EP1745541A1 - Commutator motor having a number of field winding groups - Google Patents

Commutator motor having a number of field winding groups

Info

Publication number
EP1745541A1
EP1745541A1 EP05737889A EP05737889A EP1745541A1 EP 1745541 A1 EP1745541 A1 EP 1745541A1 EP 05737889 A EP05737889 A EP 05737889A EP 05737889 A EP05737889 A EP 05737889A EP 1745541 A1 EP1745541 A1 EP 1745541A1
Authority
EP
European Patent Office
Prior art keywords
field
field winding
commutator motor
windings
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05737889A
Other languages
German (de)
French (fr)
Inventor
Rainer Schach
Jörg SKRIPPEK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP1745541A1 publication Critical patent/EP1745541A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/10Commutator motors, e.g. repulsion motors
    • H02P25/14Universal motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/08Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by manual control without auxiliary power
    • H02P7/10Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by manual control without auxiliary power of motor field only
    • H02P7/12Switching field from series to shunt excitation or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the invention relates to a commutator motor that can be operated with a series or shunt excitation and is particularly suitable as a drive motor for a laundry drum of a laundry treatment device.
  • the commutator motor has at least two field windings, one of which has a field tap.
  • the field windings can also consist of several partial windings with electrical connections between the partial windings.
  • the field windings or partial field windings are separated or switched on or connected to voltage by control electronics in accordance with the required speeds.
  • the end points of the individual field windings or partial field windings of the field windings are connected to the starting points of other field windings or partial field windings of the field windings, that is to say that the field windings lie in series with one another.
  • a field winding structure of a two-pole commutator motor is known in which two partial field windings (high and low coil) are arranged one above the other on each pole.
  • the commutator motor is connected such that the end point of a field winding of the first field winding group (low coil) is connected to the starting point of the second field winding group (high coil) and the end point of a field winding of the second field winding group is connected to a starting point of the armature winding.
  • the end point of the armature winding is connected to the starting point of the other field winding of the second field winding group and the end point of the other field winding of the second field winding group is connected to the starting point of the other field winding of the first field winding group.
  • An electrical connection is provided between the subfield windings, so that either only the low coils or the low and high coils lying in series can be switched on together.
  • the individual subfield windings are arranged symmetrically to the pole pair symmetry axis.
  • the commutator motors shown above require the series connection of the partial field windings to design the windings with a relatively thick winding wire.
  • the disadvantage of this is that when using such a wire, the so-called winding head cannot be optimally shaped while the field windings are being wound, or the winding head has to be re-formed in a complicated manner in a further manufacturing step.
  • the awkwardly shaped winding head of such Commutator motors also cause electrical losses, which reduces the efficiency of the commutator motor.
  • the invention has for its object to provide a commutator motor of the above type with a winding and circuit structure that can be operated in different speed ranges and at the same time causes the lowest possible losses during operation.
  • the object is achieved by the invention according to claim 1, in the case of the commutator motor having a stator which has an even number of poles, on each of which a plurality of field windings, each having a starting point and an end point, are arranged one above the other, wherein a field winding of a pole and the field winding opposite the field winding symmetrically to the respective pole pair symmetry plane have the same number of turns and form a field winding group and the starting points of the field windings of a field winding group are interconnected and the end points of the field windings of the same field winding group are interconnected.
  • the field windings of the respective field winding group are advantageously connected in parallel and are arranged symmetrically to one another on opposite poles of the stator.
  • the field windings of a field winding group also have the same line lengths with the same number of turns.
  • the field windings of a • field winding group thus have the same resistances and inductances. Disturbing equalizing currents between the field winding groups and the electrical losses caused thereby are advantageously avoided.
  • the commutator motor is also suitable for operating different speeds, since the field winding groups can be switched on individually or together according to a speed requirement via the electrical connections of the commutator motor.
  • the end point of a field winding group is connected to the starting point of another field winding group and an electrical connection of the commutator motor.
  • the field winding groups are thus connected in series when the field winding groups are switched on together.
  • Such a construction of the commutator motor simplifies the design of the windings, since the electrical resistance of the field winding groups connected in series results from the summation of the resistances of the individual field winding groups and the same current is formed in all field winding groups.
  • field windings of different field winding groups have a different number of turns.
  • Such a design of the field windings is particularly advantageous because the for the Operation favorable number of turns can be adapted to the speed or performance requirements.
  • the magnetic flux and the electrical resistance of a field winding is proportional to the number of turns of the field winding, so that the current forming in the field winding and the torque behavior of the commutator motor also depend on the number of turns.
  • An optimal choice of the number of turns of the field windings can ensure that a maximum current in the field windings is not exceeded with an optimum torque for the speed range.
  • the number of turns of the field windings also determines an optimal switching speed at which the commutator motor switches over to a partial field operation and at which no impermissibly large current changes occur in the field windings. The same also applies to a switchover from a first subfield to a further subfield which has a winding design different from the first subfield.
  • the stator is designed with two poles and / or the commutator motor contains two field winding groups.
  • the commutator motor can be produced inexpensively by such a measure.
  • a commutator motor with such configurations is well suited as a drive motor for a laundry drum in a washing machine.
  • control devices for jointly and individually switching on the field winding groups can also be constructed more simply and inexpensively.
  • FIG. 2 shows a sectional view through a stator with a field winding arrangement
  • FIG. 3 shows a switching arrangement of a further drive motor.
  • the exemplary embodiment relates to a two-pole series connection motor (universal motor) of a drive motor for a washing machine.
  • a laundry drum arranged in the washing machine is operated at different speeds, which can be, for example, 50 1 / min in washing and up to 1,800 1 / min in spinning.
  • the invention is not limited to a universal motor that belongs to the group of commutator motors.
  • the commutator motor can also be 4-pole, for example.
  • the commutator motor can also be suitable for shunt excitation.
  • Figures 1 and 2 show a control device 3 of a two-pole commutator motor 1 or universal motor 1 and a section through the stator 4 of the Commutator motor 1 with an arrangement of four field windings W 1.1 to W 2.2 of the same commutator motor.
  • the field windings W l.Ia and W 1.2a or W 2.1i and W 2.2i each form a field winding group (subfield or residual field).
  • the starting point A 1.1 of the field winding W l.la is in with the starting point A 1.2 of the field winding W 1.2a
  • Point a and the end point E of the field winding W is connected to the end point E of the field winding W 1.2a via the connection bc. Accordingly, the check points are caught A 2.1 and A 2.2 of the field winding ⁇ s 2.1i W and W via the connection bc 2.2i each other and the Endp r unkte E 2.1 E 2.2 d and the point bonded together.
  • the field windings W l.la and W 1.2a or W 2.1i and W 2.2i of a field winding group are thus connected in parallel.
  • the end of a field winding group of field windings W l.la and W 1.2a is connected via connection points b and c to the start of the other field winding group of field windings W 2.1i and W 2.2i and the electrical connection M.2 of commutator motor 1.
  • the two field winding groups are thus connected in series.
  • the indices a and i of the field winding designations W mean that a field winding W is arranged on the outside (index a) or on the inside (index i) on a pole 5, 6 of the stator 4, that is to say that an external field winding, for example W 1. la is further away from the pole pair symmetry plane 7 than an internal field winding W.
  • the commutator motor 1 has electrical connections M.1 to M.3 which are connected to the respective start or end points of the field winding groups and electrical connections M.4 and M.5 which are connected to the armature winding 2 of the commutator motor 1.
  • the electrical connections M.1 to M.5 are connected to a control device 3.
  • the control device 3 has a triac T, a field switching relay XI and a so-called reversing relay X2 for switching on the field windings W and the armature winding of the commutator motor 1.
  • the field changeover relay XI and the reversing relay X2 can also be controlled by the microcontroller with a switching arrangement, the corresponding control lines of the control device 3 not being shown in FIG. 1.
  • the field winding relay with the field winding coils W 1,1a and W is switched on individually (subfield) with the field switching relay XI.
  • the two field winding groups lying in series (partial field and residual field) are switched on together (full field) for operating the commutator motor 1 at a low or medium speed, for example in washing.
  • the control device 3 is designed in such a way that the armature winding 2 is in series with the field winding groups.
  • a change in the direction of rotation of the armature or the rotor of the commutator motor 1 is with the Reversing relay X2 caused by reversing the polarity of the armature winding 2.
  • all field windings W are wound and switched in such a way that current flows through the field windings W in the same direction.
  • the field windings of the Operafeld- and residual field field winding group are symmetrical in relation Polpocsymmetrieebene 7 of the stator 4.
  • the field winding W is on the pole 5 outside and the field winding W is on the pole 5 with respect to lie ⁇ forming pole 6 also ⁇ eordnet outside ang.
  • the field windings ° en W 1.1 to W 2.2 of the commutator motor 1 all have an equal number on turns.
  • the internal field windings W 2.1i and W 2.2i have a greater line length than the external field windings W l.la and W 1.2a and thus have a greater electrical resistance. Since the field windings W of a field winding group are arranged symmetrically, the field windings W of a field winding group thus have the same line lengths and the same electrical resistances.
  • a compensation current between the connection points b and c cannot form during the operation of the commutator motor 1, since the same currents flow in the parallel branches of a field winding group due to the same resistances. Electrical losses due to such compensating currents can be effectively avoided with such a field winding structure.
  • the lines of the field windings of a field winding group connected in parallel can have a smaller cross section than the lines of the field windings of a commutator motor, the field windings of a field winding group are connected in series.
  • the field windings W and W of the partial field can also be arranged on the inside on the poles 5 and 6 and the field windings 1.1 1.1 1.2 winding ⁇ en W 2.1 and W 2.2 of the remaining field can be arranged outside.
  • FIG. 3 shows a circuit arrangement of a further alternative embodiment of a commutator motor 8 with two field winding groups, which can be operated by the control device 3 shown above.
  • the number of turns of the field windings W and W of the 3.1a 3.2a subfield results from the required upper speed range.
  • the commutator motor 8 can also be operated by controlling the remaining field in a medium speed range, since the field windings W and W have a higher .li .2i number of turns than the field windings W 3.1a and W 3.2a of the subfield.
  • the commutator motors can have more than two field winding groups with field angles W connected in parallel.
  • the field windings are arranged one above the other on the poles 5 and 6 and symmetrically to the plane 7 of the pole pairs. With such an arrangement, the field winding groups are switched on individually or several groups together by a control device.
  • the invention is also applicable to commutator motors with shunt excitation.

Abstract

The invention relates to a commutator motor (1), which has a series excitation or shunt excitation and which, in particular, is suited for use as a drive motor for a washing drum of a laundry treatment device. The stator (4) of a commutator motor (1) of this type has a number of field winding groups with field windings (W) that are arranged symmetric to the plane of symmetry of the pair of poles (7) and whose starting points and end points are connected to one another. In order to operate the commutator motor (1) in a number of rotational speed ranges, the field winding groups are individually or jointly activated by a control device.

Description

Beschreibung Kommutatormotor mit mehreren Feldwicklungsgruppen Description Commutator motor with several field winding groups
[001] Die Erfindung betrifft einen Kommutatormotor, der mit einer Reihenschluss- oder Nebenschlusserregung betrieben werden kann und insbesondere als Antriebsmotor für eine Wäschetrommel eines Wäschebehandlungsgerätes geeignet ist.The invention relates to a commutator motor that can be operated with a series or shunt excitation and is particularly suitable as a drive motor for a laundry drum of a laundry treatment device.
[002] Eine Anordnung zur Drehzahleinstellung eines solchen Kommutatormotors ist aus DE 198 25 126 AI bekannt. Der Kommutatormotor hat mindestens zwei Feldwicklungen, von denen eine Feldwicklung eine Feldanzapfung hat. Die Feldwicklungen können auch aus mehreren Teilwicklungen mit zwischen den Teilwicklungen liegenden elektrischen Anschlüssen bestehen. Die Feldwicklungen bzw. Teilfeldwicklungen werden entsprechend der geforderten Drehzahlen durch eine Steuerelektronik getrennt oder gemeinsam eingeschaltet bzw. an Spannung gelegt. Die Endpunkte der einzelnen Feldwicklungen bzw. Teilfeldwicklungen der Feldwicklungen sind mit den Anfangspunkten anderer Feldwicklungen bzw. Teilfeldwicklungen der Feldwicklungen verbunden, das heißt, dass die Feldwicklungen zueinander in Reihe liegen.An arrangement for adjusting the speed of such a commutator motor is known from DE 198 25 126 AI. The commutator motor has at least two field windings, one of which has a field tap. The field windings can also consist of several partial windings with electrical connections between the partial windings. The field windings or partial field windings are separated or switched on or connected to voltage by control electronics in accordance with the required speeds. The end points of the individual field windings or partial field windings of the field windings are connected to the starting points of other field windings or partial field windings of the field windings, that is to say that the field windings lie in series with one another.
[003] Durch die DE 197 53 670 AI ist ein Feldwicklungsaufbau eines zweipoligen Kommutatormotors bekannt, bei dem auf jedem Pol zwei Teilfeldwicklungen (hohe und niedrige Spule) übereinander angeordnet sind. Der Kommutatormotor ist so geschaltet, dass der Endpunkt einer Feldwicklung der ersten Feldwicklungsgruppe (niedrige Spule) mit dem Anfangspunkt der zweiten Feldwicklungsgruppe (hohe Spule) und der Endpunkt einer Feldwicklung der zweiten Feldwicklungsgruppe mit einem Anfangspunkt der Ankerwicklung verbunden sind. Weiter sind der Endpunkt der Ankerwicklung mit dem Anfangspunkt der anderen Feldwicklung der zweiten Feldwicklungsgruppe und der Endpunkt der anderen Feldwicklung der zweiten Feldwicklungsgruppe mit dem Anfangspunkt der anderen Feldwicklung der ersten Feldwicklungsgruppe verbunden. Zwischen den Teilfeldwicklungen ist ein elektrischer Anschluss vorgesehen, so dass entweder nur die niedrigen Spulen oder die in Reihe liegenden niedrigen und hohen Spulen gemeinsam einschaltbar sind. Die einzelnen Teilfeldwicklungen sind bei einem solchen Aufbau symmetrisch zu der Polpaarsymmetrieachse angeordnet.From DE 197 53 670 AI a field winding structure of a two-pole commutator motor is known in which two partial field windings (high and low coil) are arranged one above the other on each pole. The commutator motor is connected such that the end point of a field winding of the first field winding group (low coil) is connected to the starting point of the second field winding group (high coil) and the end point of a field winding of the second field winding group is connected to a starting point of the armature winding. Furthermore, the end point of the armature winding is connected to the starting point of the other field winding of the second field winding group and the end point of the other field winding of the second field winding group is connected to the starting point of the other field winding of the first field winding group. An electrical connection is provided between the subfield windings, so that either only the low coils or the low and high coils lying in series can be switched on together. With such a structure, the individual subfield windings are arranged symmetrically to the pole pair symmetry axis.
[004] Die vorstehend dargestellten Kommutatormotore bedingen durch die Reihenschaltung der Teilfeldwicklungen eine Auslegung der Wicklungen mit einem relativ dicken Wicklungsdraht. Nachteilig daran ist, dass bei der Verwendung eines solchen Drahtes der sogenannte Wickelkopf während des Wickeins der Feldwicklungen nicht optimal geformt werden kann oder der Wickelkopf in einem weiteren Fertigungsschritt aufwendig nach geformt werden muss. Der ungünstig geformte Wickelkopf solcher Kommutatormotore bedingt zusätzlich elektrische Verluste, wodurch der Wirkungsgrad des Kommutatormotors reduziert wird.The commutator motors shown above require the series connection of the partial field windings to design the windings with a relatively thick winding wire. The disadvantage of this is that when using such a wire, the so-called winding head cannot be optimally shaped while the field windings are being wound, or the winding head has to be re-formed in a complicated manner in a further manufacturing step. The awkwardly shaped winding head of such Commutator motors also cause electrical losses, which reduces the efficiency of the commutator motor.
[005] Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Kommutatormotor der vorstehenden Art mit einem Wicklungs- und Schaltungsaufbau zu schaffen, der in verschiedenen Drehzahlbereichen betreibbar ist und der zugleich beim Betrieb möglichst geringe Verluste bedingt.Based on this prior art, the invention has for its object to provide a commutator motor of the above type with a winding and circuit structure that can be operated in different speed ranges and at the same time causes the lowest possible losses during operation.
[006] Die Aufgabe wird durch die Erfindung gemäß dem Anspruch 1 gelöst, indem bei dem Kommutatormotor mit einem Stator, der eine geradzahlige Anzahl an Polen hat, auf denen jeweils mehrere Feldwicklungen, die jeweils einen Anfangspunkt und einen Endpunkt aufweisen, übereinander angeordnet sind, wobei eine Feldwicklung eines Pols und die der Feldwicklung symmetrisch zur jeweiligen Polpaarsymmetrieebene gegenüberliegende Feldwicklung eine gleiche Anzahl an Windungen aufweisen und eine Feldwicklungsgruppe bilden und die Anfangspunkte der Feldwicklungen einer Feldwicklungsgruppe miteinander und die Endpunkte der Feldwicklungen derselben Feldwicklungsgruppe miteinander verbunden sind. Durch den erfindungsgemäßen Aufbau des Stators sind vorteilhafterweise die Feldwicklungen der jeweiligen Feldwicklungsgruppe parallel geschaltet und sind symmetrisch zueinander auf jeweils gegenüberliegenden Polen des Stators angeordnet. Durch eine solche Anordnung weisen die Feldwicklungen einer Feldwicklungsgruppe bei einer jeweils gleichen Anzahl an Windungen auch gleiche Leitungslängen auf. Somit haben die Feldwicklungen einer • Feldwicklungsgruppe gleiche Widerstände und Induktivitäten. Störende Ausgleichsströme zwischen den Feldwicklungsgrappen und und die damit bewirkten elektrischen Verluste werden vorteilhafter Weise vermieden. Der Kommutatormotor ist darüber hinaus für den Betrieb verschiedener Drehzahl geeignet, da die Feldwicklungsgruppen entsprechend einer Drehzahlanforderung einzeln oder gemeinsam über die elektrischen Anschlüsse des Kommutatormotors eingeschaltet werden können.The object is achieved by the invention according to claim 1, in the case of the commutator motor having a stator which has an even number of poles, on each of which a plurality of field windings, each having a starting point and an end point, are arranged one above the other, wherein a field winding of a pole and the field winding opposite the field winding symmetrically to the respective pole pair symmetry plane have the same number of turns and form a field winding group and the starting points of the field windings of a field winding group are interconnected and the end points of the field windings of the same field winding group are interconnected. Due to the structure of the stator according to the invention, the field windings of the respective field winding group are advantageously connected in parallel and are arranged symmetrically to one another on opposite poles of the stator. With such an arrangement, the field windings of a field winding group also have the same line lengths with the same number of turns. The field windings of a • field winding group thus have the same resistances and inductances. Disturbing equalizing currents between the field winding groups and the electrical losses caused thereby are advantageously avoided. The commutator motor is also suitable for operating different speeds, since the field winding groups can be switched on individually or together according to a speed requirement via the electrical connections of the commutator motor.
[007] Bei einer vorteilhaften Weiterbildung der Erfindung ist der Endpunkt einer Feldwicklungsgruppe mit dem Anfangspunkt einer anderen Feldwicklungsgruppe und einem elektrischen Anschluss des Kommutatormotors verbunden ist. Somit sind die Feldwicklungsgruppen bei einem gemeinsamen Einschalten der Feldwicklungsgrappen in Reihe geschaltet. Ein solcher Aufbau des Kommutatormotors vereinfacht die Auslegung der Wicklungen, da sich der elektrische Widerstand der in Reihe geschalteten Feldwicklungsgrappen aus der Summation der Widerstände der einzelnen Feldwicklungsgrappen ergibt und sich in allen Feldwicklungsgrappen ein gleicher Strom ausbildet.In an advantageous development of the invention, the end point of a field winding group is connected to the starting point of another field winding group and an electrical connection of the commutator motor. The field winding groups are thus connected in series when the field winding groups are switched on together. Such a construction of the commutator motor simplifies the design of the windings, since the electrical resistance of the field winding groups connected in series results from the summation of the resistances of the individual field winding groups and the same current is formed in all field winding groups.
[008] In einer vorteilhaften Weiterbildung der Erfindung haben Feldwicklungen verschiedener Feldwicklungsgrappen eine unterschiedliche Anzahl an Windungen. Eine solche Auslegung der Feldwicklungen ist vor allem deshalb günstig, da die für den Betrieb günstige Anzahl an Windungen an die gestellten Drehzahl- bzw. Leistungsanforderungen angepasst werden kann. Der magnetische Fluss und der elektrische Widerstand einer Feldwicklung ist proportional zur der Zahl der Windungen der Feldwicklung, somit ist auch der sich in der Feldwicklung ausbildende Strom und das Drehmomentenverhalten des Kommutatormotors von der Zahl der Windungen abhängig. Durch eine optimale Wahl der Anzahl der Windungen der Feldwicklungen kann sichergestellt werden, dass bei einem für den Drehzahlbereich optimalen Drehmoment ein maximaler Strom in den Feldwicklungen nicht überschritten wird. Mit der Anzahl der Windungen der Feldwicklungen wird auch eine optimale Umschaltdrehzahl festgesetzt, bei der von einem sogenannten Vollfeld-Betrieb des Kommutatormotors auf einen Teilfeld-Betrieb umgeschaltet wird und bei der keine unzulässig großen Stromänderungen in den Feldwicklungen entstehen. Entsprechendes gilt auch für ein Umschalten von einem ersten Teilfeld auf ein weiteres Teilfeld, das eine vom ersten Teilfeld unterschiedliche Wicklungsauslegung hat.In an advantageous development of the invention, field windings of different field winding groups have a different number of turns. Such a design of the field windings is particularly advantageous because the for the Operation favorable number of turns can be adapted to the speed or performance requirements. The magnetic flux and the electrical resistance of a field winding is proportional to the number of turns of the field winding, so that the current forming in the field winding and the torque behavior of the commutator motor also depend on the number of turns. An optimal choice of the number of turns of the field windings can ensure that a maximum current in the field windings is not exceeded with an optimum torque for the speed range. The number of turns of the field windings also determines an optimal switching speed at which the commutator motor switches over to a partial field operation and at which no impermissibly large current changes occur in the field windings. The same also applies to a switchover from a first subfield to a further subfield which has a winding design different from the first subfield.
[009] In weiteren Ausgestaltungen der Erfindung ist der Stator zweipolig ausgeführt und/ oder enthält der Kommutatormotor zwei Feldwicklungsgrappen. Durch eine solche Maßnahme ist der Kommutatormotor kostengünstig herstellbar.In further embodiments of the invention, the stator is designed with two poles and / or the commutator motor contains two field winding groups. The commutator motor can be produced inexpensively by such a measure.
[010] Beispielsweise eignet sich ein Kommutatormotor mit solchen Ausgestaltungen gut als Antriebsmotor einer Wäschetrommel einer Waschmaschine. Darüber hinaus können Steuereinrichtungen zum gemeinsamen und einzelnen Einschalten der Feldwicklungsgrappen ebenfalls einfacher und kostengünstig aufgebaut werden.[010] For example, a commutator motor with such configurations is well suited as a drive motor for a laundry drum in a washing machine. In addition, control devices for jointly and individually switching on the field winding groups can also be constructed more simply and inexpensively.
[011] Die Erfindung sowie deren vorteilhafte Ausgestaltungen werden nachfolgend an Hand von bevorzugten Ausführungsbeispielen und schematischer und nicht maßstabsgerechter Zeichnungen näher beschrieben. Darin zeigenThe invention and its advantageous embodiments are described in more detail below with the aid of preferred exemplary embodiments and schematic drawings which are not to scale. Show in it
[012] Fig. 1 eine Schaltanordnung eines Antriebsmotors und einer Steuereinrichtung,1 shows a switching arrangement of a drive motor and a control device,
[013] Fig. 2 ein Schnittbild durch einen Stator mit einer Feldwicklungsanordnung und2 shows a sectional view through a stator with a field winding arrangement and
[014] Fig. 3 eine Schaltanordnung eines weiteren Antriebsmotors.3 shows a switching arrangement of a further drive motor.
[015] Das Ausführangsbeispiel betrifft einen zweipoligen Reihenschluss-Motor (Universalmotor) eines Antriebsmotors für eine Waschmaschine. Zur Durchführung eines Wäschebehandlungsprogramms wird eine in der Waschmaschine angeordnete Wäschetrommel mit unterschiedlichen Drehzahlen betrieben, die im Waschen beispielsweise 50 1/min und im Schleudern bis zu 1800 1/min betragen können.The exemplary embodiment relates to a two-pole series connection motor (universal motor) of a drive motor for a washing machine. To carry out a laundry treatment program, a laundry drum arranged in the washing machine is operated at different speeds, which can be, for example, 50 1 / min in washing and up to 1,800 1 / min in spinning.
[016] Die Erfindung ist nicht auf einen Universalmotor, der zu der Gruppe der Kommutatormotore gehört, beschränkt. Der Kommutatormotor kann auch beispielsweise 4-polig ausgeführt sein. Ebenso kann der Kommutatormotor für eine Nebenschlusserregung geeignet sein.The invention is not limited to a universal motor that belongs to the group of commutator motors. The commutator motor can also be 4-pole, for example. The commutator motor can also be suitable for shunt excitation.
[017] Die Figuren 1 und 2 und zeigen eine Steuereinrichtung 3 eines zweipoligen Kommutatormotors 1 bzw. Universalmotors 1 und einen Schnitt durch den Stator 4 des Kommutatormotors 1 mit einer Anordnung von vier Feldwicklungen W 1.1 bis W 2.2 desselben Kommutatormotors. Die Feldwicklungen W l.Ia und W 1.2a bzw. W 2.1i und W 2.2i bilden jeweils eine Feldwicklungsgruppe (Teilfeld bzw. Restfeld). Der Anfangspunkt A 1.1 der Feldwicklung W l.la ist mit dem Anfangspunkt A 1.2 der Feldwicklung W 1.2a inFigures 1 and 2 and show a control device 3 of a two-pole commutator motor 1 or universal motor 1 and a section through the stator 4 of the Commutator motor 1 with an arrangement of four field windings W 1.1 to W 2.2 of the same commutator motor. The field windings W l.Ia and W 1.2a or W 2.1i and W 2.2i each form a field winding group (subfield or residual field). The starting point A 1.1 of the field winding W l.la is in with the starting point A 1.2 of the field winding W 1.2a
Punkt a und der Endpunkt E der Feldwicklung W ist mit dem Endpunkt E der Feldwicklung W 1.2a über die Verbindung b-c verbunden. Entsprechend sind die An- fangspunkte A 2.1 und A 2.2 der Feldwicklung σen W 2.1i und W 2.2i über die Verbindung b-c miteinander und die Endp runkte E 2.1 und E 2.2 im Punkt d miteinander verbunden. Somit sind die Feldwicklungen W l.la und W 1.2a bzw. W 2.1i und W 2.2i einer Feldwick- lungsgruppe parallel geschaltet. Das Ende einer Feldwicklungsgruppe der Feldwicklungen W l.la und W 1.2a ist über die Verbindungspunkte b und c mit dem Anfang der anderen Feldwicklungsgrappe der Feldwicklungen W 2.1i und W 2.2i und dem elektrischen Anschluss M.2 des Kommutatormotors 1 verbunden. Somit sind die beiden Feldwicklungsgrappen in Reihe geschaltet. Die Indizes a und i der Feldwicklungsbezeichnungen W bedeuten dabei, dass eine Feldwicklung W außenliegend (Index a) bzw. innenliegend (Index i) an einem Pol 5, 6 des Stators 4 angeordnet ist, das heißt, dass eine außenliegende Feldwicklung beispielsweise W l.la weiter entfernt von der Polpaarsymmetrieebene 7 liegt als eine innenliegende Feldwicklung W . Der Kommutatormotor 1 hat elektrische Anschlüsse M.1 bis M.3, die mit den jeweiligen Anfangs- bzw. Endpunkten der Feldwicklungsgrappen verbunden sind und elektrische Anschlüsse M.4 und M.5, die mit der Ankerwicklung 2 des Kommutatormotors 1 verbunden sind. Die elektrischen Anschlüsse M.1 bis M.5 sind mit einer Steuereinrichtung 3 verbunden. Die Steuereinrichtung 3 hat zum Einschalten der Feldwicklungen W und der Ankerwicklung des Kommutatormotors 1 einen Triac T, ein Feldumschaltrelais XI und ein sogenanntes Reversierrelais X2. Mit einem Einschalten des von einem Mikrokontroller μC angesteuerten Triacs T wird eine Spannung an die Feld- und Ankerwicklungen angelegt. Das Feldumschaltrelais XI und das Reversierrelais X2 sind mit einer Schaltanordnung ebenfalls durch den Mikrokontroller steuerbar, wobei die entsprechenden Steuerleitungen der Steuereinrichtung 3 in Fig. 1 nicht dargestellt sind. Zum Betreiben des Kommutatormotors 1 mit einer hohen Drehzahl, beispielsweise im Schleuderbetrieb einer Waschmaschine, wird mit dem Feldumschaltrelais XI die Feldwicklungsgrappe mit den Feldwicklungsspulen W 1,1a und W einzeln (Teilfeld) eingeschaltet. Die beiden in Reihe liegenden Feldwicklungsgrappen (Teilfeld und Restfeld) werden gemeinsam (Vollfeld) zum Betreiben des Kommutatormotors 1 mit einer kleinen bzw. mittleren Drehzahl, beispielsweise im Waschen, eingeschaltet. Die Schaltung der Steuereinrichtung 3 ist derartig ausgeführt, dass die Ankerwicklung 2 in Reihe zu den Feldwicklungsgrappen liegt. Eine Änderung der Drehrichtung des Ankers bzw. des Rotors des Kommutatormotors 1 wird mit dem Reversierrelais X2 durch ein Umpolen der Ankerwicklung 2 bewirkt. [019] Wie in der Fig. 2 dargestellt, sind alle Feldwicklungen W derartig gewickelt und geschaltet, dass die Feldwicklungen W gleichsinnig vom Strom durchflössen werden. Die Feldwicklungen der Teilfeld- und Restfeld-Feldwicklungsgruppe liegen symmetrisch zur Polpaarsymmetrieebene 7 des Stators 4. Die Feldwicklung W ist auf dem Pol 5 außen und die Feldwicklung W ist auf dem dem Pol 5 gegenüberlieg σenden Pol 6 ebenfalls außen ang σeordnet. Die Feldwicklung σen W - ,. und W 2 -. der Restfeld-Feldwicklungsgruppe sind über die Feldwicklungen W und W der Teilfeld-Feldwicklungsgrappe gewickelt und liegen somit innen auf den jeweiligen Polen 5 und 6. [020] Die Feldwicklung °en W 1.1 bis W 2.2 des Kommutatormotors 1 haben alle eine g °leiche Anzahl an Windungen. Bei einer solchen Anordnung und Gestaltung der Feldwicklung σen haben die innen liegenden Feldwicklungen W 2.1i und W 2.2i eine größere Leitungslänge als die außen liegenden Feldwicklungen W l.la und W 1.2a und weisen somit einen größeren elektrischen Widerstand auf. Da die Feldwicklungen W einer Feldwicklungsgrappe symmetrisch angeordnet sind, haben die Feldwicklungen W einer Feldwicklungsgrappe somit gleiche Leitungslängen und gleiche elektrische Widerstände. Ein Ausgleichstrom zwischen den Verbindungspunkten b und c kann sich beim Betrieb des Kommutatormotors 1 nicht ausbilden, da in den parallelen Zweigen einer Feldwicklungsgrappe aufgrand der gleichen Widerstände gleiche Ströme fließen. Elektrische Verluste durch solche Ausgleichsströme können durch einen solchen Feldwicklungsaufbau wirksam vermieden werden. Darüber hinaus können die parallel geschalteten Leitungen der Feldwicklungen einer Feldwicklungsgrappe einen geringeren Querschnitt aufweisen als die Leitungen der Feldwicklungen eines Kommutatormotors, deren Feldwicklungen einer Feldwicklungsgrappe in Reihe geschaltet sind. Durch die Wahl eines geringeren Querschnitts des Wicklungsdrahtes ist es möglich, den sogenannten Wickelkopf der Feldwicklungen beim Wickeln der Feldwicklungen derartig zu formen, dass die durch den Wickelkopf bedingten elektrischen Verluste minimiert werden. [021] Bei einer alternativen Ausführung des Kommutatormotors 1 können auch die Feldwicklungen W und W des Teilfeldes innen auf den Polen 5 und 6 und die Feld- ° 1.1 1.2 Wicklung σen W 2.1 und W 2.2 des Restfeldes außen angeordnet sein.Point a and the end point E of the field winding W is connected to the end point E of the field winding W 1.2a via the connection bc. Accordingly, the check points are caught A 2.1 and A 2.2 of the field winding σ s 2.1i W and W via the connection bc 2.2i each other and the Endp r unkte E 2.1 E 2.2 d and the point bonded together. The field windings W l.la and W 1.2a or W 2.1i and W 2.2i of a field winding group are thus connected in parallel. The end of a field winding group of field windings W l.la and W 1.2a is connected via connection points b and c to the start of the other field winding group of field windings W 2.1i and W 2.2i and the electrical connection M.2 of commutator motor 1. The two field winding groups are thus connected in series. The indices a and i of the field winding designations W mean that a field winding W is arranged on the outside (index a) or on the inside (index i) on a pole 5, 6 of the stator 4, that is to say that an external field winding, for example W 1. la is further away from the pole pair symmetry plane 7 than an internal field winding W. The commutator motor 1 has electrical connections M.1 to M.3 which are connected to the respective start or end points of the field winding groups and electrical connections M.4 and M.5 which are connected to the armature winding 2 of the commutator motor 1. The electrical connections M.1 to M.5 are connected to a control device 3. The control device 3 has a triac T, a field switching relay XI and a so-called reversing relay X2 for switching on the field windings W and the armature winding of the commutator motor 1. When the triac T controlled by a microcontroller μC is switched on, a voltage is applied to the field and armature windings. The field changeover relay XI and the reversing relay X2 can also be controlled by the microcontroller with a switching arrangement, the corresponding control lines of the control device 3 not being shown in FIG. 1. To operate the commutator motor 1 at a high speed, for example when a washing machine is spinning, the field winding relay with the field winding coils W 1,1a and W is switched on individually (subfield) with the field switching relay XI. The two field winding groups lying in series (partial field and residual field) are switched on together (full field) for operating the commutator motor 1 at a low or medium speed, for example in washing. The control device 3 is designed in such a way that the armature winding 2 is in series with the field winding groups. A change in the direction of rotation of the armature or the rotor of the commutator motor 1 is with the Reversing relay X2 caused by reversing the polarity of the armature winding 2. As shown in FIG. 2, all field windings W are wound and switched in such a way that current flows through the field windings W in the same direction. The field windings of the Teilfeld- and residual field field winding group are symmetrical in relation Polpaarsymmetrieebene 7 of the stator 4. The field winding W is on the pole 5 outside and the field winding W is on the pole 5 with respect to lie σ forming pole 6 also σeordnet outside ang. The field winding σen W -,. and W 2 -. of the residual field field winding group are wound over the field windings W and W of the subfield field winding group and are thus on the inside on the respective poles 5 and 6. The field windings ° en W 1.1 to W 2.2 of the commutator motor 1 all have an equal number on turns. With such an arrangement and design of the field winding σ en, the internal field windings W 2.1i and W 2.2i have a greater line length than the external field windings W l.la and W 1.2a and thus have a greater electrical resistance. Since the field windings W of a field winding group are arranged symmetrically, the field windings W of a field winding group thus have the same line lengths and the same electrical resistances. A compensation current between the connection points b and c cannot form during the operation of the commutator motor 1, since the same currents flow in the parallel branches of a field winding group due to the same resistances. Electrical losses due to such compensating currents can be effectively avoided with such a field winding structure. In addition, the lines of the field windings of a field winding group connected in parallel can have a smaller cross section than the lines of the field windings of a commutator motor, the field windings of a field winding group are connected in series. By choosing a smaller cross-section of the winding wire, it is possible to shape the so-called winding head of the field windings when winding the field windings in such a way that the electrical losses caused by the winding head are minimized. In an alternative embodiment of the commutator motor 1, the field windings W and W of the partial field can also be arranged on the inside on the poles 5 and 6 and the field windings 1.1 1.1 1.2 winding σ en W 2.1 and W 2.2 of the remaining field can be arranged outside.
[022] Fig. 3 zeigt eine Schaltungsanordnung einer weiteren alternativen Ausführung eines Kommutatormotors 8 mit zwei Feldwicklungsgrappen, der durch die vorstehend dargestellte Steuereinrichtung 3 betreibbar ist. Bei dem Kommutatormotor 8 sind die Feldwicklungen W und W der einen Feldwicklungsgrappe (Teilfeld) und die Feldwicklungen W und W der anderen Feldwicklungsgrappe (Restfeld) parallel .li 4.2i g &eschaltet, wobei die Feldwicklung °en W 3.1a und W 3.2a des Teilfeldes jeweils eine geringere Anzahl Windungen als die Feldwicklungen W 4.1 i und W .2i des Restfeldes aufweisen. Die Anzahl der Windungen der Feldwicklungen W und W des 3.1a 3.2a Teilfeldes ergibt sich aus dem geforderten oberen Drehzahlbereich. Der Kommutatormotor 8 kann auch durch ein Ansteuern des Restfeldes in einem mittleren Drehzahlbereich betrieben werden, da die Feldwicklungen W und W eine höhere .li .2i Anzahl an Windungen aufweisen als die Feldwicklungen W 3.1a und W 3.2a des Teilfeldes. [023] Erfindungsgemäß können die Kommutatormotore mehr als zwei Feldwicklungsgrappen mit parallel geschalteten Feldwinklungen W aufweisen. Gemäß der Erfindung sind die Feldwicklungen übereinander auf den Polen 5 und 6 und symmetrisch zur Polpaarsymmetrieebene 7 angeordnet. Auch bei einer solchen Anordnung werden die Feldwicklungsgrappen einzeln oder mehrere Gruppen gemeinsam durch eine Steuereinrichtung eingeschaltet. Die Erfindung ist auch bei Kommutatormotoren mit Nebenschlusserregung anwendbar. 3 shows a circuit arrangement of a further alternative embodiment of a commutator motor 8 with two field winding groups, which can be operated by the control device 3 shown above. In the commutator motor 8, the field windings W and W of the W and W of the other Feldwicklungsgrappe (remaining field) .li a Feldwicklungsgrappe (sub-field) and the field windings parallel 4 .2i g & eschaltet, wherein the field winding ° en W 3.1a and W 3.2a of each subfield have fewer turns than the field windings W 4.1 i and W .2i of the remaining field. The number of turns of the field windings W and W of the 3.1a 3.2a subfield results from the required upper speed range. The commutator motor 8 can also be operated by controlling the remaining field in a medium speed range, since the field windings W and W have a higher .li .2i number of turns than the field windings W 3.1a and W 3.2a of the subfield. [023] According to the invention, the commutator motors can have more than two field winding groups with field angles W connected in parallel. According to the invention, the field windings are arranged one above the other on the poles 5 and 6 and symmetrically to the plane 7 of the pole pairs. With such an arrangement, the field winding groups are switched on individually or several groups together by a control device. The invention is also applicable to commutator motors with shunt excitation.

Claims

AnsprücheExpectations
[001] Kommutatormotor (1,8) mit Reihenschluss- oder Nebenschlusserregung, der insbesondere als Antriebsmotor für eine Wäschetrommel eines Wäschebehandlungsgerätes geeignet ist, mit einem Stator (4), der eine geradzahlige Anzahl an Polen (5,6) hat, auf denen jeweils mehrere Feldwicklungen (W), die jeweils einen Anfangspunkt (A) und einen Endpunkt (E) aufweisen, übereinander ang °eordnet sind, wobei eine Feldwicklung ° (W l.la , W 2.1i , W 3.1a , W 4.lι ) eines Poles (5) und die der Feldwicklung ° (W l.la , W 2.1i , W 3.1a , W 4.1. ) sy Jmmetrisch zur jeweiligen Polpaarsymmetrieebene (7) gegenüberliegende Feldwicklung (W 1.2a , W 2.2i , W 3.2a , W .2i ) eine g °leiche Anzahl an Windung °en aufweisen und eine Feld- wicklungsgrappe bilden, dadurch gekennzeichnet, dass die Anfangspunkte (A) der Feldwicklungen (W) einer Feldwicklungsgrappe miteinander und die Endpunkte (E) der Feldwicklungen (W) derselben Feldwicklungsgrappe miteinander verbunden sind.Commutator motor (1.8) with series or shunt excitation, which is particularly suitable as a drive motor for a laundry drum of a laundry treatment device, with a stator (4), which has an even number of poles (5,6), on each of which a plurality of field windings (W), each having a starting point (A) and an end point (E), are arranged one above the other, one field winding ° (W l.la, W 2.1i, W 3.1a, W 4 .lι) of a pole (5) and the field winding (W l.la, W 2.1i, W 3.1a, W 4 .1.) sy J mmetric to the respective pole pair symmetry plane (7) field winding (W 1.2a, W 2.2i, W 3.2a, W .2i) have an equal number of turns ° en and form a field winding group, characterized in that the starting points (A) of the field windings (W) of a field winding group with one another and the end points (E) of the field windings (W) the same field winding group are interconnected.
[002] Kommutatormotor nach Ansprach 1, dadurch gekennzeichnet, dass der Endpunkt einer Feldwicklungsgrappe mit dem Anfangspunkt einer anderen Feldwicklungsgrappe und einem elektrischen Anschluss (M.2) des Kommutatormotors (1) verbunden ist.Commutator motor according spoke 1, characterized in that the end point of a field winding group with the starting point of another field winding group and an electrical connection (M.2) of the commutator motor (1) is connected.
[003] Kommutatormotor nach Ansprach 1 oder 2, dadurch gekennzeichnet, dass die Feldwicklungen (W) verschiedener Feldwicklungsgrappen eine unterschiedliche Anzahl an Windungen haben.[003] Commutator motor according to spoke 1 or 2, characterized in that the field windings (W) of different field winding groups have a different number of turns.
[004] Kommutatormotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stator (4) zweipolig ausgeführt ist.[004] Commutator motor according to one of the preceding claims, characterized in that the stator (4) is designed with two poles.
[005] Kommutatormotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei Feldwicklungsgrappen enthalten sind. [005] Commutator motor according to one of the preceding claims, characterized in that two field winding groups are included.
EP05737889A 2004-05-03 2005-04-29 Commutator motor having a number of field winding groups Ceased EP1745541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004021661A DE102004021661A1 (en) 2004-05-03 2004-05-03 Commutator motor with several field winding groups
PCT/EP2005/051957 WO2005109611A1 (en) 2004-05-03 2005-04-29 Commutator motor having a number of field winding groups

Publications (1)

Publication Number Publication Date
EP1745541A1 true EP1745541A1 (en) 2007-01-24

Family

ID=34965830

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05737889A Ceased EP1745541A1 (en) 2004-05-03 2005-04-29 Commutator motor having a number of field winding groups

Country Status (6)

Country Link
US (1) US7545070B2 (en)
EP (1) EP1745541A1 (en)
CN (1) CN1950993B (en)
DE (1) DE102004021661A1 (en)
RU (1) RU2349017C2 (en)
WO (1) WO2005109611A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021661A1 (en) * 2004-05-03 2005-12-15 BSH Bosch und Siemens Hausgeräte GmbH Commutator motor with several field winding groups
DE102006058179A1 (en) * 2006-11-30 2008-06-05 Alfred Kärcher Gmbh & Co. Kg High-pressure cleaning device and method for changing its engine power
CN101510700A (en) * 2008-11-07 2009-08-19 德昌电机(深圳)有限公司 Motor and manufacturing method thereof
JP5251687B2 (en) * 2009-04-02 2013-07-31 株式会社デンソー Starter
CN105119397B (en) * 2010-08-02 2018-05-22 德昌电机(深圳)有限公司 General-purpose machine, the household electrical appliance with the motor
DK2629401T3 (en) * 2012-02-20 2015-03-02 Alstom Renewable Technologies Generator
LV14509B (en) 2012-03-13 2012-07-20 Rīgas Tehniskā Universitāte High speed magnetoelectric synchronous motor
JP5890734B2 (en) * 2012-04-10 2016-03-22 日立オートモティブシステムズ株式会社 DC motor and vehicle equipped with the same
US9871427B2 (en) 2013-03-15 2018-01-16 Ingersoll-Rand Company Stator winding for an electric motor
RU2543555C2 (en) * 2013-05-24 2015-03-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Three-channel relay switch
DE112016003652T5 (en) * 2015-08-10 2018-05-17 Nidec Corporation Engine, manufacturing process of a motor and stator unit
US10170953B2 (en) * 2015-10-02 2019-01-01 E-Circuit Motors, Inc. Planar composite structures and assemblies for axial flux motors and generators
US9673684B2 (en) * 2015-10-02 2017-06-06 E-Circuit Motors, Inc. Structures and methods for thermal management in printed circuit board stators
US11527933B2 (en) 2015-10-02 2022-12-13 E-Circuit Motors, Inc. Stator and rotor design for periodic torque requirements
US11831211B2 (en) 2017-06-05 2023-11-28 E-Circuit Motors, Inc. Stator and rotor design for periodic torque requirements
WO2020073405A1 (en) * 2018-10-10 2020-04-16 上海理工大学 Direct current motor
US11394278B2 (en) * 2018-12-29 2022-07-19 University Of Shanghai For Science And Technology Shunt wound DC motor driving device and electrical equipment
CN112825449B (en) * 2019-11-21 2022-10-28 李静怡 Parallel-series excitation direct current motor
AU2022318884A1 (en) 2021-07-30 2024-01-25 E-Circuit Motors, Inc. Magnetic material filled printed circuit boards and printed circuit board stators
US11336130B1 (en) 2021-08-17 2022-05-17 E-Circuit Motors, Inc. Low-loss planar winding configurations for an axial flux machine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US468128A (en) * 1892-02-02 Electric-motor regulation
US942463A (en) * 1908-08-05 1909-12-07 Gen Electric Method of and means for regulating the speed of electric motors.
US1862922A (en) * 1930-01-08 1932-06-14 Wilson Welder & Metals Company Welding generator
US1870292A (en) * 1931-11-05 1932-08-09 Wagner Electric Corp Dynamo electric machine
US2310131A (en) * 1939-07-25 1943-02-02 Westinghouse Electric & Mfg Co Winding for single-phase series motors
GB690496A (en) * 1950-06-27 1953-04-22 British Thomson Houston Co Ltd Improvements in and relating to electric motors
US2807736A (en) * 1955-12-19 1957-09-24 Ford Motor Co Starter field winding
US2923873A (en) * 1958-09-05 1960-02-02 Oster Mfg Co John Multi-speed salient pole universal motor with split-wound field
US3493833A (en) 1967-05-05 1970-02-03 Dynamics Corp America Electric motor speed control
US3678357A (en) * 1968-10-09 1972-07-18 Dynamic Corp Of America Multiple push button switch speed control system
US3924169A (en) * 1974-01-14 1975-12-02 Sunbeam Corp Mixer with speed control
JPS58263B2 (en) * 1977-11-26 1983-01-06 三洋電機株式会社 Dual voltage commutator motor
JPS56121357A (en) * 1981-02-10 1981-09-24 Sanyo Electric Co Ltd Two-voltage commutator motor
JPS58157357A (en) * 1982-03-15 1983-09-19 Hitachi Ltd Commutator motor
DE4401686C1 (en) * 1994-01-21 1995-06-14 Reich Maschf Gmbh Karl Reversible-pole commutator motor
US5648706A (en) * 1995-09-28 1997-07-15 S-B Power Tool Company Electric brake for commutated motor
KR19980032523U (en) 1996-12-03 1998-09-05 최진호 motor
DE19825126A1 (en) * 1998-06-05 1999-12-09 Fhp Motors Gmbh Arrangement for automatic compensation of rotor of electric motor, especially of fan wheel for fan fixed to rotor
DE102004021661A1 (en) * 2004-05-03 2005-12-15 BSH Bosch und Siemens Hausgeräte GmbH Commutator motor with several field winding groups

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005109611A1 *

Also Published As

Publication number Publication date
DE102004021661A1 (en) 2005-12-15
CN1950993B (en) 2013-02-27
RU2006137815A (en) 2008-06-10
US20070247014A1 (en) 2007-10-25
RU2349017C2 (en) 2009-03-10
US7545070B2 (en) 2009-06-09
WO2005109611A1 (en) 2005-11-17
CN1950993A (en) 2007-04-18

Similar Documents

Publication Publication Date Title
EP1745541A1 (en) Commutator motor having a number of field winding groups
DE102015109479B4 (en) Three-phase AC electric motor with arrangement for reducing torque ripple
DE3814244A1 (en) CIRCUIT AND WINDING ARRANGEMENT FOR A MULTIPHASE ELECTRIC ROTATING MACHINE
DE102007013680A1 (en) Stator for an electric drive motor
EP1702401A1 (en) Electrical machine with a commutator armature
WO1999048190A1 (en) Multi-phase transverse flux machine
DE102015207368A1 (en) Stator for an electric machine as well as electrical machine
EP1860757A1 (en) Electric machine with part winding circuit
DE102019125483A1 (en) ROTATING ELECTRIC MACHINE
WO2007104589A1 (en) Electrical machine
EP0059245B1 (en) Part-winding starting circuit for three-phase motors
EP0664599A1 (en) Commutator motor
EP4165754A1 (en) Stator for an electric machine, and electric machine
DE2218193B2 (en) Method for quickly reversing the direction of rotation of a single-phase induction motor
DE2842377C2 (en) Single-phase series commutator motor, especially for driving washing machines
DE2332769B2 (en) For two speeds, pole-changing two-layer three-phase winding for an electric motor
WO2014184180A2 (en) Brush-commutated direct-current motor
EP2584671A2 (en) Electric machine
WO2008155293A2 (en) Electronically commutated motor having an improved stator
WO2018036767A1 (en) Electrical drive device
AT36575B (en) Collector anchor for multi-pole single-phase machines.
DE102009000026A1 (en) DC motor
DE102009017870A1 (en) Stator for use in e.g. spindle motor, for driving storage disk drives, has one connecting wires arranged and guided at front side of stator to two sections of other connecting wires for connecting windings assigned to respective strands
DE102010044713A1 (en) Brushless direct current (DC) motor has grooves between stator pole pieces of pole pairs whose width is set smaller than width of grooves between pole pieces of stator poles of different pairs
DE916434C (en) Induction-free execution of the compensation connections of the third kind for double parallel windings of three-phase commutator motors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090414

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20130415