EP1748191A1 - Unité de compression et installation thermique comprenant une telle unité - Google Patents

Unité de compression et installation thermique comprenant une telle unité Download PDF

Info

Publication number
EP1748191A1
EP1748191A1 EP06015308A EP06015308A EP1748191A1 EP 1748191 A1 EP1748191 A1 EP 1748191A1 EP 06015308 A EP06015308 A EP 06015308A EP 06015308 A EP06015308 A EP 06015308A EP 1748191 A1 EP1748191 A1 EP 1748191A1
Authority
EP
European Patent Office
Prior art keywords
channel
valve
compressor
compression unit
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06015308A
Other languages
German (de)
English (en)
Other versions
EP1748191B1 (fr
Inventor
Patrice Saillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1748191A1 publication Critical patent/EP1748191A1/fr
Application granted granted Critical
Publication of EP1748191B1 publication Critical patent/EP1748191B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02743Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using three four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/005Machines, plants or systems, using particular sources of energy using solar energy in compression type systems

Definitions

  • the present invention relates to a compression unit adapted to compress a heat transfer fluid phase change.
  • Such a compression unit of the type which comprises a low pressure inlet, a high pressure outlet, two compressors, a nonreturn valve and a four-way operating valve.
  • a first channel of the valve is connected to the common pipe for the parallel supply of compressors
  • a second channel which can not be put into communication with the first channel, is connected the output of the second compressor
  • the third and fourth channels which can not be connected to each other, are connected to the inlet at the outlet of the unit, the non-return valve being arranged in the supply line proper to the second compressor, the driving of output of the first compressor opening into the supply line of the second compressor, downstream of the valve.
  • This compression unit has the following two major disadvantages when the two compressors are in single stage: on the one hand, the output of the first compressor opening into the inlet of the second compressor, only the latter can operate, resulting in use only the compression potential of the unit, and, on the other hand, the non-return valve being arranged in the supply line of the second compressor, it is crossed by the fluid at low pressure, which causes a significant pressure drop.
  • the present invention aims to provide a compression unit that can be used in single or double stage, and which is configured to limit the pressure losses associated with the passage of the non-return valve, and to allow use of the entire its compression potential when it works in single storey.
  • the operating valve has a first channel which is connected (preferably directly) to the output of a first compressor whose input is connected (preferably directly) at the low pressure inlet, a second channel which can not be connected to the first channel and which is connected (preferably directly) to the low pressure inlet, a third channel which is connected (preferably directly) to the the inlet of the second compressor, the output of which is connected (preferably directly) to the high-pressure outlet, and a fourth channel which can not be put in communication with the third channel and which is connected (preferably directly) to the input of the valve whose output is connected (preferably directly) to the high pressure outlet.
  • the unit when the first channel of the valve, connected to the output of the first compressor, is in communication with the third channel, connected to the input of the second compressor, the unit operates in two stages, and no fluid passes through the check valve because its output, connected to the output of the unit, is in high pressure while its input, connected to the input of the unit by placing in communication the second and fourth channels of the valve, is in low pressure.
  • the output of the first compressor is connected to the high pressure outlet of the unit through the valve and the valve which is traversed by the fluid at high pressure. Therefore, in this configuration, the unit is not only single stage, but in addition, the two compressors are mounted entirely in parallel, which allows either to use only the first, or the second, or the two. In addition, the check valve being traversed by the fluid at high pressure, the pressure losses are less important.
  • the low pressure inlet is connected to the second channel of the operating valve via an additional non-return valve which allows circulation of the heat transfer fluid only in the direction of the low pressure input to the second channel.
  • the present invention aims to provide a thermal installation in which circulates a phase change heat transfer fluid for rejecting heat to a first site of the external environment, and to absorb at a second site.
  • the thermal installation comprises two heat exchangers, a compression unit and a four-way production valve, a first channel of which is connected (preferably directly) to a first exchanger, a second channel which can not be placed in communication with the first channel, is connected (preferably directly) to the second heat exchanger, a third channel is connected (preferably directly) to the low pressure inlet of the compression unit, and a fourth way which does not can be connected to the third channel, is connected (preferably directly) to the high pressure outlet of the compression unit.
  • the thermal installation comprises another heat exchanger which is connected (preferably directly) to the pipe connecting the third channel of the production valve to the low pressure inlet of the compression unit.
  • the thermal installation comprises, on the one hand, a compression unit having at least two compressors capable of operating in two stages, and, on the other hand, another heat exchanger which is connected (preferably directly) an internal pipe to the compression unit may be at the intermediate pressure.
  • the thermal installation comprises a four-way bypass valve of which a first channel is connected (preferably directly) to the high pressure outlet of the compression unit, of which a second channel which can not be communication with the first channel, is connected (preferably directly) to the line connecting the low pressure inlet of the compression unit to the third channel of the production valve, a third channel of which is connected (preferably directly ) at the fourth channel of the production valve, and whose fourth channel which can not be placed in communication with the third channel, is connected (preferably directly) to another heat exchanger.
  • the thermal installation comprises another heat exchanger that can act as a heat pipe (preferably a solar collector) which is connected to the high pressure outlet of the compression unit so as to supply a heat exchanger acting as a condenser connected to the production valve, and possibly to the bypass valve.
  • a heat pipe preferably a solar collector
  • FIGS. 1 to 4 relating to a first aspect of the present invention relating to a unit of compression 1 adapted to compress a heat transfer fluid phase change in different modes of operation.
  • the compression unit 1 comprises a low pressure inlet 2, a high pressure outlet 3, a first compressor 4, a second compressor 5, a non-return valve 6 and a four-way operating valve 7 which can take two states.
  • the low pressure inlet 2 is connected, via a first pipe 8, to the inlet 9 of the first compressor 4.
  • the outlet 10 of this first compressor 4 is connected by a second pipe 11 to a first channel 12 of the valve 7.
  • the low pressure inlet 2 is also connected, by a third pipe 13, to a second channel 14 of the operating valve 7 which can not be placed in communication with the first channel 12.
  • the high-pressure outlet 3 is connected, by a fourth pipe 15, to the outlet 16 of the second compressor 5.
  • the inlet 17 of this second compressor 5 is connected by a fifth pipe 18 to a third channel 19 of the 7.
  • the high pressure outlet 3 is also connected, via a sixth pipe 20, to the fourth channel 21 of the operating valve 7 which can not be placed in communication with the third channel 19.
  • the sixth pipe 20 comprises the non-return valve 6 which is oriented so that the heat transfer fluid can circulate only in the direction of the fourth channel 21 to the high pressure outlet 3.
  • the first channel 12 of the operating valve 7 is connected directly to the outlet 10 of the first compressor 4 whose input 9 is connected directly to the low pressure inlet 2
  • the second channel 14 is connected directly to the low pressure inlet 2
  • the third channel 19 is connected directly to the inlet 17 of the second compressor 5 whose output 16 is directly connected to the high pressure outlet 3
  • the fourth channel 21 is connected directly to the non-return valve 6 which is connected directly to the high-pressure outlet 3.
  • the operating valve 7 When the operating valve 7 is in its first state, its first channel 12 is in communication with its third channel 19, and its second channel 14 is in communication with its fourth channel 21.
  • the output 10 of the first compressor 4 is connected at the inlet 17 of the second compressor 5 by the second 11 and fifth 18 conduits which are at an intermediate pressure.
  • the non-return valve 6 prohibits the circulation of heat transfer fluid between the high pressure outlet 3 and the low pressure inlet 2 yet connected by the sixth 20 and third 13 conduits.
  • the compression unit 1 can thus operate in two stages (FIG. 1).
  • the operating valve 7 When the operating valve 7 is in its second state, its first channel 12 is in communication with its fourth channel 21, and its second channel 14 is in communication with its third channel 19.
  • the input 9 of the first compressor 4, by the first pipe 8, and the inlet 17 of the second compressor 5, by the third 13 and fifth 18 conduits are connected to the low pressure inlet 2, and, secondly, the outlet 10 of the first compressor 4, the second 11 and sixth 20 ducts, and the outlet 16 the second compressor 5, by the fourth pipe 15, are connected to the high pressure outlet 3.
  • the compression unit 1 can thus operate in single stage ( Figures 2 to 4).
  • the compression unit 1 is shaped so that the second compressor 5 is supplied with lubricating oil only by the first compressor 4 which receives the assembly. oil from the compression unit 1.
  • the third pipe 13 which connects the inlet 17 of the second compressor 5 to the low pressure inlet 2 when the second 14 and third 19 tracks of the operating valve 7 are in communication, is shaped to form a siphon 22.
  • the compression unit 1 comprises an oil balancing pipe 23 which connects the casings of the two compressors 4,5.
  • the balancing pipe 23 comprises an obstruction device 24 allowing its selective closure depending on the pressure difference prevailing in the casings.
  • the balancing pipe 23 comprises a first section 25 which connects the casing of the first compressor 4 at the inlet 26 of the obstruction device 24, and a second section 27 which connects the outlet 28 of the obstruction device 24 to the casing of the second compressor 5.
  • the tapping of the first section 27 to the casing of the first compressor 4 is made at a height defining the maximum level of oil in this case, the balancing line 23 allowing the excess oil in the casing of the first compressor 4 to lubricate the second compressor 5.
  • the obstruction device 24 is shaped so that, when the pressure in the casing of the first compressor 4 is lower than that in the casing of the second compressor 5, it is in a closed state in which the balancing pipe 23 is closed, and when the pressure in the housing of the first compressor 4 is greater than or equal to that in the housing of the second compressor 5, it is in an open state in which the balancing pipe 23 is open.
  • the obstruction device 24 comprises an enclosure 29 in which the two sections 25, 27 of the balancing line 23 open.
  • the obstruction device also comprises a shutter 30 which is movable in the enclosure 29 under the effect of the flow of the oil circulating in the chamber 29 generated by the relative pressures of the housings of the two compressors 4,5.
  • the shutter 30 is formed by a flap 30 which is slidably mounted in the enclosure 29.
  • the shutter 30 is arranged with respect to the input 26 and the output 28 of the device 24, so that, firstly, when the pressure in the casing of the first compressor 4 is less than that in the casing of the second compressor 5, it is in a closed position in which it completely obstructs the inlet 26 of the obstruction device 24 which prevents any flow of oil to the casing of the second compressor 5 via the balancing line 23, secondly, when the pressure in the casing of the first compressor 4 is equal to that prevailing in the housing of the second compressor 5, it is in a first open position in which it is remote from the inlet 26 and the outlet 28 of the obstruction device 24 which allows the flow of the oil to the housing of the second compressor 5, and, thirdly, when the pressure in the housing of the first compressor 4 is greater than that in the housing of the second compressor 5, it is in a the open position in which it partially obstructs the outlet 28 of the blocking device 24 which also allows the flow of oil to the casing of the second compressor 5.
  • the outlet 28 of the device 24 includes
  • the compression unit 1 When the operating valve 7 is in its first state, the compression unit 1 operating in double stage, as can be seen in FIG. 1, the pressure of the casing of the second compressor 5 is greater than that prevailing in the casing of the first compressor 4, which causes the closing of the balancing line 23, the oil supply of the second compressor 5 then being through the first 12 and third 19 conducted via the operating valve 7, the lubricant being driven by the coolant.
  • the compression unit 1 When the operating valve 7 is in its second state, the compression unit 1 operating in a single stage using the two compressors 4,5, as can be seen in FIG. 1, the pressure balance of the housings causes the shutter 30 in its first open position, which allows the supply of the second compressor 5 in oil.
  • the first compressor 4 When the compression unit 1 operates in single stage, the first compressor 4 is stopped, as can be seen in Figure 2, the overpressure of the casing of the first compressor 4 relative to the housing of the second compressor 5 causes the shutter 30 in its second open position, which also allows the supply of the second compressor 5 in oil.
  • the compression unit 1 When the compression unit 1 operates in a single stage, the second compressor 5 being stopped, as can be seen in FIG. 3, the overpressure of the casing of the second compressor 5 with respect to the casing of the first compressor 4 causes the shutter 30 in its position closing, which prevents the supply of the second compressor 5 in oil.
  • This configuration of the compression unit 1 makes it possible to be able to modulate the compression power of the compression unit 1 when it operates in a single stage, and this especially as the number of compression chambers in parallel of each compressor is important.
  • a first compressor 4 comprising two compression chambers 32,33 in parallel
  • a second compressor 5 with a single compression chamber 34, it is possible to be able to deliver seven different compression powers.
  • the power ratio of the three compression chambers 32, 33, 34 it is possible to have a constant difference between the seven powers: if the first chamber 32 of the first compressor 4, the second chamber 33 of the first compressor 4 , and the chamber 34 of the second compressor 35 representing, respectively, 1/7, 2/7 and 4/7 of the total power of the three chambers 32,33,34, it is possible to use 14% (only the first chamber 32 of the first compressor 4 operates), 29% (only the second chamber 33 of the first compressor 4 operates), 43% (only the two chambers 32,33 of the first compressor 4 operate), 57% (only the second compressor 5 operates) , 71% (only the first chamber 32 of the first compressor 4 and the second compressor 5 operate), 86% (only the second chamber 33 of the first compressor 4 and the second compressor 5 operate) and 100% (the three chambers 32,33 , 34 of the compression unit 1 operate) of the total power of the compression unit 1.
  • the compression unit 1 according to the present invention makes it possible to achieve particularly flexible and economical thermal installations.
  • Figures 5 to 12 relating to a second aspect of the present invention which relates to a modular thermal installation comprising a compression unit 1 which may be of the type corresponding to the first aspect of the present invention.
  • FIG. 5 shows a first thermal installation which comprises a compression unit 1 according to the first embodiment, a four-way production valve 35 that can take two states, a first heat exchanger 36 and a second heat exchanger 37.
  • the two heat exchangers 36.37 heat are shaped so as to, on the one hand, reject heat to the external environment and, on the other hand, absorb.
  • the constituent elements of the first thermal installation are arranged relative to each other so that when one of the two heat exchangers 36,37 acts as a condenser, the other acts as an evaporator, the choice of the heat exchanger acting as an evaporator depending on the state of the production valve 35.
  • a first channel 38 of the production valve 35 is connected, by a seventh line 39, to a first end 40 of the first heat exchanger 36.
  • a second channel 41 of the production valve 35 which can not be put into communication with the first channel 38, is connected by an eighth line 42 to a first end 43 of the second heat exchanger 37.
  • a third channel 44 of the production valve 35 is connected by a ninth line 45 to the low pressure inlet 2 of the compression unit 1.
  • the fourth channel 46 of the production valve 35 which can not be placed in communication with the third channel 44, is connected, by a tenth line 47, to the high pressure outlet 3 of the compression unit 1.
  • the first channel 38 of the production valve 35 is connected directly to the first heat exchanger 36
  • the second channel 41 of the production valve 35 is connected directly to the second heat exchanger 37
  • the third channel 44 of the production valve 35 is connected directly to the low pressure inlet 2 of the compression unit 1
  • the fourth channel 46 of the production valve 35 is connected directly to the high pressure outlet 3 of the compression unit.
  • the second end 48 of the first heat exchanger 36 is connected to the second end 49 of the second heat exchanger 37 by an expansion network 50 which is configured so that, when one of the two heat exchangers 36, 37, rejects heat, the other 37.36 absorbs it.
  • the expansion network 50 comprises a common trunk 51 having a first end 52, a second end 53 and a reservoir 54 of heat transfer fluid located between the first 52 and second 53 ends of the common trunk 51.
  • the expansion network 50 also comprises a first pipe 55 which connects the second end 48 of the first heat exchanger 36 to the first end 52 of the common trunk 51, and which comprises a first non-return valve 56 oriented so that the heat transfer fluid can circulate in this first pipe 55 that in the direction of the second end 48 of the first heat exchanger 36 to the first end 52 of the common section 51.
  • the expansion network 50 further comprises a second pipe 57 which connects the second end 49 of the second heat exchanger 37 to the first end 52 of the common trunk 51, and which comprises a second non-return valve 58 oriented so that the heat transfer fluid can flow in this second pipe 57 only in the direction of the second end 49 of the second heat exchanger 37 to the first end 52 of the common core 51.
  • the expansion network 50 also includes a third canalis ation 59 which connects the second end 48 of the first heat exchanger 36 to the second end 53 of the common section 51, and which comprises a first two-way valve 60 and a first expander 61 disposed between the second end 48 of the first heat exchanger 37 and. the first valve 60.
  • the expansion network 50 finally comprises a fourth pipe 62 which connects the second end 49 of the second heat exchanger 37 to the second end 53 of the common trunk 51, and which comprises a second two-way valve 63 and a second expander 64 disposed between the second end 49 of the second heat exchanger 37 and the second valve 63.
  • the functionalities of the first thermal installation are independent of the operating mode of the compression unit 1.
  • the compressed vapor phase heat transfer fluid from the high pressure outlet 3 of the compression unit 1 is sent, via the production valve 35, into the two heat exchangers 36,37 where it condenses and releases heat to the outside environment.
  • the production valve 35 is in its first state in which its fourth channel 46 is in communication with its first channel 38, the heat transfer fluid is sent to the first heat exchanger 36 by the tenths 47 and seventh 39 ducts, and when it is in its second state in which its fourth channel 46 is in communication with its second channel 41, the heat transfer fluid is sent to the second heat exchanger 37 by the tenth 47 and eighth 42 conduits.
  • the coolant in the liquid phase enters the expansion network 50 where it undergoes expansion before being introduced into the other heat exchanger where it evaporates and absorbs heat. heat from the outside environment.
  • the production valve 35 When the production valve 35 is in its first state, the coolant, at the outlet of the first heat exchanger 36, passes successively through the first pipe 55 (including the first non-return valve 56), the common trunk 51, the fourth line 62 (including the second valve 63 and the second expander 64) and the second heat exchanger 37, the second non-return valve 58 preventing the fluid from passing through the second pipe 57.
  • the coolant at the outlet of the second heat exchanger 37, successively passes through the second pipe 57 (including the second non-return valve 58), the common trunk 51, the third pipe 59 (including the first valve 60 and the first expansion valve 61) and the first heat exchanger 36, the first non-return valve 56 preventing the fluid from passing through the first pipe 55.
  • the vapor-phase heat transfer fluid is sent into the low-pressure inlet 2 of the compression unit 1 via the production valve 35.
  • the production valve 35 When the production valve 35 is in its first state, the coolant passes through the eighth 42 and ninth 45 pipes, and when it is in its second state, the heat transfer fluid passes through the seventh 39 and ninth 45 pipes.
  • this first thermal installation comprises an economizer 65 which comprises a first element 66, a first end 67 of which is connected to the fifth conduit 18 of the compression unit 1 which is at the intermediate pressure when the compression unit 1 operates in two stages.
  • the first end 67 of the first element 66 of the economizer 65 is connected directly to the fifth pipe 18 of the compression unit 1.
  • the second end 68 of the first element 66 is connected to the expansion network 50, in this case, by a fifth pipe 69 which comprises a third two-way valve 70 and a third expander 71 disposed between the first element 66 of the economizer 65 and the third valve 69.
  • the fifth channel 69 opens into the common section 51, a portion 72 forms the second element 72 of the economizer 65.
  • FIG. 6 shows a second thermal installation which comprises, in addition to the elements of the first installation, a third heat exchanger 73.
  • the third heat exchanger 73 is arranged relative to the other elements so as to act as an evaporator when one of the first two heat exchangers 36,37 serves as a condenser (whatever the two heat exchangers 36,37 which fulfills this office condenser), the other of the first two heat exchangers 36,37 is disconnected or act as a 'evaporator.
  • the boiling temperature in the two heat exchangers acting as evaporator is the same and it corresponds to the low pressure of the compression unit 1.
  • a first end 74 of the third heat exchanger 73 is connected by an eleventh conduct 75 to the ninth conduit 45 which connects the low input pressure 2 of the compression unit 1 to the third channel 44 of the production valve 35.
  • the first end 74 of the third heat exchanger 73 is connected directly to the ninth pipe 45.
  • a sixth pipe 77 which connects the second end 76 of the third heat exchanger 73 to the common section 51, comprises a fourth two-way valve 78 and a fourth expansion valve 79 disposed between the third heat exchanger 73 and the fourth valve 78.
  • the third 59, fourth 62 and sixth 77 pipes are mounted equivalently with respect to the common trunk 51.
  • the heat transfer fluid from the common trunk 51 may, depending on the state of the fourth valve 78, successively crossing the sixth pipe 77 (including the fourth valve 78 and the fourth expansion valve 79) and the third heat exchanger 73 before being sent, in the form of steam, into the low pressure inlet 2 of the pressure unit compression 1 via the eleventh 75 and ninth 45 conduits.
  • FIG. 7 shows a third thermal installation which comprises, in addition to the elements of the second installation, a fourth heat exchanger 80.
  • the fourth heat exchanger 80 is arranged with respect to the other elements so as to act as an evaporator when one of the first two heat exchangers 36,37 acts as a condenser (whatever the two heat exchangers 36,37 which fulfills this function of condenser), that the other of the first two heat exchangers 36, 37 is switched off or acts as an evaporator, whether the third heat exchanger 73 is switched off or serves as an evaporator.
  • the boiling temperature of the fourth heat exchanger 80 corresponds to the pressure prevailing at the inlet 17 of the second compressor 5 and can, therefore, be greater than that of other heat exchangers acting as evaporator.
  • a first end 81 of the fourth heat exchanger 80 is connected by a twelfth line 82 to the fifth line 18 of the compression unit 1 which connects the inlet 17 of the second compressor 5 to the third channel 19 of the operating valve. 7 so as to be at the pressure prevailing at the inlet 17 of the second compressor 5 (for example, at the pressure of the intermediate when the compression unit 1 operates in two stages).
  • the first end 81 of the fourth heat exchanger 80 is connected directly to the fifth pipe 18.
  • the second end 83 of the fourth heat exchanger 80 is connected to the expansion network 50.
  • a seventh pipe 84 which connects the second end 83 of the fourth heat exchanger 80 to the common trunk 51 comprises a fifth valve two. 85 and a fifth expansion valve 86 disposed between the fourth heat exchanger 80 and the fifth valve 86.
  • the third 59, fourth 62, sixth 77 and seventh 84 pipes are mounted equivalently with respect to the common section 51.
  • the coolant from the common core 51 may, depending on the state of the fifth valve 85 , successively passing the seventh pipe 84 (including the fifth valve 85 and the fifth expander 86) and the fourth heat exchanger 80 before being sent, in the form of steam, into the inlet 17 of the second compressor 5 via the twelfth 82 and fifth 18 conduits.
  • the existence of the intermediate pressure thus makes it possible to have a boiling point of the fourth heat exchanger 80 higher than that in the other exchangers acting as an evaporator.
  • the present third thermal installation comprises a compression unit 1 according to a second embodiment.
  • the low pressure inlet 2 is connected to the second channel 14 of the operating valve 7, not directly, but via a non-return valve additional 87 which is oriented so that the heat transfer fluid can circulate only in the direction of the low pressure inlet 2 to the second channel 14 of the operating valve 7.
  • the additional check valve 87 thus prevents the flow of fluid coolant of the second channel 14 to the inlet 9 of the first compressor 4, and therefore, when the operating valve 7 is in its second state, it prevents the circulation of the coolant from the inlet 17 of the second compressor 5 to the input 9 of the first compressor 4.
  • the first compressor 4 can be supplied with low pressure heat transfer fluid from the low pressure inlet 2 while the second compresses ur 5 is supplied with intermediate pressure heat transfer fluid from the fourth heat exchanger 80, the two compressors 4,5 producing a heat transfer fluid at high pressure supplying the high pressure outlet 3.
  • the additional non-return valve 87 is directly connected, on the one hand, to the low pressure inlet 2 of the compression unit 1, in parallel with the inlet 9 of the first compressor 4, and secondly, to the second channel 14 of the operating valve 7.
  • FIG. 9 shows a fourth thermal installation which comprises, in addition to the elements of the third installation, a four-way bypass valve 88 and a fifth heat exchanger 89.
  • the fifth heat exchanger 89 and the bypass valve 88 are arranged relative to the others. elements so that, depending on the state of the bypass valve 88, the fifth heat exchanger 89 is switched off and the other four heat exchangers 36,37,73,80 have the same functionality as in the third installation thermal or it acts as a condenser and the first four heat exchangers 36,37,73,80 can act as an evaporator independently of each other, the fourth heat exchanger 80 retaining its functionality to have a higher boiling temperature to that of the other heat exchangers acting as an evaporator 36,37,73.
  • the high pressure outlet 3 of the compression unit 1 is connected to the fourth channel 46 of the production valve 35 via the bypass valve 88.
  • a first channel 90 of the bypass valve 88 is connected by a thirteenth pipe 91, at the high pressure outlet 3 of the compression unit 1.
  • a second channel 92 of the bypass valve 88 which can not be put in communication with the first channel 90 is connected by a fourteenth pipe 93 , at the ninth conduit 45 which connects the low pressure inlet 2 of the compression unit 1 to the third channel 44 of the production valve 35.
  • a third channel 94 of the valve The bypass 88 is connected by a fifteenth pipe 95 to the fourth channel 46 of the production valve 35.
  • the fourth channel 96 of the bypass valve 88 which can not be put into communication with the third channel 94 is connected by a sixteenth pipe 97 at a first end 98 of the fifth heat exchanger 89.
  • the first channel 90 of the bypass valve 88 is connected directly to the high pressure outlet 3
  • the second channel 92 of the bypass valve 88 is connected directly to the ninth line 45
  • the third channel 94 of the Bypass valve 88 is connected directly to the fourth channel 46 of the production valve 35
  • the fourth channel 96 of the bypass valve 88 is connected directly to the first end 98 of the fifth heat exchanger 89.
  • the second end 99 of the fifth heat exchanger 89 is connected to the expansion network 50.
  • An eighth duct 100 which connects the second end 99 of the fourth thermal fifth 89 to the common trunk 51 comprises a third nonreturn valve 101 oriented so that the heat transfer fluid can flow in this eighth pipe 100 only in the direction of the second end 99 of the fifth heat exchanger 89 to the common trunk 51.
  • the first 55, second 57 and eighth 100 pipes are mounted equivalently compared to the common core 51.
  • the bypass valve 88 when the bypass valve 88 is in its first state in which its first channel 90 is in communication with its third channel 94, the vapor-phase heat transfer fluid from the 3 high pressure outlet of the compression unit 1 is sent via the bypass valve 88 to the production valve 35, then depending on the state of the production valve 35 in one or the another of the first two heat exchangers 36,37 acting as a condenser, the subsequent circuit corresponding to that in the third installation. Furthermore, the third non-return valve 101 prevents the fluid from passing through the eighth pipe 101 and the fifth heat exchanger 89 which is connected with the low pressure inlet 2 of the compression unit 3 via the sixteenth 97 and fourteenth 93 pipes.
  • the bypass valve 88 when the bypass valve 88 is in its second state in which its first channel 90 is in communication with its fourth channel 96, the vapor-phase heat transfer fluid from the High pressure outlet 3 of the compression unit 1 is sent via the bypass valve 88 to the fifth heat exchanger 89 acting as a condenser.
  • the coolant in the liquid phase passes successively through the eighth duct 100 (including the third non-return valve 101) and the common trunk 51.
  • Dela according to the state first 60, second 63, fourth 78 and fifth 85 valves, it is sent into at least one of the first four heat exchangers 36,37,73,80 as an evaporator.
  • the heat transfer fluid finally joins either the low pressure inlet 2 of the compression unit 1 if it comes from the first 36, second 37 or third 73 heat exchanger, or the inlet 17 of the second compressor 5 if it comes from the fourth heat exchanger 80.
  • FIG. 11 shows a fifth thermal installation which comprises, in addition to the elements of the fourth installation, and a sixth heat exchanger 102 formed by solar collector 102.
  • the solar collector 102 is arranged with respect to the other elements so that, whatever the state of the production and bypass valves 88, when it is not switched off, the solar collector 102, depending on the state of the operating valve 7, either acts as an evaporator or serves as heat pipe supplying heat transfer fluid, according to the state of the production valves 35 and bypass 88, the first 36, second 37 or fifth 89 heat exchanger which acts as a condenser.
  • a first end 103 of the solar collector 102 is connected by a seventeenth line 104 to the third line 13 of the compression unit 1 which connects the low pressure inlet 2 of the compression unit 1 to the second channel 14 of the operating valve 7.
  • the seventeenth pipe 104 comprises a complementary non-return valve 105 which is oriented so that the coolant can not only flow in the direction of the first end 103 of the solar collector 102 to the second channel 14 of the operating valve 7.
  • the seventeenth pipe 104 opens into the third pipe 13 after the outlet of the additional non-return valve 87.
  • the first end 103 of the solar collector 102 is connected to the inlet 17 of the second compressor 5 via the seventeenth 104, third 13 and fifth 18 conduits.
  • the solar collector 102 can act as an evaporator.
  • the boiling point of the solar collector 102 like that of the fourth heat exchanger 80, corresponds to the pressure prevailing at the inlet 17 of the second compressor 5 and can therefore be greater than that of the other heat exchangers serving as 'evaporator.
  • the sixth heat exchanger 102 because it is a solar collector, allows evaporation of the coolant even when the temperature of the external medium is lower than the boiling temperature corresponding to the prevailing pressure.
  • the first end 103 of the solar collector 102 is connected to the high-pressure outlet 3 of the compression unit 1 via the seventeenth 104, third 13 and sixth 20 pipes.
  • the solar collector 102 can act as a heat pipe.
  • the first end 103 of the solar collector 102 is connected directly to the inlet of the complementary non-return valve 105 whose output is connected directly to the third pipe 13.
  • the second end 106 of the solar collector 102 is connected to the expansion network 50.
  • a ninth pipe 107 which connects the second end 106 of the solar collector 102 to the common trunk 51 comprises a sixth two-way valve 108 and a sixth expansion valve 109 disposed between the solar collector 102 and the sixth valve 108.
  • a tenth duct 110 which also connects the second end 106 of the solar collector 102 to the common trunk 51 comprises a seventh two-way valve 111.
  • the third 59, fourth 62, sixth 77, seventh 84, ninth 107 and tenth 110 pipes are mounted equivalently with respect to the common trunk 51.
  • the heat transfer fluid from the common trunk 51 may, depending on the state of the sixth valve 108, successively cross the ninth pipe 107 (including the sixth valve 108 and the sixth expansion valve 109) and the solar collector 102 before being sent, in the form of steam, into the inlet 17 of the second compressor 5.
  • the presence of the additional check valve 87 makes it possible to have a boiling temperature different from that of the other heat exchangers acting as an evaporator.
  • the solar collector 102 When the operating valve 7 is in its first state, it is possible to fill the solar collector 102 with heat transfer fluid in liquid form at high pressure by using the compression unit 1 as drive means, the fluid having passed through the trunk common 51 then the tenth line 110 (including the seventh valve 111) without undergoing expansion.
  • the solar collector 102 can act as a heat pipe, the thermal radiation evaporating the coolant which is then directed to the high pressure outlet 3 of the compression unit 1 by short-circuiting the two compressors 4,5, then, depending on the state of the production and bypass valves 88, either in the first 36, second 37 or fifth 89 heat exchanger which acts as a condenser.
  • the compression unit 1 can be restarted to fill it again.
  • the present invention both in its first aspect (structure of the compression unit) and in its second aspect (structure of the thermal installation), is not limited to the embodiments given by way of examples in the present invention. description.
  • the shutter is formed by an oscillating flap, a floating ball or a rising ball driven from one to the other of their position by the oil flow.

Abstract

Unité de compression (1) adaptée à comprimer un fluide caloporteur à changement de phase, comprenant une entrée basse pression (2), une sortie haute pression (3), deux compresseurs (4,5), un clapet anti-retour (6) et une vanne de fonctionnement (7) à quatre voies, caractérisée en ce que la vanne de fonctionnement (7) a une première voie (12) qui est reliée à la sortie (10) d'un premier compresseur (4) dont l'entrée (9) est reliée à l'entrée basse pression (2), une seconde voie (14) qui ne peut être mise en communication avec la première voie (12) et qui est reliée à l'entrée basse pression (2), une troisième voie (19) qui est reliée à l'entrée (17) du second compresseur (5) dont la sortie (16) est reliée à la sortie haute pression (3), et une quatrième voie (21) qui ne peut être mise en communication avec la troisième voie (19) et qui est reliée à l'entrée du clapet (6) dont la sortie est reliée à la sortie haute pression (3).

Description

  • La présente invention concerne une unité de compression adaptée à comprimer un fluide caloporteur à changement de phase.
  • On connaît une telle unité de compression du type qui comprend une entrée basse pression, une sortie haute pression, deux compresseurs, un clapet anti-retour et une vanne de fonctionnement à quatre voies.
  • Dans une telle unité, par exemple divulguée dans le brevet US 6 276 148 , une première voie de la vanne est reliée à la conduite commune permettant l'alimentation en parallèle des compresseurs, une seconde voie, ne pouvant être mise en communication avec la première voie, est reliée la sortie du deuxième compresseur, les troisième et quatrième voies qui ne peuvent être mises en relation l'une avec l'autre, sont reliées à l'entrée à la sortie de l'unité, le clapet anti-retour étant disposé dans la conduite d'alimentation propre au deuxième compresseur, la conduite de sortie du premier compresseur débouchant dans la conduite d'alimentation du second compresseur, en aval du clapet. Cette unité de compression présente les deux inconvénients majeurs suivants quand les deux compresseurs sont en simple étage : d'une part, la sortie du premier compresseur débouchant dans l'entrée du second compresseur, seul ce dernier peut fonctionner, ce qui entraîne une utilisation uniquement partielle du potentiel de compression de l'unité, et, d'autre part, le clapet anti-retour étant disposé dans la conduite d'alimentation du second compresseur, il est traversé par le fluide en basse pression, ce qui entraîne une perte de charge importante.
  • La présente invention vise à réaliser une unité de compression qui peut être utilisée en simple ou double étage, et qui est configurée de façon à limiter les pertes de charges liées à la traversée du clapet anti-retour, et à permettre une utilisation de la totalité de son potentiel de compression quand elle fonctionne en simple étage.
  • Selon l'invention, dans l'unité de compression du type précité, la vanne de fonctionnement a une première voie qui est reliée (de préférence directement) à la sortie d'un premier compresseur dont l'entrée est reliée (de préférence directement) à l'entrée basse pression, une seconde voie qui ne peut être mise en communication avec la première voie et qui est reliée (de préférence directement) à l'entrée basse pression, une troisième voie qui est reliée (de préférence directement) à l'entrée du second compresseur dont la sortie est reliée (de préférence directement) à la sortie haute pression, et une quatrième voie qui ne peut être mise en communication avec la troisième voie et qui est reliée (de préférence directement) à l'entrée du clapet dont la sortie est reliée (de préférence directement) à la sortie haute pression.
  • De ce fait, quand la première voie de la vanne, reliée à la sortie du premier compresseur, est en communication avec la troisième voie, reliée à l'entée du second compresseur, l'unité fonctionne en double étage, et aucun fluide ne traverse la clapet anti-retour du fait que sa sortie, reliée à la sortie de l'unité, est en haute pression alors que son entrée, reliée à l'entrée de l'unité par la mise en communication des deuxième et quatrième voies de la vanne, est en basse pression.
  • Et quand la seconde voie de la vanne, reliée à l'entrée basse pression, est en communication avec la troisième voie, reliée à l'entrée du second compresseur, la sortie du premier compresseur est reliée à la sortie haute pression de l'unité par l'intermédiaire de la vanne et du clapet qui est traversé par le fluide en haute pression. De ce fait, dans cette configuration, l'unité est non seulement en simple étage, mais en plus, les deux compresseurs sont montés entièrement en parallèle, ce qui permet soit de n'utiliser que le premier, soit que le second, soit les deux. De plus, le clapet anti-retour étant traversé par le fluide en haute pression, les pertes de charge sont moins importantes.
  • Selon un mode de réalisation particulier, l'entrée basse pression est reliée à la seconde voie de la vanne de fonctionnement par l'intermédiaire d'un clapet anti-retour additionnel qui ne permet une circulation du fluide caloporteur que dans le sens de l'entrée basse pression vers la seconde voie.
  • Selon un second aspect, la présente invention vise à réaliser une installation thermique dans laquelle circule un fluide caloporteur à changement de phase permettant de rejeter de la chaleur vers un premier site du milieu extérieur, et d'en absorber à un second site.
  • Selon ce second aspect, l'installation thermique comprend deux échangeurs thermiques, une unité de compression et une vanne de production à quatre voies dont une première voie est reliée (de préférence directement) à un premier échangeur, dont une seconde voie qui ne peut être mise en communication avec la première voie, est reliée (de préférence directement) au deuxième échangeur, dont une troisième voie est reliée (de préférence directement) à l'entrée basse pression de l'unité de compression, et dont une quatrième voie qui ne peut être mise en communication avec la troisième voie, est reliée (de préférence directement) à la sortie haute pression de l'unité de compression.
  • Selon une première variante, l'installation thermique comprend un autre échangeur thermique qui est relié (de préférence directement) à la conduite reliant la troisième voie de la vanne de production à l'entrée basse pression de l'unité de compression.
  • Selon une seconde variante, l'installation thermique comprend, d'une part, une unité de compression ayant au moins deux compresseurs pouvant fonctionner en double étage, et, d'autre part, un autre échangeur thermique qui est relié (de préférence directement) à une conduite interne à l'unité de compression pouvant être à la pression intermédiaire.
  • Selon une troisième variante, l'installation thermique comprend une vanne de dérivation à quatre voies dont une première voie est reliée (de préférence directement) à la sortie haute pression de l'unité de compression, dont une seconde voie qui ne peut être mise en communication avec la première voie, est reliée (de préférence directement) à la conduite reliant l'entrée basse pression de l'unité de compression à la troisième voie de la vanne de production, dont une troisième voie est reliée (de préférence directement) à la quatrième voie de la vanne de production, et dont la quatrième voie qui ne peut être mise en communication avec la troisième voie, est reliée (de préférence directement) à un autre échangeur thermique.
  • Selon une quatrième variante, l'installation thermique comprend un autre échangeur thermique pouvant agir comme caloduc (de préférence un capteur solaire) qui est relié à la sortie haute pression de l'unité de compression de façon à pouvoir alimenter un échangeur thermique agissant comme condenseur relié à la vanne de production, et, éventuellement, à la vanne de dérivation.
  • D'autres particularités et avantages de la présente invention apparaîtront dans la description du mode de réalisation donné à titre d'exemple non limitatif de l'unité de compression et dans les exemples d'application de cette unité dans des installations thermiques.
    • La figure 1 est une vue schématique d'un premier mode de réalisation de l'unité de compression conforme à la présente invention, comprenant deux compresseurs et une vanne de fonctionnement, la vanne de fonctionnement étant dans un premier état permettant au fluide caloporteur sortant du premier compresseur d'alimenter le second compresseur ;
    • La figure 2 est une vue similaire à la figure 1, la vanne de fonctionnement étant dans un second état dans lequel le fluide caloporteur sortant du premier compresseur ne peut alimenter le second compresseur, les deux compresseurs étant en fonction ;
    • La figure 3 est une vue similaire à la figure 2, seul le premier compresseur étant en fonction ;
    • La figure 4 est une vue similaire aux figures 2 et 3, seul le second compresseur étant en fonction ;
    • La figure 5 est une vue schématique d'une première installation thermique comprenant l'unité de compression représentée aux figures 1 à 4 et deux échangeurs thermiques agencés de sorte que l'un agit comme condenseur quand l'autre agit comme évaporateur ;
    • La figure 6 est une vue schématique similaire à la figure 5 d'une seconde installation thermique comprenant, outre les éléments de la première installation, un troisième échangeur thermique pouvant agir comme évaporateur quelque soit, parmi les deux premiers échangeurs thermiques, celui qui agit comme condenseur ;
    • La figure 7 est une vue schématique similaire à la figure 6 d'une troisième installation thermique comprenant, outre les éléments de la seconde installation thermique, un quatrième échangeur thermique pouvant agir comme évaporateur quelque soit, parmi les deux premiers échangeurs thermiques, celui qui agit comme condenseur, et ayant une température d'ébullition supérieure à celle des autres échangeurs thermiques agissant comme évaporateur, l'unité de compression étant conforme à un second mode de réalisation, la vanne de fonctionnement étant dans son premier état ;
    • La figure 8 est une vue schématique de la troisième installation thermique, la vanne de fonctionnement étant dans son second état ;
    • La figure 9 est une vue schématique similaire à la figure 7 d'une quatrième installation thermique comprenant, outre les éléments de la troisième installation thermique, un cinquième échangeur thermique pouvant agir comme condenseur et une vanne quatre de dérivation permettant d'alimenter ou de mettre hors circuit le cinquième échangeur thermique, la vanne de dérivation étant dans un premier état dans lequel le cinquième échangeur thermique est hors circuit ;
    • La figure 10 est une vue schématique de la quatrième installation thermique, la vanne de dérivation étant dans un second état dans lequel le cinquième échangeur thermique agit comme condenseur ;
    • La figure 11 est une vue schématique similaire à la figure 9 d'un cinquième installation thermique comprenant, outre les éléments de la quatrième installation thermique, un capteur solaire, la vanne de fonctionnement étant dans son second état permettant au capteur d'agir comme un évaporateur ; et.
    • La figure 12 est une vue schématique de la cinquième installation thermique, la vanne de fonctionnement étant dans son premier état permettant au capteur d'agir comme un caloduc.
  • Les figures 1 à 4 concernant un premier aspect de la présente invention qui concerne une unité de compression 1 adaptée à comprimer un fluide caloporteur à changement de phase dans différents modes de fonctionnement.
  • L'unité de compression 1 comprend une entrée basse pression 2, une sortie haute pression 3, un premier compresseur 4, un second compresseur 5, un clapet anti-retour 6 et une vanne de fonctionnement 7 à quatre voies pouvant prendre deux états.
  • L'entrée basse pression 2 est reliée, par une première conduite 8, à l'entrée 9 du premier compresseur 4. La sortie 10 de ce premier compresseur 4 est reliée, par une seconde conduite 11, à une première voie 12 de la vanne de fonctionnement 7. L'entrée basse pression 2 est également reliée, par une troisième conduite 13, à une seconde voie 14 de la vanne de fonctionnement 7 qui ne peut pas être mise en communication avec la première voie 12.
  • La sortie haute pression 3 est reliée, par une quatrième conduite 15, à la sortie 16 du second compresseur 5. L'entrée 17 de ce second compresseur 5 est reliée, par une cinquième conduite 18, à une troisième voie 19 de la vanne de fonctionnement 7. La sortie haute pression 3 est également reliée, par une sixième conduite 20, à la quatrième voie 21 de la vanne de fonctionnement 7 qui ne peut être mise en communication avec la troisième voie 19. Par ailleurs, la sixième conduite 20 comprend le clapet anti-retour 6 qui est orienté de sorte que le fluide caloporteur ne peut circuler que dans le sens de la quatrième voie 21 vers la sortie haute pression 3.
  • Dans ce mode de réalisation de l'unité de compression 1, la première voie 12 de la vanne de fonctionnement 7 est reliée directement à la sortie 10 du premier compresseur 4 dont l'entrée 9 est reliée directement à l'entrée basse pression 2, la seconde voie 14 est reliée directement à l'entrée basse pression 2, la troisième voie 19 est reliée directement à l'entrée 17 du second compresseur 5 dont la sortie 16 est reliée directement à la sortie haute pression 3, et la quatrième voie 21 est reliée directement au clapet anti-retour 6 qui est relié directement à la sortie haute pression 3.
  • Quand la vanne de fonctionnement 7 est dans son premier état, sa première voie 12 est en communication avec sa troisième voie 19, et sa seconde voie 14 est en communication avec sa quatrième voie 21. Ainsi, la sortie 10 du premier compresseur 4 est reliée à l'entrée 17 du second compresseur 5 par les seconde 11 et cinquième 18 conduites qui sont à une pression intermédiaire. De plus, le clapet anti-retour 6 interdit la circulation du fluide caloporteur entre la sortie haute pression 3 et l'entrée basse pression 2 pourtant reliées par les sixième 20 et troisième 13 conduites. L'unité de compression 1 peut ainsi fonctionner en double étage (figure 1).
  • Quand la vanne de fonctionnement 7 est dans son second état, sa première voie 12 est en communication avec sa quatrième voie 21, et, sa seconde voie 14 est en communication avec sa troisième voie 19. Ainsi, d'une part, l'entrée 9 du premier compresseur 4, par la première conduite 8, et l'entrée 17 du second compresseur 5, par les troisième 13 et cinquième 18 conduites, sont reliées à l'entrée basse pression 2, et, d'autre part, la sortie 10 du premier compresseur 4, par les seconde 11 et sixième 20 conduites, et la sortie 16 du second compresseur 5, par la quatrième conduite 15, sont reliées à la sortie haute pression 3. L'unité de compression 1 peut ainsi fonctionner en simple étage (figures 2 à 4).
  • Afin de permettre une importante variation de la puissance de compression quand elle fonctionne en simple étage, l'unité de compression 1 est conformée de sorte que le second compresseur 5 est alimenté en huile de lubrification uniquement par le premier compresseur 4 qui reçoit l'ensemble de l'huile de l'unité de compression 1.
  • Afin d'empêcher l'alimentation en huile du second compresseur 5 sans passer par le premier compresseur 4, la troisième 13 conduite qui relie l'entrée 17 du second compresseur 5 à l'entrée basse pression 2 quand les seconde 14 et troisième 19 voies de la vanne de fonctionnement 7 sont en communication, est conformée de façon à former un siphon 22.
  • Afin de permettre l'alimentation en huile du deuxième compresseur 5, l'unité de compression 1 comprend une conduite d'équilibrage d'huile 23 qui relie les carters des deux compresseurs 4,5. La conduite d'équilibrage 23 comporte un dispositif d'obstruction 24 permettant sa fermeture sélective en fonction de la différence de pression régnant dans les carters. La conduite d'équilibrage 23 comprend un premier tronçon 25 qui relie le carter du premier compresseur 4 à l'entrée 26 du dispositif d'obstruction 24, et un second tronçon 27 qui relie la sortie 28 du dispositif d'obstruction 24 au carter du second compresseur 5. Le piquage du premier tronçon 27 au carter du premier compresseur 4 se fait à une hauteur définissant le niveau maximal d'huile dans ce carter, la conduite d'équilibrage 23 permettant que l'excès d'huile dans le carter du premier compresseur 4 lubrifie le second compresseur 5.
  • Le dispositif d'obstruction 24 est conformé de sorte que, quand la pression régnant dans le carter du premier compresseur 4 est inférieure à celle régnant dans le carter du second compresseur 5, il est dans un état fermé dans lequel la conduite d'équilibrage 23 est fermée, et quand la pression régnant dans le carter du premier compresseur 4 est supérieure ou égale à celle régnant dans le carter du second compresseur 5, il est dans un état ouvert dans lequel la conduite d'équilibrage 23 est ouverte.
  • Le dispositif d'obstruction 24 comprend une enceinte 29 dans laquelle débouchent les deux tronçons 25,27 de la conduite d'équilibrage 23. Le dispositif d'obstruction comprend également un obturateur 30 qui est mobile dans l'enceinte 29 sous l'effet du flux de l'huile circulant dans l'enceinte 29 généré par les pressions relatives des carters des deux compresseurs 4,5. Dans le mode de réalisation illustré, l'obturateur 30 est un formé par un volet 30 qui est monté coulissant dans l'enceinte 29.
  • L'obturateur 30 est agencé par rapport à l'entrée 26 et la sortie 28 du dispositif d'obstruction 24 de sorte que, premièrement, quand la pression régnant dans le carter du premier compresseur 4 est inférieure à celle régnant dans le carter du second compresseur 5, il est dans une position de fermeture dans laquelle il obstrue complètement l'entrée 26 du dispositif d'obstruction 24 ce qui empêche tout écoulement de l'huile vers le carter du second compresseur 5 par l'intermédiaire de la conduite d'équilibrage 23, deuxièmement, quand la pression régnant dans le carter du premier compresseur 4 est égale à celle régnant dans le carter du second compresseur 5, il est dans une première position d'ouverture dans laquelle il est à distance de l'entrée 26 et de la sortie 28 du dispositif d'obstruction 24 ce qui permet l'écoulement de l'huile vers le carter du second compresseur 5, et, troisièmement, quand la pression régnant dans le carter du premier compresseur 4 est supérieure à celle régnant dans le carter du second compresseur 5, il est dans une seconde position d'ouverture dans laquelle il obstrue partiellement la sortie 28 du dispositif d'obstruction 24 ce qui permet également l'écoulement de l'huile vers le carter du second compresseur 5. Afin de réaliser cette obturation partielle, la sortie 28 du dispositif d'obstruction 24 comprend des perçages additionnels 31 qui ne peuvent être obturés par l'obturateur 30.
  • Quand la vanne de fonctionnement 7 est dans son premier état, l'unité de compression 1 fonctionnant en double étage, comme on peut le voir à la figure 1, la pression du carter du second compresseur 5 est supérieure à celle régnant dans le carter du premier compresseur 4, ce qui entraîne la fermeture de la conduite d'équilibrage 23, l'alimentation en huile du second compresseur 5 se faisant alors par l'intermédiaire des première 12 et troisième 19 conduites via la vanne de fonctionnement 7, le lubrifiant étant entraîné par le fluide caloporteur. Afin d'éviter tout endommagement du second compresseur 5 pour défaut d'huile, il est préférable de démarrer le second compresseur 5 avant le premier compresseur 4 pour permettre un prélèvement suffisant d'huile.
  • Quand la vanne de fonctionnement 7 est dans son second état, l'unité de compression 1 fonctionnant en simple étage en utilisant les deux compresseurs 4,5, comme on peut le voir à la figure 1, l'équilibre des pressions des carters entraîne l'obturateur 30 dans sa première position d'ouverture, ce qui permet l'alimentation du second compresseur 5 en huile. Quand l'unité de compression 1 fonctionne en simple étage, le premier compresseur 4 étant à l'arrêt, comme on peut le voir à la figure 2, la surpression du carter du premier compresseur 4 par rapport au carter du second compresseur 5 entraîne l'obturateur 30 dans sa seconde position d'ouverture, ce qui permet également l'alimentation du second compresseur 5 en huile. Quand l'unité de compression 1 fonctionne en simple étage, le second compresseur 5 étant à l'arrêt, comme on peut le voir à la figure 3, la surpression du carter du second compresseur 5 par rapport au carter du premier compresseur 4 entraîne l'obturateur 30 dans sa position de fermeture, ce qui empêche l'alimentation du second compresseur 5 en huile.
  • Cette configuration de l'unité de compression 1 permet de pouvoir moduler la puissance de compression de l'unité de compression 1 quand elle fonctionne en simple étage, et ceci d'autant plus que le nombre de chambres de compression en parallèle de chaque compresseur est important. Ainsi, par exemple, avec un premier compresseur 4 comportant deux chambres de compression 32,33 en parallèle, et un second compresseur 5 avec une seule chambre de compression 34, il est possible de pouvoir délivrer sept puissances de compression différentes. En choisissant judicieusement le rapport de puissance des trois chambres de compression 32,33,34, il est possible d'avoir un écart constant entre les sept puissances : si la première chambre 32 du premier compresseur 4, la seconde chambre 33 du premier compresseur 4, et la chambre 34 du second compresseur 35 représentant, respectivement, 1/7, 2/7 et 4/7 de la puissance totale des trois chambres 32,33,34, il est possible d'utiliser 14% (seule la première chambre 32 du premier compresseur 4 fonctionne), 29% (seule la seconde chambre 33 du premier compresseur 4 fonctionne), 43% (seules les deux chambres 32,33 du premier compresseur 4 fonctionnent), 57% (seul le second compresseur 5 fonctionne), 71% (seuls la première chambre 32 du premier compresseur 4 et le second compresseur 5 fonctionnent), 86% (seuls la seconde chambre 33 du premier compresseur 4 et le second compresseur 5 fonctionnent) et 100% (les trois chambres 32,33,34 de l'unité de compression 1 fonctionnent) de la puissance totale de l'unité de compression 1.
  • L'unité de compression 1 conforme à la présente invention permet de pouvoir réaliser des installations thermiques particulièrement modulables et économiques.
  • Les figures 5 à 12 concernant un second aspect de la présente invention qui concerne une installation thermique modulable comportant une unité de compression 1 qui peut être du type répondant au premier aspect de la présente invention.
  • La figure 5 montre une première installation thermique qui comprend une unité de compression 1 conforme au premier mode de réalisation, une vanne de production 35 à quatre voies pouvant prendre deux états, un premier échangeur thermique 36 et un second échangeur thermique 37. Les deux échangeurs thermiques 36,37 sont conformés de façon à pouvoir, d'une part, rejeter de la chaleur vers le milieu extérieur et, d'autre part, en absorber. Les éléments constitutifs de la première installation thermique sont agencés l'un par rapport à l'autre de sorte que quand l'un des deux échangeurs thermiques 36,37 fait office de condenseur, l'autre fait office d'évaporateur, le choix de l'échangeur thermique faisant office d'évaporateur dépendant de l'état de la vanne de production 35.
  • Une première voie 38 de la vanne de production 35 est reliée, par une septième conduite 39, à une première extrémité 40 du premier échangeur thermique 36. Une seconde voie 41 de la vanne de production 35 qui ne peut être mise en communication avec la première voie 38, est reliée, par une huitième conduite 42, à une première extrémité 43 du second échangeur thermique 37. Une troisième voie 44 de la vanne de production 35 est reliée, par une neuvième conduite 45 à l'entrée basse pression 2 de l'unité de compression 1. La quatrième voie 46 de la vanne de production 35 qui ne peut être mise en communication avec la troisième voie 44, est reliée, par une dixième conduite 47, à la sortie haute pression 3 de l'unité de compression 1.
  • Dans cette première installation thermique, la première voie 38 de la vanne de production 35 est reliée directement au premier échangeur thermique 36, la deuxième voie 41 de la vanne de production 35 est reliée directement au second échangeur thermique 37, la troisième voie 44 de la vanne de production 35 est reliée directement à l'entrée basse pression 2 de l'unité de compression 1, et la quatrième voie 46 de la vanne de production 35 est reliée directement à la sortie haute pression 3 de l'unité de compression.
  • La deuxième extrémité 48 du premier échangeur thermique 36 est reliée à la deuxième extrémité 49 du second échangeur thermique 37 par un réseau de détente 50 qui est configuré de sorte que, quand l'un des deux échangeurs thermiques 36,37 rejette de la chaleur, l'autre 37,36 en absorbe.
  • Le réseau de détente 50 comprend un tronc commun 51 comportant une première extrémité 52, une seconde extrémité 53 et un réservoir 54 de fluide caloporteur situé entre les première 52 et seconde 53 extrémités du tronc commun 51. Le réseau de détente 50 comprend également une première canalisation 55 qui relie la deuxième extrémité 48 du premier échangeur thermique 36 à la première extrémité 52 du tronc commun 51, et qui comporte un premier clapet anti-retour 56 orienté de sorte que le fluide caloporteur ne peut circuler dans cette première canalisation 55 que dans le sens de la deuxième extrémité 48 du premier échangeur thermique 36 vers la première extrémité 52 du tronc commun 51. Le réseau de détente 50 comprend de plus une seconde canalisation 57 qui relie la deuxième extrémité 49 du second échangeur thermique 37 à la première extrémité 52 du tronc commun 51, et qui comporte un second clapet anti-retour 58 orienté de sorte que le fluide caloporteur ne peut circuler dans cette seconde canalisation 57 que dans le sens de la deuxième extrémité 49 du second échangeur thermique 37 vers la première extrémité 52 du tronc commun 51. Le réseau de détente 50 comprend par ailleurs une troisième canalisation 59 qui relie la deuxième extrémité 48 du premier échangeur thermique 36 à la seconde extrémité 53 du tronc commun 51, et qui comporte une première vanne deux voies 60 et un premier détendeur 61 disposé entre la deuxième extrémité 48 du premier échangeur thermique 37 et.la première vanne 60. Le réseau de détente 50 comprend enfin une quatrième canalisation 62 qui relie la deuxième extrémité 49 du second échangeur thermique 37 à la seconde extrémité 53 du tronc commun 51, et qui comporte une seconde vanne deux voies 63 et un second détendeur 64 disposé entre la deuxième extrémité 49 du second échangeur thermique 37 et la seconde vanne 63.
  • Les fonctionnalités de la première installation thermique sont indépendantes du mode de fonctionnement de l'unité de compression 1.
  • Selon l'état de la vanne de production 35, le fluide caloporteur en phase vapeur comprimé provenant de la sortie haute pression 3 de l'unité de compression 1 est envoyé, par l'intermédiaire de la vanne de production 35, dans l'un des deux échangeurs thermiques 36,37 où il se condense et rejette de la chaleur vers le milieu extérieur. Quand la vanne de production 35 est dans son premier état dans lequel sa quatrième voie 46 est en communication avec sa première voie 38, le fluide caloporteur est envoyé vers le premier échangeur thermique 36 par les dixième 47 et septième 39 conduites, et quand elle est dans son deuxième état dans lequel sa quatrième voie 46 est en communication avec sa seconde voie 41, le fluide caloporteur est envoyé vers le second échangeur thermique 37 par les dixième 47 et huitième 42 conduites.
  • En sortie de l'échangeur thermique faisant office de condenseur, le fluide caloporteur en phase liquide pénètre dans le réseau de détente 50 où il subit une détente avant d'être introduit dans l'autre échangeur thermique où il s'évapore et absorbe de la chaleur provenant du milieu extérieur. Quand la vanne de production 35 est dans son premier état, le fluide caloporteur, en sortie du premier échangeur thermique 36, traverse successivement la première canalisation 55 (y compris le premier clapet anti-retour 56), le tronc commun 51, la quatrième canalisation 62 (y compris la seconde vanne 63 et le second détendeur 64) et le second échangeur thermique 37, le second clapet anti-retour 58 empêchant le fluide de traverser la seconde canalisation 57. Quand la vanne de production 35 est dans son second état, le fluide caloporteur, en sortie du second échangeur thermique 37, traverse successivement la seconde canalisation 57 (y compris le second clapet anti-retour 58), le tronc commun 51, la troisième canalisation 59 (y compris la première vanne 60 et le premier détendeur 61) et le premier échangeur thermique 36, le premier clapet anti-retour 56 empêchant le fluide de traverser la première canalisation 55.
  • En sortie de l'échangeur thermique faisant office d'évaporateur, le fluide caloporteur en phase vapeur est envoyé dans l'entrée basse pression 2 de l'unité de compression 1 via la vanne de production 35. Quand la vanne de production 35 est dans son premier état, le fluide caloporteur passe par les huitième 42 et neuvième 45 conduites, et quand elle est dans son second état, le fluide caloporteur passe par les septième 39 et neuvième 45 conduites.
  • Afin d'améliorer le rendement thermique de l'unité de compression 1 quand elle fonctionne en double étage, cette première installation thermique, comprend un économiseur 65 qui comprend un premier élément 66 dont une première extrémité 67 est reliée à la cinquième conduite 18 de l'unité de compression 1 qui est à la pression intermédiaire quand l'unité de compression 1 fonctionne en double étage.
  • Dans la présente unité de compression 1, la première extrémité 67 du premier élément 66 de l'économiseur 65 est reliée directement à la cinquième conduite 18 de l'unité de compression 1.
  • La seconde extrémité 68 du premier élément 66 est reliée au réseau de détente 50, en l'occurrence, par une cinquième canalisation 69 qui comprend une troisième vanne deux voies 70 et un troisième détendeur 71 disposé entre le premier élément 66 de l'économiseur 65 et la troisième vanne 69. La cinquième canalisation 69 débouche dans le tronc commun 51 dont une portion 72 forme le second élément 72 de l'économiseur 65.
  • La figure 6 montre une seconde installation thermique qui comprend, outre les éléments de la première installation, un troisième échangeur thermique 73. Le troisième échangeur thermique 73 est agencé par rapport aux autres éléments de façon à faire office d'évaporateur quand l'un des deux premiers échangeurs thermiques 36,37 fait office de condenseur (quelque soit celui des deux échangeurs thermiques 36,37 qui remplit cet office de condenseur), que l'autre des deux premiers échangeurs thermiques 36,37 soit mis hors circuit ou fasse office d'évaporateur. La température d'ébullition dans les deux échangeurs thermiques faisant office d'évaporateur est la même et elle correspond à la basse pression de l'unité de compression 1.
  • Une première extrémité 74 du troisième échangeur thermique 73 est reliée, par une onzième conduite 75, à la neuvième conduite 45 qui relie l'entrée basse pression 2 de l'unité de compression 1 à la troisième voie 44 de la vanne de production 35.
  • Dans cette seconde installation, la première extrémité 74 du troisième échangeur thermique 73 est relié directement à la neuvième conduite 45.
  • La seconde extrémité 76 du troisième échangeur thermique 73 est reliée au réseau de détente 50. Une sixième canalisation 77 qui relie la seconde extrémité 76 du troisième échangeur thermique 73 au tronc commun 51, comprend une quatrième vanne deux voies 78 et un quatrième détendeur 79 disposé entre le troisième échangeur thermique 73 et la quatrième vanne 78. Dans cette seconde installation, les troisième 59, quatrième 62 et sixième 77 canalisations sont montées de façon équivalente par rapport au tronc commun 51.
  • De ce fait, quelle que soit le mode de fonctionnement de l'unité de compression 1, quelque soit l'état de la vanne de production 35, le fluide caloporteur à partir du tronc commun 51 peut, selon l'état de la quatrième vanne 78, traverser successivement la sixième canalisation 77 (y compris la quatrième vanne 78 et le quatrième détendeur 79) et le troisième échangeur thermique 73 avant d'être envoyé, sous forme de vapeur, dans l'entrée basse pression 2 de l'unité de compression 1 via les onzième 75 et neuvième 45 conduites.
  • La figure 7 montre une troisième installation thermique qui comprend, outre les éléments de la seconde installation, un quatrième échangeur thermique 80. Le quatrième échangeur thermique 80 est agencé par rapport aux autres éléments de façon à faire office d'évaporateur quand l'un des deux premiers échangeurs thermiques 36,37 fait office de condenseur (quelque soit celui des deux échangeurs thermiques 36,37 qui remplit cet office de condenseur), que l'autre des deux premiers échangeurs thermiques 36,37 soit mis hors circuit ou fasse office d'évaporateur, que le troisième échangeur thermique 73 soit mis hors circuit ou fasse office d'évaporateur. La température d'ébullition du quatrième échangeur thermique 80 correspond à la pression régnant à l'entrée 17 du second compresseur 5 et peut, de ce fait, être supérieure à celle des autres échangeurs thermiques faisant office d'évaporateur.
  • Une première extrémité 81 du quatrième échangeur thermique 80 est reliée, par une douzième conduite 82, à la cinquième conduite 18 de l'unité de compression 1 qui relie l'entrée 17 de second compresseur 5 à la troisième voie 19 de la vanne de fonctionnement 7 de façon à être à la pression régnant à l'entrée 17 du second compresseur 5 (par exemple, à la pression du intermédiaire quand l'unité de compression 1 fonctionne en double étage).
  • Dans cette troisième installation, la première extrémité 81 du quatrième échangeur thermique 80 est reliée directement à la cinquième conduite 18.
  • La seconde extrémité 83 du quatrième échangeur thermique 80 est reliée au réseau de détente 50. Une septième canalisation 84 qui relie la seconde extrémité 83 du quatrième échangeur thermique 80 au tronc commun 51, comprend une cinquième vanne deux voies 85 et un cinquième détendeur 86 disposé entre le quatrième échangeur thermique 80 et la cinquième vanne 86. Dans cette troisième installation, les troisième 59, quatrième 62, sixième 77 et septième 84 canalisations sont montées de façon équivalente par rapport au tronc commun 51.
  • De ce fait, quelque soit le mode de fonctionnement de l'unité de compression 1, quelque soit l'état de la vanne de production 35, le fluide caloporteur à partir du tronc commun 51 peut, selon l'état de la cinquième vanne 85, traverser successivement la septième canalisation 84 (y compris la cinquième vanne 85 et le cinquième détendeur 86) et le quatrième échangeur thermique 80 avant d'être envoyé, sous forme de vapeur, dans l'entrée 17 du second compresseur 5 via les douzième 82 et cinquième 18 conduites.
  • Quand l'unité de compression 1, fonctionne en double étage, l'existence de la pression intermédiaire permet donc d'avoir une température d'ébullition du quatrième échangeur thermique 80 plus élevée que celle dans les autres échangeurs faisant office d'évaporateur.
  • Afin de pouvoir avoir une température d'ébullition dans le quatrième échangeur thermique 80 plus élevée que celle dans les autres échangeurs thermiques faisant office d'évaporateur quand la vanne de fonctionnement 7 est dans son second état (l'unité de compression 1 fonctionne en simple étage), la présente troisième installation thermique comprend une unité de compression 1 conforme à un second mode de réalisation.
  • Dans le second mode de réalisation de l'unité de compression 1, l'entrée basse pression 2 est reliée à la seconde voie 14 de la vanne de fonctionnement 7, non pas directement, mais par l'intermédiaire d'un clapet anti-retour additionnel 87 qui est orienté de sorte que le fluide caloporteur ne peut circuler que dans le sens de l'entrée basse pression 2 vers la seconde voie 14 de la vanne de fonctionnement 7. Le clapet anti-retour additionnel 87 empêche ainsi la circulation du fluide caloporteur de la seconde voie 14 vers l'entrée 9 du premier compresseur 4, et donc, quand la vanne de fonctionnement 7 est dans son second état, il empêche la circulation du fluide caloporteur de l'entrée 17 du second compresseur 5 vers l'entrée 9 du premier compresseur 4. Ainsi, quand la vanne de fonctionnement 7 est dans son second état, le premier compresseur 4 peut être alimenté en fluide caloporteur en basse pression provenant de l'entrée basse pression 2 alors que le second compresseur 5 est alimenté en fluide caloporteur en pression intermédiaire provenant du quatrième échangeur thermique 80, les deux compresseurs 4,5 produisant un fluide caloporteur en haute pression alimentant la sortie haute pression 3.
  • Dans ce second mode de réalisation de l'unité de compression 1, le clapet anti-retour additionnel 87 est relié directement, d'une part, à l'entrée basse pression 2 de l'unité de compression 1, en parallèle de l'entrée 9 du premier compresseur 4, et d'autre part, à la seconde voie 14 de la vanne de fonctionnement 7.
  • La figure 9 montre une quatrième installation thermique qui comprend, outre les éléments de la troisième installation, une vanne quatre voies de dérivation 88 et un cinquième échangeur thermique 89. Le cinquième échangeur thermique 89 et la vanne de dérivation 88 sont agencés par rapport aux autres éléments de façon à ce que, selon l'état de la vanne de dérivation 88, soit le cinquième échangeur thermique 89 est mis hors circuit et les quatre autres échangeurs thermiques 36,37,73,80 ont les mêmes fonctionnalités que dans la troisième installation thermique, soit il fait office de condenseur et les quatre premiers échangeurs thermiques 36,37,73,80 peuvent faire office d'évaporateur indépendamment les uns des autres, le quatrième échangeur thermique 80 conservant sa fonctionnalité de pouvoir avoir une température d'ébullition supérieure à celle des autres échangeurs thermiques faisant office d'évaporateur 36,37,73.
  • La sortie haute pression 3 de l'unité de compression 1 est reliée à la quatrième voie 46 de la vanne de production 35 par l'intermédiaire de la vanne de dérivation 88. Une première voie 90 de la vanne de dérivation 88 est reliée, par une treizième conduite 91, à la sortie haute pression 3 de l'unité de compression 1. Une seconde voie 92 de la vanne de dérivation 88 qui ne peut être mise en communication avec la première voie 90, est reliée, par une quatorzième conduite 93, à la neuvième conduite 45 qui relie l'entrée basse pression 2 de l'unité de compression 1 à la troisième voie 44 de la vanne de production 35. Une troisième voie 94 de la vanne de dérivation 88 est reliée, par une quinzième conduite 95, à la quatrième voie 46 de la vanne de production 35. La quatrième voie 96 de la vanne de dérivation 88 qui ne peut être mise en communication avec la troisième voie 94, est reliée, par une seizième conduite 97, à une première extrémité 98 du cinquième échangeur thermique 89.
  • Dans cette quatrième installation, la première voie 90 de la vanne de dérivation 88 est reliée directement à la sortie haute pression 3, la seconde voie 92 de la vanne de dérivation 88 est reliée directement à la neuvième conduite 45, la troisième voie 94 de la vanne de dérivation 88 est reliée directement à la quatrième voie 46 de la vanne de production 35, et la quatrième voie 96 de la vanne de dérivation 88 est reliée directement à la première extrémité 98 du cinquième échangeur thermique 89.
  • La seconde extrémité 99 du cinquième échangeur thermique 89 est reliée au réseau de détente 50. Une huitième canalisation 100 qui relie la seconde extrémité 99 du quatrième cinquième thermique 89 au tronc commun 51, comprend un troisième clapet anti-retour 101 orienté de sorte que le fluide caloporteur ne peut circuler dans cette huitième canalisation 100 que dans le sens de la deuxième extrémité 99 du cinquième échangeur thermique 89 vers le tronc commun 51. Dans cette quatrième installation, les première 55, seconde 57 et huitième 100 canalisations sont montées de façon équivalente par rapport au tronc commun 51.
  • Quelque soit le mode de fonctionnement de l'unité de compression 1, quand la vanne de dérivation 88 est dans son premier état dans lequel sa première voie 90 est en communication avec sa troisième voie 94, le fluide caloporteur comprimé en phase vapeur provenant de la sortie haute pression 3 de l'unité de compression 1 est envoyé, par l'intermédiaire de la vanne de dérivation 88, à la vanne de production 35, puis selon l'état de la vanne de production 35 dans l'un ou l'autre des deux premiers échangeurs thermiques 36,37 faisant office de condenseur, le circuit ultérieur correspondant à celui dans la troisième installation. Par ailleurs, le troisième clapet anti-retour 101 empêche le fluide de traverser la huitième canalisation 101 et le cinquième échangeur thermique 89 qui est en relation avec l'entrée basse pression 2 de l'unité de compression 3 via les seizième 97 et quatorzième 93 conduites.
  • Quelque soit le mode de fonctionnement de l'unité de compression 1, quand la vanne de dérivation 88 est dans son second état dans lequel sa première voie 90 est en communication avec sa quatrième voie 96, le fluide caloporteur comprimé en phase vapeur provenant de la sortie haute pression 3 de l'unité de compression 1 est envoyé, par l'intermédiaire de la vanne de dérivation 88, au cinquième échangeur thermique 89 faisant office de condenseur. En sortie du cinquième échangeur thermique 89, le fluide caloporteur en phase liquide, traverse successivement la huitième canalisation 100 (y compris le troisième clapet anti-retour 101) et le tronc commun 51. Delà, selon l'état des première 60, seconde 63, quatrième 78 et cinquième 85 vannes, il est envoyé dans au moins l'un des quatre premiers échangeurs thermiques 36,37,73,80 faisant office d'évaporateur. Le fluide caloporteur rejoint enfin, soit l'entrée basse pression 2 de l'unité de compression 1 s'il provient du premier 36, second 37 ou troisième 73 échangeur thermique, soit l'entrée 17 du deuxième compresseur 5 s'il provient du quatrième échangeur thermique 80.
  • La figure 11 montre une cinquième installation thermique qui comprend, outre les éléments de la quatrième installation, et un sixième échangeur thermique 102 formé par capteur solaire 102. Le capteur solaire 102 est agencé par rapport aux autres éléments de façon à ce que, quelque soit l'état des vannes de production 35 et de dérivation 88, quand il n'est pas mis hors circuit, le capteur solaire 102, selon l'état de la vanne de fonctionnement 7, soit fait office d'évaporateur, soit fait office de caloduc alimentant en fluide caloporteur, selon l'état des vannes de production 35 et de dérivation 88, le premier 36, second 37 ou cinquième 89 échangeur thermique qui agit comme condenseur.
  • Une première extrémité 103 du capteur solaire 102 est reliée, par une dix-septième conduite 104, à la troisième conduite 13 de l'unité de compression 1 qui relie l'entrée basse pression 2 de l'unité de compression 1 à la seconde voie 14 de la vanne de fonctionnement 7. La dix-septième conduite 104 comprend un clapet anti-retour complémentaire 105 qui est orienté de sorte que le fluide caloporteur ne peut circuler que dans le sens de la première extrémité 103 du capteur solaire 102 vers la seconde voie 14 de la vanne de fonctionnement 7. De plus, la dix-septième conduite 104 débouche dans la troisième conduite 13 après la sortie du clapet anti-retour additionnel 87.
  • Quand la vanne de fonctionnement 7 est dans son second état, la première extrémité 103 du capteur solaire 102 est reliée à l'entrée 17 du second compresseur 5 par l'intermédiaire des dix-septième 104, troisième 13 et cinquième 18 conduites. De ce fait, le capteur solaire 102 peut agir comme un évaporateur. La température d'ébullition du capteur solaire 102, comme celle du quatrième échangeur thermique 80, correspond à la pression régnant à l'entrée 17 du second compresseur 5 et peut, de ce fait, être supérieure à celle des autres échangeurs thermiques faisant office d'évaporateur. En outre, le sixième échangeur thermique 102, du fait qu'il soit un capteur solaire, permet l'évaporation du fluide caloporteur même quand la température du milieu extérieur est inférieure à la température d'ébullition correspondant à la pression régnante.
  • Quand la vanne de fonctionnement 7 est dans son premier état, la première extrémité 103 du capteur solaire 102 est reliée à la sortie haute pression 3 de l'unité de compression 1 par l'intermédiaire des dix-septième 104, troisième 13 et sixième 20 conduites. De ce fait, le capteur solaire 102 peut agir comme un caloduc.
  • Dans cette cinquième installation, la première extrémité 103 du capteur solaire 102 est reliée directement à l'entrée du clapet anti-retour complémentaire 105 dont la sortie est reliée directement à la troisième conduite 13.
  • La seconde extrémité 106 du capteur solaire 102 est reliée au réseau de détente 50. Une neuvième canalisation 107 qui relie la seconde extrémité 106 du capteur solaire 102 au tronc commun 51, comprend une sixième vanne deux voies 108 et un sixième détendeur 109 disposé entre le capteur solaire 102 et la sixième vanne 108. Une dixième canalisation 110 qui relie également la seconde extrémité 106 du capteur solaire 102 au tronc commun 51, comprend une septième vanne deux voies 111. Dans cette cinquième installation, les troisième 59, quatrième 62, sixième 77, septième 84, neuvième 107 et dixième 110 canalisations sont montées de façon équivalente par rapport au tronc commun 51.
  • De ce fait, quand la vanne de fonctionnement 7 est dans son second état, quelque soit l'état des vannes de production 35 et de dérivation 88, le fluide caloporteur à partir du tronc commun 51 peut, selon l'état de la sixième vanne 108, traverser successivement la neuvième canalisation 107 (y compris la sixième vanne 108 et le sixième détendeur 109) et le capteur solaire 102 avant d'être envoyé, sous forme de vapeur, dans l'entrée 17 du second compresseur 5. La présence du clapet anti-retour additionnel 87 permet d'avoir une température d'ébullition différente de celle des autres échangeurs thermiques agissant comme évaporateur.
  • Quand la vanne de fonctionnement 7 est dans son premier état, il est possible de remplir le capteur solaire 102 de fluide caloporteur sous forme liquide en haute pression en utilisant l'unité de compression 1 comme moyen d'entraînement, le fluide ayant traversé le tronc commun 51 puis la dixième canalisation 110 (y compris la septième vanne 111) sans subir de détente. Une fois rempli, le capteur solaire 102 peut agir comme caloduc, le rayonnement thermique évaporant le fluide caloporteur qui est alors dirigé vers la sortie haute pression 3 de l'unité de compression 1 en court-circuitant les deux compresseurs 4,5, puis, selon l'état des vannes de production 35 et de dérivation 88, soit dans le premier 36, second 37 ou cinquième 89 échangeur thermique qui agit comme condenseur. Quand le capteur solaire 102 ne peut plus agir comme caloduc pour défaut de fluide caloporteur, l'unité de compression 1 peut être remise en marche pour le remplir à nouveau.
  • La présente invention, tant dans son premier aspect (structure de l'unité de compression) que dans son second aspect (structure de l'installation thermique), n'est pas limitée aux modes de réalisation donnés à titre d'exemples dans la présente description.
  • Concernant le premier aspect, il serait possible que l'obturateur soit formé par un volet oscillant, une bille flottante ou une bille montante entraînés de l'une à l'autre de leur position par le flux d'huile.
  • Concernant le second aspect, il serait possible d'utiliser une installation thermique similaire à la première, seconde, troisième, quatrième ou cinquième installation employant une unité de compression ne répondant pas à la définition du premier aspect de la présente invention.
  • Il serait également possible d'utiliser une installation thermique similaire à la première, seconde, troisième, quatrième ou cinquième installation, mais ne comportant pas d'économiseur.
  • Il serait aussi possible d'utiliser une installation thermique similaire à la troisième, quatrième ou cinquième installation, mais ne comportant pas de troisième échangeur thermique.
  • De plus, il serait possible d'utiliser une installation thermique similaire à la troisième, quatrième ou cinquième installation, qui, bien qu'ayant un quatrième échangeur thermique, comprend une unité de compression conforme au premier mode de réalisation.
  • Il serait possible d'utiliser une installation thermique similaire à la quatrième ou cinquième installation, mais ne comportant pas de quatrième échangeur thermique.
  • Il serait possible d'utiliser une installation thermique similaire à la cinquième installation, mais ne comportant pas de cinquième échangeur thermique, ni de vanne de dérivation.

Claims (15)

  1. Unité de compression (1) adaptée à comprimer un fluide caloporteur à changement de phase, comprenant une entrée basse pression (2), une sortie haute pression (3), deux compresseurs (4,5), un clapet anti-retour (6) et une vanne de fonctionnement (7) à quatre voies, caractérisée en ce que la vanne de fonctionnement (7) a une première voie (12) qui est reliée à la sortie (10) d'un premier compresseur (4) dont l'entrée (9) est reliée à l'entrée basse pression (2), une seconde voie (14) qui ne peut être mise en communication avec la première voie (12) et qui est reliée à l'entrée basse pression (2), une troisième voie (19) qui est reliée à l'entrée (17) du second compresseur (5) dont la sortie (16) est reliée à la sortie haute pression (3), et une quatrième voie (21) qui ne peut être mise en communication avec la troisième voie (19) et qui est reliée à l'entrée du clapet (6) dont la sortie est reliée à la sortie haute pression (3).
  2. Unité de compression (1) selon la revendication 1, caractérisée en ce que l'entrée basse pression (2) est reliée à la seconde voie (14) de la vanne de fonctionnement (7) par l'intermédiaire d'un clapet anti-retour additionnel (87) qui ne permet une circulation du fluide caloporteur que dans le sens de l'entrée basse pression (2) vers la seconde voie (14).
  3. Unité de compression (1) selon la revendication 1 ou 2, caractérisée en ce que l'alimentation en huile du second compresseur (5) se fait par le premier compresseur (4) qui reçoit l'ensemble de l'huile alimentant l'unité de compression (1) et en ce que l'alimentation en huile du second compresseur (5) se fait, quand la première voie (12) de la vanne de fonctionnement(7) est en communication avec la troisième voie (19), par une conduite (11,18) empruntée par le fluide caloporteur entraînant le lubrifiant, et quand la première voie (12) est en communication avec la quatrième voie (21), par une conduite d'équilibrage d'huile (23).
  4. Unité de compression (1) selon la revendication 3, caractérisée en ce que la conduite d'équilibrage (23) relie les carters des deux compresseurs (4,5) et comporte un dispositif d'obstruction (24) adapté, quand la pression régnant dans le carter du premier compresseur (4) est inférieure à celle régnant dans celui du second compresseur (5) à fermer la conduite d'équilibrage (23), et quand elle est supérieure ou égale à celle régnant dans le carter du second compresseur (5), à laisser ouverte cette conduite (23).
  5. Unité de compression selon la revendication 4, caractérisée en ce que le dispositif d'obstruction (24) comprend un obturateur (30) qui est mobile, sous la différence de pression entre les deux carters, entre, premièrement, une première position d'ouverture permettant le passage de l'huile dans la conduite d'équilibrage (23) quand les pressions régnant dans les carters des deux compresseurs (4,5) sont égales, deuxièmement, une position de fermeture fermant complètement la conduite d'équilibrage (23) et empêchant le passage de l'huile quand la pression régnant dans le carter du premier compresseur (4) est inférieure à celle régnant dans celui du second compresseur (5), et, troisièmement, une seconde position d'ouverture fermant partiellement la conduite d'équilibrage (23) et permettant le passage de l'huile quand la pression régnant dans le carter du premier compresseur (4) est supérieure à celle régnant dans celui du second compresseur (5).
  6. Installation thermique comprenant une vanne de production (35) à quatre voies, et deux échangeurs thermiques (36,37), caractérisée en ce qu'elle comprend une unité de compression (1) conforme à l'une des revendications 1 à 5, la vanne de production (35) ayant une première voie (38) qui est reliée à une première extrémité (40) d'un premier échangeur (36), une seconde voie (41) qui ne peut être mise en communication avec la première voie (38) et qui est reliée à la première extrémité (43) du deuxième échangeur (37), une troisième voie (44) qui est reliée à l'entrée basse pression (2) de l'unité de compression (1), et une quatrième voie (46) qui ne peut être mise en communication avec la troisième voie (44) et qui est reliée à la sortie haute pression (3) de l'unité de compression (1), la seconde extrémité (48) du premier échangeur (36) étant reliée à la seconde extrémité (49) du second échangeur (37) par un réseau de détente (50).
  7. Installation thermique selon la revendication 6, caractérisée en ce qu'elle comprend un troisième échangeur thermique (73) dont une première extrémité (74) est reliée à la conduite (45) reliant la troisième voie (44) de la vanne de production (35) à l'entrée basse pression (2), et dont la seconde extrémité (76) est reliée au réseau de détente (50).
  8. Installation thermique selon la revendication 6 ou 7, caractérisée en ce qu'elle comprend un quatrième échangeur thermique (80) dont une première extrémité (81) est reliée à la conduite (18) reliant la troisième voie (19) de la vanne de fonctionnement (7) à l'entrée (17) du second compresseur (5), et dont la seconde extrémité (83) est reliée au réseau de détente (50).
  9. Installation thermique selon l'une des revendications 6 à 8, caractérisée en ce que la sortie haute pression (3) de l'unité de compression (1) est reliée directement à la quatrième voie (46) de la vanne de production (35).
  10. Installation thermique selon l'une des revendications 6 à 8, caractérisée en ce que la sortie haute pression (3) de l'unité de compression (1) est reliée à la quatrième voie (46) de la vanne de production (35) par l'intermédiaire d'une vanne de dérivation (88) à quatre voies dont une première voie (90) est reliée à la sortie haute pression (3) de l'unité de compression (1), dont une seconde voie (92) qui ne peut être mise en communication avec la première voie (90), est reliée à la conduite (45) reliant l'entrée basse pression (2) de l'unité de compression (1) à la troisième voie (44) de la vanne de production (35), dont une troisième voie (94) est reliée à la quatrième voie (46) de la vanne de production (35), et dont la quatrième voie (96) qui ne peut être mise en communication avec la troisième voie (94), est reliée à une première extrémité (98) d'un cinquième échangeur thermique (89) dont la deuxième extrémité (99) est reliée au réseau de détente (50).
  11. Installation thermique selon la revendication 10, caractérisée en ce que la première voie (90) de la vanne de dérivation (88) est reliée directement à la sortie haute pression (3) de l'unité de compression (1).
  12. Installation thermique selon la revendication 10 ou 11, caractérisée en ce que la troisième voie (94) de la vanne de dérivation (88) est reliée directement à la quatrième voie (46) de la vanne de production (35).
  13. Installation thermique selon l'une des revendications 6 à 12, caractérisée en ce qu'elle comprend un sixième échangeur thermique (102) dont une première extrémité (103) est reliée à la conduite (13) reliant l'entrée basse pression (2) de l'unité de compression (1) à la seconde voie (14) de la vanne de fonctionnement (7) par l'intermédiaire d'un clapet anti-retour complémentaire (105) ne permettant une circulation du fluide caloporteur que dans le sens de la première extrémité (103) du sixième échangeur thermique (102) vers la conduite (13), la seconde extrémité (106) du sixième échangeur (102) étant reliée au réseau de détente (50).
  14. Installation thermique selon la revendication 13, caractérisée en ce que le sixième échangeur thermique (102) est un capteur solaire (102).
  15. Installation thermique selon la revendication 14, caractérisée en ce que la seconde extrémité (106) du capteur solaire (102) est relié au réseau de détente (50) de sorte que la capteur puisse fonctionner comme caloduc.
EP06015308A 2005-07-29 2006-07-22 Unité de compression et installation thermique comprenant une telle unité Not-in-force EP1748191B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0508098A FR2889296B1 (fr) 2005-07-29 2005-07-29 Unite de compression comportant desux compresseurs et installation thermique comprenant une telle unite

Publications (2)

Publication Number Publication Date
EP1748191A1 true EP1748191A1 (fr) 2007-01-31
EP1748191B1 EP1748191B1 (fr) 2011-02-02

Family

ID=36215682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06015308A Not-in-force EP1748191B1 (fr) 2005-07-29 2006-07-22 Unité de compression et installation thermique comprenant une telle unité

Country Status (4)

Country Link
EP (1) EP1748191B1 (fr)
AT (1) ATE497583T1 (fr)
DE (1) DE602006019931D1 (fr)
FR (1) FR2889296B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108131860A (zh) * 2018-02-02 2018-06-08 北京中科华誉热泵设备制造有限公司 一种基于单机双级压缩机的超低温空气源热泵

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2076332A (en) * 1935-06-29 1937-04-06 York Ice Machinery Corp Lubrication system
US2294552A (en) * 1937-05-13 1942-09-01 Curtis Mfg Co Refrigerating condensing unit
US2938361A (en) * 1957-09-13 1960-05-31 Borg Warner Reversible refrigerating system
JPS5485453A (en) * 1977-12-20 1979-07-07 Toshiba Corp Refrigerating cycle
US4411141A (en) * 1981-02-06 1983-10-25 Mitsubishi Denki Kabushiki Kaisha Parallel operation compressor type refrigerating apparatus
JPH028660A (ja) * 1988-06-27 1990-01-12 Mitsubishi Electric Corp 冷凍機
JPH03129256A (ja) * 1989-10-13 1991-06-03 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JPH0480545A (ja) * 1990-07-20 1992-03-13 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機
JPH04257661A (ja) * 1991-02-12 1992-09-11 Matsushita Electric Ind Co Ltd 二段圧縮冷凍サイクル装置
JPH05149634A (ja) * 1991-06-20 1993-06-15 Mitsubishi Electric Corp 空気調和装置
JPH062965A (ja) * 1992-06-16 1994-01-11 Matsushita Electric Ind Co Ltd 2段圧縮冷凍サイクル装置
JPH06307727A (ja) * 1993-04-27 1994-11-01 Matsushita Electric Ind Co Ltd 蓄熱暖房装置とその制御方法
JPH09145188A (ja) * 1995-11-27 1997-06-06 Sanyo Electric Co Ltd 冷凍サイクル及びその冷凍サイクルを備えた空気調和機
US5839886A (en) * 1996-05-10 1998-11-24 Shaw; David N. Series connected primary and booster compressors
US6276148B1 (en) * 2000-02-16 2001-08-21 David N. Shaw Boosted air source heat pump
JP2001227837A (ja) * 2000-02-14 2001-08-24 Mitsubishi Electric Corp 蓄熱式冷凍サイクル及び蓄熱式冷凍サイクルの運転方法
JP2001235246A (ja) * 2000-02-22 2001-08-31 Daikin Ind Ltd 冷凍装置
FR2864609A1 (fr) * 2003-12-29 2005-07-01 Patrice Saillard Installation thermique a configuration multiple, et echangeur adapte a cette installation.

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2076332A (en) * 1935-06-29 1937-04-06 York Ice Machinery Corp Lubrication system
US2294552A (en) * 1937-05-13 1942-09-01 Curtis Mfg Co Refrigerating condensing unit
US2938361A (en) * 1957-09-13 1960-05-31 Borg Warner Reversible refrigerating system
JPS5485453A (en) * 1977-12-20 1979-07-07 Toshiba Corp Refrigerating cycle
US4411141A (en) * 1981-02-06 1983-10-25 Mitsubishi Denki Kabushiki Kaisha Parallel operation compressor type refrigerating apparatus
JPH028660A (ja) * 1988-06-27 1990-01-12 Mitsubishi Electric Corp 冷凍機
JPH03129256A (ja) * 1989-10-13 1991-06-03 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JPH0480545A (ja) * 1990-07-20 1992-03-13 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機
JPH04257661A (ja) * 1991-02-12 1992-09-11 Matsushita Electric Ind Co Ltd 二段圧縮冷凍サイクル装置
JPH05149634A (ja) * 1991-06-20 1993-06-15 Mitsubishi Electric Corp 空気調和装置
JPH062965A (ja) * 1992-06-16 1994-01-11 Matsushita Electric Ind Co Ltd 2段圧縮冷凍サイクル装置
JPH06307727A (ja) * 1993-04-27 1994-11-01 Matsushita Electric Ind Co Ltd 蓄熱暖房装置とその制御方法
JPH09145188A (ja) * 1995-11-27 1997-06-06 Sanyo Electric Co Ltd 冷凍サイクル及びその冷凍サイクルを備えた空気調和機
US5839886A (en) * 1996-05-10 1998-11-24 Shaw; David N. Series connected primary and booster compressors
JP2001227837A (ja) * 2000-02-14 2001-08-24 Mitsubishi Electric Corp 蓄熱式冷凍サイクル及び蓄熱式冷凍サイクルの運転方法
US6276148B1 (en) * 2000-02-16 2001-08-21 David N. Shaw Boosted air source heat pump
JP2001235246A (ja) * 2000-02-22 2001-08-31 Daikin Ind Ltd 冷凍装置
FR2864609A1 (fr) * 2003-12-29 2005-07-01 Patrice Saillard Installation thermique a configuration multiple, et echangeur adapte a cette installation.

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 003, no. 108 (M - 072) 11 September 1979 (1979-09-11) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 144 (M - 0951) 19 March 1990 (1990-03-19) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 336 (M - 1151) 26 August 1991 (1991-08-26) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 293 (M - 1273) 29 June 1992 (1992-06-29) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 038 (M - 1358) 25 January 1993 (1993-01-25) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 548 (M - 1490) 4 October 1993 (1993-10-04) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 196 (M - 1589) 6 April 1994 (1994-04-06) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 02 31 March 1995 (1995-03-31) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 10 31 October 1997 (1997-10-31) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 25 12 April 2001 (2001-04-12) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108131860A (zh) * 2018-02-02 2018-06-08 北京中科华誉热泵设备制造有限公司 一种基于单机双级压缩机的超低温空气源热泵
CN108131860B (zh) * 2018-02-02 2024-01-19 北京华誉能源技术股份有限公司 一种基于单机双级压缩机的超低温空气源热泵

Also Published As

Publication number Publication date
FR2889296A1 (fr) 2007-02-02
DE602006019931D1 (de) 2011-03-17
EP1748191B1 (fr) 2011-02-02
FR2889296B1 (fr) 2013-07-05
ATE497583T1 (de) 2011-02-15

Similar Documents

Publication Publication Date Title
CA2619146A1 (fr) Dispositif de refroidissement d'un equipement electrique dans une turbomachine
FR2493489A1 (fr) Circuit de refrigeration pour chauffe-eau a pompe a chaleur
EP3606774B1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant
EP3924673B1 (fr) Dispositif de gestion thermique de vehicule automobile electrique ou hybride
EP2221559B1 (fr) Installation thermodynamique à lubrification améliorée
EP3496964B1 (fr) Circuit de climatisation inversible indirect de véhicule automobile et procédé de fonctionnement correspondant
FR3076600A1 (fr) Systeme thermodynamique de chauffage, de climatisation et de production d'eau chaude sanitaire
EP3507114B1 (fr) Circuit de climatisation inversible indirect de véhicule automobile et procédé de fonctionnement correspondant
EP1748191B1 (fr) Unité de compression et installation thermique comprenant une telle unité
EP2863130B1 (fr) Procédé de régulation d'une installation thermique pour un bâtiment
EP2318783B1 (fr) Système réversible de récupération d'énergie calorifique par prélèvement et transfert de calories d'un ou plusieurs milieux dans un autre ou plusieurs autres milieux quelconques
FR3058783A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant
FR3001794B1 (fr) Sous-refroidisseur actif pour systeme de climatisation
WO2020165513A1 (fr) Dispositif de gestion thermique de véhicule automobile électrique ou hybride
FR3072767A1 (fr) Machine thermodynamique pourvue d'un echangeur de degivrage
WO2020234057A1 (fr) Dispositif de gestion thermique avec vanne de régulation de pression d'évaporation
FR3092161A1 (fr) Circuit de climatisation de véhicule automobile et procédé de gestion associé
WO2019193121A1 (fr) Dispositif réversible de récupération d'énergie calorifique
EP3862715B1 (fr) Echangeur de chaleur reversible a double circuit de transport
FR3064944A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant
EP2729744B1 (fr) Procede d'equilibrage des niveaux de lubrifiant dans une unite de compression multi-etagee d'un systeme d'echange thermique et systeme d'echange thermique mettant en oeuvre un tel procede
EP3722703A1 (fr) Machine thermodynamique de type thermofrigopompe et procede de fonctionnement
EP3990839A1 (fr) Refroidisseur cryogénique pour détecteur de rayonnement notamment dans un engin spatial
FR2974889A1 (fr) Systeme de production du froid totalement a l'energie solaire thermique
CA2063882A1 (fr) Kit pour convertir une unite de climatisation en pompe thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070328

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF SWITZERLAND S.A.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602006019931

Country of ref document: DE

Date of ref document: 20110317

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006019931

Country of ref document: DE

Effective date: 20110317

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110202

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110602

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006019931

Country of ref document: DE

Effective date: 20111103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120718

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140716

Year of fee payment: 9

Ref country code: CH

Payment date: 20140725

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140714

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006019931

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160713

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731