EP1751820B1 - Planar antenna provided with conductive studs above a ground plane and/or with at least one radiator element, and corresponding production method - Google Patents

Planar antenna provided with conductive studs above a ground plane and/or with at least one radiator element, and corresponding production method Download PDF

Info

Publication number
EP1751820B1
EP1751820B1 EP05759955A EP05759955A EP1751820B1 EP 1751820 B1 EP1751820 B1 EP 1751820B1 EP 05759955 A EP05759955 A EP 05759955A EP 05759955 A EP05759955 A EP 05759955A EP 1751820 B1 EP1751820 B1 EP 1751820B1
Authority
EP
European Patent Office
Prior art keywords
radiating element
radiating
conductive
antenna
flat base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05759955A
Other languages
German (de)
French (fr)
Other versions
EP1751820A1 (en
Inventor
Jean-Philippe Coupez
Christian Person
Serge Pinel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Get-Enst Bretagne
Original Assignee
GET ENST BRETAGNE
GET/ENST Bretagne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0404679A external-priority patent/FR2869726B1/en
Application filed by GET ENST BRETAGNE, GET/ENST Bretagne filed Critical GET ENST BRETAGNE
Publication of EP1751820A1 publication Critical patent/EP1751820A1/en
Application granted granted Critical
Publication of EP1751820B1 publication Critical patent/EP1751820B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • planar antennas of the type comprising at least one radiating element (also called "patch", planar pattern, radiating pattern or printed pattern) separated from a ground plane by a dielectric.
  • radiating elements are among the key components, for which the specifications requested are increasingly binding. It must of course constantly optimize all the electrical performance of these antennas, but also satisfy criteria increasingly critical, such as the size, weight or cost of these components.
  • planar solutions appear today as particularly appropriate to meet all the specifications requested. This planar approach offers developers enough flexibility to develop efficient solutions with particularly small dimensions.
  • planar antennas of the aforementioned second category are generally, but not necessarily, produced using a printed technology.
  • This explains why, historically, the adjective "planar” has been chosen in the expression “planar antenna”, to show an opposition with the traditional antenna structure based on three-dimensional waveguide (3D). is in this context and relates more specifically to an original planar antenna solution in the above sense, as well as a corresponding manufacturing process, to greatly reduce the physical dimension of the basic printed pattern (ie say the radiating element or elements, also called patches).
  • the basic principle of most of the solutions implemented to date is to increase the equivalent electrical length of the printed pattern, so that it can radiate at the desired frequency, while reducing its physical dimensions (ie its surface or its volume ).
  • the invention particularly aims to provide a technique other than those used until today to increase the equivalent electrical length of the printed pattern (radiating element or patch) of the antenna, so as to obtain a very planar antenna compact.
  • a complementary objective of the invention is to provide such a technique which is simple to implement and inexpensive.
  • the invention also aims to provide such a technique that can be applied to any type of planar radiating structures, such as the basic antennas "half-wave patches” or “quarter-wave patches”, the antennas “ring patches” , antennas “slotted patches”, antennas PIFA (Planar Inverted-F Antenna) ...
  • Another object of the invention is to provide such a technique that can be applied to both a planar antenna with a single radiating element and a planar antenna comprising a superposition of several radiating elements.
  • Yet another object of the invention is to provide a planar antenna manufacturing method corresponding, based on very simple integration technologies, which leads to very low cost solutions, quite suitable for development consumer markets.
  • the antenna further comprises at least one set of conductive pads connected to and extending from at least one of the elements belonging to the group comprising the ground plane and the said at least one radiating element, in order to reduce at least one physical dimension of said at least one radiating element for a determined resonant frequency.
  • the general principle of the invention is therefore simply to have the pads on the ground plane and / or on one or more element (s) radiating (s) (patch (s)) of the planar antenna.
  • pad is used in a generic sense, which can be broken down into different variants (and in particular but not exclusively, as detailed in the description below, in the form of a projection, a hole or tongue).
  • Dielectric means air or a solid material with characteristics close to those of air, such as for example materials of plastic type, foam, etc.
  • these pads locally come to modify the distribution of the electromagnetic field, and make it possible to reduce at least one dimension (the length and / or the width) of the physical element (s) radiating (s) for a fixed resonant frequency.
  • the antenna comprises a first set of conductive pads connected to the ground plane and extending towards, without being connected to, said at least one radiating element.
  • the antenna is of the type comprising a single radiating element, it advantageously comprises a second set of conductive pads connected to said single radiating element and extending towards, without being connected to, said ground plane.
  • the antenna advantageously comprises a third set of conductive pads connected to a first face of said primary radiating element and extending towards, without being connected to, said ground plane.
  • the antenna advantageously comprises a fourth set of conductive pads connected to a second face of said primary radiating element and extending towards, without being connected to, another of said radiating elements.
  • the antenna advantageously comprises, for at least one of the intermediate radiating elements, a fifth set of conductive pads connected to a first face of said intermediate radiating element and extending towards, without being connected to, another of said radiating elements which follows said intermediate radiating element in a direction of travel of said superposition of the primary radiating element towards the upper radiating element.
  • the antenna advantageously comprises, for at least one of the intermediate radiating elements, a sixth set of conductive pads connected to a second face of said intermediate radiating element and extending towards, without being connected to, another one of said radiating elements which precedes said intermediate radiating element in a direction of travel of said superposition of the primary radiating element towards the upper radiating element.
  • the antenna advantageously comprises a seventh set of conductive pads connected to a first face said upper radiating element and extending towards, without being connected to, another of said radiating elements which precedes said upper radiating element in a direction of travel of said superposition of the primary radiating element towards the upper radiating element.
  • a set of conductive pads extending from the ground plane or respectively one of the radiating elements, intertwine with another set of conductive pads, extending from one of the radiating elements. or respectively another of the radiating elements.
  • said radiating element is not connected to any conductive pad in an area where said radiating element is connected with supply means.
  • the conductive pads of the same set of conductive pads are distributed in a matrix.
  • At least one radiating element to which is connected at least one set of conductive pads is of the type having a symmetry along its two main axes, and in that said conductive pads are distributed in a disposition respecting said symmetry.
  • the antenna belongs to the group comprising: planar antennas of the half-wave radiating element type, planar antennas of the quarter-wave radiating element type, planar antennas of the annular radiating element type, planar antennas of the radiating element type with slots written, planar antennas of type radiating element in F-inverted.
  • the antenna belongs to the group comprising: planar antennas and non-planar antennas due to non-flatness of the ground plane and / or at least one of the radiating elements.
  • At least one of the conductive pads connected to the ground plane or to one of the radiating elements is a conductive projection formed in a first conductive part and extending from a main body. said first conductive part, said main body forming said ground plane or said radiating element.
  • At least one of the conductive pads connected to at least one of the radiating elements is a conductive tab, cut in at least an eccentric part of a second conductive part and folded relative to a central part of the second conductive part, said central part forming said radiating element.
  • the antenna further comprises at least one support element of said first or second conductive part, made of a dielectric material and for positioning the ground plane with respect to at least one of the radiating elements or for positioning said radiating element with respect to the ground plane or at least one other radiating element.
  • At least one of the conductive pads connected to the ground plane or to at least one of the radiating elements is a conductive hole extending from a first face of a layer of dielectric material, said first face carrying said ground plane or said at least one radiating element, said conductive hole extending from said first face and not opening onto a second face of said dielectric material layer, the surface of said hole conductor being covered with a conductive material.
  • the invention also relates to a method of manufacturing a planar antenna of the type comprising at least one radiating element separated from a ground plane by a dielectric.
  • the method comprises a step of producing at least one set of conductive pads connected to and extending from at least one of the elements belonging to the group comprising the ground plane and said at least one radiating element, so as to reduce at least one physical dimension of said at least one radiating element for a determined resonant frequency.
  • the method further comprises a step of positioning said first or second conductive part relative to another element of the antenna, using at least one support element made of a dielectric material.
  • a conventional planar antenna comprises at least one radiating element and a ground plane. At least one dielectric separates the radiating element closest to the ground plane and the ground plane itself, as well as the radiating elements between them.
  • Dielectric is understood to mean air or a solid material having characteristics close to those of air, such as, for example, materials of plastic type, foam, etc.
  • the general principle of the invention is to add to such a conventional planar antenna a plurality of conductive pads connected to and extending from the ground plane and / or one or more radiating elements, so as to reduce minus a physical dimension of the radiating element (s) for a determined resonant frequency.
  • the figure 1 shows a perspective view of an example of a half-wave patch planar antenna according to the invention, with studs distributed only under the radiating element. These pads 4 are connected to the radiating element 1 and extend towards the ground plane 2 without being connected thereto.
  • the antenna is modeled by two radiating slots 5, located at the two ends separated by the half-wave length ( figure 3 ).
  • the pads are for example distributed according to a spatial distribution, called matrix, as illustrated in FIG. figure 2 , which is a sectional view of the antenna of the figure 1 along the axis B-B '. This distribution may be uniform or not. In general, any type of arrangement of the pads may be considered, without departing from the scope of the present invention.
  • the upper part of the figure 3 is a sectional view of the antenna of the figure 1 along the axis A-A ', making it possible to interpret the effect of the studs positioned under the element beaming.
  • the distribution of the electric field between the radiating element 1 and the ground plane 2 is represented by dashed arrows.
  • the lower part of the figure 3 is an electrical modeling of the effect of the pads 4 positioned under the radiating element 1.
  • the phase velocity of the signal on the radiating pattern 1 decreases, which makes it possible to reduce at least one dimension (the length and / or the physical width of the radiating pattern 1 for a fixed resonant frequency (see hereinafter the reminder of the mathematical reasoning which explains this).
  • this decrease in length and / or width depends directly on the number of pads 4 under the radiating pattern 1, as well as their positions and their dimensions (length and diameter).
  • the more the number and the length of the studs increase the more the reduction in size becomes important.
  • the antenna must be equivalent to a given electrical length ⁇ .
  • 180 °.
  • all conventional excitation means can be envisaged, whether by a simple line section connected on one of the edges of the radiating element and acting as an impedance transformer to correctly adapt the antenna, by a probe connected directly to an equivalent point "50 ⁇ " on the surface of the radiating element or by an excitation solution based on electromagnetic coupling.
  • the symmetry along the two main axes (X, Y on the figure 2 ) of the radiating element 1 is respected.
  • the studs are distributed according to a provision respecting this symmetry. It is therefore entirely possible to exploit the antenna according to two crossed linear polarizations, or even circular polarization.
  • the developed solution, based on pads, is not in itself an obstacle to the use of the antenna for any desired type of polarization.
  • planar antennas with studs are given on the Figures 4 and 5 : it is a planar antenna of the quarter-wave patch type, with mass return (referenced 6) located on one of the slices of the support 3 ( figure 4 ), as well as a planar ring-type antenna ( figure 5 ).
  • the radiating element (patch) 1 and the pads 4 are produced in a single conductive part 7 (for example a metal part), obtained by machining, stamping or any other method of manufacturing metal parts. dimensional.
  • the main body of the conductive part 7 forms the radiating element 1
  • the conductive pads 4 are conductive projections formed in the conductive part and which extend from the main body of this part.
  • This piece is then transferred to one or more support elements 8, to position it relative to the lower ground plane.
  • the dielectric material in which the support element or elements is produced is a plastic material, easily shaped for example by one of the known molding techniques.
  • the figure 6 shows an example of an antenna obtained with this first embodiment of the antenna manufacturing method according to the invention, based on the use of a three-dimensional metal part 7 (integrating the radiating element 1 and the pads 4) and The dielectric 3 included in the space between the radiating element 1, on which the conductive pads 4 are connected, and the ground plane 2 is for example air.
  • the antenna which may be of foam, plastic material ..., that is to say a layer of dielectric material other than air
  • holes vias non-emerging and to cover selectively with a conductive material, the upper face of this substrate (so as to form the radiating element 1), as well as the inside of the holes extending from this upper face (so as to form the conductive pads 4).
  • the conductive pads 4 are here made in the form of conductive holes.
  • the coating with a conductive material consists of a metallization.
  • This metallization can be carried out simply for example by conductive paint deposition or by electrochemical deposition. It is clear, however, that any technique known to those skilled in the art can be used to perform the coating with a conductive material.
  • the conductive holes (vias) 4 have an effect similar to that of the conductive pads of the preceding solutions (conductive projections), hence the reduction in the size of the radiating element 1.
  • This element (support substrate 3 whose upper face carries the radiating element 1 and has a plurality of metallized holes 4) is then brought into contact, by its lower face, with a ground plane 2 to obtain the final structure of the antenna.
  • the support substrate is a plastic material, easily shaped by one of the known molding techniques.
  • the figure 7 shows an example of an antenna obtained with this second embodiment of the antenna manufacturing method according to the invention, based on the use of a dielectric substrate 3 whose upper face carries the radiating element 1 and has a plurality of metallized holes forming conductive pads 4.
  • the figure 17 shows an example of antenna obtained with this third embodiment of the antenna manufacturing method according to the invention, based on the realization of folded conductive tabs, which form conductive pads 4.
  • the positioning of the radiating element relative to the ground plane or vice versa is carried out using one or more supports that may be of the same style as those presented in FIG. figure 6 .
  • the support member is other than a dielectric substrate wafer 170 whose height is slightly greater than the height of the tongues to prevent contact between the tongues and the ground plane.
  • a first antenna prototype according to the invention of the type, of the antenna presented on the figure 7 , Have been realised.
  • This is a half-wave patch solution, printed on a foam material of dimensions 50x50x10mm 3 and reported on a ground plane of 100x100mm 2 .
  • the metallization of this upper surface and the interior of the vias is carried out by direct deposition of a conductive silver-based paint (reference: Spraylat 599B3730).
  • the figure 8 illustrates experimental results of this first planar antenna prototype according to the invention.
  • the antenna has been characterized in adaptation and transmission along the preferred axis of radiation.
  • the transmission measurement is based on the implementation of a simple link budget between the developed prototype and a reference antenna (in this case, a printed dipole). It should be noted that, since this link budget is not carried out in an anechoic chamber, the result presented only makes it possible to illustrate the radiation qualitatively.
  • the resonant frequency of the antenna according to the invention (with vias non-emerging) is much lower than that of the conventional antenna.
  • the levels of adaptation, bandwidth and radiation remain fundamentally correct, as shown by the responses measured on both antennas.
  • the technique of the invention (addition of conductive pads 4) thus leads to significant possibilities of miniaturization of the printed pattern (radiating element).
  • a second miniature antenna prototype is a quarter-wave patch antenna, with mass return located on one of the slices. of the support.
  • This antenna was printed on a substrate of dimensions 25x25x10mm 3 and reported on a ground plane of 100x100mm 2 .
  • the mass return is performed by a tab of 5mm width, printed on one of the slices of the foam support substrate and connected at its end to the ground plane.
  • the excitation is obtained by coaxial probe connected at a point "50 ⁇ ".
  • the figure 10 illustrates experimental results of this second planar antenna prototype according to the invention.
  • This second prototype has also been characterized in adaptation and transmission.
  • the general principle of the invention (adding pads under the surface of a radiating element in order to reduce at least one dimension (length and / or width) physically for a fixed resonant frequency) can also be used.
  • the general principle of the invention (adding pads under the surface of a radiating element in order to reduce at least one dimension (length and / or width) physically for a fixed resonant frequency) can also be used.
  • planar antennas with several stacked elements can also be used.
  • multi-element antennas are used for example for broadband applications or multifrequency applications.
  • the figure 12 shows a sectional view of an antenna configuration with two stacked radiating elements, according to the invention.
  • This antenna comprises a primary radiating element 1, separated from the ground plane 2 by a first dielectric 3, and an upper radiating element 10, separated from the primary radiating element 1 by a second dielectric 9.
  • the primary radiating element is defined as the radiating element closest to the ground plane.
  • the upper radiating element is defined as the radiating element furthest from the ground plane.
  • the concept of miniaturization according to the invention is applied only to the primary radiating element 1.
  • the upper radiating element 10 is not connected to any stud .
  • the antenna may comprise any number of superimposed radiating elements and the concept of the invention (addition of conductive pads) may be applied to all the radiating elements of the superposition or to only one or more 'between them.
  • the figure 13 is a sectional view of an antenna variant to a radiating element according to the invention.
  • the ground plane 132 has conductive pads 135.
  • the lower face of the single radiating element 131 also has conductive pads 134.
  • These two matrices are located in the area between the upper radiating element and the lower ground plane. To avoid contact between the pads of the two matrices, the first pads are interlaced with the second pads.
  • the electrical effect of the pads as described previously is accentuated, which further reduces the physical dimension (length and / or width) of the radiating element for a fixed resonant frequency.
  • the concept of the invention can also be applied simultaneously to the two faces of the same radiating element (except for the last of the superposition, that is to say the one farthest from the ground plane).
  • the same radiating element may comprise first pads which extend from its lower face and second pads which extend from its upper face.
  • the figure 14 is a sectional view of an antenna variant according to the invention, comprising a ground plane 142 and two radiating elements 141, 147.
  • the ground plane 142 has conductive pads 144.
  • the upper radiating element 147 does not present no plot.
  • the primary radiating element 141 has first conductive pads 146 on its lower face and second conductive pads 145 on its upper face.
  • the figure 18 is a sectional view of another antenna variant according to the invention, comprising a ground plane 180 and three radiating elements: a primary radiating element 181 (see definition above), an upper radiating element 183 (see definition above) and an intermediate radiating element 182.
  • An intermediate radiating element is defined as a radiating element placed between the element radiating primary and the upper radiating element.
  • the ground plane 180 and the upper radiating element 183 do not have a stud.
  • the primary radiating element 181 has conductive pads 184 on its underside.
  • the intermediate radiating element 182 has first conductive pads 185 on its lower face and second conductive pads 186 on its upper face. In general, the fact that the same radiating element has conductive pads on its two faces allows to further miniaturize the antenna. In the same antenna, one can of course have several radiating elements having conductive pads on their two faces.
  • planar antenna in the general sense already discussed above, that is to say both planar planar antennas actually flat planar antennas not actually planar (because the ground plane and / or at least one radiating element is not plane but shaped according to a determined three-dimensional shape).
  • the figure 15 is a sectional view of another antenna variant according to the invention, comprising a flat ground plane 152 and a radiating element 151 which has conductive pads 154 and is shaped (i.e. three-dimensional non-planar).
  • the figure 16 is a sectional view of another antenna variant according to the invention, comprising: a ground plane 162 which has conductive pads 164 and is shaped; and two radiating elements 161, 167, which each have conductive pads 165, 166 and which are shaped.
  • the radiating element referenced 161, between the upper radiating element 167 and the ground plane 162, is called primary radiating element.
  • the conductive pads are conductive projections ( figure 6 ).
  • the conductive pads are conductive holes ( figure 7 ).
  • the conductive pads are conductive tabs ( figure 17 ).
  • the first and second techniques can be used to make a ground plane with pads.
  • the third technique tabs can not be applied to the manufacture of a ground plane comprising conductive pads.
  • a same layer of dielectric substrate may carry the ground plane (or a first radiating element) on its lower face and a radiating element (or a second radiating element) on its upper face.
  • the pads connected to the ground plane (or to the first radiating element) are made in the form of first conductive holes which extend from the lower face of the substrate layer and do not open on the upper face of the ground layer. substrate.
  • the pads connected to the radiating element (or the second radiating element) are made in the form of second conductive holes which extend from the upper face of the substrate layer and do not open on the underside of the layer. of substrate.
  • a conductive part which comprises, on the one hand, conductive projections forming first conductive pads and, on the other hand, folded conductive tabs forming second conductive pads.
  • the invention is not limited to the embodiments mentioned above. There may be other variants that further minimize the size of the antenna by varying the number, size, shape and layout of the pads.
  • the general principle of the present invention can be implemented in any field of application that can use a planar antenna (mobile applications, satellite communications applications, wireless RF applications, etc.) in very different frequency ranges (from a few hundred MHz to a few tens of GHz).

Abstract

The disclosure relates to a planar antenna comprising at least one radiator element separated from a ground plane by a dielectric. The antenna also comprises an assembly of conductive studs which is connected to and extends from at least one element of a group of elements comprising the ground plane and at least one radiator element in such a way that at least one physical dimension of said at least one radiator element for a determined resonance frequency is reduced.

Description

1. Domaine de l'invention1. Field of the invention

Le domaine de l'invention est celui des antennes planaires, du type comprenant au moins un élément rayonnant (aussi appelé « patch », motif planaire, motif rayonnant ou motif imprimé) séparé d'un plan de masse par un diélectrique.The field of the invention is that of planar antennas, of the type comprising at least one radiating element (also called "patch", planar pattern, radiating pattern or printed pattern) separated from a ground plane by a dielectric.

Notre époque connaît actuellement un développement considérable des réseaux mobiles et, plus généralement, de tous les réseaux « sans-fil ». Ces systèmes apportant des réponses séduisantes sur de nombreux points, tels que la flexibilité de connexion, la mobilité, le redéploiement ou les possibilités d'extension des réseaux, cet essor devrait continuer à s'accroître de manière très significative dans l'avenir.Our era is currently experiencing a considerable expansion of mobile networks and, more generally, of all wireless networks. Since these systems offer attractive answers on many points, such as connection flexibility, mobility, redeployment or network expansion possibilities, this growth should continue to increase significantly in the future.

Or, dans tous ces systèmes, les éléments rayonnants font partie des composants clés, pour lesquels les spécifications demandées sont de plus en plus contraignantes. Il faut bien entendu constamment optimiser l'ensemble des performances électriques de ces antennes, mais également satisfaire des critères de plus en plus critiques, tels que l'encombrement, le poids ou le coût de ces composants.However, in all these systems, radiating elements are among the key components, for which the specifications requested are increasingly binding. It must of course constantly optimize all the electrical performance of these antennas, but also satisfy criteria increasingly critical, such as the size, weight or cost of these components.

La miniaturisation des antennes constitue donc aujourd'hui un challenge important et fait l'objet de nombreux travaux au niveau international. Cette miniaturisation offre en effet de multiples avantages, parmi lesquels on peut citer : une facilité d'intégration des antennes dans des matériels embarqués (en particulier, au sein des portables), une plus grande flexibilité de mise en réseau de ces éléments rayonnants (de par leur petite dimension), une plus grande ouverture de diagramme facilitant notamment l'intégration de systèmes à large balayage de faisceau...The miniaturization of the antennas thus constitutes today an important challenge and is the subject of numerous works on the international level. This miniaturization offers indeed many advantages, among which we can mention: ease of integration of antennas in embedded hardware (in particular, within laptops), greater flexibility of networking of these radiating elements (of by their small size), a larger diagram opening facilitating in particular the integration of wide beam scanning systems ...

Parmi les diverses technologies utilisées pour intégrer les antennes, les solutions planaires apparaissent aujourd'hui comme particulièrement appropriées pour répondre à l'ensemble des spécifications demandées. Cette approche planaire offre en effet suffisamment de souplesse aux concepteurs pour développer des solutions performantes et de dimensions particulièrement petites.Among the various technologies used to integrate antennas, planar solutions appear today as particularly appropriate to meet all the specifications requested. This planar approach offers developers enough flexibility to develop efficient solutions with particularly small dimensions.

Conformément à un abus de langage tout à fait classique dans le domaine des antennes, on entend par « antennes planaires » (ou antennes réalisées selon la technologie planaire) :

  • aussi bien les antennes réellement planes, c'est-à-dire celles dont le plan de masse et le ou les éléments rayonnants sont plans,
  • que les antennes non réellement planes, c'est-à-dire celles dont le plan de masse et/ou au moins un des éléments rayonnants n'est (ne sont) pas plan(s) mais conformé(s) selon une forme tridimensionnelle (3D) déterminée, de manière à épouser la forme d'un support.
In accordance with an abuse of language quite conventional in the field of antennas, the term "planar antennas" (or antennas made according to the planar technology):
  • both really flat antennas, that is to say those whose plane of mass and the radiating elements are planes,
  • that the antennas not really planar, that is to say those whose plane of mass and / or at least one of the radiating elements is (are) not plane (s) but conformed (s) in a three-dimensional form (3D) determined, so as to follow the shape of a support.

Les antennes planaires de la seconde catégorie précitée (antennes non réellement planes) sont généralement, mais non obligatoirement, réalisées selon une technologie imprimée. Ceci explique pourquoi, historiquement, l'adjectif « planaire » a été choisi dans l'expression « antenne planaire », pour montrer une opposition avec la structure d'antenne traditionnelle à base de guide d'onde tridimensionnel (3D).La présente invention s'inscrit dans ce contexte et porte plus précisément sur une solution originale d'antenne planaire au sens précité, ainsi que sur un procédé de fabrication correspondant, permettant de diminuer fortement la dimension physique du motif imprimé de base (c'est-à-dire du ou des éléments rayonnants, aussi appelés patchs).The planar antennas of the aforementioned second category (antennas that are not actually flat) are generally, but not necessarily, produced using a printed technology. This explains why, historically, the adjective "planar" has been chosen in the expression "planar antenna", to show an opposition with the traditional antenna structure based on three-dimensional waveguide (3D). is in this context and relates more specifically to an original planar antenna solution in the above sense, as well as a corresponding manufacturing process, to greatly reduce the physical dimension of the basic printed pattern (ie say the radiating element or elements, also called patches).

2. Art antérieur2. Prior Art

La réduction de la taille des antennes planaires représente un enjeu majeur pour faciliter leur utilisation et leur intégration dans les systèmes modernes.Reducing the size of planar antennas is a major challenge to facilitate their use and integration into modern systems.

Le principe de base de la plupart des solutions mises en oeuvre à ce jour consiste à augmenter la longueur électrique équivalente du motif imprimé, pour qu'il puisse rayonner à la fréquence désirée, tout en réduisant ses dimensions physiques (i.e. sa surface ou son volume).The basic principle of most of the solutions implemented to date is to increase the equivalent electrical length of the printed pattern, so that it can radiate at the desired frequency, while reducing its physical dimensions (ie its surface or its volume ).

A cet effet, les structures les plus couramment utilisées correspondent à :

  • des solutions de type patchs à fentes inscrites, ces fentes permettant d'allonger le chemin électrique du signal sur le motif planaire (voir par exemple les documents de brevet WO 01/31739 et WO 01/17063 ), ou
  • des solutions pour lesquelles le motif rayonnant est replié de manière à gagner en compacité (voir par exemple les documents de brevet WO 02/052680 , WO 01/63695 et US 6,483,462 B2 ).
For this purpose, the most commonly used structures correspond to:
  • patch-type solutions with inscribed slots, these slots making it possible to extend the electrical path of the signal on the planar pattern (see, for example, patent documents WO 01/31739 and WO 01/17063 ), or
  • solutions for which the radiating pattern is folded in order to gain compactness (see for example the patent documents WO 02/052680 , WO 01/63695 and US 6,483,462 B2 ).

Il est à noter que ces différents concepts peuvent également être combinés au sein d'une même structure (voir par exemple le document de brevet WO 02/01874 ).It should be noted that these different concepts can also be combined within the same structure (see for example the patent document WO 02/01874 ).

3. Objectifs de l'invention3. Objectives of the invention

L'invention a notamment pour objectif de fournir une technique toute autre que celles utilisées jusqu'à aujourd'hui pour augmenter la longueur électrique équivalente du motif imprimé (élément rayonnant ou patch) de l'antenne, de façon à obtenir une antenne planaire très compacte.The invention particularly aims to provide a technique other than those used until today to increase the equivalent electrical length of the printed pattern (radiating element or patch) of the antenna, so as to obtain a very planar antenna compact.

Un objectif complémentaire de l'invention est de fournir une telle technique qui soit simple à mettre en oeuvre et peu coûteuse.A complementary objective of the invention is to provide such a technique which is simple to implement and inexpensive.

L'invention a également pour objectif de fournir une telle technique pouvant être appliquée à tout type de structures rayonnantes planaires, telles que les antennes basiques « patchs demi-onde » ou « patchs quart-d'onde », les antennes « patchs annulaires », les antennes « patchs à fentes inscrites », les antennes PIFA (Planar Inverted-F Antenna)...The invention also aims to provide such a technique that can be applied to any type of planar radiating structures, such as the basic antennas "half-wave patches" or "quarter-wave patches", the antennas "ring patches" , antennas "slotted patches", antennas PIFA (Planar Inverted-F Antenna) ...

Un autre objectif de l'invention est de fournir une telle technique pouvant être appliquée aussi bien à une antenne planaire à un seul élément rayonnant qu'à une antenne planaire comprenant une superposition de plusieurs éléments rayonnants.Another object of the invention is to provide such a technique that can be applied to both a planar antenna with a single radiating element and a planar antenna comprising a superposition of several radiating elements.

Encore un autre objectif de l'invention est de fournir un procédé de fabrication d'antenne planaire correspondant, reposant sur des technologies d'intégration très simples, ce qui permet d'aboutir à des solutions très faible coût, tout à fait adaptées au développement des marchés grand-public.Yet another object of the invention is to provide a planar antenna manufacturing method corresponding, based on very simple integration technologies, which leads to very low cost solutions, quite suitable for development consumer markets.

4. Résumé de l'invention4. Summary of the invention

Ces différents objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints selon l'invention à l'aide d'une antenne planaire du type comprenant au moins un élément rayonnant séparé d'un plan de masse par un diélectrique. Selon l'invention, l'antenne comprend en outre au moins un ensemble de plots conducteurs connectés à et s'étendant à partir d'au moins un des éléments appartenant au groupe comprenant le plan de masse et ledit au moins un élément rayonnant, de façon à réduire au moins une dimension physique dudit au moins un élément rayonnant pour une fréquence de résonance déterminée.These various objectives, as well as others which will appear later, are achieved according to the invention using a planar antenna of the type comprising at least one radiating element separated from a ground plane by a dielectric. According to the invention, the antenna further comprises at least one set of conductive pads connected to and extending from at least one of the elements belonging to the group comprising the ground plane and the said at least one radiating element, in order to reduce at least one physical dimension of said at least one radiating element for a determined resonant frequency.

Le principe général de l'invention consiste donc simplement à disposer des plots sur le plan de masse et/ou sur un ou plusieurs élément(s) rayonnant(s) (patch(s)) de l'antenne planaire.The general principle of the invention is therefore simply to have the pads on the ground plane and / or on one or more element (s) radiating (s) (patch (s)) of the planar antenna.

Dans le cadre de la présente invention, le terme plot est utilisé dans un sens générique, pouvant se décliner sous différentes variantes (et notamment mais non exclusivement, comme détaillé dans l'exposé ci-dessous, sous forme de saillie, de trou ou encore de languette).In the context of the present invention, the term pad is used in a generic sense, which can be broken down into different variants (and in particular but not exclusively, as detailed in the description below, in the form of a projection, a hole or tongue).

Par diélectrique, on entend l'air ou un matériau solide de caractéristiques proches de celles de l'air, comme par exemple des matériaux de type plastique, mousse...Dielectric means air or a solid material with characteristics close to those of air, such as for example materials of plastic type, foam, etc.

Comme expliqué en détail par la suite, en relation avec la figure 3, ces plots viennent localement modifier la distribution du champ électromagnétique, et permettent de réduire au moins une dimension (la longueur et/ou la largeur) physique du ou des élément(s) rayonnant(s) pour une fréquence de résonance fixée.As explained in detail later, in relation to the figure 3 these pads locally come to modify the distribution of the electromagnetic field, and make it possible to reduce at least one dimension (the length and / or the width) of the physical element (s) radiating (s) for a fixed resonant frequency.

On précise ci-après différents ensembles de plots conducteurs. Il est clair que de nombreux modes de réalisation de la présente invention peuvent être envisagés, correspondant chacun à une combinaison différente d'un ou de plusieurs de ces ensembles. Il est également à noter que la présente invention s'applique avec une structure d'antenne comprenant un unique élément rayonnant ou avec une structure d'antenne comprenant une superposition de plusieurs éléments rayonnants.Different sets of conductive pads are specified below. It is clear that many embodiments of the present invention may be contemplated, each corresponding to a different combination of one or more of these sets. It should also be noted that the present invention applies with an antenna structure comprising a single radiating element or with an antenna structure comprising a superposition of several radiating elements.

Avantageusement, l'antenne comprend un premier ensemble de plots conducteurs connectés au plan de masse et s'étendant vers, sans être connectés à, ledit au moins élément rayonnant.Advantageously, the antenna comprises a first set of conductive pads connected to the ground plane and extending towards, without being connected to, said at least one radiating element.

Dans le cas où l'antenne est du type comprenant un unique élément rayonnant, elle comprend avantageusement un deuxième ensemble de plots conducteurs connectés audit unique élément rayonnant et s'étendant vers, sans être connectés à, ledit plan de masse.In the case where the antenna is of the type comprising a single radiating element, it advantageously comprises a second set of conductive pads connected to said single radiating element and extending towards, without being connected to, said ground plane.

Dans le cas où l'antenne est du type comprenant une superposition d'au moins deux éléments rayonnants séparés entre eux par un diélectrique, l'élément rayonnant le plus proche du plan de masse étant appelé élément rayonnant primaire, l'antenne comprend avantageusement un troisième ensemble de plots conducteurs connectés à une première face dudit élément rayonnant primaire et s'étendant vers, sans être connectés à, ledit plan de masse.In the case where the antenna is of the type comprising a superposition of at least two radiating elements separated from each other by a dielectric, the radiating element closest to the ground plane being called primary radiating element, the antenna advantageously comprises a third set of conductive pads connected to a first face of said primary radiating element and extending towards, without being connected to, said ground plane.

Dans le cas où l'antenne est du type comprenant une superposition d'au moins deux éléments rayonnants séparés entre eux par un diélectrique, l'élément rayonnant le plus proche du plan de masse étant appelé élément rayonnant primaire, l'antenne comprend avantageusement un quatrième ensemble de plots conducteurs connectés à une seconde face dudit élément rayonnant primaire et s'étendant vers, sans être connectés à, un autre desdits éléments rayonnants.In the case where the antenna is of the type comprising a superposition of at least two radiating elements separated from each other by a dielectric, the element radiating the closer to the ground plane being called the primary radiating element, the antenna advantageously comprises a fourth set of conductive pads connected to a second face of said primary radiating element and extending towards, without being connected to, another of said radiating elements.

Dans le cas où l'antenne est du type comprenant une superposition d'au moins trois éléments rayonnants séparés entre eux par des diélectriques, l'élément rayonnant le plus proche du plan de masse étant appelé élément rayonnant primaire, l'élément rayonnant le plus éloigné du plan de masse étant appelé élément rayonnant supérieur, chaque élément rayonnant autre que l'élément rayonnant primaire et l'élément rayonnant supérieur étant appelé élément rayonnant intermédiaire, l'antenne comprend avantageusement, pour au moins un des éléments rayonnants intermédiaires, un cinquième ensemble de plots conducteurs connectés à une première face dudit élément rayonnant intermédiaire et s'étendant vers, sans être connectés à, un autre desdits éléments rayonnants qui suit ledit élément rayonnant intermédiaire selon un sens de parcours de ladite superposition de l'élément rayonnant primaire vers l'élément rayonnant supérieur.In the case where the antenna is of the type comprising a superposition of at least three radiating elements separated from each other by dielectrics, the radiating element closest to the ground plane is called the primary radiating element, the radiating element the most away from the ground plane being called upper radiating element, each radiating element other than the primary radiating element and the upper radiating element being called intermediate radiating element, the antenna advantageously comprises, for at least one of the intermediate radiating elements, a fifth set of conductive pads connected to a first face of said intermediate radiating element and extending towards, without being connected to, another of said radiating elements which follows said intermediate radiating element in a direction of travel of said superposition of the primary radiating element towards the upper radiating element.

Dans le cas où l'antenne est du type comprenant une superposition d'au moins trois éléments rayonnants séparés entre eux par des diélectriques, l'élément rayonnant le plus proche du plan de masse étant appelé élément rayonnant primaire, l'élément rayonnant le plus éloigné du plan de masse étant appelé élément rayonnant supérieur, chaque élément rayonnant autre que ledit élément rayonnant primaire et ledit élément rayonnant supérieur étant appelé élément rayonnant intermédiaire, l'antenne comprend avantageusement, pour au moins un des éléments rayonnants intermédiaires, un sixième ensemble de plots conducteurs connectés à une seconde face dudit élément rayonnant intermédiaire et s'étendant vers, sans être connectés à, un autre desdits éléments rayonnants qui précède ledit élément rayonnant intermédiaire selon un sens de parcours de ladite superposition de l'élément rayonnant primaire vers l'élément rayonnant supérieur.In the case where the antenna is of the type comprising a superposition of at least three radiating elements separated from each other by dielectrics, the radiating element closest to the ground plane is called the primary radiating element, the radiating element the most away from the ground plane being called the upper radiating element, each radiating element other than said primary radiating element and said upper radiating element being called intermediate radiating element, the antenna advantageously comprises, for at least one of the intermediate radiating elements, a sixth set of conductive pads connected to a second face of said intermediate radiating element and extending towards, without being connected to, another one of said radiating elements which precedes said intermediate radiating element in a direction of travel of said superposition of the primary radiating element towards the upper radiating element.

Dans le cas où l'antenne est du type comprenant une superposition d'au moins deux éléments rayonnants séparés entre eux par un diélectrique, l'élément rayonnant le plus proche du plan de masse étant appelé élément rayonnant primaire, l'élément rayonnant le plus éloigné du plan de masse étant appelé élément rayonnant supérieur, chaque élément rayonnant autre que ledit élément rayonnant primaire et ledit élément rayonnant supérieur étant appelé élément rayonnant intermédiaire, l'antenne comprend avantageusement un septième ensemble de plots conducteurs connectés à une première face dudit élément rayonnant supérieur et s'étendant vers, sans être connectés à, un autre desdits éléments rayonnants qui précède ledit élément rayonnant supérieur selon un sens de parcours de ladite superposition de l'élément rayonnant primaire vers l'élément rayonnant supérieur.In the case where the antenna is of the type comprising a superposition of at least two radiating elements separated from each other by a dielectric, the radiating element closest to the ground plane being called primary radiating element, the element radiating the farthest from the ground plane being called upper radiating element, each radiating element other than said primary radiating element and said upper radiating element being called intermediate radiating element, the antenna advantageously comprises a seventh set of conductive pads connected to a first face said upper radiating element and extending towards, without being connected to, another of said radiating elements which precedes said upper radiating element in a direction of travel of said superposition of the primary radiating element towards the upper radiating element.

Avantageusement, un ensemble de plots conducteurs, s'étendant à partir du plan de masse ou respectivement de l'un des éléments rayonnants, s'entrelacent avec un autre ensemble de plots conducteurs, s'étendant à partir de l'un des éléments rayonnants ou respectivement d'un autre des éléments rayonnants.Advantageously, a set of conductive pads, extending from the ground plane or respectively one of the radiating elements, intertwine with another set of conductive pads, extending from one of the radiating elements. or respectively another of the radiating elements.

De façon avantageuse, pour chaque élément rayonnant auquel est connecté un ensemble de plots conducteurs, ledit élément rayonnant n'est connecté à aucun plot conducteur dans une zone où ledit élément rayonnant est connecté avec des moyens d'alimentation.Advantageously, for each radiating element to which is connected a set of conductive pads, said radiating element is not connected to any conductive pad in an area where said radiating element is connected with supply means.

Avantageusement, les plots conducteurs d'un même ensemble de plots conducteurs sont répartis selon une matrice.Advantageously, the conductive pads of the same set of conductive pads are distributed in a matrix.

Selon une caractéristique avantageuse, au moins un élément rayonnant auquel est connecté au moins un ensemble de plots conducteurs est du type présentant une symétrie suivant ses deux axes principaux, et en ce que lesdits plots conducteurs sont répartis selon une disposition respectant ladite symétrie.According to an advantageous characteristic, at least one radiating element to which is connected at least one set of conductive pads is of the type having a symmetry along its two main axes, and in that said conductive pads are distributed in a disposition respecting said symmetry.

Ainsi, il est tout à fait possible d'exploiter l'antenne de l'invention suivant deux polarisations linéaires croisées, voire en polarisation circulaire. La solution développée, à base de plots conducteurs, n'est donc pas en soi un obstacle à l'utilisation de l'antenne pour tout type de polarisation désirée.Thus, it is entirely possible to exploit the antenna of the invention according to two crossed linear polarizations, or even in circular polarization. The solution developed, based on conductive pads, is not in itself an obstacle to the use of the antenna for any desired type of polarization.

Préférentiellement, l'antenne appartient au groupe comprenant : des antennes planaires de type élément rayonnant demi-onde, des antennes planaires de type élément rayonnant quart-d'onde, des antennes planaires de type élément rayonnant annulaire, des antennes planaires de type élément rayonnant à fentes inscrites, des antennes planaires de type élément rayonnant en F-inversé.Preferably, the antenna belongs to the group comprising: planar antennas of the half-wave radiating element type, planar antennas of the quarter-wave radiating element type, planar antennas of the annular radiating element type, planar antennas of the radiating element type with slots written, planar antennas of type radiating element in F-inverted.

De façon avantageuse, l'antenne appartient au groupe comprenant : des antennes planes et des antennes non planes du fait d'une non planéité du plan de masse et/ou d'au moins un des éléments rayonnants.Advantageously, the antenna belongs to the group comprising: planar antennas and non-planar antennas due to non-flatness of the ground plane and / or at least one of the radiating elements.

Dans un premier mode de réalisation particulier de l'invention, au moins un des plots conducteurs connectés au plan de masse ou à un des éléments rayonnants est une saillie conductrice formée dans une première pièce conductrice et s'étendant à partir d'un corps principal de ladite première pièce conductrice, ledit corps principal formant ledit plan de masse ou ledit élément rayonnant.In a first particular embodiment of the invention, at least one of the conductive pads connected to the ground plane or to one of the radiating elements is a conductive projection formed in a first conductive part and extending from a main body. said first conductive part, said main body forming said ground plane or said radiating element.

Dans un deuxième mode de réalisation particulier de l'invention, au moins un des plots conducteurs connectés à au moins un des éléments rayonnants est une languette conductrice, découpée dans au moins une partie excentrique d'une seconde pièce conductrice et repliée par rapport à une partie centrale de la seconde pièce conductrice, ladite partie centrale formant ledit élément rayonnant.In a second particular embodiment of the invention, at least one of the conductive pads connected to at least one of the radiating elements is a conductive tab, cut in at least an eccentric part of a second conductive part and folded relative to a central part of the second conductive part, said central part forming said radiating element.

De façon avantageuse, l'antenne comprend en outre au moins un élément de support de ladite première ou seconde pièce conductrice, réalisé dans un matériau diélectrique et permettant de positionner le plan de masse par rapport à au moins un des éléments rayonnants ou de positionner ledit élément rayonnant par rapport au plan de masse ou au moins un autre des éléments rayonnants.Advantageously, the antenna further comprises at least one support element of said first or second conductive part, made of a dielectric material and for positioning the ground plane with respect to at least one of the radiating elements or for positioning said radiating element with respect to the ground plane or at least one other radiating element.

Dans un troisième mode de réalisation particulier de l'invention, au moins un des plots conducteurs connectés au plan de masse ou à au moins un des éléments rayonnants est un trou conducteur s'étendant à partir d'une première face d'une couche de matériau diélectrique, ladite première face portant ledit plan de masse ou ledit au moins un élément rayonnant, ledit trou conducteur s'étendant à partir de ladite première face et ne débouchant pas sur une seconde face de ladite couche de matériau diélectrique, la surface dudit trou conducteur étant recouverte d'un matériau conducteur.In a third particular embodiment of the invention, at least one of the conductive pads connected to the ground plane or to at least one of the radiating elements is a conductive hole extending from a first face of a layer of dielectric material, said first face carrying said ground plane or said at least one radiating element, said conductive hole extending from said first face and not opening onto a second face of said dielectric material layer, the surface of said hole conductor being covered with a conductive material.

L'invention concerne également un procédé de fabrication d'une antenne planaire du type comprenant au moins un élément rayonnant séparé d'un plan de masse par un diélectrique. Selon l'invention, le procédé comprend une étape de réalisation d'au moins un ensemble de plots conducteurs connectés à et s'étendant à partir d'au moins un des éléments appartenant au groupe comprenant le plan de masse et ledit au moins un élément rayonnant, de façon à réduire au moins une dimension physique dudit au moins un élément rayonnant pour une fréquence de résonance déterminée.The invention also relates to a method of manufacturing a planar antenna of the type comprising at least one radiating element separated from a ground plane by a dielectric. According to the invention, the method comprises a step of producing at least one set of conductive pads connected to and extending from at least one of the elements belonging to the group comprising the ground plane and said at least one radiating element, so as to reduce at least one physical dimension of said at least one radiating element for a determined resonant frequency.

Dans un premier mode de réalisation particulier de l'invention, le procédé comprend l'étape suivante, pour le plan de masse et/ou au moins un des éléments rayonnants auquel est connecté un ensemble de plots conducteurs : on réalise une première pièce conductrice comprenant :

  • un corps principal formant ledit plan de masse ou ledit élément rayonnant ; et
  • au moins une saillie conductrice s'étendant à partir dudit corps principal, de façon à former un des plots conducteurs connectés au plan de masse ou à un des éléments rayonnants.
In a first particular embodiment of the invention, the method comprises the following step, for the ground plane and / or at least one of the radiating elements to which is connected a set of conductive pads: a first conductive part comprising :
  • a main body forming said ground plane or said radiating element; and
  • at least one conductive projection extending from said main body, so as to form one of the conductive pads connected to the ground plane or to one of the radiating elements.

Dans un deuxième mode de réalisation particulier de l'invention, le procédé comprend les étapes suivantes, pour au moins un des éléments rayonnants auquel est connecté un ensemble de plots conducteurs :

  • on réalise une seconde pièce conductrice comprenant une partie centrale formant ledit élément rayonnant ;
  • on découpe au moins une languette conductrice dans une partie excentrique de ladite seconde pièce conductrice ;
  • on replie ladite au moins une languette conductrice par rapport à la partie centrale, de façon à former un des plots conducteurs connectés à un des éléments rayonnants.
In a second particular embodiment of the invention, the method comprises the following steps, for at least one of the radiating elements to which is connected a set of conductive pads:
  • a second conductive part is made comprising a central part forming said radiating element;
  • at least one conductive tongue is cut in an eccentric portion of said second conductive part;
  • said at least one conductive tab is folded with respect to the central portion so as to form one of the conductive pads connected to one of the radiating elements.

De façon avantageuse, le procédé comprend en outre une étape de positionnement de ladite première ou seconde pièce conductrice par rapport à un autre élément de l'antenne, à l'aide d'au moins un élément de support réalisé dans un matériau diélectrique.Advantageously, the method further comprises a step of positioning said first or second conductive part relative to another element of the antenna, using at least one support element made of a dielectric material.

Dans un troisième mode de réalisation particulier de l'invention, le procédé comprend les étapes suivantes, pour le plan de masse et/ou au moins un des éléments rayonnants auquel est connecté un ensemble de plots conducteurs :

  • on réalise au moins un trou dans une couche de matériau diélectrique, ledit au moins un trou s'étendant à partir d'une première face de ladite couche et ne débouchant pas sur une seconde face de ladite couche ;
  • on recouvre sélectivement, avec un matériau conducteur :
    • * au moins une partie de ladite première face, de façon à former ledit plan de masse ou ledit élément rayonnant ; et
    • * la surface dudit au moins un trou, de façon à obtenir un trou conducteur formant un des plots conducteurs connectés au plan de masse ou à un des éléments rayonnants.
In a third particular embodiment of the invention, the method comprises the following steps, for the ground plane and / or at least one of the radiating elements to which is connected a set of conductive pads:
  • at least one hole is made in a layer of dielectric material, said at least one hole extending from a first face of said layer and not opening onto a second face of said layer;
  • selectively covering, with a conductive material:
    • at least a portion of said first face, so as to form said ground plane or said radiating element; and
    • the surface of said at least one hole, so as to obtain a conductive hole forming one of the conductive pads connected to the ground plane or to one of the radiating elements.

5. Liste des figures5. List of figures

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante d'un mode de réalisation préférentiel de l'invention, donné à titre d'exemple indicatif et non limitatif, et des dessins annexés, dans lesquels :

  • la figure 1 présente une vue en perspective d'un exemple d'antenne planaire de type patch demi-onde selon l'invention, avec des plots distribués sous l'élément rayonnant ;
  • la figure 2 est une vue en coupe de l'antenne de la figure 1 suivant l'axe B-B' ;
  • la partie haute de la figure 3 est une vue en coupe de l'antenne de la figure 1 suivant l'axe A-A', permettant d'interpréter l'effet des plots positionnés sous l'élément rayonnant, et la partie basse de la figure 3 est une modélisation électrique de l'effet des plots ;
  • la figure 4 présente un exemple d'une antenne planaire de type patch quart-d'onde selon l'invention, avec des plots distribués sous l'élément rayonnant ;
  • la figure 5 présente un exemple d'une antenne planaire de type patch annulaire selon l'invention, avec des plots distribués sous l'élément rayonnant ;
  • la figure 6 présente un exemple d'antenne obtenue avec un premier mode de réalisation du procédé de fabrication d'antenne selon l'invention, basé sur l'utilisation d'une pièce métallique tridimensionnelle (3D) et de supports de positionnement ;
  • la figure 7 présente un exemple d'antenne obtenue avec un second mode de réalisation du procédé de fabrication d'antenne selon l'invention, basé sur l'utilisation d'une couche de substrat diélectrique présentant des trous métallisés non débouchants ;
  • la figure 8 illustre des résultats expérimentaux d'une antenne planaire de type patch demi-onde selon l'invention, obtenue avec le second mode de réalisation du procédé de fabrication d'antenne selon l'invention ;
  • la figure 9 illustre des résultats expérimentaux d'une antenne planaire de type patch demi-onde classique, et de dimensions identiques à celle de l'antenne selon l'invention dont les résultats sont illustrés sur la figure 8 ;
  • la figure 10 illustre des résultats expérimentaux d'une antenne planaire de type patch quart-d'onde selon l'invention, obtenue avec le second mode de réalisation du procédé de fabrication d'antenne selon l'invention ;
  • la figure 11 illustre des résultats expérimentaux d'une antenne planaire de type patch quart-d'onde classique, et de dimensions identiques à celle de l'antenne selon l'invention dont les résultats sont illustrés sur la figure 10 ;
  • la figure 12 est une vue en coupe d'une configuration d'antenne à deux éléments rayonnants empilés, selon l'invention ;
  • la figure 13 est une vue en coupe d'une variante d'antenne à un élément rayonnant selon l'invention, dans laquelle le plan de masse et la face inférieure de l'unique élément rayonnant présentent des plots conducteurs ;
  • la figure 14 est une vue en coupe d'une variante d'antenne à deux éléments rayonnants selon l'invention, dans laquelle le plan de masse et les deux faces de l'élément rayonnant primaire présentent des plots conducteurs ;
  • la figure 15 est une vue en coupe d'une autre variante d'antenne à un élément rayonnant selon l'invention, dans laquelle le plan de masse est plat et l'unique élément rayonnant est conformé ;
  • la figure 16 est une vue en coupe d'une autre variante d'antenne à deux éléments rayonnants selon l'invention, dans laquelle le plan de masse et les deux éléments rayonnants sont conformés ;
  • la figure 17 présente une vue en perspective d'une autre variante d'antenne à un élément rayonnant selon l'invention, avec des plots réalisés sous la forme de languettes réparties sur la périphérie de l'élément rayonnant ; et
  • la figure 18 est une vue en coupe d'une autre variante d'antenne à trois éléments rayonnants selon l'invention, dans laquelle une face de l'élément rayonnant primaire et les deux faces de l'élément rayonnant intermédiaire présentent des plots conducteurs.
Other features and advantages of the invention will appear on reading the following description of a preferred embodiment of the invention, given by way of indicative and nonlimiting example, and the appended drawings, in which:
  • the figure 1 shows a perspective view of an example of a half-wave patch planar antenna according to the invention, with studs distributed under the radiating element;
  • the figure 2 is a sectional view of the antenna of the figure 1 along the BB 'axis;
  • the upper part of the figure 3 is a sectional view of the antenna of the figure 1 along the axis A-A ', making it possible to interpret the effect of the pads positioned under the radiating element, and the lower part of the figure 3 is an electrical modeling of the effect of the pads;
  • the figure 4 shows an example of a planar antenna of quarter-wave patch type according to the invention, with studs distributed under the radiating element;
  • the figure 5 shows an example of a planar ring-type antenna according to the invention, with studs distributed under the radiating element;
  • the figure 6 shows an example of an antenna obtained with a first embodiment of the antenna manufacturing method according to the invention, based on the use of a three-dimensional metal part (3D) and positioning supports;
  • the figure 7 shows an example of an antenna obtained with a second embodiment of the antenna manufacturing method according to the invention, based on the use of a dielectric substrate layer having non-emerging metallized holes;
  • the figure 8 illustrates experimental results of a planar antenna of half-wave patch type according to the invention, obtained with the second embodiment of the antenna manufacturing method according to the invention;
  • the figure 9 illustrates experimental results of a planar antenna of the conventional half-wave patch type, and of dimensions identical to that of the antenna according to the invention, the results of which are illustrated on FIG. figure 8 ;
  • the figure 10 illustrates experimental results of a planar antenna of quarter-wave patch type according to the invention, obtained with the second embodiment of the antenna manufacturing method according to the invention;
  • the figure 11 illustrates experimental results of a conventional quarter-wave-type planar antenna of identical dimensions to that of the antenna according to the invention, the results of which are illustrated in FIG. figure 10 ;
  • the figure 12 is a sectional view of an antenna configuration with two stacked radiating elements, according to the invention;
  • the figure 13 is a sectional view of an antenna variant to a radiating element according to the invention, wherein the ground plane and the lower face of the single radiating element have conductive pads;
  • the figure 14 is a sectional view of an antenna variant with two radiating elements according to the invention, wherein the ground plane and the two faces of the primary radiating element have conductive pads;
  • the figure 15 is a sectional view of another antenna variant to a radiating element according to the invention, wherein the ground plane is flat and the single radiating element is shaped;
  • the figure 16 is a sectional view of another variant of antenna with two radiating elements according to the invention, wherein the ground plane and the two radiating elements are shaped;
  • the figure 17 shows a perspective view of another antenna variant to a radiating element according to the invention, with pads made in the form of tabs distributed over the periphery of the radiating element; and
  • the figure 18 is a sectional view of another variant of antenna with three radiating elements according to the invention, in which a face of the radiating element primary and the two faces of the intermediate radiating element have conductive pads.

6. Description détaillée6. Detailed description

Sur les figures 1 à 7, 12 et 17, un même élément conserve une même référence numérique d'une figure à l'autre (notamment 1 pour l'élément rayonnant, 2 pour le plan de masse, 3 pour le diélectrique entre l'élément rayonnant et le plan de masse, et 4 pour les plots conducteurs).On the Figures 1 to 7 , 12 and 17 the same element retains the same numerical reference from one figure to the other (in particular 1 for the radiating element, 2 for the ground plane, 3 for the dielectric between the radiating element and the ground plane, and 4 for conductive pads).

Une antenne planaire classique comprend au moins un élément rayonnant et un plan de masse. Au moins un diélectrique sépare l'élément rayonnant le plus proche du plan de masse et le plan de masse lui-même, ainsi que les éléments rayonnants entre eux. On entend par « diélectrique » l'air ou un matériau solide possédant des caractéristiques proches de celles de l'air, comme par exemple des matériaux de type plastique, mousse...A conventional planar antenna comprises at least one radiating element and a ground plane. At least one dielectric separates the radiating element closest to the ground plane and the ground plane itself, as well as the radiating elements between them. "Dielectric" is understood to mean air or a solid material having characteristics close to those of air, such as, for example, materials of plastic type, foam, etc.

Le principe général, de l'invention consiste à ajouter à une telle antenne planaire classique une pluralité de plots conducteurs connectés à et s'étendant à partir du plan de masse et/ou d'un ou plusieurs éléments rayonnants, de façon à réduire au moins une dimension physique du ou des éléments rayonnants pour une fréquence de résonance déterminée.The general principle of the invention is to add to such a conventional planar antenna a plurality of conductive pads connected to and extending from the ground plane and / or one or more radiating elements, so as to reduce minus a physical dimension of the radiating element (s) for a determined resonant frequency.

La figure 1 présente une vue en perspective d'un exemple d'antenne planaire de type patch demi-onde selon l'invention, avec des plots distribués uniquement sous l'élément rayonnant. Ces plots 4 sont connectés à l'élément rayonnant 1 et s'étendent vers le plan de masse 2 sans y être connectés. Dans cet exemple, l'antenne est modélisée par deux fentes rayonnantes 5, localisées aux deux extrémités séparées de la longueur demi-onde (figure 3).The figure 1 shows a perspective view of an example of a half-wave patch planar antenna according to the invention, with studs distributed only under the radiating element. These pads 4 are connected to the radiating element 1 and extend towards the ground plane 2 without being connected thereto. In this example, the antenna is modeled by two radiating slots 5, located at the two ends separated by the half-wave length ( figure 3 ).

Les plots sont par exemple distribués selon une répartition spatiale, dite matrice, comme illustré sur la figure 2 , qui est une vue en coupe de l'antenne de la figure 1 suivant l'axe B-B'. Cette répartition peut être uniforme ou non. D'une façon générale, tout type de disposition des plots peut être envisagée, sans sortir du cadre de la présente invention.The pads are for example distributed according to a spatial distribution, called matrix, as illustrated in FIG. figure 2 , which is a sectional view of the antenna of the figure 1 along the axis B-B '. This distribution may be uniform or not. In general, any type of arrangement of the pads may be considered, without departing from the scope of the present invention.

La partie haute de la figure 3 est une vue en coupe de l'antenne de la figure 1 suivant l'axe A-A', permettant d'interpréter l'effet des plots positionnés sous l'élément rayonnant. La distribution du champ électrique entre l'élément rayonnant 1 et le plan de masse 2 est représentée par des flèches en pointillés. La partie basse de la figure 3 est une modélisation électrique de l'effet des plots 4 positionnés sous l'élément rayonnant 1.The upper part of the figure 3 is a sectional view of the antenna of the figure 1 along the axis A-A ', making it possible to interpret the effect of the studs positioned under the element beaming. The distribution of the electric field between the radiating element 1 and the ground plane 2 is represented by dashed arrows. The lower part of the figure 3 is an electrical modeling of the effect of the pads 4 positioned under the radiating element 1.

Au niveau électrique, les plots 4, positionnés entre le motif rayonnant 1 et le plan de masse 2, et uniquement connectés à ce motif rayonnant 1, viennent localement modifier la distribution du champ électromagnétique, d'où une augmentation de l'effet capacitif équivalent (capacité locale C), ramené aux différents points de connexion de ces plots 4 avec le motif rayonnant 1. En conséquence, la vitesse de phase du signal sur le motif rayonnant 1 diminue, ce qui permet de réduire au moins une dimension (la longueur et/ou la largeur) physique du motif rayonnant 1 pour une fréquence de résonance fixée (voir ci-après le rappel du raisonnement mathématique qui explique ceci). Il est à noter que cette diminution de longueur et/ou largeur dépend directement du nombre de plots 4 sous le motif rayonnant 1, ainsi que de leurs positions et de leurs dimensions (longueur et diamètre). Ainsi, par exemple, plus le nombre et la longueur des plots augmentent, plus la réduction de taille devient importante.At the electrical level, the pads 4, positioned between the radiating pattern 1 and the ground plane 2, and only connected to this radiating pattern 1, locally change the distribution of the electromagnetic field, resulting in an increase in the equivalent capacitive effect (local capacitance C), brought back to the different connection points of these pads 4 with the radiating pattern 1. As a result, the phase velocity of the signal on the radiating pattern 1 decreases, which makes it possible to reduce at least one dimension (the length and / or the physical width of the radiating pattern 1 for a fixed resonant frequency (see hereinafter the reminder of the mathematical reasoning which explains this). It should be noted that this decrease in length and / or width depends directly on the number of pads 4 under the radiating pattern 1, as well as their positions and their dimensions (length and diameter). Thus, for example, the more the number and the length of the studs increase, the more the reduction in size becomes important.

Afin d'expliciter ce qui précède, on rappelle que sur l'élément rayonnant, la vitesse de phase vϕ est fonction de la capacité locale C et de l'inductance locale L : v ϕ = 1 LxC

Figure imgb0001
In order to explain the above, it is recalled that on the radiating element, the phase velocity v φ is a function of the local capacitance C and the local inductance L: v φ = 1 LxC
Figure imgb0001

En conséquence, une augmentation de C permet de diminuer vϕ.Consequently, an increase of C makes it possible to decrease v φ .

En outre, à une fréquence de résonance donnée fres, l'antenne doit être équivalente à une longueur électrique donnée φ. Par exemple, pour une antenne de type patch demi-onde : φ = 180°.In addition, at a given resonance frequency f res , the antenna must be equivalent to a given electrical length φ. For example, for a half-wave patch antenna: φ = 180 °.

Or, φ = β x lphysique, où β = (2πfres/vϕ) et lphysique est la longueur physique de l'antenne. Donc, φ = 2πfres (lphysique /vϕ)Now, φ = physical β xl, where β = (2πf res / v φ ) and physical is the physical length of the antenna. So, φ = 2πf res (l physics / v φ )

Pour fres et φ données, si vϕ diminue, alors lphysique diminue également, d'où la miniaturisation de l'antenne. En outre, plus on augmente C, plus vϕ diminue et donc plus lphysique diminue.For f res and φ data, if v φ decreases, then the physics also decreases, hence the miniaturization of the antenna. In addition, the more one increases C, the more v φ decreases and therefore the more physical decreases.

Il n'est pas nécessaire de disposer d'un ensemble de plots uniformes. Il est tout à fait envisageable de concevoir des plots de forme et de dimension différentes.It is not necessary to have a set of uniform pads. It is quite conceivable to design studs of different shapes and sizes.

Pour alimenter une antenne planaire selon l'invention, tous les moyens classiques d'excitation peuvent être envisagés, que ce soit par un simple tronçon de ligne connecté sur l'un des bords de l'élément rayonnant et jouant le rôle d'un transformateur d'impédance pour adapter correctement l'antenne, par une sonde connectée directement en un point équivalent « 50Ω » sur la surface de l'élément rayonnant ou par une solution d'excitation basée sur un couplage électromagnétique.To feed a planar antenna according to the invention, all conventional excitation means can be envisaged, whether by a simple line section connected on one of the edges of the radiating element and acting as an impedance transformer to correctly adapt the antenna, by a probe connected directly to an equivalent point "50Ω" on the surface of the radiating element or by an excitation solution based on electromagnetic coupling.

Dans tous les cas, pour ne pas gêner cette connexion avec les circuits de traitement du signal placés en amont de l'antenne, il suffit, si nécessaire, de ne pas ajouter de plots sous la zone localement concernée par cette interconnexion entre l'élément rayonnant et les moyens d'alimentation.In any case, in order not to impede this connection with the signal processing circuits placed upstream of the antenna, it suffices, if necessary, not to add pads under the zone locally concerned by this interconnection between the element. radiating and feeding means.

D'autre part, sur l'exemple de la figure 1, la symétrie suivant les deux axes principaux (X, Y sur la figure 2) de l'élément rayonnant 1 est respectée. En d'autres termes, les plots sont répartis selon une disposition respectant cette symétrie. Il est donc tout à fait possible d'exploiter l'antenne suivant deux polarisations linéaires croisées, voire en polarisation circulaire. La solution développée, à base de plots, n'est donc pas en soi un obstacle à l'utilisation de l'antenne pour tout type de polarisation désirée.On the other hand, on the example of figure 1 , the symmetry along the two main axes (X, Y on the figure 2 ) of the radiating element 1 is respected. In other words, the studs are distributed according to a provision respecting this symmetry. It is therefore entirely possible to exploit the antenna according to two crossed linear polarizations, or even circular polarization. The developed solution, based on pads, is not in itself an obstacle to the use of the antenna for any desired type of polarization.

Un autre point fondamental, soulignant tout l'intérêt présenté par la technique de l'invention, correspond à sa mise en oeuvre aisée pour tout autre type d'antenne planaire. En effet, le principe de plots conducteurs sous l'élément rayonnant peut s'adapter sans aucune difficulté particulière à des configurations et des géométries d'antennes planaires très différentes, que ce soit pour des motifs planaires avec retour de masse, pour des motifs évidés ou annulaires, pour des motifs avec fentes inscrites ou, de manière très générale, pour tout type de structures planaires connues de l'homme de l'art.Another fundamental point, underlining all the interest presented by the technique of the invention, corresponds to its easy implementation for any other type of planar antenna. Indeed, the principle of conductive pads under the radiating element can adapt without any particular difficulty to configurations and very different planar antenna geometries, whether for planar patterns with mass return, for recessed patterns or annular, for reasons with inscribed slots or, very generally, for any type of planar structures known to those skilled in the art.

Pour illustrer ce point, deux autres exemples d'antennes planaires avec plots selon l'invention sont donnés sur les figures 4 et 5 : il s'agit d'une antenne planaire de type patch quart-d'onde, avec retour de masse (référencé 6) localisé sur l'une des tranches du support 3 (figure 4), ainsi que d'une antenne planaire de type patch annulaire (figure 5).To illustrate this point, two other examples of planar antennas with studs according to the invention are given on the Figures 4 and 5 : it is a planar antenna of the quarter-wave patch type, with mass return (referenced 6) located on one of the slices of the support 3 ( figure 4 ), as well as a planar ring-type antenna ( figure 5 ).

Concernant la réalisation concrète des antennes planaires avec plots selon l'invention, plusieurs procédés de fabrication simples peuvent être envisagés, cette simplicité étant un critère fondamental pour réduire en particulier le coût de ces composants.Concerning the concrete realization of the planar antennas with pads according to the invention, several simple manufacturing processes can be envisaged, this simplicity being a fundamental criterion to reduce in particular the cost of these components.

On présente maintenant, en relation avec la figure 6 , un premier mode de réalisation du procédé de fabrication d'antenne selon l'invention. Dans ce premier mode de réalisation, on réalise l'élément rayonnant (patch) 1 et les plots 4 en une seule pièce conductrice 7 (par exemple une pièce métallique), obtenue par usinage, par emboutissage ou tout autre procédé de fabrication de pièces métalliques tridimensionnelles. En d'autres termes, le corps principal de la pièce conductrice 7 forme l'élément rayonnant 1, et les plots conducteurs 4 sont des saillies conductrices formées dans la pièce conductrice et qui s'étendent à partir du corps principal de cette pièce.We present now, in relation to the figure 6 , a first embodiment of the antenna manufacturing method according to the invention. In this first embodiment, the radiating element (patch) 1 and the pads 4 are produced in a single conductive part 7 (for example a metal part), obtained by machining, stamping or any other method of manufacturing metal parts. dimensional. In other words, the main body of the conductive part 7 forms the radiating element 1, and the conductive pads 4 are conductive projections formed in the conductive part and which extend from the main body of this part.

Cette pièce est ensuite reportée sur un ou plusieurs éléments de support 8, permettant de la positionner par rapport au plan de masse inférieur. Une solution privilégiée consiste à utiliser au niveau support 8 un matériau diélectrique dont la nature le rend proche de l'air, de manière que ce ou ces supports soient les plus transparents possibles, d'un point de vue électromagnétique. Il est, par exemple, préconisé d'utiliser un matériau de type mousse pour lequel les caractéristiques électriques sont tout à fait conformes aux exigences requises (ex : mousse d'imide de polyméthacrylate ROHACELL HF71 de chez ROEHM : εr = 1.1 1 et tgδ = 7.10-4 à 5GHz). Dans une variante de réalisation, le matériau diélectrique dans lequel on réalise le ou les éléments de support est un matériau plastique, facilement mis en forme par exemple par l'une des techniques de moulage connues.This piece is then transferred to one or more support elements 8, to position it relative to the lower ground plane. A preferred solution is to use at the support 8 a dielectric material whose nature makes it close to the air, so that this or these media are the most transparent possible, from an electromagnetic point of view. It is, for example, recommended to use a foam-type material for which the electrical characteristics are entirely in accordance with the required requirements (eg ROHACELL HF71 polymethacrylate imide foam from ROEHM: εr = 1.1 1 and tgδ = 7.10 -4 at 5GHz). In an alternative embodiment, the dielectric material in which the support element or elements is produced is a plastic material, easily shaped for example by one of the known molding techniques.

La figure 6 présente un exemple d'antenne obtenue avec ce premier mode de réalisation du procédé de fabrication d'antenne selon l'invention, basé sur l'utilisation d'une pièce métallique tridimensionnelle 7 (intégrant l'élément rayonnant 1 et les plots 4) et de supports de positionnement 8. Le diélectrique 3 compris dans l'espace entre l'élément rayonnant 1, sur lequel sont connectés les plots conducteurs 4, et le plan de masse 2 est par exemple de l'air.The figure 6 shows an example of an antenna obtained with this first embodiment of the antenna manufacturing method according to the invention, based on the use of a three-dimensional metal part 7 (integrating the radiating element 1 and the pads 4) and The dielectric 3 included in the space between the radiating element 1, on which the conductive pads 4 are connected, and the ground plane 2 is for example air.

On présente maintenant, en relation avec la figure 7, un second mode de réalisation du procédé de fabrication d'antenne selon l'invention. Cette seconde solution est beaucoup plus conforme aux techniques de réalisation de circuits imprimés standards.We present now, in relation to the figure 7 , a second embodiment of the antenna manufacturing method according to the invention. This second solution is much more consistent with the techniques of making standard printed circuits.

Il s'agit de percer directement dans le substrat support 3 de l'antenne (qui peut être en mousse, matériau plastique...,c'est-à-dire une couche de matériau diélectrique autre que l'air), des trous (vias) non débouchants et de recouvrir d'un matériau conducteur, de manière sélective, la face supérieure de ce substrat (de façon à former l'élément rayonnant 1), ainsi que l'intérieur des trous s'étendant à partir de cette face supérieure (de façon à former les plots conducteurs 4). En d'autres termes, les plots conducteurs 4 sont ici réalisés sous la forme de trous conducteurs.It involves drilling directly into the support substrate 3 of the antenna (which may be of foam, plastic material ..., that is to say a layer of dielectric material other than air), holes (vias) non-emerging and to cover selectively with a conductive material, the upper face of this substrate (so as to form the radiating element 1), as well as the inside of the holes extending from this upper face (so as to form the conductive pads 4). In other words, the conductive pads 4 are here made in the form of conductive holes.

Dans un mode de réalisation préféré, le recouvrement avec un matériau conducteur consiste en une métallisation. Cette métallisation peut être réalisée simplement par exemple par dépôt de peinture conductrice ou par dépôt électrochimique. Il est clair cependant que toute technique connue de l'homme du métier peut être utilisée pour effectuer le recouvrement avec un matériau conducteur.In a preferred embodiment, the coating with a conductive material consists of a metallization. This metallization can be carried out simply for example by conductive paint deposition or by electrochemical deposition. It is clear, however, that any technique known to those skilled in the art can be used to perform the coating with a conductive material.

Sur le plan électrique, les trous (vias) conducteurs 4 ont un effet similaire à celui des plots conducteurs des solutions précédentes (saillies conductrices), d'où la réduction de la taille de l'élément rayonnant 1.Electrically, the conductive holes (vias) 4 have an effect similar to that of the conductive pads of the preceding solutions (conductive projections), hence the reduction in the size of the radiating element 1.

Cet élément (substrat support 3 dont la face supérieure porte l'élément rayonnant 1 et présente une pluralité de trous métallisés 4) est ensuite mis en contact, par sa face inférieure, avec un plan de masse 2 pour obtenir la structure finale de l'antenne.This element (support substrate 3 whose upper face carries the radiating element 1 and has a plurality of metallized holes 4) is then brought into contact, by its lower face, with a ground plane 2 to obtain the final structure of the antenna.

Il est à noter que, pour cette seconde solution, il est également préférable de choisir un substrat de type mousse, qui, comme précisé précédemment, présente des caractéristiques électriques tout à fait appropriées à la réalisation d'antennes planaires et qui, en outre, se prête très facilement à une conformation tridimensionnelle suivant la forme souhaitée. Dans une variante de réalisation, le substrat support est un matériau plastique, facilement mis en forme par l'une des techniques de moulage connues.It should be noted that, for this second solution, it is also preferable to choose a foam-type substrate, which, as specified above, has electrical characteristics quite suitable for the production of planar antennas and which, moreover, very easily lends itself to a three-dimensional conformation according to the desired shape. In an alternative embodiment, the support substrate is a plastic material, easily shaped by one of the known molding techniques.

La figure 7 présente un exemple d'antenne obtenue avec ce second mode de réalisation du procédé de fabrication d'antenne selon l'invention, basé sur l'utilisation d'un substrat diélectrique 3 dont la face supérieure porte l'élément rayonnant 1 et présente une pluralité de trous métallisés formant des plots conducteurs 4.The figure 7 shows an example of an antenna obtained with this second embodiment of the antenna manufacturing method according to the invention, based on the use of a dielectric substrate 3 whose upper face carries the radiating element 1 and has a plurality of metallized holes forming conductive pads 4.

On présente maintenant, en relation avec la figure 17 , un troisième mode de réalisation du procédé de fabrication d'antenne selon l'invention. Dans ce troisième mode de réalisation, on réalise l'élément rayonnant (patch) et les plots de la manière suivante :

  • on réalise une pièce conductrice 171 (par exemple une feuille métallique) comprenant une partie centrale formant l'élément rayonnant 1 ;
  • on découpe une pluralité de languettes conductrices sur le pourtour de cette pièce conductrice (c'est-à-dire dans des parties excentriques de cette pièce, adjacentes à la partie centrale) ;
  • on replie les languettes conductrices, par rapport à la partie centrale, de façon à former des plots conducteurs 4 connectés à l'élément rayonnant 1. Une fois repliées (par exemple orthogonalement à la partie centrale formant l'élément rayonnant), les languettes conductrices 4 sont par exemple positionnées sur les tranches d'un substrat formant un élément de support 170.
We present now, in relation to the figure 17 , a third embodiment of the antenna manufacturing method according to the invention. In this third embodiment, the radiating element (patch) and the pads are produced in the following manner:
  • a conductive part 171 (for example a metal foil) is formed comprising a central part forming the radiating element 1;
  • a plurality of conductive tongues are cut on the periphery of this conductive part (ie in eccentric parts of this part, adjacent to the central part);
  • the conductive tabs are folded, with respect to the central part, so as to form conductive pads 4 connected to the radiating element 1. Once folded (for example orthogonally to the central part forming the radiating element), the conductive tabs 4 are for example positioned on the edges of a substrate forming a support member 170.

La figure 17 présente un exemple d'antenne obtenue avec ce troisième mode de réalisation du procédé de fabrication d'antenne selon l'invention, basé sur la réalisation de languettes conductrices repliées, qui forment des plots conducteurs 4.The figure 17 shows an example of antenna obtained with this third embodiment of the antenna manufacturing method according to the invention, based on the realization of folded conductive tabs, which form conductive pads 4.

Le positionnement de l'élément rayonnant par rapport au plan de masse ou vice-versa est réalisé à l'aide d'un ou plusieurs supports qui peuvent être du même style que ceux présentés en figure 6. Dans un mode de réalisation préféré, l'élément de support n'est autre qu'une tranche de substrat diélectrique 170 dont la hauteur est légèrement supérieure à la hauteur des languettes afin d'éviter tout contact entre les languettes et le plan de masse.The positioning of the radiating element relative to the ground plane or vice versa is carried out using one or more supports that may be of the same style as those presented in FIG. figure 6 . In a preferred embodiment, the support member is other than a dielectric substrate wafer 170 whose height is slightly greater than the height of the tongues to prevent contact between the tongues and the ground plane.

Pour valider les antennes planaires miniatures selon l'invention, un premier prototype d'antenne selon l'invention, du type, de l'antenne présentée sur la figure 7, a été réalisé. Il s'agit d'une solution de type patch demi-onde, imprimée sur un matériau mousse de dimensions 50x50x10mm3 et reportée sur un plan de masse de 100x100mm2. Dans ce substrat, des vias non débouchants de géométrie cylindrique (de diamètre Φ = 2mm et de hauteur h = 7.5mm) ont été percés de manière régulière sur toute la surface supérieure du bloc de mousse. Dans le cas présent, la métallisation de cette surface supérieure et de l'intérieur des vias est réalisée par dépôt direct d'une peinture conductrice à base d'argent (référence : Spraylat 599B3730). Au niveau polarisation, il a été choisi d'intégrer une antenne à simple polarisation linéaire, ce qui ne nécessite alors qu'un seul point d'excitation. Cette dernière est effectuée par utilisation d'une sonde coaxiale, connectée à son extrémité en un point équivalent «50Ω » sur la surface supérieure de l'élément rayonnant.To validate miniature planar antennas according to the invention, a first antenna prototype according to the invention, of the type, of the antenna presented on the figure 7 , Have been realised. This is a half-wave patch solution, printed on a foam material of dimensions 50x50x10mm 3 and reported on a ground plane of 100x100mm 2 . In this substrate, non-emerging vias of cylindrical geometry (diameter Φ = 2mm and height h = 7.5mm) were drilled evenly over the entire upper surface of the foam block. In the present case, the metallization of this upper surface and the interior of the vias is carried out by direct deposition of a conductive silver-based paint (reference: Spraylat 599B3730). At the polarization level, it has been chosen to integrate a single linear polarization antenna, which does not then require only one point of excitation. This is done by using a coaxial probe, connected at its end at an equivalent point "50Ω" on the upper surface of the radiating element.

On peut tout à fait envisager une conception où les trous varient de forme et de dimension.One can quite consider a design where holes vary in shape and size.

La figure 8 illustre des résultats expérimentaux de ce premier prototype d'antenne planaire selon l'invention. L'antenne a été caractérisée en adaptation et en transmission suivant l'axe privilégié de rayonnement. La mesure en transmission repose sur la mise en oeuvre d'un simple bilan de liaison entre le prototype développé et une antenne de référence (dans le cas présent, un dipôle imprimé). Il est à noter que, ce bilan de liaison n'étant pas réalisé en chambre anéchoïque, le résultat présenté ne permet d'illustrer le rayonnement que de manière qualitative.The figure 8 illustrates experimental results of this first planar antenna prototype according to the invention. The antenna has been characterized in adaptation and transmission along the preferred axis of radiation. The transmission measurement is based on the implementation of a simple link budget between the developed prototype and a reference antenna (in this case, a printed dipole). It should be noted that, since this link budget is not carried out in an anechoic chamber, the result presented only makes it possible to illustrate the radiation qualitatively.

Par comparaison, les mesures d'une antenne classique simple patch demi-onde, également imprimée sur mousse et de dimensions identiques à l'élément rayonnant précédent (50x50x10mm3), sont illustrées sur la figure 9 . Pour permettre cette comparaison entre les deux antennes, la mesure du bilan de liaison a été effectuée dans des conditions tout à fait similaires à la précédente.By comparison, the measurements of a simple classical half-wave patch antenna, also printed on foam and of dimensions identical to the previous radiating element (50x50x10mm 3 ), are illustrated on the figure 9 . To allow this comparison between the two antennas, the measurement of the link budget was performed under conditions quite similar to the previous one.

Comme on peut le noter sur les figures 8 et 9, la fréquence de résonance de l'antenne selon l'invention (avec vias non débouchants) est beaucoup plus faible que celle de l'antenne classique. On constate en effet une réduction de 25% de la valeur de cette fréquence de résonance (c'est-à-dire Δf = 665MHz : fr minia. = 1.969GHz au lieu de fr classi. = 2.634GHz). En dehors de ce décalage significatif en fréquence, les niveaux d'adaptation, de largeur de bande et de rayonnement restent, quant à eux, fondamentalement corrects, comme le montrent les réponses mesurées sur les deux antennes. La technique de l'invention (ajout de plots conducteurs 4) conduit donc à des possibilités de miniaturisation importantes du motif imprimé (élément rayonnant).As can be noted on the Figures 8 and 9 , the resonant frequency of the antenna according to the invention (with vias non-emerging) is much lower than that of the conventional antenna. A 25% reduction effect is observed in the value of this resonance frequency (that is to say .DELTA.f = 665MHz. Minia f r = 1.969GHz instead of classi f r = 2.634GHz.). Apart from this significant frequency shift, the levels of adaptation, bandwidth and radiation remain fundamentally correct, as shown by the responses measured on both antennas. The technique of the invention (addition of conductive pads 4) thus leads to significant possibilities of miniaturization of the printed pattern (radiating element).

Pour souligner le caractère général de la technique de l'invention, un second prototype d'antenne miniature a été réalisé : il s'agit d'une antenne patch quart-d'onde, avec retour de masse localisé sur l'une des tranches du support. Comme dans le cas précédent, c'est le principe des trous (vias) répartis dans le matériau mousse qui a été retenu. Cette antenne a été imprimée sur un substrat de dimensions 25x25x10mm3 et reportée sur un plan de masse de 100x100mm2. Les vias non débouchants ont toujours une géométrie cylindrique (Φ = 2mm et h = 7.5mm). Le retour de masse est effectué par une languette de 5mm de largeur, imprimée sur l'une des tranches du substrat support en mousse et reliée à son extrémité au plan de masse. L'excitation est obtenue par sonde coaxiale connectée en un point «50Ω ».To underline the general character of the technique of the invention, a second miniature antenna prototype has been made: it is a quarter-wave patch antenna, with mass return located on one of the slices. of the support. As in the previous case, it is the principle of the holes (vias) distributed in the foam material which has been retained. This antenna was printed on a substrate of dimensions 25x25x10mm 3 and reported on a ground plane of 100x100mm 2 . Non-through vias always have a cylindrical geometry (Φ = 2mm and h = 7.5mm). The mass return is performed by a tab of 5mm width, printed on one of the slices of the foam support substrate and connected at its end to the ground plane. The excitation is obtained by coaxial probe connected at a point "50Ω".

La figure 10 illustre des résultats expérimentaux de ce second prototype d'antenne planaire selon l'invention. Ce second prototype a également été caractérisé en adaptation et en transmission.The figure 10 illustrates experimental results of this second planar antenna prototype according to the invention. This second prototype has also been characterized in adaptation and transmission.

Ces résultats peuvent être comparés à ceux d'une antenne classique de type patch quart-d'onde, de géométrie tout à fait similaire à celle du second prototype, hors la présence des vias non débouchants, et dont les performances sont données sur la figure 11 . These results can be compared to those of a conventional quarter-wave patch antenna, with a geometry quite similar to that of the second prototype, except for the presence of non-emerging vias, and whose performances are given on the figure 11 .

Comme l'illustrent ces figures 10 et 11, on constate de nouveau un net décalage vers les fréquences basses pour l'antenne selon l'invention (avec vias non débouchants), d'où des possibilités de réduction significative de la dimension de l'élément rayonnant (motif imprimé de base). Dans ce cas, la fréquence de résonance a diminuée d'environ 20% (Δf = 265MHz : fr minia. = 1.210GHz au lieu de fr classi. = 1.475GHz), les autres performances de l'antenne ne semblant pas a priori perturbées.As illustrated by these figures 10 and 11 , there is again a clear shift towards low frequencies for the antenna according to the invention (with vias non-emerging), resulting in significant opportunities for reducing the size of the radiating element (basic printed pattern). In this case, the resonance frequency was reduced by approximately 20% (.DELTA.f = 265MHz. Minia f r = 1.210GHz instead of f r = 1.475GHz classification.), Other antenna performance does not seem to priori disturbed.

Par ailleurs, le principe général de l'invention (ajout de plots sous la surface d'un élément rayonnant afin d'en réduire au moins une dimension (longueur et/ou largeur) physique pour une fréquence de résonance fixée) peut également s'appliquer pour des antennes planaires à plusieurs éléments empilés.Furthermore, the general principle of the invention (adding pads under the surface of a radiating element in order to reduce at least one dimension (length and / or width) physically for a fixed resonant frequency) can also be used. apply for planar antennas with several stacked elements.

On rappelle que de telles antennes multi-éléments sont utilisées par exemple pour des applications large bande ou encore des applications multifréquences.It is recalled that such multi-element antennas are used for example for broadband applications or multifrequency applications.

A titre d'exemple, la figure 12 présente une vue en coupe d'une configuration d'antenne à deux éléments rayonnants empilés, selon l'invention.For example, the figure 12 shows a sectional view of an antenna configuration with two stacked radiating elements, according to the invention.

Cette antenne comprend un élément rayonnant primaire 1, séparé du plan de masse 2 par un premier diélectrique 3, et un élément rayonnant supérieur 10, séparé de l'élément rayonnant primaire 1 par un second diélectrique 9.This antenna comprises a primary radiating element 1, separated from the ground plane 2 by a first dielectric 3, and an upper radiating element 10, separated from the primary radiating element 1 by a second dielectric 9.

L'élément rayonnant primaire est défini comme étant l'élément rayonnant le plus proche du plan de masse. L'élément rayonnant supérieur est défini comme étant l'élément rayonnant le plus éloigné du plan de masse.The primary radiating element is defined as the radiating element closest to the ground plane. The upper radiating element is defined as the radiating element furthest from the ground plane.

Dans cet exemple, le concept de miniaturisation selon l'invention (ajout de plots 124) n'est appliqué que sur l'élément rayonnant primaire 1. En d'autres termes, l'élément rayonnant supérieur 10 n'est connecté à aucun plot.In this example, the concept of miniaturization according to the invention (addition of pads 124) is applied only to the primary radiating element 1. In other words, the upper radiating element 10 is not connected to any stud .

D'une façon générale, l'antenne peut comprendre un nombre quelconque d'éléments rayonnants superposés et le concept de l'invention (ajout de plots conducteurs) peut être appliqué à tous les éléments rayonnants de la superposition ou à seulement un ou plusieurs d'entre eux.In general, the antenna may comprise any number of superimposed radiating elements and the concept of the invention (addition of conductive pads) may be applied to all the radiating elements of the superposition or to only one or more 'between them.

Comme déjà mentionné plus haut, le concept de l'invention (ajout de plots conducteurs) peut également être appliqué au plan de masse (ajout de plots sur sa face située du côté du ou des éléments rayonnants), de façon indépendante ou en combinaison avec une application à un ou plusieurs éléments rayonnants. En d'autres termes, les différents cas suivants peuvent être envisagés dans le cadre de la présente invention :

  • seul le plan de masse présente des plots conducteurs ;
  • seul(s) un ou plusieurs élément(s) rayonnant(s) présente(nt) des plots conducteurs ;
  • le plan de masse et un ou plusieurs élément(s) rayonnant(s) présentent des plots conducteurs. Cette configuration permet de réduire encore plus la taille finale du ou des élément(s) rayonnant(s).
As already mentioned above, the concept of the invention (addition of conductive pads) can also be applied to the ground plane (addition of pads on its face located on the side of the radiating element or elements), independently or in combination with an application to one or more radiating elements. In other words, the following different cases can be envisaged in the context of the present invention:
  • only the ground plane has conductive pads;
  • only one or more radiating element (s) present conductive studs;
  • the ground plane and one or more element (s) radiating (s) have conductive pads. This configuration further reduces the final size of the element (s) radiating (s).

La figure 13 est une vue en coupe d'une variante d'antenne à un élément rayonnant selon l'invention. Le plan de masse 132 présente des plots conducteurs 135. La face inférieure de l'unique élément rayonnant 131 présente également des plots conducteurs 134. Il existe alors une matrice de premiers plots 134 répartis sous l'élément rayonnant 131 et uniquement connectés à ce dernier, ainsi qu'une matrice de seconds plots 135 répartis sur le plan de masse et uniquement connectés à ce plan. Ces deux matrices sont situées dans la zone entre l'élément rayonnant supérieur et le plan de masse inférieur. Pour éviter tout contact entre les plots des deux matrices, les premiers plots sont entrelacés avec les seconds plots.The figure 13 is a sectional view of an antenna variant to a radiating element according to the invention. The ground plane 132 has conductive pads 135. The lower face of the single radiating element 131 also has conductive pads 134. There is then an array of first pads 134 distributed under the radiating element 131 and connected only to the latter , and an array of second pads 135 distributed on the ground plane and connected only to this plane. These two matrices are located in the area between the upper radiating element and the lower ground plane. To avoid contact between the pads of the two matrices, the first pads are interlaced with the second pads.

Dans ce cas, l'effet électrique des plots tel que décrit précédemment (en relation avec la figure 3) est accentué, ce qui permet de diminuer d'autant plus la dimension (longueur et/ou largeur) physique de l'élément rayonnant pour une fréquence de résonance fixée.In this case, the electrical effect of the pads as described previously (in relation to the figure 3 ) is accentuated, which further reduces the physical dimension (length and / or width) of the radiating element for a fixed resonant frequency.

Pour valider ce principe, un prototype d'antenne avec plots connectés sur l'élément rayonnant et sur le plan de masse a été réalisé. Il s'agit d'une solution de type patch demi-onde, imprimée sur un matériau mousse de dimensions 50x50x10mm3 et reportée sur un plan de masse de 100x100mm2. En comparaison avec un patch demi-onde classique (c'est-à-dire sans plot) de mêmes dimensions, la réduction de la fréquence de résonance est alors très significative : cette fréquence passe en effet de 2.634GHz pour l'antenne classique à 1.225GHz pour l'antenne de l'invention, d'où une diminution de plus de 53%. Cela conduit donc à des possibilités d'ultra miniaturisation du motif imprimé de base.To validate this principle, an antenna prototype with pads connected to the radiating element and to the ground plane has been realized. This is a half-wave patch type solution, printed on a 50x50x10mm3 foam material and reported on a 100x100mm2 ground plane. In comparison with a conventional half-wave patch (that is to say without a pad) of the same dimensions, the reduction of the resonant frequency is then very significant: this frequency passes in effect from 2.634GHz for the conventional antenna to 1.225GHz for the antenna of the invention, resulting in a decrease of more than 53%. This therefore leads to possibilities of ultra miniaturization of the basic printed pattern.

Dans le cas d'une antenne comprenant une superposition de plusieurs éléments rayonnants, le concept de l'invention (ajout de plots conducteurs) peut également être appliqué simultanément aux deux faces d'un même élément rayonnant (sauf pour le dernier de la superposition, c'est-à-dire celui le plus éloigné du plan de masse). En d'autres termes, un même élément rayonnant peut comporter des premiers plots qui s'étendent à partir de sa face inférieure et des seconds plots qui s'étendent à partir de sa face supérieure.In the case of an antenna comprising a superposition of several radiating elements, the concept of the invention (addition of conductive pads) can also be applied simultaneously to the two faces of the same radiating element (except for the last of the superposition, that is to say the one farthest from the ground plane). In other words, the same radiating element may comprise first pads which extend from its lower face and second pads which extend from its upper face.

La figure 14 est une vue en coupe d'une variante d'antenne selon l'invention, comprenant un plan de masse 142 et deux éléments rayonnants 141, 147. Le plan de masse 142 présente des plots conducteurs 144. L'élément rayonnant supérieur 147 ne présente pas de plot. L'élément rayonnant primaire 141 présente des premiers plots conducteurs 146 sur sa face inférieure et des seconds plots conducteurs 145 sur sa face supérieure.The figure 14 is a sectional view of an antenna variant according to the invention, comprising a ground plane 142 and two radiating elements 141, 147. The ground plane 142 has conductive pads 144. The upper radiating element 147 does not present no plot. The primary radiating element 141 has first conductive pads 146 on its lower face and second conductive pads 145 on its upper face.

La figure 18 est une vue en coupe d'une autre variante d'antenne selon l'invention, comprenant un plan de masse 180 et trois éléments rayonnants : un élément rayonnant primaire 181 (voir définition ci-dessus), un élément rayonnant supérieur 183 (voir définition ci-dessus) et un élément rayonnant intermédiaire 182. Un élément rayonnant intermédiaire est défini comme un élément rayonnant placé entre l'élément rayonnant primaire et l'élément rayonnant supérieur. Le plan de masse 180 et l'élément rayonnant supérieur 183 ne présentent pas de plot. L'élément rayonnant primaire 181 présente des plots conducteurs 184 sur sa face inférieure. L'élément rayonnant intermédiaire 182 présente des premiers plots conducteurs 185 sur sa face inférieure et des seconds plots conducteurs 186 sur sa face supérieure.D'une façon générale, le fait qu'un même élément rayonnant présente des plots conducteurs sur ses deux faces permet de miniaturiser encore plus l'antenne. Dans une même antenne, on peut bien sûr avoir plusieurs éléments rayonnants présentant des plots conducteurs sur leurs deux faces.The figure 18 is a sectional view of another antenna variant according to the invention, comprising a ground plane 180 and three radiating elements: a primary radiating element 181 (see definition above), an upper radiating element 183 (see definition above) and an intermediate radiating element 182. An intermediate radiating element is defined as a radiating element placed between the element radiating primary and the upper radiating element. The ground plane 180 and the upper radiating element 183 do not have a stud. The primary radiating element 181 has conductive pads 184 on its underside. The intermediate radiating element 182 has first conductive pads 185 on its lower face and second conductive pads 186 on its upper face. In general, the fact that the same radiating element has conductive pads on its two faces allows to further miniaturize the antenna. In the same antenna, one can of course have several radiating elements having conductive pads on their two faces.

La présente invention s'applique à tout type d'antenne planaire (au sens général déjà discuté plus haut), c'est-à-dire aussi bien aux antennes planaires réellement planes qu'aux antennes planaires non réellement planes (du fait que le plan de masse et/ou au moins un élément rayonnant n'est pas plan mais conformé selon une forme tridimensionnelle déterminée).The present invention applies to any type of planar antenna (in the general sense already discussed above), that is to say both planar planar antennas actually flat planar antennas not actually planar (because the ground plane and / or at least one radiating element is not plane but shaped according to a determined three-dimensional shape).

La figure 15 est une vue en coupe d'une autre variante d'antenne selon l'invention, comprenant un plan de masse 152 plat et un élément rayonnant 151 qui présente des plots conducteurs 154 et est conformé (c'est-à-dire possède une forme tridimensionnelle non plane).The figure 15 is a sectional view of another antenna variant according to the invention, comprising a flat ground plane 152 and a radiating element 151 which has conductive pads 154 and is shaped (i.e. three-dimensional non-planar).

La figure 16 est une vue en coupe d'une autre variante d'antenne selon l'invention, comprenant : un plan de masse 162 qui présente des plots conducteurs 164 et est conformé ; et deux éléments rayonnants 161, 167, qui présentent chacun des plots conducteurs 165, 166 et qui sont conformés. L'élément rayonnant référencé 161, compris entre l'élément rayonnant supérieur 167 et le plan de masse 162, est dit élément rayonnant primaire.The figure 16 is a sectional view of another antenna variant according to the invention, comprising: a ground plane 162 which has conductive pads 164 and is shaped; and two radiating elements 161, 167, which each have conductive pads 165, 166 and which are shaped. The radiating element referenced 161, between the upper radiating element 167 and the ground plane 162, is called primary radiating element.

On a présenté ci-dessus, en relation avec les figures 6, 7 et 17, trois exemples de techniques de fabrication appliquées à la fabrication d'un élément rayonnant présentant des plots conducteurs. Dans la première technique, les plots conducteurs sont des saillies conductrices (figure 6). Dans la seconde technique, les plots conducteurs sont des trous conducteurs (figure 7). Dans la troisième technique, les plots conducteurs sont des languettes conductrices (figure 17). Les première et seconde techniques peuvent être utilisées pour fabriquer un plan de masse comportant des plots. En revanche, du fait que le plan de masse a une dimension toujours supérieure à celle de l'élément rayonnant, la troisième technique (languettes) ne peut pas s'appliquer à la fabrication d'un plan de masse comportant des plots conducteurs.We have presented above, in relation with the Figures 6, 7 and 17 , three examples of manufacturing techniques applied to the manufacture of a radiating element having conductive pads. In the first technique, the conductive pads are conductive projections ( figure 6 ). In the second technique, the conductive pads are conductive holes ( figure 7 ). In the third technique, the conductive pads are conductive tabs ( figure 17 ). The first and second techniques can be used to make a ground plane with pads. On the other hand, because the ground plane has a dimension always greater than that of the radiating element, the third technique (tabs) can not be applied to the manufacture of a ground plane comprising conductive pads.

Il est à noter que dans le cas où les plots sont réalisés sous la forme de trous conducteurs, une même couche de substrat diélectrique peut porter le plan de masse (ou un premier élément rayonnant) sur sa face inférieure et un élément rayonnant (ou un second élément rayonnant) sur sa face supérieure. Les plots connectés au plan de masse (ou au premier élément rayonnant) sont réalisés sous la forme de premiers trous conducteurs qui s'étendent à partir de la face inférieure de la couche de substrat et ne débouchent pas sur la face supérieure de la couche de substrat. Les plots connectés à l'élément rayonnant (ou au second élément rayonnant) sont réalisés sous la forme de seconds trous conducteurs qui s'étendent à partir de la face supérieure de la couche de substrat et ne débouchent pas sur la face inférieure de la couche de substrat.It should be noted that in the case where the pads are made in the form of conductive holes, a same layer of dielectric substrate may carry the ground plane (or a first radiating element) on its lower face and a radiating element (or a second radiating element) on its upper face. The pads connected to the ground plane (or to the first radiating element) are made in the form of first conductive holes which extend from the lower face of the substrate layer and do not open on the upper face of the ground layer. substrate. The pads connected to the radiating element (or the second radiating element) are made in the form of second conductive holes which extend from the upper face of the substrate layer and do not open on the underside of the layer. of substrate.

Il est également à noter que les techniques de fabrication précitées peuvent être combinées. Par exemple, pour le plan de masse ou un élément rayonnant, on peut réaliser une pièce conductrice qui comporte d'une part des saillies conductrices, formant des premiers plots conducteurs et d'autre part des languettes conductrices repliées, formant des seconds plots conducteurs.It should also be noted that the aforementioned manufacturing techniques can be combined. For example, for the ground plane or a radiating element, it is possible to produce a conductive part which comprises, on the one hand, conductive projections forming first conductive pads and, on the other hand, folded conductive tabs forming second conductive pads.

Bien entendu, l'invention n'est pas limitée aux exemples de réalisation mentionnés ci-dessus. On peut prévoir d'autres variantes qui permettent de minimiser davantage la taille de l'antenne en jouant sur le nombre, la taille, la forme et la disposition des plots.Of course, the invention is not limited to the embodiments mentioned above. There may be other variants that further minimize the size of the antenna by varying the number, size, shape and layout of the pads.

Le principe général de la présente invention peut être mis en oeuvre dans tout domaine d'application pouvant utiliser une antenne planaire (applications mobiles, applications de communications par satellites, applications RF sans fil...) dans des gammes de fréquences très différentes (de quelques centaines de MHz à quelques dizaines de GHz).The general principle of the present invention can be implemented in any field of application that can use a planar antenna (mobile applications, satellite communications applications, wireless RF applications, etc.) in very different frequency ranges (from a few hundred MHz to a few tens of GHz).

Claims (24)

  1. Planar antenna of the type comprising a radiating element (1) separated from a flat base element (2) by an insulator (3), characterised in that it additionally comprises at least one series of conductive studs (4; 124; 134; 145; 146; 154; 165; 166; 184 to 186) belonging to the group comprising:
    - a series of conductive studs connected to a given radiating element and extending towards, without being connected to, one face of the flat base element, with each conductive stud having a length that is strictly less than the minimum distance between, on the one hand, the end of the stud connected to the radiating element indicated above and, on the other, the said face of the flat base element;
    - a series of conductive studs connected to a given radiating element and extending towards, without being connected to, one face of another radiating element, with each conductive stud having a length that is strictly less that the minimum distance between, on the one hand, the end of the stud connected to the radiating element indicated above and, on the other, the said face of the other radiating element.
  2. Antenna in accordance with claim 1 above, characterised in that it comprises at least one series of conductive studs (135; 144; 164) connected to the flat base element and extending towards, without being connected to, one face of a given radiating element, with each conductive plot having a length that is strictly less than the minimum distance between, on the one hand, the end of the stud connected to the flat base element and, on the other, the said face of the radiating element indicated above.
  3. Antenna in accordance with either claim 1 or 2 above, of the type comprising a single radiating element, characterised in that it comprises a second series of conductive studs (4; 134; 154) connected to the said single radiating element and extending towards, but not connected to, the said flat base element.
  4. Antenna in accordance with either claim 1 or 2 above, of the type comprising a superposition of at least two radiating elements separated by an insulator, with the radiating element that is closest to the flat base element being known as the primary radiating element, characterised in that it comprises a third series of conductive studs (124; 146; 165; 184) connected to a first face of the said primary radiating element and extending towards, but not connected to the said flat base element.
  5. Antenna in accordance with any of the above claims 1 to 4, with the exception of claim 3, of the type comprising a superposition of at least two radiating elements separated by an insulator, with the radiating element that is closest to the flat base element being known as the primary radiating element, characterised in that it comprises a fourth series of conductive studs (145) connected to a second face of the said primary radiating element and extending towards, but not connected to another of the said radiating elements.
  6. Antenna in accordance with any of the above claims 1 to 5, with the exception of claim 3, of the type comprising a superposition of at least three radiating elements separated by insulators, with the radiating element that is closest to the flat base element being known as the primary radiating element, and the radiating element that is furthest from the flat base element being known as the upper radiating element, with each radiating element other than the primary radiating element and the upper radiating element being known as the intermediary radiating element, characterised in that it comprises, for at least one of the intermediary radiating elements, a fifth series of conductive studs (186) connected to a first face of the said intermediary radiating element and extending towards, but not connected to, another of the said radiating elements, which follows the said intermediary radiating element along a direction of travel of the said superposition of the primary radiating element towards the upper radiating element.
  7. Antenna in accordance with any of the above claims 1 to 6, with the exception of claim 3, of the type comprising a superposition of at least three radiating elements separated by insulators, with the radiating element that is closest to the flat base element being known as the primary radiating element and the radiating element that is furthest from the flat base element being known as the upper radiating element, with each radiating element other than the said primary radiating element and the said upper radiating element, being known as the intermediary radiating element, characterised in that it comprises, for least one of the intermediary radiating elements, a sixth series of conductive studs (185) connected to a second face of the said intermediary radiating element and extending towards, but not connected to, one of the other said radiating elements preceding the said intermediary radiating element along a direction of travel of the said superposition of the primary radiating element towards the upper radiating element.
  8. Antenna in accordance with any of claims 1 t5o 7 above, with the exception of claim 3, of the type comprising a superposition of at least two radiating elements separated by insulators, with the radiating element that is closest to the flat base element being known as the primary radiating element and the radiating element that is furthest from the flat base element being known as the upper radiating element, with each radiating element other than the said primary radiating element and the said upper radiating element, being known as the intermediary radiating element, characterised in that it comprises, for least one of the intermediary radiating elements, a seventh series of conductive studs (166) connected to a second face of the said intermediary radiating element and extending towards, but not connected to, one of the other said radiating elements preceding the said intermediary radiating element along a direction of travel of the said superposition of the primary radiating element towards the upper radiating element.
  9. Antenna in accordance with any of the above claims 1 to 8 above, characterised in that a series of conductive studs, extending from the flat base element or respectively from one of the radiating elements, is interlaced with another series of conductive studs, extending from one of the radiating elements or respectively from one of the other radiating elements.
  10. Antenna in accordance with any of the above claims 1 to 9, characterised in that for each radiating element to which is connected a series of conductive studs, the said radiating element is not connected to any conductive stud in a zone in which the said radiating element is connected to the power supply source.
  11. Antenna in accordance with any of the above claims 1 to 10, characterised in that the conductive studs of an individual series of conductive studs are arranged in the manner of a matrix.
  12. Antenna in accordance with any of the above claims 1 to 11, characterised in that at least one radiating element to which is connected at least one series of conductive studs is of the type having a symmetry along its two principal axes and in that the said conductive studs are arranged in a manner that respects this symmetry.
  13. Antenna in accordance with any of the above claims 1 to 12, characterised in that it belongs to the group comprising: antennae of the half-wave radiating element type, antennae of the quarter wave radiating element type, antennae of the annular radiating element type, antennae of the inscribed slot radiating element type and antennae of the inverted F radiating element type.
  14. Antenna in accordance with any of the above claims 1 to 13, characterised in that it belongs to the group comprising: planar antennae and non-planar antennae by virtue of the lack of inherent flatness of the flat base element and/or of at least one of the radiating elements.
  15. Antenna in accordance with any of the above claims 1 to 14, characterised in that at least one of the conductive studs connected to the flat base element or to one of the radiating elements is a conductive projection in the form of a first conductive piece (7) extending from a principal body of the said first conductive piece, this principal body forming the said flat base element or the said radiating element.
  16. Antenna in accordance with any of the above claims 1 to 15, characterised in that at least one of the conductive studs connected to at least one of the radiating elements is in the form of a conductive strip, cut into at least one eccentric part of a second conductive piece (171) and folded in relation to a central part of the second conductive piece, the said central piece constituting the radiating element.
  17. Antenna in accordance with the above claims 15 and 16, characterised in that it also comprises at least one supporting element (8; 170) of the said first (7) or second (171) conductive piece, formed from an insulating material and allowing the flat base element to be positioned in relation to at least one of the radiating elements or allowing the said radiating element to be positioned in relation to the flat base element or at least one of the other radiating elements.
  18. Antenna in accordance with any of the above claims 1 to 17, characterised in that at least one of the conductive studs connected to the flat base element or to at least one of the radiating elements is conductor aperture extending from a first face of a layer of dielectric material, the said first face bearing the said flat base element or the said at least one radiating element, the said conductor aperture extending from the said first face and not opening out onto a second face of the said layer of dielectric material, the surface of the said conductor aperture being coated with a conductive material.
  19. Process for the manufacture of a planar antenna of the type comprising at least one radiating element (1) separated from a flat base element (2) by a dielectric element (3), characterised in that it comprises a manufacturing stage of at least one series of conductive studs (4) belonging to the group comprising:
    - a series of conductive studs connected to a given radiating element and extending towards, but not connected to, one face of the flat base element, with each conductive stud having a length strictly less than the distance between on the one hand the end of the stud connected to the given radiating element and, on the other, to the said face of the flat base element;
    - a series of conductive studs connected to a given radiating element and extending towards, but not connected to, one face of another radiating element, with each conductive stud having a length strictly less than the minimum distance between, on the one hand, the end of the stud connected to the given radiating element and, on the other hand, the said face of the other radiating element.
  20. Process in accordance with claim 19 above, characterised in that it comprises a stage for the manufacture of at least one series of conductive studs (135; 144; 164) connected to the flat base element and extending towards, but not connected to, one face of a given radiating element, with each conductive stud having a length strictly less than the minimum distance between on the one hand the end of the stud connected to the flat base element and, on the other, to the face of the said radiating element.
  21. Process in accordance with either of the claims 19 and 20 above, characterised in that it comprises the following stage for the flat base element and/or at least one of the radiating elements to which is connected a series of conductive studs: a first conductive piece is produced comprising:
    - a principal body constituting the said flat base element or the said radiating element; and
    - at least one conductive projection extending from the said principal body, in such a way as to form one of the conductive studs connected to the flat base element or to one of the radiating elements.
  22. Process in accordance with any of the claims 19 to 21 above, characterised in that it comprises the following stages for at least one of the radiating elements to which is connected a series of conductive studs:
    - a second conductive piece is produced comprising a central part constituting the said radiating element;
    - at least one small conductive strip is cut into an eccentric part of the second conductive piece;
    - at least one conductive strip is folded in relation to the central part, in such a way as to form one of the conductive strips connected to one of the radiating elements.
  23. Process in accordance with one of the above claims 21 and 22, characterised in that it also comprises a stage by which the first or second conductive piece is positioned in relation to another element of the antenna by means of at least one supporting element made of an insulating material.
  24. Process in accordance with any of the claims 21 to 23 above, characterised in that it comprises the following stages for the flat base element and/or at least one of the radiating elements to which is connected a series of conductive studs:
    - at least, one aperture is made in a layer of dielectric material, with the said at least one aperture extending from a first face of the said layer and not opening out onto a second face of the said layer;
    - using a conductive material, the following is then selectively covered:
    • at least a part of the said first face, in such a way as to form the said flat base element or the said radiating element, and
    • the surface of the said at least one aperture in such a way as to obtain a conductive aperture forming one of the conductive studs connected to the flat base layer or to one of the radiating elements.
EP05759955A 2004-04-30 2005-04-19 Planar antenna provided with conductive studs above a ground plane and/or with at least one radiator element, and corresponding production method Not-in-force EP1751820B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0404679A FR2869726B1 (en) 2004-04-30 2004-04-30 PLATFORM ANTENNA WITH CONDUCTIVE PLATES EXTENDING FROM AT LEAST ONE RADIANT ELEMENT, AND METHOD OF MANUFACTURING THE SAME
FR0502130A FR2869727B1 (en) 2004-04-30 2005-03-02 PLANAR ANTENNA HAVING CONDUCTIVE PLATES EXTENDING FROM THE MASS PLAN AND / OR AT LEAST ONE RADIANT ELEMENT, AND METHOD OF MANUFACTURING SAME
PCT/FR2005/000966 WO2005117208A1 (en) 2004-04-30 2005-04-19 Planar antenna provided with conductive studs above a ground plane and/or with at least one radiator element, and corresponding production method

Publications (2)

Publication Number Publication Date
EP1751820A1 EP1751820A1 (en) 2007-02-14
EP1751820B1 true EP1751820B1 (en) 2011-05-18

Family

ID=34972405

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05759955A Not-in-force EP1751820B1 (en) 2004-04-30 2005-04-19 Planar antenna provided with conductive studs above a ground plane and/or with at least one radiator element, and corresponding production method

Country Status (7)

Country Link
US (1) US8077092B2 (en)
EP (1) EP1751820B1 (en)
JP (1) JP5122276B2 (en)
KR (1) KR101238576B1 (en)
AT (1) ATE510322T1 (en)
FR (1) FR2869727B1 (en)
WO (1) WO2005117208A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869727B1 (en) * 2004-04-30 2007-04-06 Get Enst Bretagne Etablissemen PLANAR ANTENNA HAVING CONDUCTIVE PLATES EXTENDING FROM THE MASS PLAN AND / OR AT LEAST ONE RADIANT ELEMENT, AND METHOD OF MANUFACTURING SAME
US7710324B2 (en) 2005-01-19 2010-05-04 Topcon Gps, Llc Patch antenna with comb substrate
US8081114B2 (en) * 2007-04-23 2011-12-20 Alcatel Lucent Strip-array antenna
US8446322B2 (en) 2007-11-29 2013-05-21 Topcon Gps, Llc Patch antenna with capacitive elements
US8174450B2 (en) 2008-04-30 2012-05-08 Topcon Gps, Llc Broadband micropatch antenna system with reduced sensitivity to multipath reception
JP2010147746A (en) * 2008-12-18 2010-07-01 Mitsumi Electric Co Ltd Antenna device
US9007265B2 (en) * 2009-01-02 2015-04-14 Polytechnic Institute Of New York University Using dielectric substrates, embedded with vertical wire structures, with slotline and microstrip elements to eliminate parallel-plate or surface-wave radiation in printed-circuits, chip packages and antennas
RU2587105C2 (en) * 2011-11-04 2016-06-10 Катрайн-Верке Кг Patch radiator
KR101908063B1 (en) 2012-06-25 2018-10-15 한국전자통신연구원 Direction control antenna and method for controlling of the same
US8884834B1 (en) 2012-09-21 2014-11-11 First Rf Corporation Antenna system with an antenna and a high-impedance backing
JP6610245B2 (en) 2015-12-25 2019-11-27 セイコーエプソン株式会社 Electronics
JP6593202B2 (en) 2016-01-29 2019-10-23 セイコーエプソン株式会社 Electronic components and watches
GB2573149B (en) * 2018-04-26 2022-08-10 Airspan Ip Holdco Llc Technique for tuning the resonance frequency of an electric-based antenna
JP7107105B2 (en) * 2018-08-30 2022-07-27 Tdk株式会社 antenna
CN114270625A (en) * 2019-08-19 2022-04-01 株式会社村田制作所 Antenna device and communication device
EP3859893B1 (en) * 2020-01-28 2023-08-09 Nokia Solutions and Networks Oy An antenna system
CN111276810A (en) * 2020-02-18 2020-06-12 环鸿电子(昆山)有限公司 Chip antenna

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680136A (en) * 1971-10-20 1972-07-25 Us Navy Current sheet antenna
GB1529361A (en) * 1975-02-17 1978-10-18 Secr Defence Stripline antenna arrays
US4070676A (en) * 1975-10-06 1978-01-24 Ball Corporation Multiple resonance radio frequency microstrip antenna structure
JPS53132255A (en) 1977-04-25 1978-11-17 Toshiba Corp Red color emitting fluorescent substance for filter coating
US4259670A (en) * 1978-05-16 1981-03-31 Ball Corporation Broadband microstrip antenna with automatically progressively shortened resonant dimensions with respect to increasing frequency of operation
US4367474A (en) * 1980-08-05 1983-01-04 The United States Of America As Represented By The Secretary Of The Army Frequency-agile, polarization diverse microstrip antennas and frequency scanned arrays
US4379296A (en) * 1980-10-20 1983-04-05 The United States Of America As Represented By The Secretary Of The Army Selectable-mode microstrip antenna and selectable-mode microstrip antenna arrays
US4376296A (en) * 1981-03-02 1983-03-08 Canadian Patents & Dev. Ltd. DC-Side commutated inverter
US4386357A (en) * 1981-05-21 1983-05-31 Martin Marietta Corporation Patch antenna having tuning means for improved performance
JPS61196603A (en) * 1985-02-26 1986-08-30 Mitsubishi Electric Corp Antenna
JPH061849B2 (en) * 1985-09-18 1994-01-05 日本電気株式会社 Small microstrip antenna loaded with metal rod
US4924236A (en) * 1987-11-03 1990-05-08 Raytheon Company Patch radiator element with microstrip balian circuit providing double-tuned impedance matching
JP3308558B2 (en) * 1991-05-02 2002-07-29 富士通株式会社 Antenna module
JPH0637533A (en) * 1992-07-15 1994-02-10 Matsushita Electric Works Ltd Inverted f type printed antenna
JP3147681B2 (en) * 1994-11-11 2001-03-19 株式会社村田製作所 Antenna device
JPH10224142A (en) 1997-02-04 1998-08-21 Kenwood Corp Resonance frequency switchable inverse f-type antenna
JP3438016B2 (en) 1998-03-03 2003-08-18 株式会社ケンウッド Multi-frequency resonant inverted-F antenna
EP1026774A3 (en) * 1999-01-26 2000-08-30 Siemens Aktiengesellschaft Antenna for wireless operated communication terminals
FI113588B (en) * 1999-05-10 2004-05-14 Nokia Corp Antenna Design
US6408190B1 (en) 1999-09-01 2002-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Semi built-in multi-band printed antenna
WO2001031739A1 (en) 1999-10-08 2001-05-03 Antennas America, Inc. Compact microstrip antenna for gps applications
US6218992B1 (en) 2000-02-24 2001-04-17 Ericsson Inc. Compact, broadband inverted-F antennas with conductive elements and wireless communicators incorporating same
GB0013156D0 (en) * 2000-06-01 2000-07-19 Koninkl Philips Electronics Nv Dual band patch antenna
FR2818811A1 (en) 2000-12-26 2002-06-28 France Telecom COMPACT PAD PRINTED ANTENNA
WO2002087012A1 (en) * 2001-04-24 2002-10-31 Telefonaktiebolaget Lm Ericsson Pifa antenna with higp structure
FR2825837B1 (en) 2001-06-12 2006-09-08 Cit Alcatel MULTIBAND COMPACT ANTENNA
US6567048B2 (en) * 2001-07-26 2003-05-20 E-Tenna Corporation Reduced weight artificial dielectric antennas and method for providing the same
AU2002366523A1 (en) * 2001-12-05 2003-06-23 E-Tenna Corporation Capacitively-loaded bent-wire monopole on an artificial magnetic conductor
JP2003179426A (en) * 2001-12-13 2003-06-27 Matsushita Electric Ind Co Ltd Antenna device and portable radio system
WO2003079488A2 (en) * 2002-03-15 2003-09-25 The Board Of Trustees Of The Leland Stanford Junior University Dual-element microstrip patch antenna for mitigating radio frequency interference
US6642893B1 (en) * 2002-05-09 2003-11-04 Centurion Wireless Technologies, Inc. Multi-band antenna system including a retractable antenna and a meander antenna
JP2004015469A (en) * 2002-06-07 2004-01-15 Ngk Insulators Ltd Antenna and multiple resonance method for antenna
US6870514B2 (en) * 2003-02-14 2005-03-22 Honeywell International Inc. Compact monopole antenna with improved bandwidth
US7055754B2 (en) * 2003-11-03 2006-06-06 Avery Dennison Corporation Self-compensating antennas for substrates having differing dielectric constant values
FR2869727B1 (en) * 2004-04-30 2007-04-06 Get Enst Bretagne Etablissemen PLANAR ANTENNA HAVING CONDUCTIVE PLATES EXTENDING FROM THE MASS PLAN AND / OR AT LEAST ONE RADIANT ELEMENT, AND METHOD OF MANUFACTURING SAME
US7710324B2 (en) * 2005-01-19 2010-05-04 Topcon Gps, Llc Patch antenna with comb substrate

Also Published As

Publication number Publication date
EP1751820A1 (en) 2007-02-14
ATE510322T1 (en) 2011-06-15
US20080198086A1 (en) 2008-08-21
KR101238576B1 (en) 2013-02-28
JP5122276B2 (en) 2013-01-16
US8077092B2 (en) 2011-12-13
KR20120029482A (en) 2012-03-26
FR2869727B1 (en) 2007-04-06
FR2869727A1 (en) 2005-11-04
WO2005117208A1 (en) 2005-12-08
JP2007535851A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
EP1751820B1 (en) Planar antenna provided with conductive studs above a ground plane and/or with at least one radiator element, and corresponding production method
EP0825673B1 (en) Plane antenna with interposed short-circuited elements
EP2175523B1 (en) Reflecting surface array and antenna comprising such a reflecting surface
EP2571098B1 (en) Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips
FR2668305A1 (en) DEVICE FOR SUPPLYING A RADIANT ELEMENT OPERATING IN DOUBLE POLARIZATION.
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
FR3070224A1 (en) PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA
FR2909486A1 (en) MULTI-SECTOR ANTENNA
FR2883671A1 (en) ULTRA-LARGE BAND ANTENNA PROVIDING GREAT DESIGN FLEXIBILITY
EP2643886B1 (en) Planar antenna having a widened bandwidth
EP2079131A1 (en) Improvement of planar antennas comprising at least one radiating element such as a slot with longitudinal radiation
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
Honari et al. Miniaturized-element frequency selective surface metamaterials: A solution to enhance radiation of RFICs
WO2008049921A1 (en) Mono- or multi-frequency antenna
EP3417507A1 (en) Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
WO2008125662A1 (en) Antenna having oblique radiating elements
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
FR2901062A1 (en) Radiating device for e.g. passive focal array fed reflector antenna, has air resonant cavity with dielectric cover to establish electromagnetic field in transverse electromagnetic mode presenting uniform distribution on opening of device
FR2943465A1 (en) ANTENNA WITH DOUBLE FINS
FR2980647A1 (en) ULTRA-LARGE BAND ANTENNA
Al-Hassan Millimeter-wave Electromagnetic Band-gap Structures for Antenna and Antenna Arrays Applications.
EP0831550B1 (en) Versatile array antenna
FR2858469A1 (en) Antenna for e.g. motor vehicle obstacles detecting radar, has assembly with two zones of active material layer that are controlled by respective polarization zones defined by metallic patterned layers
WO2001052356A1 (en) Resonant cavity antenna having a beam conformed according to a predetermined radiation diagram
EP4203189A1 (en) Monopole plated wire antenna with expanded bandwidth

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GET-ENST BRETAGNE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: COUPEZ, JEAN-PHILIPPE

Inventor name: PERSON, CHRISTIAN

Inventor name: PINEL, SERGE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

17Q First examination report despatched

Effective date: 20091015

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005028109

Country of ref document: DE

Effective date: 20110630

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110919

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110819

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110918

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005028109

Country of ref document: DE

Effective date: 20120221

BERE Be: lapsed

Owner name: GET/ENST BRETAGNE

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140430

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150325

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150325

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005028109

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160419

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160419

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502