EP1746955A2 - Gerät und verfahren zur rekonstruktion eines ligaments - Google Patents

Gerät und verfahren zur rekonstruktion eines ligaments

Info

Publication number
EP1746955A2
EP1746955A2 EP05738407A EP05738407A EP1746955A2 EP 1746955 A2 EP1746955 A2 EP 1746955A2 EP 05738407 A EP05738407 A EP 05738407A EP 05738407 A EP05738407 A EP 05738407A EP 1746955 A2 EP1746955 A2 EP 1746955A2
Authority
EP
European Patent Office
Prior art keywords
transverse
graft ligament
tunnel
support block
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05738407A
Other languages
English (en)
French (fr)
Other versions
EP1746955A4 (de
Inventor
Paul Re
Mark A. Johanson
Peter F. Marshall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Scandius Biomedical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/829,846 external-priority patent/US7520898B2/en
Application filed by Scandius Biomedical Inc filed Critical Scandius Biomedical Inc
Publication of EP1746955A2 publication Critical patent/EP1746955A2/de
Publication of EP1746955A4 publication Critical patent/EP1746955A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1714Guides or aligning means for drills, mills, pins or wires for applying tendons or ligaments

Definitions

  • This invention relates to surgical apparatus and procedures in general, and more particularly to surgical apparatus and procedures for reconstructing a 5 ligament.
  • a ligament is a piece of fibrous tissue which connects one bone to another.
  • L0 Ligaments are frequently damaged (e.g., detached or torn or ruptured, etc.) as the result of injury and/or accident.
  • a damaged ligament can cause instability, impede proper motion of a joint and cause pain.
  • the anterior cruciate ligament i.e., the ACL
  • the ACL 5 extends between the top of the tibia 10 and the bottom of the femur 15.
  • a damaged ACL can cause instability of the knee joint and cause substantial pain and arthritis.
  • Numerous procedures have been developed to restore a damaged ACL through a graft ligament replacement. In general, and looking next at Fig. 3, these ACL replacement procedures involve drilling a bone tunnel 20 up through tibia 10 and drilling a bone tunnel 25 up into femur 15.
  • the femoral tunnel 25 may be in the form of a blind hole and terminate in a distal end surface 30; in other cases the femoral tunnel 25, or an extension of the femoral tunnel 25, may pass completely through femur 15.
  • a graft ligament 35 consisting of a harvested or artificial ligament or tendon (s) is passed up through tibial tunnel 20, across the interior of the knee joint, and up into femoral tunnel 25. Then a distal portion of graft ligament 35 is secured in femoral tunnel 25 and a proximal portion of graft ligament 35 is secured in tibial tunnel 20.
  • a graft ligament in a bone tunnel.
  • One way is to use an interference screw 40 (Fig. 4) to wedge the graft ligament against ' an opposing side wall of the 5 bone tunnel.
  • Another way is to suspend the graft ligament in the bone tunnel with a button 45 and a suture 50 (Fig. 5) or with a crosspin 55 (Fig. 6) .
  • Still another way is to pass the graft ligament completely through the bone tunnel and affix the graft
  • the "Gold Standard" of ACL repair is generally considered to be the so-called “Bone-Tendon-Bone” fixation.
  • L5 tendon is used to replace the natural ACL. Attached to the opposing ends of the harvested tendon are bone grafts, one taken from the patient's knee cap (i.e., the patella) and one taken from the patient's tibia (i.e., at the location where the patella tendon
  • soft tissue grafts such as the hamstring tendon.
  • soft tissue grafts such as the hamstring can be difficult to stabilize within a bone tunnel. More particularly, the use of an interference screw to aggressively wedge the
  • L5 hamstring against an opposing side wall of the bone tunnel can introduce issues such as graft slippage, tendon winding, tissue necrosis and tendon cutting.
  • a suture sling e.g., such as that shown in Fig. 5
  • a crosspin e.g., such as ⁇ 0 that shown in Fig.
  • one object of the present invention is to provide improved apparatus for reconstructing a ligament, wherein the apparatus is adapted to permit the graft ligament to be fashioned out of various soft tissue grafts, e.g., allografts, autografts, xenografts, bioengineered tissue grafts or synthetic grafts, and further wherein the graft is intended to be secured in place using a transverse fixation pin.
  • various soft tissue grafts e.g., allografts, autografts, xenografts, bioengineered tissue grafts or synthetic grafts
  • Another object of the present invention is to provide an improved method for reconstructing a 5 ligament, wherein the method is adapted to permit the graft ligament to be fashioned out of various soft tissue grafts, e.g., allografts, autografts, xenografts, bioengineered tissue grafts or synthetic grafts, and further wherein the graft is intended to be
  • a graft ligament support block which comprises a body, and a
  • the body L5 graft hole and a transverse fixation pin hole extending through the body, with both the graft hole and the transverse fixation pin hole preferably extending substantially perpendicular to the longitudinal axis of the body.
  • !0 invention also comprises an installation tool for inserting the graft ligament support block into the bone tunnel and, while supporting the graft ligament support block in the bone tunnel, forming a transverse tunnel in the host bone, with the transverse tunnel in the host bone being aligned with the transverse fixation pin hole in the graft ligament support block.
  • a graft ligament is looped through the graft hole in the graft ligament support block, and the graft ligament support block is mounted to the installation tool. The two free ends of the graft ligament are then preferably secured to a
  • this arrangement will also help hold the graft ligament support block to the
  • the installation tool is used to. advance the graft ligament support block through the tibial tunnel, across the interior of the knee joint, and up into the femoral tunnel, with the two free ends of the looped graft ligament extending back out through
  • a transverse tunnel is formed in the host bone, with the transverse tunnel being aligned with the transverse fixation pin hole in the graft ligament support block.
  • the graft ligament support block is secured in place by pinning the graft ligament support block within the femoral tunnel, i.e., by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • the two free ends of the looped graft ligament are released from the installation tool, the installation tool is detached from the graft ligament support block, and the installation tool is withdrawn from the surgical site.
  • a graft ligament support block for supporting a graft ligament in a bone tunnel
  • the graft ligament support block comprising: a body having a distal end, a proximal end, and a longitudinal axis extending between the distal end and the proximal end, the proximal end being tapered so as to facilitate withdrawal of the graft 5 ligament support block through a bone tunnel; a graft hole extending through the body transverse to the longitudinal axis and configured to receive a graft ligament therein; and a transverse fixation pin hole extending 10.
  • a method for securing a 15 graft ligament in a bone tunnel comprising the steps of: (1) looping a graft ligament through a graft hole in a graft ligament support block, advancing the graft ligament support block into the bone tunnel, 0 withdrawing the graft ligament support block back down the bone tunnel, advancing a graft ligament support block into the bone tunnel, with a graft ligament being looped through a graft hole in the graft ligament support block, and forming a transverse tunnel in the host bone, with a transverse fixation pin hole in the graft ligament support block being aligned with the 5 transverse tunnel in the host bone; and (2) pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole
  • apparatus for use in reconstructing a ligament comprising: a graft ligament support block for supporting a graft ligament in a bone tunnel, the graft ligament .5 support block comprising: a body having a distal end, a proximal end, and a longitudinal axis extending between the distal end and the proximal end; a graft hole extending through the body !0 transverse to the longitudinal axis and configured to receive a graft ligament therein, the graft hole having a given length along the longitudinal axis, the given length being substantially equal to a given cross-sectional dimension of the graft ligament; and a transverse fixation pin hole extending through the body transverse to the longitudinal axis and configured to receive a transverse fixation pin therein.
  • a method for securing a graft ligament in a bone tunnel comprising the steps of: selecting a graft ligament support block with a graft hole sized substantially equal to a given cross-sectional dimension of a graft ligament; looping the graft ligament through the graft hole in a graft ligament support block; advancing the graft ligament support block into the bone tunnel; forming a transverse tunnel in the host bone, with a transverse tunnel being aligned with a transverse fixation pin hole in the graft ligament support block; and pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament 5 support block.
  • a method for securing a graft ligament in a bone tunnel comprising the steps of: L0 forming a transverse tunnel in the host bone; selecting a graft ligament support block with a graft hole sized substantially equal to a given cross-sectional dimension of a graft ligament; looping the graft ligament through the graft hole L5 in the graft ligament support block; advancing the graft ligament support block into the bone tunnel so that a transverse fixation pin hole in the graft ligament support block is aligned with the transverse tunnel; and .0 pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • apparatus for use in 5 reconstructing a ligament comprising: a graft ligament support block for supporting a graft ligament in a bone tunnel, the graft ligament support block comprising: a body having a distal end, a proximal end, 10 and a longitudinal axis extending between the distal end and the proximal end; a graft hole extending through the body transverse to the longitudinal axis and configured to receive a graft ligament therein; and L5 a transverse fixation pin hole extending through the body transverse to the longitudinal axis and configured to receive a transverse fixation pin therein; and a transverse fixation pin having a proximal end -0 and a distal end, and the proximal end forming an internal tapped hole therein so as to aid removal of the transverse fixation pin from the bone tunnel.
  • a method for revising a graft ligament in a bone tunnel comprising the steps of: engaging an internal tapped hole in a transverse fixation pin with a removal tool; withdrawing the transverse fixation pin from the bone tunnel with removal tool engaged with the internal tapped hole, and withdrawing a graft ligament support block back down the bone tunnel; positioning a graft ligament support block into the bone tunnel; pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along a transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • a system for use in reconstructing a ligament comprising:
  • a graft ligament support block for supporting a graft ligament in a bone tunnel
  • the graft ligament support block comprising: a body having a distal end, a proximal end, and a longitudinal axis extending between the distal end and the proximal end; a graft hole extending through the body transverse to the longitudinal axis and configured to receive a graft ligament therein; a stepped fixation pin having a distal end, a proximal end, a longitudinal axis extending between the distal end and the proximal end, a first portion at the distal end, a second portion at the proximal end, the first portion having a smaller diameter than second portion, and an annular shoulder configured between the first portion and the second portion, wherein the first portion, the second portion and the annular shoulder form a given profile in a cross-section of a given plane perpendicular to the longitudinal axis; and a stepped transverse tunnel drill having a distal end,
  • L0 invention there is provided a method for securing a graft ligament in a bone tunnel, comprising the steps of: looping a graft ligament through a graft hole in a graft ligament support block;
  • a method for securing a graft ligament in a bone tunnel comprising the steps of: 10 forming a stepped transverse tunnel in the host bone with a stepped transverse tunnel drill; looping a graft ligament through a graft hole in a graft ligament support block; advancing the graft ligament support block into L5 the bone tunnel so that a transverse fixation pin hole in the graft ligament support block is aligned with the stepped transverse tunnel; and pinning the graft ligament support block within the bone tunnel by advancing a stepped transverse .0 fixation pin along the stepped transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • a system for use in reconstructing a ligament comprising: a graft ligament support block for supporting a graft ligament in a bone tunnel, the graft ligament support block comprising: a body having a distal end, a proximal end, a longitudinal axis extending between the distal end and the proximal end, and at least one element for engagement by an installation tool; a graft hole extending through the body transverse to the longitudinal axis and configured to receive a graft ligament therein; and a transverse fixation pin hole extending through the body transverse to the longitudinal axis and configured to receive a transverse fixation pin therein; an installation tool comprising: a holder, the holder comprising: a shaft having a distal end, a proximal end, and a longitudinal axis extending between the distal end and the proximal end, the proximal end of the shaft configured to engage the at least
  • a method for securing a graft ligament in a bone tunnel comprising the steps of: looping a graft ligament through a graft hole in a graft ligament support block; advancing the graft ligament support block into the bone tunnel; positioning a drill guide in attachment to the graft support block, the drill guide comprising an outrigger and a drill sleeve movably attached to the outrigger, and the drill sleeve having depth markers thereon; determining a proper transverse tunnel depth with the drill sleeve and the outrigger by moving the drill sleeve within the outrigger toward the bone tunnel and reading the depth markers on the drill sleeve; forming a transverse tunnel in the host bone to a proper transverse tunnel depth by drilling a transverse tunnel drill to a given depth according to markers disposed on thereon, with the transverse tunnel being aligned with a transverse fixation pin hole in the graft ligament
  • a method for securing a graft ligament in a bone tunnel comprising the steps of: positioning a drill guide in attachment to a reamer inserted into the bone tunnel, the drill guide comprising an outrigger and a drill sleeve movably attached to the outrigger, and the drill sleeve having depth markers thereon; determining a proper transverse tunnel depth with the drill sleeve and the outrigger by moving the drill sleeve within the outrigger toward the bone tunnel and reading the depth markers on the drill sleeve; forming a transverse tunnel in the host bone to a proper transverse tunnel depth by drilling a transverse tunnel drill to a given depth according to markers disposed thereon; removing the reamer from the bone tunnel; looping a graft ligament through a graft hole in a graft ligament support block; advancing the graft ligament support block into the bone tunnel so that a transverse fix
  • a system for use in reconstructing a ligament comprising: a graft ligament support block for supporting a graft ligament in a bone tunnel, the graft ligament support block comprising: a body having a distal end, a proximal end, a longitudinal axis extending between the distal end and the proximal end, and at least one element for engagement by an installation tool; a graft hole extending through the body transverse to the longitudinal axis and configured to receive a graft ligament therein; and a transverse fixation pin hole extending through the body transverse to the longitudinal axis and configured to receive a transverse fixation pin therein; an installation tool comprising: a holder, the holder comprising: a shaft having a distal end, a proximal end, and longitudinal axis extending between the distal end and the proximal end, the proximal end of the shaft configured to engage the at least one element
  • a graft ligament support block for supporting a graft ligament in a bone tunnel
  • the graft ligament support block comprising: a body having a distal end, a proximal end, 5 and a longitudinal axis extending between the distal end and the proximal end; and a graft hole extending through the body transverse to the longitudinal axis and configured to receive a graft ligament therein; L0 a stepped transverse fixation pin having a distal end, a proximal end, a longitudinal axis extending between the distal end and the proximal end, a first portion at the distal end, a second portion at the proximal end, the first portion having a smaller L5 diameter than second portion, and an annular shoulder configured between the first portion and the second portion, wherein the first portion, the second portion and the annular shoulder form a given profile in a cross-section of a given plane perpendicular to the .0 longitudinal axis; a stepped trans
  • a method for securing a graft ligament in a bone tunnel comprising the steps of: looping a graft ligament through a graft hole in a graft ligament support block; advancing the graft ligament support block into the bone tunnel; determining a proper transverse tunnel depth by reading a position of a first set of depth markers on a drill sleeve relative to an outrigger; forming a transverse tunnel in the host bone using a transverse tunnel drill having a second set of depth markers thereon so as to drill the transverse tunnel to the proper transverse tunnel depth, with a transverse tunnel being aligned with a transverse fixation pin hole in the graft ligament support block; and pinning the graft ligament support block within the bone tunnel by selecting a transverse fixation pin based on the proper transverse tunnel depth determined by the first set of depth markers on the drill sleeve and advancing the selected transverse fixation pin along the transverse tunnel in
  • a method for securing a graft ligament in a bone tunnel comprising the steps of: looping a graft ligament through a graft hole in a graft ligament support block; advancing the graft ligament support block into the bone tunnel; determining a proper transverse tunnel depth by reading a position of a first set of depth markers on a drill sleeve relative to an outrigger; forming a transverse tunnel in the host bone using a transverse tunnel drill having a second set of depth markers thereon so as to drill the transverse tunnel to the proper transverse tunnel depth, with the transverse tunnel being aligned with a transverse fixation pin hole in the graft ligament support block; and pinning the graft ligament support block within the bone tunnel by selecting a transverse fixation pin based on the proper transverse tunnel depth determined by the first set of depth markers on the drill sleeve and advancing the selected transverse fixation pin along the transverse tunnel in the host
  • a method for securing a graft ligament in a bone tunnel comprising the steps of: looping a graft ligament through a graft hole in a graft ligament support block; advancing the graft ligament support block into the bone tunnel; forming a transverse tunnel in the host bone to a predetermined depth using a transverse tunnel drill having a stop element at a predetermined distance from a distal end of- the transverse tunnel drill, the stop element configured to engage a drill sleeve so as to limit drilling to the predetermined depth, with said transverse tunnel being aligned with a transverse fixation pin hole in the graft ligament support block; and pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • a method for securing a 5 graft ligament in a bone tunnel comprising the steps of: forming a transverse tunnel in the host bone to a predetermined depth using a transverse tunnel drill having a stop element at a predetermined distance from .0 a distal end of the transverse tunnel drill, the stop element configured to engage a drill sleeve so as to limit drilling to the predetermined depth; looping a graft ligament through a graft hole in a graft ligament support block; L5 advancing the graft ligament support block into the bone tunnel so that a transverse fixation pin hole in the graft ' ligament support block is aligned with the transverse tunnel; and pinning the graft ligament support block within 20 the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • apparatus for use in reconstructing a ligament comprising: a graft ligament support block for supporting a graft ligament in a bone tunnel, the graft ligament support block comprising: a body having a distal end, a proximal end, and a longitudinal axis extending between the distal end and the proximal end, the proximal end being tapered so as to facilitate withdrawal of the graft ligament support block through the bone tunnel; a graft hole extending through the body transverse to the longitudinal axis and configured to receive a graft ligament therein; and a region configured for drilling a transverse fixation pin hole through the body transverse to the longitudinal axis as a transverse hole is drilled through the bone tunnel.
  • Fig. 1 is a schematic view of a knee joint, as viewed from the anterior side
  • Fig. 2 is a schematic view of a knee joint, as viewed from the posterior side
  • Fig. 3 is a schematic view of a generic ACL reconstruction
  • Fig. 4 is a schematic view of an ACL reconstruction effected using an interference screw
  • Fig. 5 is a schematic view of an ACL reconstruction effected using a suture sling
  • FIG. 6 is a schematic view of an ACL reconstruction effected using a crosspin
  • Fig. 7 is a schematic view of an ACL reconstruction effected using a screw and washer
  • Fig. 8 is a schematic view of a graft ligament support block formed in accordance with the present invention
  • Fig. 9 is a partially exploded view showing the 5 graft ligament support block of Fig. 8 and an installation tool for deploying the same
  • Figs. 10-12 are various views showing the graft ligament support block of Fig. 8 mounted to the distal end of the installation tool shown in Fig. 9
  • .0 Fig. 13 is a partial perspective view showing details of the proximal end of the installation tool shown in Fig. 9; Fig.
  • FIG. 14 is a side view, partially in section, showing further details of the construction of the L5 installation tool shown in Fig. 9;
  • Fig. 15 is a side sectional view of the installation tool's drill sleeve;
  • Fig. 16 is a perspective view of a transverse fixation pin which may be used in conjunction with the -0 graft ligament support block of Fig. 8 and the installation tool of Fig. 9;
  • Figs. 17-33 are a series of schematic views showing an ACL reconstruction being effected in accordance with the present invention;
  • Fig. 34 is a schematic view showing another form of graft ligament support block formed in accordance with the present invention;
  • Fig. 35 is an enlarged side view showing an alternative construction for a portion of the installation tool;
  • Fig. 35 is an enlarged side view showing an alternative construction for a portion of the installation tool;
  • FIG. 36 is a sectional view taken along line 36-36 of Fig. 35;
  • Fig. 37 is a schematic view showing a reamer drill guide formed in accordance with the present invention;
  • Fig. 38 is a schematic view showing the reamer element of the reamer drill guide shown in Fig. 37;
  • Figs. 39-44 are a series of schematic views showing an ACL reconstruction being effected in accordance with the present invention;
  • Figs. 45, 46A and 46B are schematic views of graft ligament support blocks, with each one showing a tapered distal edge configuration;
  • Fig. 47 is a schematic view of a transverse fixation pin having an internal tapped hole formed at its proximal end;
  • FIG. 48 is a schematic view of a retraction tool having a threaded projection configured to engage the internal tapped hole of the transverse fixation pin shown in Fig. 47;
  • Fig. 49 is a schematic view showing a stepped transverse tunnel drill having a narrow cutting portion and a wide cutting portion;
  • Fig. 50 is a schematic view of an ACL reconstruction procedure effected using the stepped transverse tunnel drill shown in Fig. 49;
  • Figs. 51A, 51B and 52 are schematic views of a system for use in reconstructing a ligament, the system including a stepped transverse tunnel drill with depth markers thereon and a drill sleeve with depth markers thereon; Figs.
  • Figs. 53 and 54 are schematic views of a transverse tunnel drill having a stop element configured thereon; and Figs. 55 and 56 are schematic views of a system for use in reconstructing a ligament, the system including a transverse pin inserter depth gauge configured to determine the placement depth of a transverse pin inserted into the transverse tunnel.
  • Graft ligament support block 100 which comprises one preferred form of the invention.
  • Graft ligament support block 100 comprises a body 105, and a graft hole 110 and a transverse fixation pin hole 115 extending through body 105, with both graft hole 110 and transverse fixation pin hole 115 preferably extending substantially perpendicular to the longitudinal axis 120 of body 105.
  • graft hole 110 and transverse fixation pin hole 115 extend diametrically across body 105, with graft hole 110 and transverse fixation pin hole 115 extending substantially parallel to one another.
  • graft hole 110 resides closer to the proximal end 125 of body 105 than transverse fixation pin hole 115, and transverse fixation pin hole 115 resides closer to the distal end 130 of body 105 than graft hole 110.
  • the distal end of body 105 has a circular cross-section, although it may also have an oval cross- ⁇ section or a polygonal cross-section (e.g., square or rectangular or triangular, etc.).
  • the distal end of body 105 has a cross- section sized just slightly smaller than the diameter of the bone tunnel, so as to provide a close interface between body 105 and the walls of the bone tunnel.
  • the distal end 130 of body 105 is tapered so as to facilitate advancement of graft ligament support block 100 through a bone tunnel.
  • the proximal end of body 105 is sculpted away, e.g. such as shown at 135, so as to provide more room for a graft ligament looped ' through graft hole 110 and extending distally therefrom.
  • Body 105 also includes a pair of recesses 140 for mounting body 105 to an appropriate installation tool, as will hereinafter be discussed in further detail.
  • graft ligament support block 100 may also include suture hole 145 for receiving a tow suture, as will hereinafter be discussed in further detail .
  • proximal end of graft hole 110 may be tapered as shown at 150 so as to provide a less traumatic bearing surface for a graft ligament looped through graft hole 110, and/or the entrance of transverse fixation pin hole 115 may be tapered as shown at 155 so as to facilitate entry of a transverse fixation pin into transverse fixation pin hole 115.
  • Body 105 may be formed out of a polymer, a bioabsorbable or bioremodelable material, allograft bone, a metal, a ceramic, coral, a fiber composite, a composite including at least one of the foregoing, etc.
  • Installation tool 200 which may be used in conjunction with graft ligament support block 100.
  • Installation tool 200 generally comprises a holder 205 and an associated drill guide 210.
  • Holder 205 comprises a shaft 215 having a pair of fingers 220 at its distal end and a handle 225 at its proximal end.
  • Fingers 220 allow installation tool 200 to mate with, and releasably hold, graft ligament support block 100 by selectively fitting into the recesses 140 (Fig. 8) formed on the proximal end of graft ligament support block 100. See Figs. 9-12 and 14.
  • fingers 220 and recesses 140 comprise a male/female connection; if desired, the locations of the male and female members may be reversed (i.e., with the male portion on support block 100 and the female portion on holder 205) ; or an alternative type of connection (e.g., a grasper) may be used.
  • one or more suture posts 227 are formed on the proximal end of shaft 215 adjacent to handle 225.
  • Handle 225 allows installation tool 200 to be conveniently grasped by a user.
  • Handle 225 includes a post hole 230.
  • Post hole 230 allows drill guide 210 to be releasably secured to holder 205, as will hereinafter be discussed in further detail .
  • ' Drill guide 210 comprises an outrigger 235 having a threaded bore 240 (Fig. 14) formed in its distal end 245, and a slot 250 (Fig. 9) and post 255 at its proximal end 260. The end of post 255 is threaded, e.g., as shown at 265.
  • the threaded bore 240 (Fig. 14) in the outrigger's distal end 245 is sized to receive a drill sleeve 270 therein.
  • Drill sleeve 270 has threads 275 along its length and terminates in a proximal head 280.
  • Head 280 can be used to manually rotate drill sleeve 270 within the outrigger's threaded bore 240, whereby to move drill sleeve 270 relative to the distal end 245 of outrigger 235.
  • a lumen 285 extends through drill sleeve 270.
  • Slot 250 and post 255 permit outrigger 235 to be releasably mounted to holder 205.
  • outrigger 235 may be mounted to holder 205 by fitting the holder's shaft 215 in the outrigger's slot 250 (Figs. 13 and 14), fitting the outrigger's post 255 in the holder's post hole 230, and then tightening nut 290 onto the threaded end 265 of post 255.
  • graft ligament support block 100 and installation tool 200 are intended to be used in conjunction with a transverse fixation pin.
  • One preferred transverse fixation pin 300 is shown, in Fig. 16.
  • Transverse fixation pin 300 generally comprises a solid shaft 305 terminating in a tapered distal end 310, and a ribbed (or barbed or threaded) section 315.
  • a non-circular socket 320 is formed in the proximal end of transverse fixation pin 300, whereby transverse fixation pin 300 may be engaged by a driver.
  • An ACL reconstruction effected in accordance with the present invention will now be described.
  • the surgical site is prepared for the graft ligament, e.g., by clearing away the damaged ACL, etc.
  • a guidewire 400 (Fig. 17) is drilled up through tibia 10 and into the interior of the knee joint.
  • guidewire 400 is stopped short of engaging the bottom of femur 15 (Fig. 18) .
  • a cannulated tibial drill 500 (Fig.
  • a cannulated femoral drill 600 e.g., an acorn drill is loaded onto guidewire 400 (Fig.
  • a graft ligament 35 is mounted to graft ligament support block 100 by threading one end of the graft ligament through graft hole 110, and then graft ligament support block 100 is mounted to the distal end of shaft 215, i.e., by seating fingers 220 in recesses 140.
  • the two free ends of graft ligament 35 are preferably held taut, e.g., by passing sutures 70 through the two free ends of graft ligament 35 and then securing those sutures (e.g., by winding) to suture posts 227.
  • This arrangement will help control the two free ends of graft ligament 35 and will help hold graft ligament support block 100 to holder 205.
  • installation tool 200 is used to push graft ligament support block 100, and hence graft ligament 35, up -through tibial tunnel 20 (Fig. 25) , across the interior of the knee joint, and up into femoral tunnel 25 (Fig. 26) .
  • a suture may be used to help tow graft ligament support block 100 and graft ligament 35 up into position. More particularly, a suture 700 (Fig.
  • suture 700 may be used to help tow graft ligament support block 100 and graft ligament 35 up into position (Fig. 26) .
  • Such an arrangement will help reduce the amount of force which needs to be delivered by installation tool 200 to push graft ligament support block 100 and graft ligament 35 up into position.
  • transverse tunnel drill 800 (Fig. 28) is used to drill a transverse tunnel 75 through the lateral portion of femur 15, through transverse fixation pin hole 115 in graft ligament support block 100, and into the medial portion of femur 15.
  • transverse tunnel drill 800 will be accurately and consistently directed through transverse fixation pin hole 115 in graft ligament support block 100 (Fig. 28) due to the fact that the orientation of graft ligament support block 100 and installation tool 200 (and hence drill sleeve 270) is regulated by the engagement of fingers 220 in recesses 140.
  • transverse tunnel drill 800 Once transverse tunnel drill 800 has been used to drill transverse tunnel 75, transverse tunnel drill 800 is removed (Fig. 29) . Then drill sleeve 270 is loosened and outrigger 210 dismounted from holder 205 (Fig. 30) . Then transverse fixation pin 300, mounted on a driver 325, is advanced into transverse tunnel 75 and across transverse fixation pin hole 115 in graft ligament support block 100 (Fig. 31), whereby to secure graft ligament support block 100 (and hence graft ligament 35) in femoral tunnel 25.
  • the transverse fixation pin may be advanced by driver 325 by tapping on the proximal end of the driver with a mallet or by rotating the driver and/or both.
  • the driver 325 is then removed (Fig. 32) .
  • the two free ends of graft ligament 35 are detached from the handle's suture posts 227, and holder 205 is withdrawn (Fig. 33) .
  • graft ligament support block 100 will be held in position in femoral tunnel 25 when holder 205 is withdrawn due to the presence of transverse fixation pin 300 in transverse tunnel 75 and transverse fixation pin hole 115.
  • transverse fixation pin hole 115 (Fig. 8) is pre-formed in body 105.
  • transverse fixation pin hole 115 can be given a desired geometry, e.g., it permits the entrance to crosspin hole 115 to be tapered, such as is shown at 155 in Fig.
  • transverse fixation pin hole 115 may not be pre-formed in body 105. Instead, transverse fixation pin hole 115 may be formed in situ, at the time of surgery, e.g., by drilling across body 105 when forming transverse tunnel 75 with transverse tunnel drill 800. Where transverse fixation pin hole 115 is to be formed in situ, it is of course necessary for body 105 to be formed out of a drillable material.
  • transverse fixation pin hole 115 is to be formed in situ, it is preferred that body 105 be formed out of a relatively strong material, since then any misplacement (i.e., any off-center placement) of transverse fixation pin hole 115 will be well tolerated by body 105.
  • the outer surface of body 105 is sculpted away proximal to graft hole 110, such as is shown at 135 in Fig. 8, so as to help accommodate the graft ligament in femoral tunnel 25. In Fig. 8, sculpting is effected so as to produce a substantially planar surface at 135.
  • sculpting can be effected so as to provide alternative geometries, e.g., a surface groove, etc.
  • body 105 is shown with a pair of surface grooves 165 communicating with, and extending proximally from, graft hole 110.
  • Surface grooves 165 are sized so as to provide a recess for seating portions of the graft ligament as the graft ligament extends proximally from graft hole 110.
  • body 105 is shown (see, for example, Fig. 8) as having a relatively smooth outer surface.
  • body 105 may have spikes or ribs, etc.
  • drill sleeve 270 is movably connected to outrigger 235 via a screw connection (i.e., screw threads 275 on the exterior of drill sleeve 270 and threaded bore 240 in outrigger 235) .
  • This arrangement provides a simple and cost-effective way to movably secure drill sleeve 270 to outrigger 235.
  • drill sleeve 270 could have a smooth or ribbed or roughed (e.g.
  • drill guide 210 is shown (see, for example, Fig. 14) as being--.- releasably secured to holder 205 via a post 255 and tightening nut 290.
  • a reamer drill guide 200A (Fig. 37) may be used.
  • Reamer drill guide 200A is substantially identical to the installation tool 200 described above, except as will hereinafter be described. More particularly, reamer drill guide 200A comprises a reamer 205A and the drill guide 210.
  • Reamer 205A is substantially identical to the holder 205 described above, except that it has a cylindrical element 220A (Figs. 37 and 38) at its distal end having a transverse hole 220B extending therethrough, and it omits the suture posts 227 which are preferably provided on holder 205.
  • Reamer 205A is configured so that (i) its cylindrical element 220A has a diameter approximately equal to the diameter of femoral tunnel 25, and (ii) when drill guide 210 is attached to reamer 205A, the lumen 285 in drill sleeve 270 will be aligned with transverse hole 220B in reamer 205A.
  • Graft ligament support block 100, holder 205 and reamer drill guide 200A may be used to effect an ACL reconstruction as follows. First, the surgical site is prepared for the graft ligament, e.g., by clearing away the damaged ACL, etc. Then a guidewire 400 (Fig. 17) is drilled up through tibia 10, across the interior of the knee joint. Preferably guidewire 400 is stopped short of engaging the bottom of femur 15 (Fig. 18) . Then a cannulated tibial drill 500 (Fig. 19) is loaded onto guidewire 400 and drilled up through tibia 10 and into the interior of the knee joint (Fig. 20) . Thenulated tibial drill 500 is withdrawn back down the guidewire (Fig.
  • a cannulated femoral drill 600 e.g., an acorn drill of the type shown in Fig. 22
  • cannulated femoral drill 600 is withdrawn back down the guidewire, leaving a femoral tunnel 25, and then guidewire 400 is withdrawn (see Fig. 39) .
  • reamer drill guide 200A is advanced so that its cylindrical element 220A is advanced through tibial tunnel 20, across the interior of the knee, and up into femoral, tunnel 25.
  • its cylindrical element 220A will ream both bone tunnels, clearing out any intervening debris.
  • drill sleeve 270 is advanced into tight engagement with femur 15. This action will help stabilize reamer drill guide 200A relative to femur 15.
  • a transverse tunnel drill 800 (Fig. 40) is used to drill a transverse tunnel 75 through the lateral
  • transverse tunnel drill 800 will be accurately and consistently directed through transverse hole 220B in
  • a graft ligament 35 is mounted to graft ligament support block 100 by threading one end of the graft ligament through graft hole 110, and then graft ligament support block 100 is mounted to the distal end of shaft 215, i.e., by seating fingers 220 in recesses 140.
  • the two free ends of graft ligament 35 are preferably held taut, e.g., by passing sutures 70 through the two free ends of graft ligament 35 and then securing these sutures (e.g., by winding) to suture posts 227.
  • This arrangement will help control the two free ends of graft ligament 35 and will help hold graft ligament support block 100 to holder 205.
  • holder 205 is used to push graft ligament support block 100, and hence graft ligament 35, up through tibial tunnel 20, across the interior of the knee joint, and up into femoral tunnel 25 (Fig. 42) .
  • graft ligament support block As graft ligament support block is advanced in femoral tunnel 25, or after it has been advanced an appropriate distance into femoral tunnel 25, it is rotated as necessary, by turning handle 225 as necessary, so as to align the transverse fixation pin hole 115 with transverse tunnel 75. Such alignment may be facilitated by providing an alignment marker (e.g., such as the alignment marker 225A shown in Fig. 43) on handle 225. Then transverse fixation pin 300, mounted on a driver 325, is advanced into transverse tunnel 75 and across transverse fixation pin hole 115 in graft ligament support block 100 (Fig. 44), whereby to secure graft ligament support block 100 (and hence graft ligament 35) in femoral tunnel 25. Then driver 325 is removed.
  • an alignment marker e.g., such as the alignment marker 225A shown in Fig. 43
  • graft ligament support block 1500 which comprises one preferred form of the invention.
  • Graft ligament support block 1500 comprises a body 1505, and a graft hole 1510 and a transverse fixation pin hole 1515 extending through body 1505, with both graft hole
  • transverse fixation pin hole 1515 preferably extending substantially perpendicular to the longitudinal axis 1520 of body 1505.
  • graft hole 1510 and transverse fixation pin hole 1515 extend diametrically across body
  • L5 1505 with graft hole 1510 and transverse fixation pin hole 1515 extending substantially parallel to one another.
  • graft hole 1510 resides closer to the proximal end 1525 of body 1505 than transverse fixation pin hole 1515, and transverse fixation pin
  • ⁇ 0 hole 1515 resides closer to the distal end 1530 of body 1505 than graft hole 1510.
  • the distal end of body 1505 has a circular cross-section, although it may also have an oval cross-section or a polygonal cross-section (e.g., square or rectangular or triangular, etc. ) .
  • the distal end of body 1505 has a cross-section sized just slightly smaller than the diameter of the bone tunnel, so as to provide a close interface between body 1505 and the walls of the bone tunnel.
  • the distal end 1530 of body 1505 is tapered so as to facilitate advancement of graft ligament support block 100 through a bone tunnel.
  • body 1505 is sculpted away, e.g. such as shown at 1535, so as to provide more room for a graft ligament looped through graft hole 1510 and extending distally therefrom.
  • Body 1505 also includes one or more recesses (not shown, but preferably similar to or analogous to the recesses 140 provided in body(105)) for mounting body 1505 to an appropriate installation tool.
  • graft ligament support block 1500 may also include suture hole 1545 for receiving a tow suture, as will hereinafter be discussed in further detail.
  • proximal end of graft hole 1510 may be tapered as shown at 1550 so as to provide a less traumatic bearing surface for a graft ligament looped through graft hole 1510, and/or the entrance of transverse fixation pin hole 1515 may be tapered as -shown at 1555 so as to facilitate entry of a transverse fixation pin into transverse fixation pin hole 1515.
  • Body 1505 may be formed out of a polymer, a bioabsorbable or bioremodelable material, allograft bone, a metal, a ceramic, coral, a fiber composite, a composite including at least one of the foregoing, etc.
  • a tapered portion 1560 at the proximal end 1525 of body 1505. Tapered portion 1560 facilitates retraction of graft block 1505 out of a bone tunnel if the same is needed, e.g., for an interoperative revision. This is beneficial in that other designs with squared corners tend to bind in the bone tunnel if the body is retracted proximally out of a bone tunnel.
  • body 1505 having a graft hole 1510 with a length X (Fig. 46A) , which is substantially equal to the width of a graft ligament.
  • Graft hole 1510 provides an opening which is shorter than length Y of graft hole 110 of body 105 (Fig. 46B) , which in turn provides increased contact of the graft with the tunnel wall.
  • a method for securing a graft ligament in a bone tunnel comprises a first step of selecting a graft ligament support block with a graft hole sized substantially equal to a given width of a graft ligament.
  • the method comprises a step of looping the graft ligament through the graft hole in the graft ligament support block.
  • the method comprises a further step of advancing the graft ligament support block into the bone tunnel.
  • the method comprises a step of forming a transverse tunnel in the host bone, with a transverse tunnel being aligned with a transverse fixation pin hole in the graft ligament support block.
  • the final step of the method comprises pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • the method comprises the step of forming a transverse tunnel in the host bone.
  • the method comprises the step of selecting a graft ligament support block with a graft hole sized substantially equal to a given width of a graft ligament.
  • the method also comprises the step of looping the graft ligament through the graft hole in the graft ligament support block.
  • the graft ligament support block is advanced into the bone tunnel so that a transverse fixation pin hole in the graft ligament support block is aligned with the transverse tunnel.
  • the final step comprises pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block. Looking now at Figs.
  • Removable fixation pin 1600 (Fig.47) which is configured to be used in a similar fashion as transverse fixation pin 300 (Fig. 16) described hereinabove.
  • Removable fixation pin 1600 (Fig. 47) generally comprises a solid shaft 1605 terminating in a tapered distal end 1610, and a ribbed (or barbed or threaded) section 1615.
  • a socket 1620 is formed in the proximal end of removable transverse fixation pin 1600, whereby transverse fixation pin 1600 may be engaged by a driver.
  • Socket 1620 may be adapted to receive a rotational-type driver (e.g., a hex driver) or a mallet-type driver.
  • Socket 1620 further includes an internal tapped hole 1625 formed therein. Internal tapped hole 1625 is configured to engage a retraction tool 1630 (Fig. 48) so as to aid in the removal of removable fixation pin 1600 from a transverse bone tunnel .
  • Retraction tool 1630 generally comprises a shaft 1635 having a handle 1640 at one end and a threaded projection 1645 at the other end. Threaded projection 1645 is configured for threadable engagement with internal tapped hole 1625 formed in removable fixation pin 1600. When threaded projection 1645 is securely mated with internal tapped hole 1625, removable transverse fixation pin 1600 may be withdrawn from a bone tunnel by applying appropriate forces on handle 1640.
  • a method for revising a graft ligament in a bone tunnel comprises of engaging an internal tapped hole in a transverse fixation pin with a removal tool.
  • the method also comprises the step of withdrawing the transverse fixation pin from the bone tunnel with the removal tool engaged with the internal tapped hole.
  • the method comprises a further step of repositioning the graft ligament support block into the bone tunnel.
  • the method comprises a final step of pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along a transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • a stepped transverse tunnel drill 1700 having a shaft 1705 with a narrow cutting portion 1710 along a first length of the distal end thereof, a wide cutting portion 1715 along a second length proximally of the narrow cutting portion 1710, and a discontinuous portion 1720 formed at the junction of narrow cutting portion 1710 and wide cutting portion 1715.
  • stepped transverse tunnel drill 1700 is used so as to drill a stepped transverse tunnel 1725 (Fig. 50) through the lateral potion of femur 15, through a portion of bone tunnel 25, and into the medial portion of femur 15 as described herein.
  • Transverse tunnel 1725 includes a narrow portion 1730 and a wide portion 1735 corresponding to narrow cutting portion 1710 and wide cutting portion 1715 of stepped transverse tunnel drill 1700, respectively.
  • a stepped portion (not shown) within transverse tunnel 1725 provides an annular shoulder to stop the advancement of a transverse tunnel pin (not shown) .
  • a stepped fixation pin having a profile of a portion of stepped transverse tunnel drill 1700.
  • the stepped fixation pin is preferably configured with an annular shoulder formed between a narrow portion at its distal end and a wide portion at its proximal end.
  • a method for securing a graft ligament in a bone tunnel.
  • the method comprises looping a graft ligament through a graft hole in a graft ligament support block (not shown) .
  • the method further comprises advancing the graft ligament support block into bone tunnel 25.
  • the method also comprises a step of forming stepped transverse tunnel 1725 (Fig.
  • the method comprises a final step of pinning the graft ligament support block within bone tunnel 25 by advancing a stepped transverse fixation pin (not shown) along transverse tunnel 1725 in host bone 15 and into the transverse fixation pin hole (not shown) in the graft ligament support block (not shown) .
  • an installation tool is used to advance the graft ligament support block into the bone tunnel prior to the step of forming stepped transverse tunnel 1725 in host bone 15 (Fig. 50) .
  • the installation tool is used together with the stepped transverse tunnel drill to form the stepped transverse tunnel in the host bone.
  • a tow suture is used to advance the graft ligament support block into the bone tunnel prior to the step of forming stepped transverse tunnel 1725 in host bone 15 (Fig. 50) .
  • another method for securing a graft ligament in a bone tunnel comprises a first step of forming a stepped transverse tunnel 1725 (Fig. 50) in host bone 15 with stepped transverse tunnel drill 1700 (Fig. 49) .
  • the method comprises a subsequent step of looping a graft ligament through a graft hole in a graft ligament support block.
  • the method comprises a final the step of pinning the graft ligament support block within bone tunnel 25 by advancing a stepped transverse fixation pin (not shown) along the stepped transverse tunnel 1725 in host bone 15 and into the transverse fixation pin hole (not shown) in the graft ligament support block (not shown) .
  • an installation tool is used to advance the graft ligament support block into the bone tunnel subsequent to the steps of forming the stepped transverse tunnel and looping the graft ligament through the graft hole.
  • a calibrated graft ligament reconstruction system 1740 (Fig. 52) which generally includes a holder 1745 and an associated drill guide 1750.
  • Drill guide 1750 has a similar configuration to drill guide 210 described hereinabove.
  • drill guide 1750 comprises an outrigger 1755 having a smooth bore 1760 formed in its distal end 1765 and sized to receive a drill sleeve 1770 therin.
  • a first set of de'pth markers 1775 disposed on drill sleeve 1770 are configured to indicate the distance from a distal tip 1780 of the drill sleeve 1770 to a preselected portion within femur 15.
  • depth markers 1775 are read relative to a proximal opening 1785 of smooth bore 1760.
  • stepped transverse drill 1700 having a second set of depth markers 1790 thereon.
  • Depth markers 1790 are configured to indicate the distance to the preselected portion within femur 15. Preferably, depth markers 1790 are read relative to a proximal opening 1795 (Fig. 52) of drill sleeve 1770.
  • a method for securing a graft ligament in a bone tunnel. The method comprises a first step of looping a graft ligament through a graft hole in a graft ligament support block. The method comprises a subsequent step of advancing the graft ligament support block into the bone tunnel.
  • This step is followed by the step of positioning a drill guide in attachment to the graft support block, the drill guide comprising an outrigger and a drill sleeve moveably attached to the outrigger, and the drill sleeve having depth markers thereon.
  • the method further comprises a step of determining a proper transverse tunnel depth with the drill sleeve and the outrigger by moving the drill sleeve within the outrigger toward the bone tunnel and reading the depth markers on the drill sleeve.
  • the method comprises the step of forming a transverse tunnel in the host bone to a proper transverse tunnel depth by drilling a transverse tunnel drill to a given depth according to markers disposed on thereon, with the transverse tunnel being aligned with a transverse fixation pin hole in the graft ligament support block.
  • the method comprises a final step of pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • a method is disclosed for securing a graft ligament in a bone tunnel.
  • the method comprises a first step of positioning a drill guide in attachment to a bone tunnel guide inserted into the bone tunnel, the drill guide comprising an outrigger and a drill sleeve moveably attached to the outrigger, and the drill sleeve having depth markers thereon.
  • the method comprises a subsequent step of determining a proper transverse tunnel depth with the drill sleeve and the outrigger by moving the drill sleeve within the outrigger toward the bone tunnel and reading the depth markers on the drill sleeve.
  • the method comprises the step of forming a transverse tunnel in the host bone to a proper transverse tunnel depth by drilling a transverse tunnel drill to a given depth according to markers disposed thereon.
  • the method calls for the step of looping a graft ligament through a graft hole in a graft ligament support block.
  • the method comprises the step of advancing the graft ligament support block into the bone tunnel so that a transverse fixation pin hole in the graft ligament support block is aligned with the transverse tunnel.
  • the method comprises a final step of pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • Figs. 53 and 54 there is shown a depth limiting transverse tunnel drill 1800 having a stop element 1805 disposed thereon.
  • Drill 1800 may 5 have anyone of the many tips known in the orthopedic art, e.g., a standard fluted tip, a trocar tip, and a spade tip, etc.
  • Stop element 1805 is placed at a position along the length of depth limiting transverse tunnel drill 1800 so as to limit the depth of 0 penetration of a distal tip 1810 of transverse tunnel drill 1800 into femur 15 (Fig. 54) .
  • Stop element 1805 limits the distal penetration of transverse tunnel drill 1800 by engaging outrigger 1755 at distal end 1765 adjacent to proximal opening 1785, which allow5 only a distal portion 1815 to pass therethrough.
  • stop element 1805 is adjustably or fixedly positioned along a portion of depth limiting transverse tunnel drill 1800 and further comprises a locking
  • a depth gauge 1900 with a series of depth gauge markings 1905 configured thereon.
  • Depth gauge 1900 is configured to engage a transverse fixation pin 1910 at a distal end 1915 thereof for insertion and proper placement into femur 15 (Fig. 56) .
  • Depth gauge markings 1905 of depth gauge 1900 indicate the position of distal end 1915, and hence the proximal end of the depth gauge, within femur 15.
  • depth gauge markings 1905 are read relative to proximal opening 1795 of drill sleeve 1775, which inserter 1900 passes therethrough .
  • a method for securing a graft ligament in a bone tunnel. The method comprises a first step of looping a graft ligament through a graft hole in a graft ligament support block. This step is followed by the step of advancing the graft ligament support block into the bone tunnel. The method comprises a further step of determining a proper transverse tunnel depth by reading a position of depth markers 1775 on drill sleeve 1770 relative to outrigger 1755.
  • the method comprises a subsequent step of forming a transverse tunnel in the host bone using transverse tunnel drill 1770 having 5 depth markers 1790 thereon so as to drill the transverse tunnel to the proper transverse tunnel depth, transverse is aligned a transverse fixation pin hole in the graft ligament support block.
  • the method comprises a final step of pinning the graft ligament
  • a method for securing a graft ligament in a bone is disclosed.
  • the method comprises a first step of determining a proper transverse tunnel depth by reading a position of depth markers 1775 on drill sleeve 1770 relative to outrigger 1755.
  • the method comprises a further step of forming a transverse tunnel in the host bone using transverse tunnel drill 170 . 0 having depth markers 1790 thereon so as to drill the transverse tunnel to the proper transverse tunnel depth.
  • the method comprises a subsequent step of looping a graft ligament through a graft hole in a graft ligament support block. This step is followed by the step of advancing the graft ligament support block into the bone tunnel so that a transverse fixation pin hole in the graft ligament support block is aligned with the transverse tunnel.
  • the method comprises a final step of pinning the graft ligament support block within the bone tunnel by selecting a transverse fixation pin based on the proper transverse tunnel depth determined by depth markers 1775 on drill sleeve 1770 and advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • a method is disclosed for securing a graft ligament in a bone tunnel.
  • the method comprises a first step of looping a graft ligament through a graft hole in a graft ligament support block.
  • the method comprises a subsequent step of advancing the graft ligament support block into the bone tunnel.
  • the method comprises another step of forming a transverse tunnel in host bone 15 to a predetermined depth using transverse tunnel drill 1800 having stop element 1805 at a predetermined distance from the distal end therof, and stop element 1805 is configured to engage drill sleeve 1265 or distal end 1765 of outrigger 1755 so as to limit drilling to the predetermined depth, with said transverse tunnel being aligned with a transverse fixation pin hole in the graft ligament support block.
  • the method comprises a final step of pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • a method for securing a graft ligament in a bone tunnel.
  • the method comprises a first step of forming a transverse tunnel in host bone 15 to a predetermined depth using transverse tunnel drill 1800 having stop element 1805 at a predetermined distance from the distal end thereof, and stop element 1805 configured to engage a drill sleeve or distal end 1765 of outrigger 1755 so as to limit drilling to the predetermined depth.
  • the method comprises a subsequent step of looping a graft ligament through a graft hole in a graft ligament support block.
  • the method comprises a further step of advancing the graft ligament support block into the bone tunnel so that a transverse fixation pin hole in the graft ligament support block is aligned with the transverse tunnel.
  • the method comprises a final step of pinning the graft ligament support block within the bone tunnel by advancing a transverse fixation pin along the transverse tunnel in the host bone and into the transverse fixation pin hole in the graft ligament support block.
  • a modified graft ligament support block similar to support block 1500 (Fig. 45) and support block 100 (Fig. 8) is provided for supporting a graft ligament in a bone tunnel.
  • the modified graft ligament support block comprises a region configured therein for drilling a transverse fixation pin hole through the body transverse to the longitudinal axis as a crosspin hole is drilled through the bone tunnel.
  • the modified graft ligament support block further comprises a tapered proximal end so as to facilitate withdrawal of the graft ligament support block through the bone tunnel .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Rheumatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Dentistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Transplantation (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)
EP05738407A 2004-04-22 2005-04-22 Gerät und verfahren zur rekonstruktion eines ligaments Withdrawn EP1746955A4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/829,846 US7520898B2 (en) 2001-10-01 2004-04-22 Apparatus and method for reconstructing a ligament
PCT/US2005/013721 WO2005122921A2 (en) 2001-10-01 2005-04-22 Apparatus and method for reconstructing a ligament

Publications (2)

Publication Number Publication Date
EP1746955A2 true EP1746955A2 (de) 2007-01-31
EP1746955A4 EP1746955A4 (de) 2008-05-14

Family

ID=37461288

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05738407A Withdrawn EP1746955A4 (de) 2004-04-22 2005-04-22 Gerät und verfahren zur rekonstruktion eines ligaments

Country Status (5)

Country Link
EP (1) EP1746955A4 (de)
JP (2) JP4879166B2 (de)
CN (2) CN101816584A (de)
AU (1) AU2005253927B2 (de)
CA (1) CA2564775C (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722644B2 (en) 2003-06-11 2010-05-25 Medicine Lodge, Inc. Compact line locks and methods
EP2244643B1 (de) 2008-02-28 2017-12-06 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Medizinische vorrichtung zum anbringen einer naht an einem knochen
IN2012DN00325A (de) * 2009-07-02 2015-05-08 Imds Corp
CN102740791A (zh) * 2009-12-14 2012-10-17 史密夫和内修有限公司 可视化引导acl定位系统
US8721539B2 (en) 2010-01-20 2014-05-13 EON Surgical Ltd. Rapid laparoscopy exchange system and method of use thereof
US10052088B2 (en) 2010-01-20 2018-08-21 EON Surgical Ltd. System and method of deploying an elongate unit in a body cavity
WO2012035524A2 (en) 2010-09-19 2012-03-22 EON Surgical Ltd. Micro laparoscopy devices and deployments thereof
US8690885B2 (en) 2011-01-28 2014-04-08 Smith & Nephew, Inc. Surgical aiming device
US9498370B2 (en) * 2011-03-07 2016-11-22 Conventus Orthopaedics, Inc. Apparatus and methods for bone repair preparation
EP2856975B1 (de) 2011-04-06 2017-06-14 DePuy Synthes Products, LLC Instrumentenanordnung zur Implantation einer Revisionshüftprothese
US8870891B2 (en) * 2011-06-24 2014-10-28 Depuy Mitek, Llc ACL reconstruction tunnel gauge and method
US8617176B2 (en) * 2011-08-24 2013-12-31 Depuy Mitek, Llc Cross pinning guide devices and methods
US8784426B2 (en) * 2011-10-03 2014-07-22 Smith & Nephew, Inc. Double-loop endobutton, ovoid tunnel guide, and method of ACL re-construction using the ovoid tunnel guide and the double-loop endobutton
CN103315798B (zh) * 2013-06-28 2015-02-18 四川大学华西医院 前交叉韧带重建的骨隧道固定器
CN103340702A (zh) * 2013-07-24 2013-10-09 中南大学湘雅医院 用于膝关节交叉韧带重建的内植装置
CN105326560A (zh) * 2014-08-11 2016-02-17 天津康立尔生物科技有限公司 一种钻套
CN104434281B (zh) * 2014-12-27 2017-02-22 雷俊虎 骨科骨隧道横穿钉定位工具
US10085830B2 (en) * 2016-05-13 2018-10-02 Medos International Sarl Device, system, and method for delivery of a tissue fixation device
CN105919631B (zh) * 2016-06-13 2018-06-19 赵春霞 一种用于足底韧带重建的医疗器械及使用方法
CN105997299B (zh) * 2016-06-30 2018-01-02 吕宏升 一种骨科手术专用的胫骨隧道过线牵引推拉装置
AU2017291837B2 (en) * 2016-07-06 2022-04-21 Children's Medical Center Corporation Indirect method of articular tissue repair
CN108245262A (zh) * 2017-12-07 2018-07-06 复旦大学附属华山医院 韧带重建等长测量装置
CN108403173B (zh) * 2017-12-30 2021-03-02 深圳市立心科学有限公司 骨科用固定韧带的挤压钉及其装配具
CN109009564B (zh) * 2018-06-15 2020-07-14 中国人民解放军陆军军医大学第一附属医院 一种用于松质骨填充肌腱的金属假体装置
CN112869804A (zh) * 2021-03-16 2021-06-01 上海竞微扶生医学科技有限公司 定位器、输送器、隧道式过线系统及其操作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3622676A1 (de) * 1985-08-28 1987-03-12 Werner Scholz Chirurgisches bohrgeraet
US5549613A (en) * 1993-09-15 1996-08-27 Mitek Surgical Products, Inc. Modular surgical drill
US5683401A (en) * 1994-02-17 1997-11-04 Arthrex, Inc. Method and apparatus for installing a suture anchor through a hollow cannulated grasper
US5895425A (en) * 1997-02-12 1999-04-20 Arthrex, Inc. Bone implant
US6254605B1 (en) * 1990-07-16 2001-07-03 Stephen M. Howell Tibial guide
US20020151975A1 (en) * 2001-04-17 2002-10-17 Jack Farr Methods and instruments for improved meniscus transplantation
WO2003028533A2 (en) * 2001-10-01 2003-04-10 Scandius Biomedical, Inc. Apparatus and method for reconstructing a ligament
US20030105465A1 (en) * 2001-11-13 2003-06-05 Reinhold Schmieding Implant screw and washer assembly and method of fixation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356413A (en) * 1993-03-12 1994-10-18 Mitek Surgical Products, Inc. Surgical anchor and method for deploying the same
US5505735A (en) * 1993-06-10 1996-04-09 Mitek Surgical Products, Inc. Surgical anchor and method for using the same
IT1310423B1 (it) * 1999-07-29 2002-02-13 Giovanni Zaccherotti Mezzo di fissazione femorale dei tendini di semitendinoso e delgragile per la ricostruzione del legamento crociato anteriore.
US6517546B2 (en) * 2001-03-13 2003-02-11 Gregory R. Whittaker Method and apparatus for fixing a graft in a bone tunnel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3622676A1 (de) * 1985-08-28 1987-03-12 Werner Scholz Chirurgisches bohrgeraet
US6254605B1 (en) * 1990-07-16 2001-07-03 Stephen M. Howell Tibial guide
US5549613A (en) * 1993-09-15 1996-08-27 Mitek Surgical Products, Inc. Modular surgical drill
US5683401A (en) * 1994-02-17 1997-11-04 Arthrex, Inc. Method and apparatus for installing a suture anchor through a hollow cannulated grasper
US5895425A (en) * 1997-02-12 1999-04-20 Arthrex, Inc. Bone implant
US20020151975A1 (en) * 2001-04-17 2002-10-17 Jack Farr Methods and instruments for improved meniscus transplantation
WO2003028533A2 (en) * 2001-10-01 2003-04-10 Scandius Biomedical, Inc. Apparatus and method for reconstructing a ligament
US20030105465A1 (en) * 2001-11-13 2003-06-05 Reinhold Schmieding Implant screw and washer assembly and method of fixation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2005122921A2 *

Also Published As

Publication number Publication date
JP2007534380A (ja) 2007-11-29
JP2011177524A (ja) 2011-09-15
AU2005253927A1 (en) 2005-12-29
CN101816584A (zh) 2010-09-01
CA2564775A1 (en) 2005-12-29
AU2005253927B2 (en) 2010-11-25
CA2564775C (en) 2013-06-18
CN1988859A (zh) 2007-06-27
EP1746955A4 (de) 2008-05-14
JP5325257B2 (ja) 2013-10-23
CN1988859B (zh) 2010-06-16
JP4879166B2 (ja) 2012-02-22

Similar Documents

Publication Publication Date Title
US8043374B2 (en) Apparatus and method for reconstructing a ligament
CA2564775C (en) Apparatus and method for reconstructing a ligament
US6712849B2 (en) Apparatus and method for reconstructing a ligament
AU2002330152A1 (en) Apparatus and method for reconstructing a ligament
US7988697B2 (en) Graft fixation device and method
JP4097895B2 (ja) Acl固定ピン
US7655011B2 (en) Method and apparatus for fixing a graft in a bone tunnel
WO1994015552A1 (en) Pin for securing a replacement ligament to a bone
AU2006213969B2 (en) Apparatus and method for reconstructing a ligament

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20080414

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 17/17 20060101ALI20080408BHEP

Ipc: A61F 2/08 20060101AFI20061127BHEP

17Q First examination report despatched

Effective date: 20090514

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVIDIEN LP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180412