LV14509B - High speed magnetoelectric synchronous motor - Google Patents

High speed magnetoelectric synchronous motor Download PDF

Info

Publication number
LV14509B
LV14509B LVP-12-40A LV120040A LV14509B LV 14509 B LV14509 B LV 14509B LV 120040 A LV120040 A LV 120040A LV 14509 B LV14509 B LV 14509B
Authority
LV
Latvia
Prior art keywords
air gap
rotor
poles
pole
stator
Prior art date
Application number
LVP-12-40A
Other languages
Latvian (lv)
Other versions
LV14509A (en
Inventor
Nikolajs Levins
Jānis DIRBA
Ludmila LAVRINOVIČA
Vladislavs PUGAČEVS
Original Assignee
Rīgas Tehniskā Universitāte
Fizikālās Enerģētikas Institūts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rīgas Tehniskā Universitāte, Fizikālās Enerģētikas Institūts filed Critical Rīgas Tehniskā Universitāte
Priority to LVP-12-40A priority Critical patent/LV14509B/en
Publication of LV14509A publication Critical patent/LV14509A/en
Publication of LV14509B publication Critical patent/LV14509B/en
Priority to PCT/EP2012/066001 priority patent/WO2013135312A2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Brushless Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

The invention relates to electrical engineering industry, more specifically, to high speed magnetoelectric synchronous motors. The offered motor contains an external rotor (1) with prismatic permanent magnets (2, 3, 4, 5) and a slotted stator (6) with slots (8) and m-phase winding (9) in the slots (8); the stator (6) being separated from the rotor (1) by an air gap (7); the prismatic permanent magnets (2, 3, 4, 5) are fixed in spaces between the poles (10, 11, 12, 13) at an angle from 10º to 15º against tangent planes (14) of the rotor's (1) inner surface in places (15), where spaces between the poles (10, 11, 12, 13) come out in the airgap (7), wherein magnetization direction of the magnets (2, 3, 4, 5) is perpendicular to the edges of spaces between the poles (10, 11, 12, 13). The air gap (7) between the stator (6) and rotor (1) has its narrowest parts in front of the centre of the poles (10, 11, 12, 13), but the widest – in front of the edges of the poles (10, 11, 12, 13), wherein the width (δ) of the air gap (7) depends on the arc angular size (α) secant from pole centre to the point under consideration at the boundary between the poles.

Description

© Virsraksts: ĀTRGAITAS MAGNETOELEKTRISKAIS SINHRONAIS DZINĒJS© Title: HIGH-SPEED MAGNETO-ELECTRICAL SYNCHRONOUS MOTOR

Q>7) Kopsavilkums: Piedāvāts ātrgaitas magnetoelektriskais sinhronais dzinējs. Dzinējs satur četrpolu ārējo rotoru 1 ar prizmatiskiem magnētiem 2 - 5 No rievota statora 6 rotors 1 ir atdalīts ar gaisa spraugu 7. Statora rievās 8 ir novietots m-fāžu tinums 9, piemēram, divfāžu tinums. Taisnstūrveida atstarpēs starp poliem 10-13, kuras ir izveidotas slīpi 10° -15° leņķī pret pieskares plaknēm 14, rotora 1 izvirpojuma vietās 15, kurās starppolu atstarpes iznāk gaisa spraugā 7, ir novietoti magnēti 2-5. Magnētu uzmagnetizēšanas virziens ir perpendikulārs starppolu atstarpju malām. Gaisa sprauga starp statoru un rotoru irizveidota nevienmērīga saskaņā ar izteiksmi 5 = 5^sec(P°) kurā: ir minimālais gaisa spraugas lielums zem pola centra; p ir polu pāru skaits; a ir loka leņķiskais izmērs no pola centra līdz aplūkojamajam punktam. Katra pola centrā irizveidota nemagnētiska sprauga 17, kuras atvere ir vienāda ar statora rievas atveri. Pieslēdzot statora 6 tinumam 9 barošanas avotu, tajā plūst m-fāžu strāva un veido rotējošu magnētisko lauku. Šī lauka un polu 10-13 mijiedarbības rezultātā rodas elektromagnētiskais griezes moments, un rotors sāk rotēt. Piedāvātais dzinējs var darboties arī ventiļdzinēja sastāvā, kad m-fāžu tinumi tiek komutēti pēc rotora stāvokļa devēja signāliem. Nevienmērīgā gaisa sprauga samazina lauka augstākās harmonikas un magnētiskās indukcijas sadalījumu gaisa spraugā tuvina sinusoidālam, kuru neizkropļo enkura šķērsreakcija, pateicoties katra pola centra izveidotai nemagnētiskai spraugai 17. Magnētu slīps novietojums ļauj ietaupīt dārgos magnētcietos materiālus un vienkāršot magnētu stiprināšanu. Samazinot magnētiskā lauka augstākās harmonikas gaisa spraugā, samazinās dzinēja vibrācijas un masa, bet pieaug lietderības koeficients un īpatnējais moments.Q> 7) Summary: High-speed magneto-electric synchronous motor is proposed. The motor comprises a four-pole external rotor 1 with prismatic magnets 2 - 5 The rotor 1 of the corrugated stator 6 is separated by an air gap 7. The m-phase winding 9, such as a two-phase winding, is disposed in the stator grooves 8. Magnets 2-5 are placed in the rectangular spaces between the poles 10-13, which are inclined at an angle of 10 ° to 15 ° to the tangent planes 14, at the turning points 15 of the rotor 1 where the interpolar spaces come out of the air gap 7. The magnetization direction of the magnets is perpendicular to the edges of the interpolar spacings. The air gap between the stator and rotor is uneven according to the expression 5 = 5 ^ sec (P °) where: is the minimum air gap size below the center of the pole; p is the number of pole pairs; a is the angular dimension of the arc from the center of the pole to the point considered. A non-magnetic slot 17 is formed in the center of each pole with an opening equal to that of the stator groove. Connecting the stator 6 to the winding 9 feeds the m-phase current and generates a rotating magnetic field. The interaction between this field and the poles 10-13 produces an electromagnetic torque and the rotor begins to rotate. The proposed motor can also operate in a valve motor when the m-phase windings are commutated by rotor position sensor signals. The uneven air gap reduces the distribution of the higher field harmonics and magnetic induction in the air gap closer to the sinusoidal, which is not distorted by the anchor cross-reaction thanks to a non-magnetic gap created by the center of each pole. Reducing the magnetic field's higher harmonic in the air gap reduces engine vibration and mass, but increases efficiency and specific torque.

Izgudrojuma aprakstsDescription of the Invention

Izgudrojums attiecas uz elektrotehnikas nozari, konkrēti - uz elektriskiem dzinējiem, kurus var izmantot sadzīves tehnikā, tanī skaitā arī elektroinstrumentos. Šādu dzinēju var savietot ar izpildorgānu, piemēram, frēzi.The invention relates to the field of electrical engineering, in particular to electric motors which can be used in household appliances, including power tools. Such an engine can be coupled to an executive, such as a milling cutter.

Ir zināmi līdzstrāvas vai maiņstrāvas kolektordzinēji [1-3], kurus izmanto elektroinstrumentos. Šādos dzinējos esošais kolektora suku mezgls neļauj nodrošināt tiem augstu drošuma pakāpi un ilgu kalpošanas laiku.DC or AC collector motors [1-3] are known for use in power tools. The collector brush assembly in such engines prevents them from providing a high degree of reliability and long service life.

Vistuvākais piedāvātajam tehniskajam risinājumam ir sinhronais dzinējs [4] ar prizmatiskas formas pastāvīgajiem magnētiem, kas ir novietoti ieliektajos polos un kuri ir uzmagnetizēti radiālā virzienā. Šajā gadījumā izmantojamie pastāvīgie magnēti ir dārgi. To stiprinājums nav pietiekami drošs, un to novietojums nav ērts magnētiskā lauka kvalitātes uzlabošanai gaisa spraugā. Dzinējiem ar tādu magnētu novietojumu ir palielināta vibrācija un zudumi statora,Closest to the proposed technical solution is a synchronous motor [4] with prismatic permanent magnets, which are placed in concave poles and magnetized in the radial direction. In this case, permanent magnets are expensive. Their attachment is not secure enough and their placement is not convenient for improving the magnetic field quality in the air gap. Motors with such magnet positions have increased vibration and stator losses,

Izgudrojuma mērķis un būtībaPurpose and substance of the invention

Izgudrojuma mērķis ir dzinēja īpatnējā momenta palielināšana, kā ari vibrāciju un izgatavošanas izmaksu samazināšana. Izvirzītais mērķis ir sasniegts tādējādi, ka ātrgaitas magnetoelektriskajā sinhronajā dzinējā, kurš satur ārējo rotoru ar nelielu polu skaitu ar prizmatiskiem pastāvīgajiem magnētiem un no rotora ar gaisa spraugu atdalītu rievotu statoru ar m-fažu enkurtinumu, saskaņā ar izgudrojumu prizmatiskie magnēti ir novietoti taisnstūrveida starppolu atstarpēs slīpi 10°-15° leņķī attiecībā pret pieskares plaknēm rotora izvirpojuma vietās, pie kam starppolu atstarpes iznāk gaisa spraugā, bet magnētu uzmagnetizēšanas virziens ir perpendikulārs starppolu atstarpju malām.The object of the invention is to increase the specific torque of the engine as well as to reduce vibration and manufacturing costs. The object is achieved in that, in the high-speed magneto-electric synchronous motor comprising an external rotor with a small number of poles with prismatic permanent magnets and a m-phase anchorage separated by a rotor with an air gap, the prismatic magnets are spaced rectangularly between At an angle of 10 ° to 15 ° with respect to the tangent planes at the rotor lugs, whereby the interpolar spacing comes out of the air gap and the magnetization direction of the magnets is perpendicular to the edges of the interpolar spacing.

Vibrāciju samazināšana tiek panākta tādējādi, ka gaisa sprauga ir izveidota nevienmērīga un mainās no pola centra uz tā malām saskaņā ar izteiksmi δ = sec(pa), kurā: i5min ir minimālais gaisa spraugas lielums zem pola centra; p ir polu pāru skaits; a ir loka leņķiskais izmērs no pola centra līdz aplūkojamam punktam.Vibration reduction is achieved by making the air gap uneven and changing from the center of the pole to its edges according to the expression δ = sec (pa), where: i5 min is the minimum size of the air gap below the center of the pole; p is the number of pole pairs; a is the angular size of the arc from the center of the pole to the point considered.

Izgudrojumu paskaidro l.att. un 2.att., kur l.att. ir parādīts dzinēja šķērsgriezums, bet 2.att. ir parādīts gaisa spraugas lieluma un magnētiskās indukcijas izmaiņa zem pola.The invention is explained in Fig. and Fig. 2, where Fig. the cross-section of the engine is shown, but fig. the change in air gap size and magnetic induction below the pole is shown.

Dzinējs satur ārējo rotoru 1 nemagnētiska korpusā, ar nelielu polu skaitu (aplūkojamā gadījumā ar četriem poliem) un ar prizmatiskiem pastāvīgajiem magnētiem 2 līdz 5. Rotors 1 ir atdalīts no rievota statora 6 ar gaisa spraugu 7. Statora rievās 8 ir novietots m-fažu enkurtinums 9, piemērām, divfažu tinums. Taisnstūrveida atstarpēs starp poliem 10 līdz 13, kas ir izveidotas slīpi zem leņķa γ = 10° -15° attiecībā pret pieskares plaknēm 14 rotora 1 izvirpojuma vietās 15, pie kam vietās, kur starppolu atstarpes iznāk gaisa spraugā 7, ir novietoti pastāvīgie magnēti 2 līdz 5. Gaisa spraugas lielums starp rotoru 1 un statoru 6 ir mainīgs. Vismazākā gaisa sprauga ir zem pola centra, bet vislielākā ir zem pola malām. 1 .att. ar raustītu līniju 16 nevienmērīgās gaisa spraugas lielums ir parādīta vienam polam 13. Šajos apstākļos gaisa spraugas lielums δ ir atkarīgs no loka leņķiskā izmēra a sekansa, pie kam leņķa a lielums ir mērīts no pola centra līdz aplūkojamam punktam polu iedaļas robežās un δ = <Ζύη sec(pa).The engine comprises an external rotor 1 in a non-magnetic housing, with a small number of poles (in this case four poles) and prismatic permanent magnets 2 to 5. The rotor 1 is separated from the corrugated stator 6 by an air gap 7. The m-phas anchor 9, for example, biphasic winding. In the rectangular spaces between the poles 10 to 13, which are inclined below the angle γ = 10 ° -15 ° with respect to the tangent planes 14 at the turning points 15 of the rotor 1, where the intermediate poles leave the air gap 7, permanent magnets 2 to 5. The air gap between rotor 1 and stator 6 is variable. The smallest air gap is below the center of the pole but the largest is below the edges of the pole. Fig. 1 the dotted line 16 to the uneven air gap size is shown in each pole 13. In those circumstances, the size of the air gap δ depends on the angular arc of a size sekansa, wherein the angle a value measured from pole center to the point in the pole section of the and δ = <Ζύη sec (pa).

Katra pola centrā ir izveidota nemagnētiska sprauga 17, kuras atvere vienāda ar statora rievas atveri.A non-magnetic slot 17 is formed in the center of each pole, the opening of which is equal to that of the stator groove.

Dzinēja darbībaEngine operation

Pieslēdzot statora 6 tinumam 9 barošanas avotu, tajā plūst m-fažu strāva un veido rotējošu magnētisko lauku. Šī rotējošā magnētiskā lauka un polu 10 līdz 13 mijiedarbības rezultātā rodas elektromagnētiskais griezes moments un rotors sāk rotēt. Piedāvātais dzinējs var darboties arī ventiļdzinēja sastāvā, kad m-fažu tinumi tiek komutēti pēc rotora stāvokļa devēja signāliem.Connecting the stator 6 winding 9 to a 9 power source, the m-phase current flows through it and creates a rotating magnetic field. As a result of this interaction between the rotating magnetic field and the poles 10 to 13, an electromagnetic torque is generated and the rotor begins to rotate. The proposed motor can also operate as a valve motor when the m-phase windings are commutated by rotor position sensor signals.

l.att. magnēti 2 līdz 5 starppolu atstarpēs ir novietoti slīpi. Tā kā katrs magnēts šādā izvietojumā apkalpo divus polus, tad magnētu tilpums samazinās gandrīz divas reizes. Attiecīgi samazinās pastāvīgo magnētu un visa dzinēja izgatavošanas izmaksas. Samazinās ari dzinēja kopējā masa un tātad palielinās tā īpatnējais moments. Nevienmērīgas gaisa spraugas izmantošana, to palielinot no pola centra uz malām saskaņā ar izteiksmi δ = Jmin sec(y?a), samazina magnētiskā lauka augstāko harmoniku amplitūdas un magnētvada piesātinājumu un tādējādi palielina īpatnējo momentu (skat. 2.att.). Tas tuvina magnētiskās indukcijas sadalījumu gaisa spraugā sinusoidālam sadalījumam, kuru neizkropļo šķērsreakcija, pateicoties katra pola centrā izveidotai nemagnētiskai spraugai 17. Magnētu novietošana slīpās starppolu atstarpēs palielina drošumu un vienkāršo magnetu nostiprināšanu, piemēram, ar līmes palīdzību. Tādējādi piedāvātais tehniskais risinājums dod pozitīvu efektu.Fig. magnets are inclined between 2 to 5 spacers. Since each magnet serves two poles in this arrangement, the volume of the magnets decreases almost twice. The cost of manufacturing permanent magnets and the entire engine will be reduced accordingly. The total weight of the engine also decreases and thus its specific torque increases. Using an uneven air gap, increasing it from the center of the pole to the edges according to δ = J min sec (y? A), reduces the amplitude and the saturation of the higher harmonics of the magnetic field and thus increases the specific moment (see Fig. 2). It approximates the magnetic induction distribution in the air gap to a sinusoidal distribution that is not distorted by a cross reaction, thanks to a non-magnetic gap 17 at the center of each pole. Thus, the proposed technical solution has a positive effect.

Claims (2)

Informācijas avoti:Sources of information: 1. Ātrgaitas magnetoelektriskais sinhronais dzinējs, kas satur ārējo rotoru ar nelielu skaitu polu ar prizmatiskiem pastāvīgajiem magnētiem, pie kam rotoru no rievota statora m-fažu enkurtinuma atdala gaisa sprauga, atšķiras ar to, ka, lai palielinātu īpatnējo momentu un samazinātu vibrācijas un izgatavošanas izmaksas, rotora prizmatiskie magnēti ir novietoti taisnstūrveida starppolu atstarpēs, kas ir izveidotas slīpi 10°-15° leņķī pret pieskarēm rotora izvirpojuma punktos, kuros pastāvīgie magnēti iznāk gaisa spraugā, bet magnētu uzmagnetizēšanas virziens ir perpendikulārs starppolu atstarpju malām.1. A high-speed magneto-electric synchronous motor comprising a small number of poles with prismatic permanent magnets, wherein the rotor is separated from the corrugated stator m-phase anchor by an air gap, in order to increase specific momentum and reduce vibration and manufacturing costs. , rotor prismatic magnets are located at rectangular spacers spaced at an angle of 10 ° to 15 ° to the tangents to the rotor turning points where the permanent magnets exit the air gap and the magnet magnetization direction is perpendicular to the edges of the interpolar spacers. 1. S.Rainer, J.Skrippek. Kolektordzinējs ar vairākām ierosmes tinuma grupām. Krievijas Federācijas patents RU 2349017 (13) C2,10.03.2009; (krievu valodā);1. S.Rainer, J. Scrippek. Collector engine with multiple excitation winding groups. Patent of the Russian Federation RU 2349017 (13) C2.10.03.2009; (Russian language); 2. www.bosch.de;2. www.bosch.de; 3. V. Skrebenkovs. Elektrodzinējs ar pastāvīgo magnētu ierosmi. Krievijas Federācijas patenta pieteikums RU 2005101715(13) A, 10.07.2006 (krievu valodā)3. V. Skrebenkov. Electric motor with permanent magnet excitation. Patent application of the Russian Federation RU 2005101715 (13) A, 10.07.2006 (in Russian) 4. N. Levins, J. Dirba, U. Brakanskis, K. Ketners, S. Orlova, V. Pugačevs. Sinhronā mašīna ar pastāvīgajiem magnētiem. Latvijas patents Nr. LV 14335 B, 20.09.2011 (prototips)4. N. Levins, J. Works, U. Brakanskis, K. Ketners, S. Orlova, V. Pugachev. Synchronous machine with permanent magnets. Latvian patent no. LV 14335 B, 09/20/2011 (Prototype) PretenzijasClaims 2. Ātrgaitas magnetoelektriskais sinhronais dzinējs saskņā ar 1. pretenziju, kas atšķiras ar to, ka gaisa sprauga starp statoru un rotoru ir izveidota nevienmērīga saskaņā ar izteiksmi <5 = 3^ sec(pa), kurā: <5min ir minimālais gaisa spraugas lielums zem pola centra; p ir polu pāru skaits; a ir loka leņķiskais izmērs no pola centra līdz aplūkojamam punktam, pie kam katru polu sadala divās daļās nemagnētiska sprauga, kuras atvere ir vienāda ar statora rievas atveri.High-speed magneto-electric synchronous motor according to claim 1, characterized in that the air gap between the stator and the rotor is made uneven according to the expression <5 = 3 ^ sec (pa), wherein: <5 min is the minimum air gap size below the center of the pole; p is the number of pole pairs; a is the angular size of the arc from the center of the pole to the point at which each pole is divided into two non-magnetic slots whose aperture is equal to the aperture of the stator.
LVP-12-40A 2012-03-13 2012-03-13 High speed magnetoelectric synchronous motor LV14509B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
LVP-12-40A LV14509B (en) 2012-03-13 2012-03-13 High speed magnetoelectric synchronous motor
PCT/EP2012/066001 WO2013135312A2 (en) 2012-03-13 2012-08-16 High speed magnetoelectric synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-12-40A LV14509B (en) 2012-03-13 2012-03-13 High speed magnetoelectric synchronous motor

Publications (2)

Publication Number Publication Date
LV14509A LV14509A (en) 2012-04-20
LV14509B true LV14509B (en) 2012-07-20

Family

ID=46826447

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-12-40A LV14509B (en) 2012-03-13 2012-03-13 High speed magnetoelectric synchronous motor

Country Status (2)

Country Link
LV (1) LV14509B (en)
WO (1) WO2013135312A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3011664A4 (en) * 2013-06-20 2017-03-01 Otis Elevator Company Electric machine having rotor with slanted permanent magnets

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19737391A1 (en) * 1997-08-27 1999-03-04 Magnet Motor Gmbh Electrical machine, the rotor of which is made up of permanent magnets and magnetic flux guide pieces
DE102004021661A1 (en) 2004-05-03 2005-12-15 BSH Bosch und Siemens Hausgeräte GmbH Commutator motor with several field winding groups
JP2006014457A (en) * 2004-06-24 2006-01-12 Fanuc Ltd Synchronous motor
RU2299509C2 (en) 2005-01-25 2007-05-20 Открытое акционерное общество "АВТОВАЗ" Permanent-magnet excited motor
DE102007029157A1 (en) * 2007-06-25 2009-01-08 Robert Bosch Gmbh Synchronous motor with 12 stator teeth and 10 rotor poles
LV13924B (en) 2007-10-10 2009-08-20 Rīgas Tehniskā Universitāte Rotor of synchronous machine with permanent magnets
DE102009000681A1 (en) * 2009-02-06 2010-08-12 Robert Bosch Gmbh synchronous machine
CN202014145U (en) 2011-02-28 2011-10-19 上海电机系统节能工程技术研究中心有限公司 Surface-mounted permanent magnet synchronous motor rotor structure used for improving air-gap flux density wave shape
LV14335B (en) 2011-03-09 2011-09-20 Rīgas Tehniskā Universitāte Permanent magnet synchronous machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3011664A4 (en) * 2013-06-20 2017-03-01 Otis Elevator Company Electric machine having rotor with slanted permanent magnets

Also Published As

Publication number Publication date
LV14509A (en) 2012-04-20
WO2013135312A3 (en) 2014-08-14
WO2013135312A2 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
US7932658B2 (en) Interior permanent magnet motor including rotor with flux barriers
CN108964396B (en) Stator partition type alternate pole hybrid excitation motor
CN107222075B (en) Double-stator hybrid excitation motor with internal stator of T-shaped iron core
US10622851B2 (en) Motor having stator with coupled teeth
CN101917076A (en) Permanent magnet drive motor for solar tracking system
US10020717B2 (en) Dual stator, flux switching permanent magnet machine
RU2541513C2 (en) Synchronous machine with anisotropic magnetic conductivity of rotor
Zou et al. A consequent pole, dual rotor, axial flux vernier permanent magnet machine
CN205430012U (en) Two salient pole machine structures of three -phase
Liu et al. Comparative study of magnetic gearing effect in integral slot, fractional slot winding and vernier PM machines
LV14509B (en) High speed magnetoelectric synchronous motor
CN105305753A (en) Three-phase (6/5)k doubly salient motor structure
Zhang et al. Cogging torque reduction by combining teeth notching and rotor magnets skewing in PM BLDC with concentrated windings
US9018815B2 (en) Generator
Zhu et al. Influence of design parameters on cogging torque in permanent magnet machines
US20140145537A1 (en) Electric motor having an approximated ellipsoid shaped rotor
RU115130U1 (en) ELECTRIC MACHINE
US20180083505A1 (en) Divided Magnetic Generator
RU53828U1 (en) MULTIPLE MAGNETIC ELECTRIC MACHINE
US20230023710A1 (en) Synchronous reluctance machine having a variable air gap
CN204517611U (en) A kind of pole claw mixed excitation electric machine
Xu et al. Torque performance enhancement of V-shaped interior permanent magnet synchronous motor by rotor shape optimization
Shi et al. Analytical calculation of air gap magnetic field distribution in vernier motor
CN215528713U (en) Permanent magnet direct current generator
CN217904124U (en) Magnetic pole deviation single-symmetry-axis motor rotor structure