate layers SAZ (in the embodiment shown in two pairs P i an intermediate layer SAZ) be what's in the FIG. 8 In analogy to FIG. 6 is shown.
  • FIG. 9 An alternative embodiment of the radiation-optical component SB according to the invention is shown in plan view in FIG. 9 shown.
  • two successive stacks ST 1 , ST 2 of curved radiation-reflecting layers GSR 1 , GSR 2 are arranged on curved radiation-transparent substrates GSS 1 , GSS 2 in the manner of a Bender orthogonal to an axial channel plane KE over the entire width d of the channel K , wherein the both stacks ST 1 , ST 2 have opposite angles of curvature to the channel axis KA .
  • the inner walls IW of the channel K arranged orthogonally to the axial channel plane KE are coated with a radiation-absorbing layer SA following the two stacks ST 1 , ST 2 of curved radiation-reflecting layers GSR 1 , GSR 2 .
  • the advantage here is the relatively short length of the two stacks ST 1 , ST 2 and the continuous suppression of unwanted angles of incidence ⁇ .
  • the corresponding transmission diagram (transmission intensity TI over incident angle ⁇ of the radiation) is in FIG. 10 shown. It shows in principle the same course as the transmission diagram according to FIG. 4
  • FIG. 11 shows one too FIG. 9 alternative embodiment, in which behind each stack ST 1 , ST 2 of curved radiation-reflective layers GSR 1 , GSR 2 on curved radiation-transparent substrates GSS 1 , GSS 2 stack UST 1 , UST 2 of non-curved radiation-absorbing intermediate layers SAZ 1 , SAZ 2 orthogonal to the channel plane KE over the entire width d of the channel K are arranged.
  • a further advantage of this embodiment is a further shortening of the channel K, since the inner walls IW of the channel K arranged orthogonal to the channel plane KE are not connected to the two stacks ST 1 , ST 2 of curved radiation-reflecting layers GSR 1 , GSR 2 then with a radiation-absorbing Layer are occupied.
  • the associated transmission diagram again corresponds to that in the FIG. 10 shown.
  • the embodiments shown relate to the function of the radiation-optical component according to the invention as an angle filter for divergence limitation of radiation. It was already mentioned at the outset that due to the direct relationship between wavelength and angle of incidence of the radiation, it is also readily possible to use it as a wavelength filter. Accordingly, in the transmission diagrams, the transmission intensity TI is to be applied over the wavelength ⁇ . This results in transmission profiles that run only in the first quadrant and follow a more complicated than a linear distribution.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Filters (AREA)

Claims (8)

  1. Composant optique de rayonnement pour influencer le rayonnement X, le rayonnement de synchrotron et le rayonnement neutronique par rapport à son spectre de longueurs d'ondes et son angle limite de divergence ± α avec au moins un canal de largeur d et de longueur L avec des couches réfléchissant le rayonnement jusqu'à un angle d'incidence critique θc par rapport à la surface de couche sur des substrats perméables au rayonnement et avec des substrats absorbant le rayonnement,
    caractérisé en ce que
    au moins deux couches (SR1, SR2) réfléchissant le rayonnement sont disposées sur des substrats (SS1, SS2) réfléchissant le rayonnement perpendiculairement à au moins un plan de canal (KE) axial sur toute la largeur (d) du canal (K) sous deux angles de basculement ± β = ± (α + θc) par rapport à l'axe du canal (KA), de sorte qu'au moins deux systèmes de miroir (SP1, SP2) orientés en formant un angle s'étendent sur l'ensemble de la section de canal, le rayonnement arrivant sur les systèmes de miroir (SP1, SP2) étant transmis au-dessous de l'angle d'incidence θc et étant réfléchi au-dessus de celui-ci et absorbé dans une couche (SA) absorbant le rayonnement, laquelle occupe les parois intérieures (IW), disposées perpendiculairement au plan de canal (KE) axial, du canal (K) sur l'extension des couches (SR1, SR2) réfléchissant le rayonnement en fonction de l'angle le long de l'axe du canal (KA), de sorte que les couches (SR1, SR2) réfléchissant le rayonnement et les couches (SA) absorbant le rayonnement sont disposées séparées dans l'espace les unes des autres.
  2. Composant optique de rayonnement selon la revendication 1,
    caractérisé en ce que
    les deux couches (SR1, SR2) réfléchissant le rayonnement sont disposées les unes derrière les autres dans le canal (K) sur des substrats (SS1, SS2) perméables au rayonnement les unes derrière les autres dans le canal (K).
  3. Composant optique de rayonnement selon la revendication 1,
    caractérisé en ce que
    les deux couches (SR1, SR2) réfléchissant le rayonnement sont disposées sur des substrats (SS1, SS2) perméables au rayonnement en se pénétrant en forme de croix dans le canal (K).
  4. Composant optique de rayonnement selon l'une des revendications 1 à 3,
    caractérisé en ce que
    deux paires ou plus de paires (Pi) de couches (SR1, SR2) réfléchissant le rayonnement sont disposées sur des substrats (SS1, SS2) perméables au rayonnement parallèlement les unes à côté des autres dans le canal (K), les paires (Pi) étant séparées les unes des autres par des couches intermédiaires (SAZ1, SAZ2) absorbant le rayonnement.
  5. Composant optique de rayonnement selon l'une des revendications 1 à 4,
    caractérisé en ce que
    la largeur (d) du canal (K) peut être modifiée de façon dynamique et les points d'extrémité des couches (SR1, SR2) réfléchissant le rayonnement sont reliés de façon articulée aux parois intérieures (IW) du canal (K).
  6. Composant optique de rayonnement pour influencer le rayonnement X, le rayonnement de synchrotron et le rayonnement neutronique par rapport à son spectre de longueurs d'ondes et son angle limite de divergence ± α avec au moins un canal de largeur d et de longueur L avec des couches réfléchissant le rayonnement jusqu'à un angle d'incidence critique θc par rapport à la surface de couche sur des substrats perméables au rayonnement et avec des couches absorbant le rayonnement,
    caractérisé en ce
    qu'une ou plusieurs piles (ST1, ST2) consécutives de couches (GSR1, GSR2) incurvées et réfléchissant le rayonnement sont disposées sur des substrats (GSS1, GSS2) incurvés et perméables au rayonnement perpendiculairement à au moins un plan de canal (KE) axial sur toute la largeur (d) du canal (K), les piles (ST1, ST2) pouvant présenter différents angles de courbure et de basculement par rapport à l'axe de canal (KA), de sorte qu'au moins deux systèmes de miroir orientés en formant un angle s'étendent sur l'ensemble de la section de canal, le rayonnement arrivant sur les systèmes de miroir transmettant au-dessous de l'angle d'incidence θc et réfléchissant au-dessus de cet angle et étant absorbé dans des couches non incurvées et absorbant le rayonnement (SA), lesquelles occupent les parois intérieures (IW), disposées perpendiculairement au plan de canal (KE) axial, du canal (K) parallèlement et à la suite des deux piles (ST1, ST2) de couches (GSR1, GSR2) incurvées et réfléchissant le rayonnement en fonction de l'angle, de sorte que les couches (GSR1, GSR2) réfléchissant le rayonnement et les couches (SA) absorbant le rayonnement sont disposées séparément dans l'espace les unes des autres.
  7. Composant optique de rayonnement pour influencer le rayonnement X, le rayonnement de synchrotron et le rayonnement neutronique par rapport à son spectre de longueurs d'ondes et son angle limite de divergence ± α avec au moins un canal de largeur d et de longueur L avec des couches réfléchissant le rayonnement jusqu'à un angle d'incidence critique θc par rapport à la surface de couche sur des substrats perméables au rayonnement et avec des couches absorbant le rayonnement,
    caractérisé en ce
    qu'une ou plusieurs piles (ST1, ST2) de couches (GSR1, GSR2) incurvées et réfléchissant le rayonnement sont disposées sur des substrats (GSS1, GSS2) incurvés et perméables au rayonnement perpendiculairement à au moins un plan de canal (KE) axial sur toute la largeur (d) du canal (K), les piles (ST1, ST2) pouvant présenter différents angles de courbure et de basculement par rapport à l'axe de canal (KA), de sorte qu'au moins deux systèmes de miroir orientés en formant un angle s'étendent sur l'ensemble de la section de canal, le rayonnement arrivant sur les systèmes de miroir transmettant au-dessous de l'angle d'incidence θc et réfléchissant au-dessus de cet angle et étant absorbé dans des couches intermédiaires (SAZ1, SAZ2) incurvées et absorbant le rayonnement en tant que couches absorbant le rayonnement, lesquelles sont disposées dans des piles (UST1, UST2) derrière chaque pile (ST1, ST2) de couches (GSR1, GSR2) incurvées et réfléchissant le rayonnement sur des substrats (GSS1, GSS2) incurvés et perméables au rayonnement perpendiculairement au plan de canal (KE) sur toute la largeur (d) du canal (K), de sorte que les couches (GSR1, GSR2) réfléchissant le rayonnement et les couches intermédiaires (SAZ1, SAZ2) absorbant le rayonnement sont disposées dans l'espace séparément les unes des autres.
  8. Composant optique de rayonnement selon l'une des revendications 1 à 7,
    caractérisé en ce que le filtrage s'effectue dans le plan de canal axial horizontal et/ou vertical (KE).
EP05757025A 2004-06-27 2005-06-15 Composant radio-optique Not-in-force EP1763885B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004031934A DE102004031934B4 (de) 2004-06-27 2004-06-27 Strahlungsoptisches Bauelement
PCT/DE2005/001111 WO2006000195A1 (fr) 2004-06-27 2005-06-15 Composant radio-optique

Publications (2)

Publication Number Publication Date
EP1763885A1 EP1763885A1 (fr) 2007-03-21
EP1763885B1 true EP1763885B1 (fr) 2012-04-18

Family

ID=35058665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05757025A Not-in-force EP1763885B1 (fr) 2004-06-27 2005-06-15 Composant radio-optique

Country Status (4)

Country Link
EP (1) EP1763885B1 (fr)
AT (1) ATE554485T1 (fr)
DE (1) DE102004031934B4 (fr)
WO (1) WO2006000195A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052410B4 (de) * 2008-10-21 2010-10-07 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Strahlungsoptisches Bauelement zur Beeinflussung von Strahlung in Bezug auf deren Wellenlängenspektrum
DE102008064101B3 (de) * 2008-12-19 2010-08-26 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Anordnung zur Polarisation eines Neutronenstrahls mit hoher Divergenz

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1480923A (fr) * 1965-05-24 1967-08-09
GB1536497A (en) * 1975-03-17 1978-12-20 Galileo Electro Optics Corp X and gamma radiation collimator and method of manufacturing such collimator
GB2034148B (en) * 1978-08-30 1983-06-15 Gen Electric Multi element high resolution scintillator structure
DE3303572A1 (de) 1983-02-03 1984-08-16 Reaktorwartungsdienst und Apparatebau GmbH, 5170 Jülich Einrichtung zum ausblenden oder stoppen eines teilchenstrahls
DE19844300C2 (de) * 1998-09-17 2002-07-18 Hahn Meitner Inst Berlin Gmbh Neutronenoptisches Bauelement
DE19936898C1 (de) * 1999-07-29 2001-02-15 Hahn Meitner Inst Berlin Gmbh Neutronenpolarisator
DE10203591B4 (de) * 2002-01-23 2008-09-18 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Neutronenoptische Bauelementanordnung zur gezielten spektralen Gestaltung von Neutronenstrahlen oder -pulsen

Also Published As

Publication number Publication date
EP1763885A1 (fr) 2007-03-21
WO2006000195A8 (fr) 2006-03-09
DE102004031934A1 (de) 2006-01-19
DE102004031934B4 (de) 2006-11-09
WO2006000195A1 (fr) 2006-01-05
ATE554485T1 (de) 2012-05-15

Similar Documents

Publication Publication Date Title
DE69427152T2 (de) Verfahren zur führung von neutral- und ladungsträgerstrahlen und eine vorrichtung zur durchführung des verfahrens
DE69504004T2 (de) Roentgenstrahlungsoptik mit streifendem lichteinfall und sphaerischen spiegeln
DE3231894A1 (de) Vorrichtung zum schalten eines lichtstrahls
DE102008007387A1 (de) Reflektives optisches Element für EUV-Lithographievorrichtungen
EP0863588A2 (fr) Optique pour laser et laser à diode
EP2550128A2 (fr) Dispositif de soumission à l'action d'un faisceau laser ainsi que dispositif pour reproduire une répartition de lumière en forme de ligne
EP1793269B1 (fr) Dispositif destiné à influencer la lumière
WO2011012503A1 (fr) Système optique pour produire un rayon lumineux destiné au traitement d'un substrat
EP1763885B1 (fr) Composant radio-optique
EP1422725B1 (fr) Réflecteur pour rayons X
DE19844300C2 (de) Neutronenoptisches Bauelement
EP2180484B1 (fr) Composant optique de rayonnement pour l'influence du rayonnement en fonction de son spectre de longueurs d'ondes
WO2014053311A1 (fr) Prisme, en particulier pour la communication optique de données
EP3405838A1 (fr) Élément optique réfléchissant et système optique pour la lithographie aux ultraviolets extrêmes
DE102009029324B4 (de) Reflektives Beugungsgitter
DE2238662C2 (de) Monochromator
DE10208705B4 (de) Monochromatorspiegel für den EUV-Spektralbereich
WO2019063166A1 (fr) Procédé de formation sélective de fronts de phase d'un faisceau lumineux et utilisation dudit dispositif
DE102008057593B4 (de) Optische Beugungsanordnung großer Apertur
WO2008087008A1 (fr) Dispositif pour mettre en forme un rayon de lumière
DE102004027347B4 (de) Wellenlängenselektor für den weichen Röntgen- und den extremen Ultraviolettbereich
DE102008064101B3 (de) Anordnung zur Polarisation eines Neutronenstrahls mit hoher Divergenz
DE102008024697A1 (de) Vorrichtung zur Homogenisierung zumindest teilweise kohärenten Laserlichts
DE2143504C3 (de) Aus einer Mehrzahl von abwechselnd hoch- und niederbrechenden lichtdurchlässigen Schichten bestehendes, auf einem lichtdurchlässigen Träger aufgebrachtes, Innerhalb eines vorgegebenen Wellenlängenbereiches ein bestimmtes Wellenlängenband reflektierendes, die Strahlung der übrigen Teile des genannten Bereiches hindurchlassendes Interferenzfilter
WO2004099855A1 (fr) Dispositif permettant de superposer une pluralite de champs de rayonnement electromagnetique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070711

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND ENER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KRIST, THOMAS

Inventor name: CUSSEN, LEO

Inventor name: MEZEI, FERENC

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND ENER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 554485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005012645

Country of ref document: DE

Effective date: 20120621

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120530

Year of fee payment: 8

Ref country code: GB

Payment date: 20120516

Year of fee payment: 8

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120818

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120820

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120719

BERE Be: lapsed

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUR MATERIALIEN UND ENER

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

26N No opposition filed

Effective date: 20130121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120729

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005012645

Country of ref document: DE

Effective date: 20130121

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E015685

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 554485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120615

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130615

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130615

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140429

Year of fee payment: 10

Ref country code: DE

Payment date: 20140630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20140507

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005012645

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200630

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630