EP1758445A1 - Combinaison d'economie d'energie - Google Patents
Combinaison d'economie d'energieInfo
- Publication number
- EP1758445A1 EP1758445A1 EP20050752020 EP05752020A EP1758445A1 EP 1758445 A1 EP1758445 A1 EP 1758445A1 EP 20050752020 EP20050752020 EP 20050752020 EP 05752020 A EP05752020 A EP 05752020A EP 1758445 A1 EP1758445 A1 EP 1758445A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fermentor
- flow
- combination
- waste
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000002699 waste material Substances 0.000 claims abstract description 25
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical group O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000002351 wastewater Substances 0.000 claims abstract description 9
- 238000003898 horticulture Methods 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 33
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 15
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 230000005611 electricity Effects 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 239000002689 soil Substances 0.000 claims description 7
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 4
- 230000008901 benefit Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 2
- 239000010921 garden waste Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010797 grey water Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G9/00—Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
- A01G9/18—Greenhouses for treating plants with carbon dioxide or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Definitions
- the invention relates to an energy-saving combination. It is for the good of the environment to make very sparing use of energy and to limit the emission of harmful substances . It is particularly important to limit the emission of carbon dioxide gas and thus prevent further intensification of the greenhouse effect on earth.
- Known measures for saving energy and reducing CO 2 emission are for instance the reduction in processes that are very wasteful of energy and the reuse of already produced material .
- the use of means of transport which emit less carbon dioxide is also being stimulated as alternative to means of transport which do have a high CO 2 emission. In the case of houses the use of durable materials and insulation of houses is stimulated.
- the use of energy-saving appliances is one of a series of measures aimed at decreasing CO 2 emission and reducing the consumption of energy.
- US-A-5 527 464 describes a combination wherein waste from a community is taken to a waste fermentor.
- the carbon dioxide and the water from the waste fermentor are supplied to, among others, an open horticulture greenhouse.
- the gas from the fermentor can be used to generate energy. It is now an object of the invention to provide an energy-saving combination which contributes " " toward the above stated objectives.
- a combination according to the invention comprising: - at least one house with an outgoing fermentable waste flow and an outgoing waste water flow, - at least one anaerobic waste fermentor with an ingoing waste flow and an outgoing fermentor gas flow; and - at least one closed horticulture greenhouse, wherein the fermentable waste flow runs out into the anaerobic waste fermentor, the waste water flow and at least the carbon dioxide part of the fermentor gas flow runs out into the closed greenhouse, wherein condensed water and/or a heat flow from the closed greenhouse is supplied to the at least one house.
- the fermentable waste flow from a house is usually removed via the domestic refuse to a central tip or incineration furnace.
- vegetables, fruit and garden waste are separated from the other domestic waste and processed separately at a central location.
- Water from shower and bath, water from the kitchen and water from the toilets is. normally carried via one sewage system to a central water treatment plant.
- a house is understood to mean any building in which people and/or animals reside on regular basis, such as care centres, offices, shops, livestock accommodation etc. With the combination according to the invention these different waste flows are reused for the benefit of the at least one house.
- the fermentable waste flow such as for instance vegetables, fruit and garden waste and the water from the toilets is fed to a waste fermentor, which produces an increased CO 2 content which is then " in turn converted by the greenhouse, and in particular the crops cultivated therein.
- a preferred embodiment of the combination according to the invention comprises a gas turbine, gas motor or a high temperature fuel cell, which is placed in the fermentor gas flow and converts at least the combustible part of the fermentor gas flow into water vapour and carbon dioxide.
- the anaerobic waste fermentor also produces combustible gases, in particular methane.
- the combination according to the invention thus ensures that electric current is generated from the waste flow produced by the at least one house, which current can be reused by the at least one house.
- a high temperature fuel cell such as a melted carbonate, or solid oxide fuel cell, has the additional advantage of a higher efficiency and cleaner gas emissions .
- the heat generated by the gas turbine or gas motor is supplied to the greenhouse and/or the fermentor and/or the at least one house.
- Another preferred embodiment of the combination according to the invention comprises a water-bearing soil layer or basin, wherein a heat flow from the greenhouse is supplied to the water-bearing soil layer. During the summer or during the day excess heat from the greenhouse can be supplied to the water-bearing soil layer, while in the winter or at night heat from this water-bearing soil layer or basin can be fed back for the purpose of heating the greenhouse and/or a house.
- heat is exchanged between the water-bearing layer and the at least one house.
- the 1 water-bearing layer which is comparatively cool in the summer, can thus also be used for instance to lower the temperature in the at least one house.
- cooling means such as for instance a cooling tower, for the purpose of cooling the water-bearing layer.
- a photovoltaic layer is arranged at least partially on the at least one house for generating electricity from light. The thus generated electricity can be used during daylight to drive the different installations and to provide the houses with electricity. In addition, the electricity can optionally be stored for use during the night.
- This combination preferably further comprises a device for generating hydrogen using the photovoltaic electricity.
- This hydrogen can be readily formed from for instance the condensed water. This hydrogen can in turn then be used to provide energy. The hydrogen can for instance be used to propel a vehicle. It is further also recommended here to supply the hydrogen to the fermentor in order to convert the hydrogen ⁇ into methane.
- the bacteria used will easily convert the hydrogen, in combination with CO 2 , into methane.
- the advantage of methane is that it is more readily compressible and can thus be used more easily for vehicles or for storage in order to generate electricity again during the night.
- This fermentor 3 is an anaerobic fermentor which emits a fermentor gas flow 4 as a result of the anaerobic fermenting process .
- This fermentor gas 4 contains, among others, CO 2 and methane gas.
- the fermentor gas is fed to a turbine 5 or a gas motor which here converts the combustible part of the gas flow into electricity 6, heat 7 and CO 2 .
- the heat flow 7 is fed back again to fermentor 3 to thus hold this latter at the correct operating temperature.
- the gas 8 burned by turbine 5 or the gas motor which now consists mainly of CO 2 and water, is fed to a cooler 9.
- the water in gas flow 8 is here condensed, and is then fed via flow 10 to a greenhouse 11.
- Waste water 12 from house 1 is used to irrigate the crop.
- This waste water 12 consists substantially of bath and shower water.
- the crop grows under the influence of sunlight 13 incident upon the greenhouse 11.
- Excess heat 14 can be supplied from greenhouse 11 to a water-bearing soil layer 15 which can function as buffer for heat.
- the heat stored in this water layer can subsequently be supplied vie a heat flow 16 to greenhouse 11, in the case the outside temperature is low, and fed back again via a heat flow 17 to houses 1.
- Condensed water from greenhouse 11 can further be supplied via flow 18 to the at least one house 1.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Microbiology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Biodiversity & Conservation Biology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental Sciences (AREA)
- Greenhouses (AREA)
- Cultivation Of Plants (AREA)
Abstract
L'invention concerne une combinaison d'économie d'énergie comprenant: au moins une maison évacuant un écoulement de déchets sortant pouvant fermenter et un écoulement d'eaux usées sortant; au moins un fermenteur de déchets anaérobique alimenté pour un écoulement de déchets entrant et déchargeant un écoulement gazeux sortant; et au moins une serre horticole fermée dans laquelle l'écoulement de déchets pouvant fermenter entre dans le fermenteur de déchets anaéribiques. L'écoulement d'eaux usées et au moins la partie de dioxyde de carbone de l'écoulement gazeux du fermenteur entre dans la serre fermée dans laquelle l'eau condensée et un écoulement chaud provenant de la serre fermée sont fournis à la maison.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1026484A NL1026484C2 (nl) | 2004-06-23 | 2004-06-23 | Energiezuinige combinatie. |
PCT/NL2005/000413 WO2006001689A1 (fr) | 2004-06-23 | 2005-06-08 | Combinaison d'economie d'energie |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1758445A1 true EP1758445A1 (fr) | 2007-03-07 |
Family
ID=34969775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20050752020 Withdrawn EP1758445A1 (fr) | 2004-06-23 | 2005-06-08 | Combinaison d'economie d'energie |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1758445A1 (fr) |
NL (1) | NL1026484C2 (fr) |
WO (1) | WO2006001689A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2651853A1 (fr) * | 2010-12-14 | 2013-10-23 | Axpo Kompogas AG | Méthode de traitement des déchets de légumes, de fruits et de jardinage |
JP5851577B2 (ja) * | 2014-10-27 | 2016-02-03 | 株式会社東信花木 | ハウス栽培施設 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3577678A (en) * | 1969-08-14 | 1971-05-04 | Microphor Inc | Combined waste treatment and growth chamber process |
US3698881A (en) * | 1970-08-05 | 1972-10-17 | Chevron Res | Synthesis gas production |
US5300226A (en) * | 1990-10-23 | 1994-04-05 | Stewart E. Erickson Construction, Inc. | Waste handling method |
US5527464A (en) * | 1991-06-24 | 1996-06-18 | Bartha; Istvan | Method and system for the treatment and utilization of waste products |
NL1005526C2 (nl) * | 1997-03-13 | 1998-09-15 | Adriaan Hubertus Johannes Van | Symbiose van stallen met kassen. |
NL1013097C2 (nl) * | 1999-09-20 | 2001-03-21 | Wijngaart Adriaan J Van Der | Mestbewerking en/of -verwerking. |
-
2004
- 2004-06-23 NL NL1026484A patent/NL1026484C2/nl not_active IP Right Cessation
-
2005
- 2005-06-08 WO PCT/NL2005/000413 patent/WO2006001689A1/fr not_active Application Discontinuation
- 2005-06-08 EP EP20050752020 patent/EP1758445A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2006001689A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2006001689A1 (fr) | 2006-01-05 |
NL1026484C2 (nl) | 2005-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hossain | Green science: Independent building technology to mitigate energy, environment, and climate change | |
US20090301399A1 (en) | Fish and plant factory | |
CN101746938A (zh) | 人居小区粪便、厨余收集、处理与冷、热、电能联供方法 | |
CN102500604A (zh) | 固体生活垃圾能源化利用及可再生生物碳循环技术 | |
CN103708692B (zh) | 污泥单元封闭槽式oar处理系统 | |
CN110465534A (zh) | 一种用于养殖场的综合能源利用系统 | |
CN205584870U (zh) | 一种基于生物电化学的家庭生态园艺系统 | |
EP1758445A1 (fr) | Combinaison d'economie d'energie | |
JP3680106B2 (ja) | エネルギー変換システムを有する家屋 | |
CN105347500A (zh) | 一种全天候运行净化农村生活污水的控温高效藻类塘系统 | |
Sithan et al. | Application of green technologies in developing countries—reduced carbon emission and conservation of energy | |
Moqbel | Evaluating bioreactor landfill as an energy source | |
JP2003250358A (ja) | 植物栽培施設 | |
CN103214291B (zh) | 多功能堆肥温室一体化系统 | |
CN101956577A (zh) | 新能源中温水蒸汽发电系统 | |
CN206251689U (zh) | 太阳能和沼气供能的温室大棚 | |
CN212374930U (zh) | 一种基于海岛大棚的海水淡化系统 | |
CN205663257U (zh) | 光伏生态经济建筑 | |
CN206922689U (zh) | 一种高寒牧区分布式能源综合利用生态住宅系统 | |
CN102150605A (zh) | 一种将光风氢新能源系统应用在豆芽机上的调温调湿装置 | |
CN111096175A (zh) | 大棚种植生态方法 | |
CN220541391U (zh) | 用于盐田的能源综合利用及多产品联供系统 | |
Aher et al. | Green building design a sustainable future | |
CN208009939U (zh) | 一种太阳能、风能和沼气能综合利用的多功能房屋 | |
CN205241354U (zh) | 全天候运行净化农村生活污水的控温高效藻类塘系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20061125 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20080418 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20091207 |