EP1760261A1 - Déflecteur d'air pour circuit de refroidissement pour aube de tubine à gaz - Google Patents

Déflecteur d'air pour circuit de refroidissement pour aube de tubine à gaz Download PDF

Info

Publication number
EP1760261A1
EP1760261A1 EP06119232A EP06119232A EP1760261A1 EP 1760261 A1 EP1760261 A1 EP 1760261A1 EP 06119232 A EP06119232 A EP 06119232A EP 06119232 A EP06119232 A EP 06119232A EP 1760261 A1 EP1760261 A1 EP 1760261A1
Authority
EP
European Patent Office
Prior art keywords
cavity
blade
air
cooling circuit
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06119232A
Other languages
German (de)
English (en)
Other versions
EP1760261B1 (fr
Inventor
Jacques Auguste Boury
Patrice Eneau
Guy Moreau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1760261A1 publication Critical patent/EP1760261A1/fr
Application granted granted Critical
Publication of EP1760261B1 publication Critical patent/EP1760261B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the present invention relates to the general field of cooling gas turbine blades, in particular the blades of a turbomachine gas turbine.
  • the gas turbine blades of a turbomachine such as the blades of the high-pressure turbine for example, are subjected to the very high temperatures of the gases from the combustion chamber. These temperatures reach values much higher than those that can withstand without damage the vanes of the turbine, which has the effect of limiting their service life.
  • a gas turbine blade In terms of mechanical strength, a gas turbine blade has a good service life if its intrados and extrados faces have similar temperatures (that is to say if the thermal gradient between these faces is low). Moreover, whatever the embodiment of the cooling circuits, the internal cooling of a turbine blade is provided by internal convection of a fresh air flow on the walls of the cavities forming these circuits. This results in a different heat exchange on each wall of the cavity, regardless of whether it is smooth or disturbed or that the blade is fixed or movable.
  • the heat exchange with the hot gases flowing outside the blade is greater on the intrados side than on the extrados side of the blade. Also, to compensate for this phenomenon and thus obtain a low thermal gradient between the intrados and extrados surfaces of the blade, it is necessary to strongly cool the internal walls of the cooling system cavities which are arranged on the intrados side of the blade.
  • the main object of the present invention is thus to overcome such drawbacks by proposing a gas turbine blade for which the internal cooling circuit makes it possible to minimize the difference in temperature between the intrados and extrados faces thereof.
  • a gas turbine blade having an internal cooling circuit consisting of at least one cavity extending radially between the foot and the top of the blade, at least one intake opening of air at a radial end of the cavity and at least one air outlet opening opening into the cavity and opening on one of the faces of the blade, characterized in that at least one of the walls of the said cavity of the cooling circuit comprises at least one air deflector whose shape and dimensions are adapted to project the air flowing along said wall of the cavity to an opposite wall of said cavity while avoiding a recollement of the boundary layer immediately downstream of said air deflector.
  • the air deflector has an inclined ramp so as to project air flowing along the wall of the cavity to the opposite wall.
  • a ramp may have a length of between 2 and 4 times its height and have a radius of curvature of between 20 and 30 mm.
  • the wall of the cavity of the cooling circuit comprising the air deflector can be arranged on the extrados side of the blade and the wall of the cavity on which the air is projected can be arranged on the intrados side of the dawn.
  • the air deflector is advantageously disposed on the wall of the cavity of the cooling circuit at a zone of attachment of the blade.
  • the air deflector is advantageously disposed on the wall of the cavity of the cooling circuit at the top of the blade.
  • the air deflector may be positioned at a passage communicating the radial end of one of the cavities with a radial end adjacent to the cavity. other cavity.
  • the invention also relates to a gas turbine and a turbomachine having a plurality of blades as defined above.
  • Figures 1 to 4 show a moving blade 10 of a turbomachine, such as a moving blade of high-pressure turbine.
  • a turbomachine such as a moving blade of high-pressure turbine.
  • the invention can be applied to other blades of a turbomachine gas turbine as well as to vanes of a turbomachine gas turbine.
  • the blade 10 comprises an aerodynamic surface (or blade) which extends radially between a blade root 12 and a blade tip 14.
  • This aerodynamic surface consists of a leading edge 16 disposed opposite the blade. flow of the hot gases from the combustion chamber of the turbomachine, a trailing edge 18 opposite the leading edge 16, a lateral face 20 and an extrados lateral face 22, these lateral faces 20 , 22 connecting the leading edge 16 to the trailing edge 18.
  • the blade 10 is provided with an internal cooling circuit of the type formed by at least one cavity extending radially between the root 12 and the top 14 of the blade, at least one air intake opening at a radial end of the cavity and at least one air outlet opening opening into the cavity and opening on one of the faces of the blade.
  • the internal cooling circuit of the blade consists of a leading edge cavity 24 disposed on the side of the leading edge 16 of the blade, three central cavities 26, 28 and 30 disposed in a central portion of the blade and a trailing edge cavity 32 disposed on the trailing edge 18 side of the blade.
  • These different cavities 24, 26, 28, 30 and 32 extend from the intrados face 20 to the extrados face 22 of the blade.
  • An air inlet opening 34 is provided at a radial end of the leading edge cavity 24 (here at the foot 12 of the blade) to supply air to the cooling circuit.
  • a first passage 36 communicates the other radial end of the leading edge cavity 24 with a radial end adjacent to the central cavity 26 adjacent.
  • a second passage 38 and a third passage 40 communicate respectively the central cavity 26 with the central cavity 28 adjacent and the latter with the central cavity 30 remaining.
  • a fourth passage 42 communicates the central cavity 30 with the trailing edge cavity 32.
  • the intrados cooling circuit also has outlet orifices 44 opening in the trailing edge cavity 32 and opening on the intrados face 20 of the blade at the trailing edge 18 of the latter. These orifices 44 are regularly distributed over the entire radial height of the blade.
  • Airflow disturbers 46 for increasing heat transfer may be provided along the walls of the various cavities 24, 26, 28, 30 and 32 of the cooling circuit. These flow disturbers 46 may be in the form of ribs which are straight or inclined relative to the axis of rotation of the blade, in the form of pins or in any other equivalent form.
  • any other embodiment of the internal cooling circuit of the blade of the type described above is applicable to the invention.
  • the number, shape and arrangement of the cavities, as well as the quantity and arrangement of the air intake orifices, the communication passages and the outlet orifices may vary according to the cooling circuit.
  • At least one of the walls of one (or more) of the cavities 24, 26, 28, 30 and 32 of the cooling circuit comprises at least one air deflector 48, 48 '.
  • FIGS. 2 and 3 An example of the location of such an air deflector 48 can be seen in particular in FIGS. 2 and 3.
  • the air deflector 48 is positioned on the wall 24a of the leading edge cavity 24 which is disposed on the extrados side 22 of the blade.
  • FIG. 4 Another example of the location of such an air deflector 48 ' is shown in FIG. 4.
  • the air deflector 48' is disposed on the wall 26a of the central cavity 26 adjacent to the edge cavity. 24 which is arranged on the extrados side 22 of the blade.
  • the shape and the dimensions of the air deflector 48, 48 ' are adapted to project the air flowing along the wall 24a, 26a of the cavity 24, 26 to an opposite wall 24b, 26b of the cavity while avoiding a re-bonding of the boundary layer immediately downstream of the air deflector.
  • the air deflector according to the invention is distinguished in that it consists, on the one hand to project the air on the wall opposite to that of its implantation, and secondly to avoid an immediate gluing of the boundary layer.
  • an airflow disturbance has the essential function of increasing the turbulence of the flow of air in the immediate vicinity of the disturbance while seeking to re-glue the flow downstream thereof.
  • the presence of airflow disturbers 46 with the air deflector 48, 48 'according to the invention is also not incompatible.
  • Figure 3 shows more precisely one embodiment of an air deflector 48 according to the invention.
  • the air deflector 48 comprises a ramp 52 which is inclined with respect to the wall 24a of the cavity 24 on which the deflector is implanted so as to project the air flowing along this wall 24a towards the opposite wall 24b .
  • the inclined ramp 52 of the air deflector 48 has a length L which is between 2 and 4 times its height h .
  • the ramp 52 of the air deflector 48 has a height h of the order of 1.5 mm and a length L of between 3 and 5 mm.
  • an air-flow disruptor 46 as described above has a height of between 0.4 and 0.5 mm. .
  • the inclined ramp 52 of the air deflector 48 is rounded and has a radius of curvature R between 20 and 30 mm.
  • This value is given as an example for a cooling cavity 24 having a width d of the order of 4 mm.
  • a radius of curvature R as large relative to the width d of the cavity 24 makes it possible to move the air flowing along the wall 24a towards the opposite wall 24b without accelerating it suddenly.
  • the radius of curvature R of the ramp 52 of the deflector is preferably greater than the length L on which extends this ramp.
  • the air deflector 48 On the opposite side to the inclined ramp 52, the air deflector 48 has another rounded ramp 54 whose radius of curvature r and the length I on which it extends are calculated so as to avoid re-bonding of the boundary layer immediately. downstream of the air deflector.
  • the radius of curvature r of this other ramp 54 must be as small as possible to achieve this goal.
  • the flow of air in the leading edge cavity 24 is centrifugal, that is to say that the air flows from the foot 12 to the top 14 at dawn.
  • the air deflector 48 is advantageously disposed on the wall of the cavity 24 of the cooling circuit at a zone of attachment of the blade. This attachment zone extends from the radial end of the blade on the side of its foot 12 to a platform 56 defining the inner wall of the flow passage of the gas passing through the gas turbine.
  • a platform 56 defining the inner wall of the flow passage of the gas passing through the gas turbine.
  • the flow of air in the central cavity 26 is centripetal, that is to say that the air flows from the top 14 towards the foot 12 of dawn.
  • the air deflector 48 ' is advantageously disposed on the wall of the cavity 26 of the cooling circuit at the top 14 of the blade. Such a location makes it possible to obtain an optimum internal heat exchange on the underside of the dawn.
  • the air deflector 48 is positioned at a passage 100 communicating the radial end of a cavity 102 of an internal cooling circuit of a blade with a radial end adjacent to Another cavity 104 adjacent thereto, such a communication passage 100 may for example be one of the passageways 36 to 40 of the blade of Figures 1 to 3.
  • the air baffle 48 is disposed on one of the walls 104a of the cavity 104 and its shape and dimensions are adapted to project the air flowing along the wall 104a to the opposite wall 104b while avoiding a bonding of the boundary layer immediately downstream of the air deflector.
  • the air baffle 48 is positioned such that the air flowing in the cavity 102 is projected at its" turn-over "into the adjacent cavity 104 (i.e. from the communication passage 100) to an air circulation zone 106 which is located at the radial end of the opposite wall 104b of the adjacent cavity 104.
  • Such an area 106 is usually an area in which the Air circulation is low and undisturbed.
  • the air deflector 48 "thus makes it possible to avoid any risk of detachment of the boundary layer at the level of the" reversal "zone of the air between the two cavities 102, 104 of the cooling circuit .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Aube de turbine à gaz comportant un circuit de refroidissement interne se composant d'au moins une cavité (24) s'étendant radialement entre le pied (12) et le sommet (14) de l'aube, au moins une ouverture d'admission d'air (34) à une extrémité radiale de la cavité (24) et au moins un orifice de sortie d'air s'ouvrant dans la cavité et débouchant sur l'une des faces (20, 22) de l'aube. Au moins l'une des parois (24a) de la cavité du circuit de refroidissement comporte au moins un déflecteur d'air (48) dont la forme et les dimensions sont adaptées pour projeter l'air s'écoulant le long de ladite paroi (24a) de la cavité vers une paroi opposée (24b) de ladite cavité tout en évitant un recollement de la couche limite immédiatement en aval dudit déflecteur d'air (48).

Description

    Arrière-plan de l'invention
  • La présente invention se rapporte au domaine général du refroidissement des aubes de turbine à gaz, notamment les aubes mobiles d'une turbine à gaz de turbomachine.
  • Les aubes de turbine à gaz d'une turbomachine, telles que les aubes mobiles de la turbine haute-pression par exemple, sont soumises aux températures très élevées des gaz issus de la chambre de combustion. Ces températures atteignent des valeurs largement supérieures à celles que peuvent supporter sans dommages les aubes de la turbine, ce qui a pour conséquence de limiter leur durée de vie.
  • Afin de remédier à ce problème, il est bien connu de munir ces aubes de circuits internes de refroidissement. Grâce à de tels circuits de refroidissement, de l'air, qui est généralement introduit dans l'aube par son pied, traverse celle-ci en suivant un trajet formé par des cavités pratiquées dans l'aube avant d'être éjecté par des orifices s'ouvrant à la surface de l'aube.
  • Il existe de nombreuses réalisations différentes de ces circuits de refroidissement. Ainsi, certains circuits utilisent des cavités de refroidissement qui occupent toute la largeur de l'aube (c'est-à-dire qui s'étendent depuis l'intrados jusqu'à l'extrados de l'aube). D'autres circuits proposent l'utilisation de cavités de refroidissement de bord n'occupant qu'un seul côté de l'aube (intrados ou extrados) ou les deux côtés avec l'adjonction d'une grande cavité centrale entre ces cavités de bord.
  • En terme de tenue mécanique, une aube de turbine à gaz affiche une bonne durée de vie si ses faces intrados et extrados présentent des températures voisines (c'est-à-dire si le gradient thermique entre ces faces est faible). Par ailleurs, quelque soit le mode de réalisation des circuits de refroidissement, le refroidissement interne d'une aube de turbine est assuré par convection interne d'un flux d'air frais sur les parois des cavités formant ces circuits. Il en résulte un échange thermique différent sur chaque paroi de la cavité, indépendamment du fait que celle-ci soit lisse ou perturbée ou que l'aube soit fixe ou mobile.
  • Or, l'échange thermique avec les gaz chauds circulant à l'extérieur de l'aube est plus important du côté intrados que du côté extrados de l'aube. Aussi, pour compenser ce phénomène et ainsi obtenir un faible gradient thermique entre les faces intrados et extrados de l'aube, il est nécessaire de refroidir fortement les parois internes des cavités du circuit de refroidissement qui sont disposées du côté intrados de l'aube.
  • Pour une aube mobile de turbine à gaz, lorsque l'écoulement de l'air dans les cavités du circuit de refroidissement est centrifuge, et malgré les effets de la force de Coriolis qui augmentent les échanges thermiques internes à l'intrados de l'aube, l'écart avec les échanges thermiques s'effectuant à l'extrados de l'aube reste trop important pour obtenir un faible gradient thermique. De même, lorsque l'écoulement de l'air dans les cavités du circuit de refroidissement de l'aube mobile est centripète, l'échange thermique est naturellement favorable à l'extrados de l'aube, ce qui accentue encore l'écart de température entre les faces intrados et extrados de l'aube.
  • Objet et résumé de l'invention
  • La présente invention a donc pour but principal de pallier de tels inconvénients en proposant une aube de turbine à gaz pour laquelle le circuit interne de refroidissement permet de minimiser l'écart de température entre les faces intrados et extrados de celle-ci.
  • A cet effet, il est prévu une aube de turbine à gaz comportant un circuit de refroidissement interne se composant d'au moins une cavité s'étendant radialement entre le pied et le sommet de l'aube, au moins une ouverture d'admission d'air à une extrémité radiale de la cavité et au moins un orifice de sortie d'air s'ouvrant dans la cavité et débouchant sur l'une des faces de l'aube, caractérisée en ce que au moins l'une des parois de ladite cavité du circuit de refroidissement comporte au moins un déflecteur d'air dont la forme et les dimensions sont adaptées pour projeter l'air s'écoulant le long de ladite paroi de la cavité vers une paroi opposée de ladite cavité tout en évitant un recollement de la couche limite immédiatement en aval dudit déflecteur d'air.
  • En positionnant judicieusement le déflecteur d'air dans la cavité du circuit de refroidissement selon que l'écoulement dans celle-ci soit centrifuge ou centripète, il est possible de projeter l'air circulant dans la cavité vers la paroi de la cavité qui est disposée du côté intrados de l'aube. Ainsi, un tel déflecteur d'air permet d'augmenter l'échange thermique interne à l'intrados de l'aube et donc de réduire le gradient thermique entre les parois extrados et intrados de la cavité du circuit de refroidissement. De la sorte, tout écart de température entre les faces intrados et extrados de l'aube peut être évité.
  • Selon une disposition avantageuse de l'invention, le déflecteur d'air présente une rampe inclinée de façon à projeter l'air s'écoulant le long de la paroi de la cavité vers la paroi opposée. Une telle rampe peut posséder une longueur comprise entre 2 et 4 fois sa hauteur et présenter un rayon de courbure compris entre 20 et 30 mm.
  • Selon une application particulière de l'invention, la paroi de la cavité du circuit de refroidissement comportant le déflecteur d'air peut être disposée du côté extrados de l'aube et la paroi de la cavité sur laquelle est projetée l'air peut être disposée du côté intrados de l'aube.
  • Lorsque l'écoulement de l'air dans la cavité du circuit de refroidissement est centrifuge, le déflecteur d'air est avantageusement disposé sur la paroi de la cavité du circuit de refroidissement au niveau d'une zone d'attache de l'aube.
  • Alternativement, lorsque l'écoulement de l'air dans la cavité du circuit de refroidissement est centripète, le déflecteur d'air est avantageusement disposé sur la paroi de la cavité du circuit de refroidissement au niveau du sommet de l'aube.
  • Selon encore une autre alternative pour laquelle le circuit de refroidissement comporte au moins deux cavités, le déflecteur d'air peut être positionné au niveau d'un passage faisant communiquer l'extrémité radiale de l'une des cavités avec une extrémité radiale voisine de l'autre cavité.
  • L'invention a également pour objet une turbine à gaz et une turbomachine ayant une pluralité d'aubes telles que définies précédemment.
  • Brève description des dessins
  • D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
    • la figure 1 est une vue en coupe longitudinale d'une aube mobile de turbine à gaz selon un mode de réalisation de l'invention ;
    • la figure 2 est une vue en coupe selon II-II de la figure 1 ;
    • la figure 3 est une loupe d'un détail de la figure 2 ;
    • la figure 4 est une vue en coupe selon IV-IV de la figure 1 ; et
    • la figure 5 est une vue partielle et en coupe longitudinale d'une aube mobile de turbine à gaz selon un autre mode de réalisation de l'invention.
    Description détaillée d'un mode de réalisation
  • Les figures 1 à 4 représentent une aube mobile 10 de turbomachine, telle qu'une aube mobile de turbine haute-pression. Bien entendu, l'invention peut aussi bien s'appliquer à d'autres aubes mobiles d'une turbine à gaz de turbomachine, ainsi qu'à des aubes fixes d'une turbine à gaz de turbomachine.
  • L'aube 10 comporte une surface aérodynamique (ou pale) qui s'étend radialement entre un pied d'aube 12 et un sommet d'aube 14. Cette surface aérodynamique se compose d'un bord d'attaque 16 disposé en regard de l'écoulement des gaz chauds issus de la chambre de combustion de la turbomachine, d'un bord de fuite 18 opposé au bord d'attaque 16, d'une face latérale intrados 20 et d'une face latérale extrados 22, ces faces latérales 20, 22 reliant le bord d'attaque 16 au bord de fuite 18.
  • L'aube 10 est munie d'un circuit interne de refroidissement du type formé par au moins une cavité s'étendant radialement entre le pied 12 et le sommet 14 de l'aube, au moins une ouverture d'admission d'air à une extrémité radiale de la cavité et au moins un orifice de sortie d'air s'ouvrant dans la cavité et débouchant sur l'une des faces de l'aube.
  • Sur l'exemple de réalisation des figures 1 à 4, le circuit interne de refroidissement de l'aube se compose d'une cavité bord d'attaque 24 disposée du côté du bord d'attaque 16 de l'aube, de trois cavités centrales 26, 28 et 30 disposées dans une partie centrale de l'aube et d'une cavité bord de fuite 32 disposée du côté du bord de fuite 18 de l'aube. Ces différentes cavités 24, 26, 28, 30 et 32 s'étendent depuis la face intrados 20 jusqu'à la face extrados 22 de l'aube.
  • Une ouverture d'admission d'air 34 est prévue à une extrémité radiale de la cavité bord d'attaque 24 (ici au niveau du pied 12 de l'aube) afin d'alimenter en air le circuit de refroidissement.
  • Un premier passage 36 fait communiquer l'autre extrémité radiale de la cavité bord d'attaque 24 avec une extrémité radiale voisine de la cavité centrale 26 adjacente. Un deuxième passage 38 et un troisième passage 40 font communiquer respectivement la cavité centrale 26 avec la cavité centrale 28 adjacente et cette dernière avec la cavité centrale 30 restante. Enfin, un quatrième passage 42 fait communiquer la cavité centrale 30 avec la cavité bord de fuite 32.
  • Le circuit de refroidissement intrados comporte aussi des orifices de sortie 44 s'ouvrant dans la cavité bord de fuite 32 et débouchant sur la face intrados 20 de l'aube au niveau du bord de fuite 18 de cette dernière. Ces orifices 44 sont régulièrement répartis sur toute la hauteur radiale de l'aube.
  • Des perturbateurs d'écoulement de l'air 46 destinés à accroître les transferts thermiques peuvent être prévus le long des parois des différents cavités 24, 26, 28, 30 et 32 du circuit de refroidissement. Ces perturbateurs d'écoulement 46 peuvent se présenter sous la forme de nervures qui sont droites ou inclinées par rapport à l'axe de rotation de l'aube, sous la forme de picots ou encore sous toutes autres formes équivalentes.
  • Bien entendu, tout autre mode de réalisation du circuit interne de refroidissement de l'aube du type décrit précédemment est applicable à l'invention. Notamment, le nombre, la forme et la disposition des cavités, ainsi que la quantité et la disposition des orifices d'admission d'air, des passages de communication et des orifices de sortie peuvent varier selon le circuit de refroidissement.
  • Selon l'invention, au moins l'une des parois de l'une (ou de plusieurs) des cavités 24, 26, 28, 30 et 32 du circuit de refroidissement comporte au moins un déflecteur d'air 48, 48'.
  • Un exemple d'emplacement d'un tel déflecteur d'air 48 est notamment visible sur les figures 2 et 3. Sur ces figures, le déflecteur d'air 48 est positionné sur la paroi 24a de la cavité bord d'attaque 24 qui est disposée du côté extrados 22 de l'aube.
  • Un autre exemple d'emplacement d'un tel déflecteur d'air 48' est représenté sur la figure 4. Sur cette figure, le déflecteur d'air 48' est disposé sur la paroi 26a de la cavité centrale 26 adjacente à la cavité bord d'attaque 24 qui est disposée du côté extrados 22 de l'aube.
  • Toujours selon l'invention, la forme et les dimensions du déflecteur d'air 48, 48' sont adaptées pour projeter l'air s'écoulant le long de la paroi 24a, 26a de la cavité 24, 26 vers une paroi opposée 24b, 26b de la cavité tout en évitant un recollement de la couche limite immédiatement en aval du déflecteur d'air.
  • Par recollement de la couche limite immédiatement en aval du déflecteur d'air 48, 48', il faut comprendre que l'écoulement de l'air en aval du déflecteur s'effectue principalement le long de la paroi 24b, 26b opposée à la paroi 24a, 26a sur laquelle est implanté le déflecteur d'air. Aussi, dans la zone 50, 50' immédiatement en aval du déflecteur d'air 48, 48', l'écoulement de l'air le long de la paroi 24a, 26a d'emplacement du déflecteur est faible. A titre d'exemple, cette zone 50, 50' de faible écoulement de l'air s'étend sur une hauteur radiale de l'aube de l'ordre de 20% environ de la hauteur radiale totale de l'aube.
  • Par rapport aux perturbateurs d'écoulement de l'air qui sont utilisés pour accroître les transferts thermiques, le déflecteur d'air selon l'invention se distingue en ce qu'il consiste, d'une part à projeter l'air sur la paroi opposée à celle de son implantation, et d'autre part à éviter un recollement immédiat de la couche limite. En revanche, un perturbateur d'écoulement de l'air a pour fonction essentielle d'augmenter la turbulence de l'écoulement de l'air au voisinage immédiat du perturbateur tout en cherchant à recoller le flux en aval de celui-ci. Comme représenté sur les figures 1 à 4, la présence de perturbateurs d'écoulement d'air 46 avec le déflecteur d'air 48, 48' selon l'invention n'est d'ailleurs pas incompatible.
  • La figure 3 représente de façon plus précise un mode de réalisation d'un déflecteur d'air 48 selon l'invention.
  • Le déflecteur d'air 48 comporte une rampe 52 qui est inclinée par rapport à la paroi 24a de la cavité 24 sur laquelle le déflecteur est implanté de façon à projeter l'air s'écoulant le long de cette paroi 24a vers la paroi opposée 24b.
  • De façon avantageuse, la rampe inclinée 52 du déflecteur d'air 48 possède une longueur L qui est comprise entre 2 et 4 fois sa hauteur h. Par exemple, pour une cavité de refroidissement 24 ayant une largeur d (c'est-à-dire la distance séparant ses parois 24a, 24b) de l'ordre de 4 mm, la rampe 52 du déflecteur d'air 48 possède une hauteur h de l'ordre de 1,5 mm et une longueur L comprise entre 3 et 5 mm. A titre de comparaison, pour une cavité de refroidissement 24 ayant une largeur d de l'ordre de 3 mm, un perturbateur d'écoulement de l'air 46 tel que décrit précédemment possède une hauteur comprise entre 0,4 et 0,5 mm.
  • Toujours de façon avantageuse, la rampe inclinée 52 du déflecteur d'air 48 est arrondie et présente un rayon de courbure R compris entre 20 et 30 mm. Cette valeur est donnée à titre d'exemple pour une cavité de refroidissement 24 ayant une largeur d de l'ordre de 4 mm. Un rayon de courbure R aussi important par rapport à la largeur d de la cavité 24 permet de déplacer l'air s'écoulant le long de la paroi 24a vers la paroi opposée 24b sans pour autant l'accélérer brutalement. On notera également que le rayon de courbure R de la rampe 52 du déflecteur est de préférence supérieur à la longueur L sur laquelle s'étend cette rampe.
  • Du côté opposé à la rampe inclinée 52, le déflecteur d'air 48 présente une autre rampe arrondie 54 dont le rayon de courbure r et la longueur I sur laquelle elle s'étend sont calculés de façon à éviter un recollement de la couche limite immédiatement en aval du déflecteur d'air. Notamment, le rayon de courbure r de cette autre rampe 54 doit être le plus faible possible pour atteindre ce but.
  • Sur l'exemple de réalisation des figures 1 à 3, l'écoulement de l'air dans la cavité bord d'attaque 24 est centrifuge, c'est-à-dire que l'air s'écoule du pied 12 vers le sommet 14 de l'aube. Dans ce type d'écoulement, le déflecteur d'air 48 est avantageusement disposé sur la paroi de la cavité 24 du circuit de refroidissement au niveau d'une zone d'attache de l'aube. Cette zone d'attache s'étend depuis l'extrémité radiale de l'aube située du côté de son pied 12 jusqu'à une plate-forme 56 délimitant la paroi interne de la veine d'écoulement des gaz traversant la turbine à gaz. Un tel emplacement du déflecteur d'air permet d'obtenir un échange thermique interne optimum à l'intrados de l'aube.
  • Sur l'exemple de réalisation de la figure 4, l'écoulement de l'air dans la cavité centrale 26 est centripète, c'est-à-dire que l'air s'écoule du sommet 14 vers le pied 12 de l'aube. Dans ce type d'écoulement, le déflecteur d'air 48' est avantageusement disposé sur la paroi de la cavité 26 du circuit de refroidissement au niveau du sommet 14 de l'aube. Un tel emplacement permet d'obtenir un échange thermique interne optimum à l'intrados de l'aube.
  • On notera par ailleurs que la forme et les dimensions du déflecteur d'air 48' de ce mode de réalisation représenté par la figure 4 sont identiques à celles décrites en liaison avec les figures 1 à 3.
  • En liaison avec la figure 5, on décrira maintenant un autre exemple d'emplacement d'un déflecteur d'air 48" selon l'invention.
  • Dans ce mode de réalisation, le déflecteur d'air 48" est positionné au niveau d'un passage 100 faisant communiquer l'extrémité radiale d'une cavité 102 d'un circuit interne de refroidissement d'une aube avec une extrémité radiale voisine d'une autre cavité 104 qui lui est adjacente. Un tel passage de communication 100 peut par exemple être l'un des passages 36 à 40 de l'aube des figures 1 à 3.
  • Le déflecteur d'air 48" est disposé sur l'une des parois 104a de la cavité 104 et sa forme et ses dimensions sont adaptées pour projeter l'air s'écoulant le long de cette paroi 104a vers la paroi opposée 104b tout en évitant un recollement de la couche limite immédiatement en aval du déflecteur d'air.
  • De façon plus précise, le déflecteur d'air 48" est positionné de telle sorte que l'air circulant dans la cavité 102 est projeté au niveau de son « retournement » dans la cavité adjacente 104 (c'est-à-dire au niveau du passage de communication 100) vers une zone 106 de circulation de l'air qui est située au niveau de l'extrémité radiale de la paroi opposée 104b de la cavité adjacente 104. Une telle zone 106 est d'ordinaire une zone dans laquelle la circulation de l'air est faible et non perturbée.
  • Dans cet exemple de réalisation, le déflecteur d'air 48" permet donc d'éviter tout risque de décollement de la couche limite au niveau de la zone de « retournement » de l'air entre les deux cavités 102, 104 du circuit de refroidissement.

Claims (10)

  1. Aube (10) de turbine à gaz comportant un circuit de refroidissement interne se composant d'au moins une cavité (24, 26, 102, 104) s'étendant radialement entre le pied (12) et le sommet (14) de l'aube, au moins une ouverture d'admission d'air (34) à une extrémité radiale de la cavité (24, 26, 102, 104) et au moins un orifice de sortie d'air (44) s'ouvrant dans la cavité et débouchant sur l'une des faces (20, 22) de l'aube, au moins l'une des parois (24a, 26a, 104a) de ladite cavité du circuit de refroidissement comportant au moins un déflecteur d'air (48, 48', 48") dont la forme et les dimensions sont adaptées pour projeter l'air s'écoulant le long de ladite paroi (24a, 26a, 104a) de la cavité vers une paroi opposée (24b, 26b, 104b) de ladite cavité tout en évitant un recollement de la couche limite immédiatement en aval dudit déflecteur d'air (48, 48', 48"), caractérisée en ce que le déflecteur d'air (48, 48', 48'') présente une rampe inclinée (52) qui possède une longueur (L) comprise entre 2 et 4 fois sa hauteur (h) de façon à projeter l'air s'écoulant le long de la paroi (24a, 26a, 104a) de la cavité vers la paroi opposée (24b, 26b, 104b),
  2. Aube selon la revendication 1, dans laquelle la rampe inclinée (52) du déflecteur d'air (48, 48', 48'') présente un rayon de courbure (R) compris entre 20 et 30 mm.
  3. Aube selon l'une des revendications 1 et 2, dans laquelle la rampe inclinée (52) du déflecteur d'air (48, 48', 48'') présente une hauteur (h) correspondant environ à 37,5% de la distance séparant les deux parois opposées de la cavité du circuit de refroidissement.
  4. Aube selon l'une quelconque des revendications 1 à 3, dans laquelle la paroi (24a, 26a) de la cavité (24, 26) du circuit de refroidissement comportant le déflecteur d'air (48, 48') est disposée du côté extrados (22) de l'aube et la paroi (24b, 26b) de ladite cavité sur laquelle est projetée l'air est disposée du côté intrados (20) de l'aube.
  5. Aube selon l'une quelconque des revendications 1 à 4, dans laquelle le déflecteur d'air (48) est disposé sur la paroi (24a) de la cavité (24) du circuit de refroidissement au niveau d'une zone d'attache de l'aube.
  6. Aube selon l'une quelconque des revendications 1 à 5, dans laquelle le déflecteur d'air (48') est disposé sur la paroi (26a) de la cavité (26) du circuit de refroidissement au niveau du sommet (14) de l'aube.
  7. Aube selon l'une quelconque des revendications 1 à 4, dans laquelle le circuit de refroidissement interne comporte au moins deux cavités (102, 104), le déflecteur d'air (48") étant positionné au niveau d'un passage (100) faisant communiquer l'extrémité radiale d'une cavité (102) avec une extrémité radiale voisine de l'autre cavité (104).
  8. Aube selon l'une quelconque des revendications 1 à 7, dans laquelle les parois de la cavité (24, 26) du circuit de refroidissement sont munies d'une pluralité de perturbateurs (46) d'écoulement destinés à accroître les transferts thermiques le long de ces parois.
  9. Turbine à gaz comportant une pluralité d'aubes selon l'une quelconque des revendications 1 à 8.
  10. Turbomachine comportant une turbine à gaz ayant une pluralité d'aubes selon l'une quelconque des revendications 1 à 8.
EP06119232A 2005-08-25 2006-08-21 Déflecteur d'air pour circuit de refroidissement pour aube de tubine à gaz Active EP1760261B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0508740A FR2890103A1 (fr) 2005-08-25 2005-08-25 Deflecteur d'air pour circuit de refroidissement pour aube de turbine a gaz

Publications (2)

Publication Number Publication Date
EP1760261A1 true EP1760261A1 (fr) 2007-03-07
EP1760261B1 EP1760261B1 (fr) 2008-03-05

Family

ID=36571962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06119232A Active EP1760261B1 (fr) 2005-08-25 2006-08-21 Déflecteur d'air pour circuit de refroidissement pour aube de tubine à gaz

Country Status (6)

Country Link
US (1) US7192251B1 (fr)
EP (1) EP1760261B1 (fr)
CA (1) CA2557112C (fr)
DE (1) DE602006000641T2 (fr)
ES (1) ES2303312T3 (fr)
FR (1) FR2890103A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100082A1 (fr) * 2013-12-26 2015-07-02 Siemens Aktiengesellschaft Surface portante de turbine à système de refroidissement interne possédant des barrettes de déclenchement à baisse de pression réduite

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0800361D0 (en) * 2008-01-10 2008-02-20 Rolls Royce Plc Blade cooling
EP3052782B1 (fr) * 2013-10-03 2022-03-23 Raytheon Technologies Corporation Refroidissement de palier d'aube de turbine rotative
US10184341B2 (en) 2015-08-12 2019-01-22 United Technologies Corporation Airfoil baffle with wedge region
US10012092B2 (en) 2015-08-12 2018-07-03 United Technologies Corporation Low turn loss baffle flow diverter
KR101797370B1 (ko) * 2016-07-04 2017-12-12 두산중공업 주식회사 가스터빈 블레이드
RU183316U1 (ru) * 2018-04-09 2018-09-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Дефлектор охлаждаемой сопловой турбинной лопатки
US10774657B2 (en) 2018-11-23 2020-09-15 Raytheon Technologies Corporation Baffle assembly for gas turbine engine components
KR102161765B1 (ko) * 2019-02-22 2020-10-05 두산중공업 주식회사 터빈용 에어포일, 이를 포함하는 터빈
FR3107920B1 (fr) 2020-03-03 2023-11-10 Safran Aircraft Engines Aube creuse de turbomachine et plateforme inter-aubes équipées de saillies perturbatrices de flux de refroidissement
CN113550794B (zh) * 2021-09-10 2022-12-06 中国航发湖南动力机械研究所 一种涡轮转子叶片的多腔高效冷却结构及其冷却方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171631A (en) * 1962-12-05 1965-03-02 Gen Motors Corp Turbine blade
US4775296A (en) * 1981-12-28 1988-10-04 United Technologies Corporation Coolable airfoil for a rotary machine
DE19526917A1 (de) * 1995-07-22 1997-01-23 Fiebig Martin Prof Dr Ing Längswirbelerzeugende Rauhigkeitselemente
US5738493A (en) * 1997-01-03 1998-04-14 General Electric Company Turbulator configuration for cooling passages of an airfoil in a gas turbine engine
US5779438A (en) * 1996-03-30 1998-07-14 Abb Research Ltd. Arrangement for and method of cooling a wall surrounded on one side by hot gas
US20030044278A1 (en) * 2001-08-28 2003-03-06 Snecma Moteurs Cooling circuits for a gas turbine blade
US20050025623A1 (en) * 2003-08-01 2005-02-03 Snecma Moteurs Cooling circuits for a gas turbine blade
US20050058546A1 (en) * 2003-08-23 2005-03-17 Cooper Brian G. Vane apparatus for a gas turbine engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180373A (en) * 1977-12-28 1979-12-25 United Technologies Corporation Turbine blade
US6154571A (en) * 1998-06-24 2000-11-28 Nec Research Institute, Inc. Robust digital watermarking

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171631A (en) * 1962-12-05 1965-03-02 Gen Motors Corp Turbine blade
US4775296A (en) * 1981-12-28 1988-10-04 United Technologies Corporation Coolable airfoil for a rotary machine
DE19526917A1 (de) * 1995-07-22 1997-01-23 Fiebig Martin Prof Dr Ing Längswirbelerzeugende Rauhigkeitselemente
US5779438A (en) * 1996-03-30 1998-07-14 Abb Research Ltd. Arrangement for and method of cooling a wall surrounded on one side by hot gas
US5738493A (en) * 1997-01-03 1998-04-14 General Electric Company Turbulator configuration for cooling passages of an airfoil in a gas turbine engine
US20030044278A1 (en) * 2001-08-28 2003-03-06 Snecma Moteurs Cooling circuits for a gas turbine blade
US20050025623A1 (en) * 2003-08-01 2005-02-03 Snecma Moteurs Cooling circuits for a gas turbine blade
US20050058546A1 (en) * 2003-08-23 2005-03-17 Cooper Brian G. Vane apparatus for a gas turbine engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100082A1 (fr) * 2013-12-26 2015-07-02 Siemens Aktiengesellschaft Surface portante de turbine à système de refroidissement interne possédant des barrettes de déclenchement à baisse de pression réduite
CN105849368A (zh) * 2013-12-26 2016-08-10 西门子公司 带有具有降低的压降的分离条的内部冷却系统的涡轮翼面
US9551229B2 (en) 2013-12-26 2017-01-24 Siemens Aktiengesellschaft Turbine airfoil with an internal cooling system having trip strips with reduced pressure drop
CN105849368B (zh) * 2013-12-26 2017-10-31 西门子公司 带有具有降低的压降的分离条的内部冷却系统的涡轮翼面

Also Published As

Publication number Publication date
FR2890103A1 (fr) 2007-03-02
EP1760261B1 (fr) 2008-03-05
ES2303312T3 (es) 2008-08-01
US7192251B1 (en) 2007-03-20
CA2557112A1 (fr) 2007-02-25
CA2557112C (fr) 2013-12-10
DE602006000641T2 (de) 2009-03-26
DE602006000641D1 (de) 2008-04-17
US20070048136A1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
EP1760261B1 (fr) Déflecteur d'air pour circuit de refroidissement pour aube de tubine à gaz
CA2569566C (fr) Circuit de refroidissement central pour aube mobile de turbomachine
CA2550442C (fr) Circuits de refroidissement pour aube mobile de turbomachine
CA2493094C (fr) Perfectionnements apportes aux fentes d'evacuation de l'air de refroidissement d'aubes de turbine
CA2475083C (fr) Circuits de refroidissement pour aube de turbine a gaz
EP1251243B1 (fr) Aube pour turbine comportant un déflecteur d'air de refroidissement
EP3134620B1 (fr) Aube pour turbine de turbomachine comprenant un circuit de refroidissement à homogénéité améliorée
CA2652679C (fr) Aubes pour roue a aubes de turbomachine avec rainure pour le refroidissement
EP2257694B1 (fr) Aube avec plateforme 3d comportant un bulbe interaubes
FR2885645A1 (fr) Aube creuse de rotor pour la turbine d'un moteur a turbine a gaz, equipee d'une baignoire
EP1288438A1 (fr) Circuits de refroidissement pour aube de turbine à gaz
FR2910524A1 (fr) Element profile a agencement de fentes de refroidissement ameliore
EP1333155A1 (fr) Aube mobile de turbine haute pression munie d'un bord de fuite refroidi
FR2910525A1 (fr) Procede pour empecher un reflux et former une couche de refroidissement dans un element profile
EP1318274B1 (fr) Aube de turbine haute-pression ayant un bord de fuite refroidi
EP1630351A1 (fr) Aube de compresseur ou de turbine à gaz
FR3028494A1 (fr) Pale de turbomachine, comprenant des pontets s'etendant depuis la paroi d'intrados jusqu'a la paroi d'extrados
CA3059343A1 (fr) Aube de turbine presentant une structure amelioree
FR2927673A1 (fr) Aube de soufflante avec aspiration en pied et soufflage en tete
FR2927674A1 (fr) Aube de soufflante avec aspiration en pied et soufflage au bord de fuite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602006000641

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2303312

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120806

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130822

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006000641

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230720

Year of fee payment: 18

Ref country code: GB

Payment date: 20230720

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 18

Ref country code: DE

Payment date: 20230720

Year of fee payment: 18