EP1742241A2 - Wasserfahrzeug mit einem Gleichstromnetz mit einem Vakuumschalter - Google Patents

Wasserfahrzeug mit einem Gleichstromnetz mit einem Vakuumschalter Download PDF

Info

Publication number
EP1742241A2
EP1742241A2 EP06011328A EP06011328A EP1742241A2 EP 1742241 A2 EP1742241 A2 EP 1742241A2 EP 06011328 A EP06011328 A EP 06011328A EP 06011328 A EP06011328 A EP 06011328A EP 1742241 A2 EP1742241 A2 EP 1742241A2
Authority
EP
European Patent Office
Prior art keywords
switch
vacuum switch
commutation
vacuum
watercraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06011328A
Other languages
English (en)
French (fr)
Other versions
EP1742241A3 (de
Inventor
Ingo Dipl.-Ing. Buder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Marine Systems GmbH
Original Assignee
Howaldtswerke Deutsche Werft GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howaldtswerke Deutsche Werft GmbH filed Critical Howaldtswerke Deutsche Werft GmbH
Publication of EP1742241A2 publication Critical patent/EP1742241A2/de
Publication of EP1742241A3 publication Critical patent/EP1742241A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H2021/003Use of propulsion power plant or units on vessels the power plant using fuel cells for energy supply or accumulation, e.g. for buffering photovoltaic energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts
    • H01H33/167Impedances connected with contacts the impedance being inserted only while opening the switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/42The network being an on-board power network, i.e. within a vehicle for ships or vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a watercraft, in particular a submarine with the features specified in the preamble of claim 1.
  • the power supply under water is typically from batteries and / or fuel cells, ie from a DC network.
  • batteries and / or fuel cells ie from a DC network.
  • the power supply under water is typically from batteries and / or fuel cells, ie from a DC network.
  • the size of the vehicles grows, so does their energy demand, both for the traction motors or for the supply of the vehicle electrical system. Since a voltage increase for various reasons is only possible to a limited extent, these increased energy requirements can be met only by higher currents.
  • the commonly used circuit breakers reach their limits.
  • the currently used circuit breakers are mechanical switches in open design, which take up a considerable amount of space. The switches need behind their arc chamber an additional space of about 0.6 meters, which is needed to blow out the arc. With increasing voltage and rising currents, the dimensions of such circuit breakers grow disproportionately, which is particularly disadvantageous to submarines, where space is limited.
  • the present invention seeks to provide a generic watercraft, especially submarine equip so that the circuit breaker take up less space and, if possible, can switch higher currents at the same or higher voltages.
  • the invention thus provides a watercraft, in particular a submarine, which has at least one DC source, in particular a battery and / or fuel cell system and at least one electrical load such as traction motor, electrical system, electromagnetic weapon or the like. Furthermore, at least one circuit breaker between DC power source and Consumers provided, but typically several such circuit breakers are provided. According to the invention, such a circuit breaker is designed as a vacuum switch and in addition provided with a commutation device which deletes the vacuum arc arising in the vacuum switch when opening the switch.
  • the basic idea of the present invention is therefore to replace a space-consuming and also mechanically highly stressed conventional circuit breaker, in particular in a submarine, where the space requirement is limited, by a vacuum switch, which has a much smaller size with comparable breaking capacity and subjected to less wear is.
  • a commutation device is provided which is designed and activated in this way is that immediately after the generation of the arc, the vacuum switch is acted upon by an oppositely directed current, which compensates for the current flowing in the arc current or at least reduced so far that the arc comes to extinction.
  • Vacuum switches as such are known, but they are typically used for switching alternating currents, since there extinguishes automatically due to the zero crossing of the arc.
  • VDE-Verlag 12/2002 ISBN 3-8007-2317-4
  • DC medium voltage networks are typically not used in watercraft, especially submarines.
  • the voltages to be handled in watercraft, especially submarines, are typically below 1000 volts.
  • vacuum switches in conjunction with forced commutation of the installation space for the circuit breaker can be significantly reduced, not only reducing the size and thus the weight of the switch brings benefits, but also the usual space for the blower can be omitted.
  • vacuum switches can be dispensed with the otherwise a mechanical circuit breaker upstream target melting points of copper, which serve to limit the short-circuit current in a short circuit by melting in an arc to a current that can be switched with the existing switches.
  • Another significant advantage of the vacuum switch is its low contact resistance due to a non-existent oxidation layer.
  • the heating and thus the losses within the switch are much lower in a vacuum switch than in a conventional mechanical switch according to the prior art. Since the switching power losses are low, the load of the switch itself is much lower, whereby the life of a vacuum switch is much greater than that of a conventional mechanical switch with blow-out technology. In this case, preference is given to using chrome-copper alloys for the switching contacts.
  • Another major advantage of the vacuum switch is the lower risk potential, since the arc does not escape into the environment, but arises within the closed switch housing. Due to the system, the vacuum switch has a lower switching power conversion because of lower burning voltage of the metal vapor arc and faster reconsolidation of the switching path. The switching times are much shorter than in the known mechanical switches with blow-out because of the smaller contact distances and the resulting smaller contact stroke. Finally, the greater switching capacity and longer life is beneficial.
  • the vacuum switch used as a circuit breaker can basically have any type, but particularly space-saving is a vacuum switch with a cylindrical housing in which the switching contacts in the direction of the housing longitudinal axis are mutually variable in their distance.
  • the commutation is arranged outside of the switch housing, so that the vacuum is limited to the smallest possible space and a seal between moving parts only between the housing and the movably mounted within the housing switching contact required is.
  • the commutation device is preferably arranged in the immediate vicinity of the switch in order to keep the conduction paths short, but it can also be arranged away from the actual vacuum switch.
  • the commutation device can be constructed in many ways.
  • a preferred commutation device has a parallel to the vacuum switch commutation circuit, which has a switch, for example in the form of a thyristor and a charge carrier.
  • a corresponding control device ensures that immediately after opening the vacuum switch, the switch is controlled so that the charge carrier is connected parallel to the vacuum switch and polarized in opposite directions to delete the arc resulting from the opening when opening.
  • the commutation device has means for charging the charge carrier, in order to ensure that when opening the vacuum switch always the charge carrier is sufficiently charged to generate the required compensation current for extinguishing the arc.
  • a charge carrier may advantageously serve a capacitor, which may typically be constructed of a plurality of parallel and series-connected single capacitors.
  • a charge generator may also be provided, which is controlled by the control device in such a way that after opening the vacuum switch the charge generator is controlled to compensate for the current flowing in the arc of the vacuum switch.
  • a charge generator can be formed, for example, by an electrical coil which experiences a dynamic change in its electrical and / or electromagnetic state. In this way, a suitable compensation current can be generated, which deletes the resulting arc when opening the vacuum switch.
  • Fig. 1 the basic structure of an electrical supply network of a submarine is shown by way of example.
  • This is a DC network, which is shown as a single pole for simplicity.
  • the supply system is redundant and each consists of a battery 1, a generator 2, a fuel cell 3, a traction motor 4 and a vehicle electrical system 5.
  • battery 1 generator 2 and fuel cell 3 DC sources
  • motor 4 and electrical system 5 electrical consumers are.
  • Both the power sources 1, 2, 3 and the consumers 4, 5 are connected via power switch 6 to a respective power supply 7 or 8 of the electrical network, the supply strands 7 and 8 are also connected to one another via a circuit breaker 6, so that in Case of a short circuit or failure of power sources and / or consumers by means of the circuit breaker 6 corresponding circuits for bridging or shutdown can be realized.
  • the circuit breakers 6 are designed as vacuum switches and each have a commutation device 9, which has a parallel connected to the vacuum switch 6 Kommut réellesschalt Vietnamese 10 and an electronic control device 11.
  • the commutation circuit 10 has a diode 12, a capacitor 13 and a electronic, controlled by the controller 11 switch 14.
  • the diode 12, the capacitor 13 and the switch 14 are in series in the commutation circuit 10, which is connected in parallel to the vacuum switch 6.
  • the commutation device 9 has a charging device 15 which serves to charge the capacitor 13.
  • the vacuum switch 6 has a substantially cylindrical housing 16 which is stepped at both ends and at one end carries a fixed terminal contact 17 and at the other end a movable terminal contact 18.
  • the cylindrical housing 16 forms the actual evacuated switching chamber, within which a fixed switching contact 19 and arranged in the axial direction of the housing 11 movably arranged switching contact 20 are arranged. In order to insulate the housing 16 with respect to the end-side connection contacts 17 and 18, this is formed in the stepped area as an insulator 21.
  • the housing 16 is sealed at the end of the insulator 21 by a disk-shaped part 22, which is formed as a rotating part integral with the outwardly adjoining fixed terminal contact 17 and the fixed switching contact 19, connected via a bolt-shaped part 23.
  • the movably arranged switch contact 20 is connected via a bolt-shaped part 24 with a cylindrical portion 25 which is widened in contrast to which a bellows 26 is attached to its end face facing the movable connection contact 18, the other end of which is connected to a plate 27 terminating the insulator 21 at the end , Since the bellows 26 close to the cylindrical portion 25 and the plate 27 connects, the terminal contact 18 can be moved together with the cylindrical portion 25, the bolt-shaped part 24 and the switching contact 20 located thereon in the axial direction of the housing 16 to the switch 6 to open or close.
  • a connection 28 is provided for a mechanical drive at the end of the movable switching contact 20.
  • a current of, for example, several 1000 A flows via a line 29 to the fixed connection contact 17 to the switching contact 19, which then contacts the switching contact 20, so that the current via the latter to the movable connection contact 18 and of there flows into the conduit 30.
  • the commutation circuit 10 is open, the capacitor 13 is charged by the charging device 15.
  • the controller 11 closes the switch 14, whereby the capacitor 13 is conductively connected via the commutation circuit 10 to the terminal contacts 17 and 18 of the vacuum switch.
  • the capacitor 13 is charged so that in the commutation circuit 10, a current flows, which is opposite to the current flowing in the arc within the vacuum switch 6 stream.
  • the capacitor charge 13 is dimensioned so that the current flowing through the commutation circuit 10 countercurrent sufficient to extinguish the arc within the vacuum switch 6.
  • the control device 11 re-activates the switch 14, thus disconnecting the commutation circuit 10 from the vacuum switch 6, after which the charging device 15 recharges the capacitor 13, so that at the next switching operation, when the circuit breaker 6 is closed and then again open is, the above-described commutation can run again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

Das Wasserfahrzeug weist eine Gleichstromquelle und einen elektrischen Verbraucher auf, die über einen Leistungsschalter (6) miteinander verbindbar sind. Der Leistungsschalter (6) ist als Vakuumschalter ausgebildet und weist eine Kommutierungseinrichtung (9) auf, welche den beim Öffnen des Schalters entstehenden Lichtbogen löscht.

Description

  • Die Erfindung betrifft ein Wasserfahrzeug, insbesondere ein Unterseeboot mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.
  • Bei Unterseebooten kleiner und mittlerer Baugröße erfolgt die Energieversorgung unter Wasser typischerweise aus Batterien und/oder Brennstoffzellen, also aus einem Gleichstromnetz. Mit wachsender Größe der Fahrzeuge wächst auch deren Energiebedarf, sowohl für den oder die Fahrmotoren als auch für die Versorgung des Bordnetzes. Da eine Spannungserhöhung aus verschiedenen Gründen nur bedingt möglich ist, kann diesen erhöhten Energieanforderungen nur durch höhere Ströme Rechnung getragen werden. Hierbei kommen jedoch die üblicherweise eingesetzten Leistungsschalter an ihre Grenzen. Die derzeit eingesetzten Leistungsschalter sind mechanische Schalter in offener Bauweise, welche einen erheblichen Platz beanspruchen. Die Schalter benötigen hinter ihrer Lichtbogenkammer einen zusätzlichen Freiraum von etwa 0,6 Meter, der zum Ausblasen des Lichtbogens benötigt wird. Mit steigender Spannung und steigenden Strömen wachsen die Abmessungen solcher Leistungsschalter überproportional, was insbesondere auf Unterseebooten, wo das Raumangebot eng begrenzt ist, von Nachteil ist.
  • Aber auch auf anderen Wasserfahrzeugen tritt dieses Problem zunehmend auf, und sei es auch nur für die erforderliche Gleichstromversorgung elektromagnetischer Waffen.
  • Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein gattungsgemäßes Wasserfahrzeug, insbesondere Unterseeboot so auszurüsten, dass die Leistungsschalter weniger Platz beanspruchen und nach Möglichkeit höhere Ströme bei gleichen oder höheren Spannungen schalten können.
  • Diese Aufgabe wird gemäß der Erfindung durch die in Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen, der nachfolgenden Beschreibung und der Zeichnung angegeben.
  • Die Erfindung sieht somit ein Wasserfahrzeug, insbesondere ein Unterseeboot vor, das mindestens eine Gleichstromquelle, insbesondere eine Batterie- und/oder Brennstoffzellenanlage aufweist und mindestens einen elektrischen Verbraucher wie beispielsweise Fahrmotor, Bordnetz, elektromagnetische Waffe oder dgl. Weiterhin ist mindestens ein Leistungsschalter zwischen Gleichstromquelle und Verbraucher vorgesehen, typischerweise sind jedoch mehrere solcher Leistungsschalter vorgesehen. Gemäß der Erfindung ist ein solcher Leistungsschalter als Vakuumschalter ausgebildet sowie darüber hinaus mit einer Kommutierungseinrichtung versehen, welche den im Vakuumschalter beim Öffnen des Schalters entstehenden Vakuumlichtbogen löscht.
  • Grundgedanke der vorliegenden Erfindung ist es also, einen platzaufwendigen und auch mechanisch hoch beanspruchten konventionellen Leistungsschalter, insbesondere in einem Unterseeboot, wo der Raumbedarf eng begrenzt ist, durch einen Vakuumschalter zu ersetzen, der eine wesentlich kleinere Baugröße bei vergleichbarer Schaltleistung aufweist und einem geringeren Verschleiß unterworfen ist. Um den beim Einsatz eines Vakuumschalters beim Schalten von Gleichstrom innerhalb des Schalters entstehenden Lichtbogen zu löschen ist eine Kommutierungseinrichtung vorgesehen, welche so ausgebildet und angesteuert ist, dass unmittelbar nach Erzeugen des Lichtbogens der Vakuumschalter mit einem entgegengesetzt gerichteten Strom beaufschlagt wird, der den im Lichtbogen fließenden Strom kompensiert oder zumindest soweit vermindert, dass der Lichtbogen zum Erlöschen kommt.
  • Vakuumschalter als solche sind bekannt, sie werden jedoch bisher typischerweise zum Schalten von Wechselströmen eingesetzt, da dort aufgrund des Nulldurchgangs der Lichtbogen selbsttätig erlischt. Es wird in diesem Zusammenhang auf Lippmann, Hans-Joachim, Schalten im Vakuum, Physik und Technik der Vakuumschalter, VDE-Verlag 12/2002 (ISBN 3-8007-2317-4) verwiesen. Zwar ist dort auch schon die grundsätzliche Möglichkeit erwähnt, Vakuumschalter in Form von Vakuumschaltröhren zum Schalten von Gleichstrom einzusetzen, allerdings nur für den Mittelspannungsbereich über 1,5 kV.
  • Gleichstrom-Mittelspannungsnetze werden jedoch typischerweise bei Wasserfahrzeugen, insbesondere Unterseebooten nicht eingesetzt. Die in Wasserfahrzeugen, insbesondere Unterseebooten zu handhabenden Spannungen liegen typischerweise unter 1000 Volt.
  • Durch den Einsatz von Vakuumschaltern in Verbindung mit Zwangskommutierungseinrichtungen kann der Einbauraum für die Leistungsschalter ganz erheblich reduziert werden, wobei nicht nur die Reduzierung der Baugröße und damit auch des Gewichts der Schalter Vorteile bringt, sondern auch der sonst übliche Freiraum für die Ausblasstrecke entfallen kann. Schließlich können bei Einsatz von Vakuumschaltern auch auf die sonst einem mechanischen Leistungsschalter vorgeschalteten Sollschmelzstellen aus Kupfer verzichtet werden, die dazu dienen, im Kurzschlussfalle den Kurzschlussstrom durch Abschmelzen in einem Lichtbogen auf einen Strom zu begrenzen, der mit den vorhandenen Schaltern schaltbar ist.
  • Ein weiterer wesentlicher Vorteil des Vakuumschalters ist sein geringer Übergangswiderstand in Folge einer nicht vorhandenen Oxydationsschicht. Auch die Erwärmung und damit die Verluste innerhalb des Schalters sind bei einem Vakuumschalter wesentlich geringer als bei einem konventionellen mechanischen Schalter nach dem Stand der Technik. Da die Schaltleistungsverluste gering sind, ist auch die Belastung des Schalters selbst deutlich geringer, wodurch die Lebensdauer eines Vakuumschalters wesentlich größer als die eines konventionellen mechanischen Schalters mit Ausblastechnik ist. Dabei werden für die Schaltkontakte bevorzugt Chrom-Kupfer-Legierungen eingesetzt. Ein weiterer wesentlicher Vorteil des Vakuumschalters ist das geringere Gefährdungspotenzial, da der Lichtbogen nicht in die Umgebung austritt, sondern innerhalb des geschlossenen Schaltergehäuses entsteht. Systembedingt weist der Vakuumschalter einen geringeren Schaltleistungsumsatz wegen niedrigerer Brennspannung des Metalldampfbogens und schneller Wiederverfestigung der Schaltstrecke auf. Auch sind die Schaltzeiten wegen der geringeren Kontaktabstände und dem dadurch bedingten kleineren Kontakthub deutlich kürzer als bei den bekannten mechanischen Schaltern mit Ausblastechnik. Schließlich ist das größere Schaltvermögen und die längere Lebensdauer von Vorteil.
  • Der als Leistungsschalter eingesetzte Vakuumschalter kann grundsätzlich beliebige Bauart aufweisen, besonders raumsparend ist jedoch ein Vakuumschalter mit einem zylindrischen Gehäuse, in dem die Schaltkontakte in Richtung der Gehäuselängsachse in ihrem Abstand zueinander veränderbar sind.
  • Dabei ist es grundsätzlich von Vorteil, wenn die Kommutierungseinrichtung außerhalb des Schaltergehäuses angeordnet ist, so dass das Vakuum auf einen möglichst kleinen Raum begrenzt bleibt und eine Abdichtung zwischen beweglichen Teilen nur zwischen dem Gehäuse und dem bewegbar innerhalb des Gehäuses gelagerten Schaltkontakt erforderlich ist. Die Kommutierungseinrichtung wird jedoch bevorzugt in unmittelbarer Nähe zum Schalter angeordnet, um die Leitungswege kurz zu halten, sie kann jedoch auch entfernt vom eigentlichen Vakuumschalter angeordnet sein.
  • Die Kommutierungseinrichtung kann auf vielfältige Weise aufgebaut sein. Eine bevorzugte Kommutierungseinrichtung weist einen parallel zum Vakuumschalter liegenden Kommutierungsschaltkreis auf, der einen Schalter, beispielsweise in Form eines Thyristors aufweist sowie einen Ladungsträger. Über einen entsprechende Steuerungseinrichtung wird sichergestellt, dass unmittelbar nach Öffnen des Vakuumschalters der Schalter so angesteuert wird, dass der Ladungsträger parallel zum Vakuumschalter und gegensinnig gepolt geschaltet wird um den im Schalter beim Öffnen entstehenden Lichtbogen zu löschen. Darüber hinaus weist die Kommutierungseinrichtung Mittel zum Laden des Ladungsträgers auf, damit sichergestellt ist, dass beim Öffnen des Vakuumschalters stets der Ladungsträger ausreichend geladen ist, um den erforderlichen Kompensationsstrom zum Löschen des Lichtbogens zu erzeugen. Als Ladungsträger kann vorteilhaft ein Kondensator dienen, der typischerweise aus mehreren parallel und in Serie geschalteten Einzelkondensatoren aufgebaut sein kann.
  • Alternativ kann anstelle eines Ladungsträgers auch ein Ladungserzeuger vorgesehen sein, der von der Steuereinrichtung so angesteuert wird, dass nach dem Öffnen des Vakuumschalters der Ladungserzeuger zur Kompensierung des im Lichtbogen des Vakuumschalters fließenden Stromes angesteuert wird. Ein solcher Ladungserzeuger kann beispielsweise durch eine elektrische Spule gebildet sein, welche eine dynamische Änderung ihrer elektrischen und/oder elektromagnetischen Zustands erfährt. Auch auf diese Weise kann ein geeigneter Kompensationsstrom erzeugt werden, welcher den beim Öffnen des Vakuumschalters entstehenden Lichtbogen löscht.
  • Die Erfindung ist nachfolgend anhand eines Ausführungsbeispiels im Einzelnen erläutert. Es zeigen
  • Fig. 1
    in stark vereinfachter schematischer Schaltbildarstellung den Aufbau eines Gleichstromnetzes eines Unterseebootes und
    Fig. 2
    in vereinfachter Schaltbilddarstellung einen Vakuumschalter mit Kommutierungseinrichtung.
  • In Fig. 1 ist beispielhaft der grundsätzliche Aufbau eines elektrischen Versorgungsnetzes eines Unterseebootes dargestellt. Es handelt sich hierbei um ein Gleichstromnetz, das zur Vereinfachung einpolig dargestellt ist. Das Versorgungssystem ist redundant aufgebaut und besteht jeweils aus einer Batterie 1, einem Generator 2, einer Brennstoffzelle 3, einem Fahrmotor 4 und einem Bordnetz 5. Dabei stellen Batterie 1, Generator 2 und Bennstoffzelle 3 Gleichstromquellen dar, wohingegen Motor 4 und Bordnetz 5 elektrische Verbraucher sind. Sowohl die Stromquellen 1, 2, 3 als auch die Verbraucher 4, 5 sind über Leistungsschalter 6 an jeweils einen Versorgungsstrang 7 bzw. 8 des elektrischen Netzes angeschlossen, wobei die Versorgungsstränge 7 und 8 ebenfalls über einen Leistungsschalter 6 miteinander verbindbar sind, so dass im Fall eines Kurzschlusses oder Ausfalls von Stromquellen und/oder Verbrauchern mittels der Leistungsschalter 6 entsprechende Schaltungen zu Überbrückung bzw. Abschaltung realisiert werden können.
  • Die Leistungsschalter 6 sind als Vakuumschalter ausgebildet und weisen jeweils eine Kommutierungseinrichtung 9 auf, die einen parallel an dem Vakuumschalter 6 angeschlossenen Kommutierungsschaltkreis 10 sowie eine elektronische Steuereinrichtung 11 aufweist. Der Kommutierungsschaltkreis 10 weist eine Diode 12, einen Kondensator 13 sowie einen elektronischen, von der Steuereinrichtung 11 gesteuerten Schalter 14 auf. Die Diode 12, der Kondensator 13 und der Schalter 14 liegen in Reihe im Kommutierungsschaltkreis 10, der parallel zum Vakuumschalter 6 geschaltet ist. Weiterhin weist die Kommutierungseinrichtung 9 eine Ladeeinrichtung 15 auf, welche zum Aufladen des Kondensators 13 dient.
  • Der Vakuumschalter 6 weist ein im Wesentlichen zylindrisches Gehäuse 16 auf, das zu beiden Enden hin abgestuft ausgebildet ist und an einem Ende einen festen Anschlusskontakt 17 sowie am anderen Ende einen beweglichen Anschlusskontakt 18 trägt. Das zylindrische Gehäuse 16 bildet die eigentliche evakuierte Schaltkammer, innerhalb der ein feststehender Schaltkontakt 19 und ein in Achsrichtung des Gehäuses 11 beweglich angeordneter Schaltkontakt 20 angeordnet sind. Um das Gehäuse 16 gegenüber den endseitigen Anschlusskontakten 17 und 18 zu isolieren, ist dieses im abgestuften Bereich als Isolator 21 ausgebildet.
  • Stirnseitig wird das Gehäuse 16 am Ende des Isolators 21 dicht durch ein scheibenförmiges Teil 22 abgeschlossen, das als Drehteil einstückig mit dem daran nach außen anschließenden festen Anschlusskontakt 17 sowie dem festen Schaltkontakt 19, verbunden über ein bolzenförmiges Teil 23, ausgebildet ist.
  • Auch der beweglich angeordnete Schaltkontakt 20 ist über einen bolzenförmiges Teil 24 mit einem demgegenüber aufgeweiteten zylindrischen Abschnitt 25 verbunden, an dessen zum beweglichen Anschlusskontakt 18 weisender Stirnseite ein Faltenbalg 26 angebracht ist, dessen anderes Ende mit einer den Isolator 21 dort stirnseitig abschließenden Platte 27 verbunden ist. Da der Faltenbalg 26 dicht an dem zylindrischen Abschnitt 25 sowie die Platte 27 anschließt, kann der Anschlusskontakt 18 zusammen mit dem zylindrischen Abschnitt 25, dem bolzenförmigen Teil 24 und dem daran befindlichen Schaltkontakt 20 in Achsrichtung des Gehäuses 16 verschoben werden, um den Schalter 6 zu öffnen bzw. zu schließen. Hierzu ist am Ende des beweglichen Schaltkontaktes 20 ein Anschluss 28 für einen mechanischen Antrieb vorgesehen.
  • Bei geschlossenem (in Fig. 2 dargestellten) Vakuumschalter 6 fließt ein Strom von beispielsweise mehreren 1000 A über eine Leitung 29 zum festen Anschlusskontakt 17 zum Schaltkontakt 19, der dann am Schaltkontakt 20 anliegt, so dass der Strom über letzteren zum beweglichen Anschlusskontakt 18 und von dort in die Leitung 30 fließt. Der Kommutierungsschaltkreis 10 ist dabei geöffnet, der Kondensator 13 durch die Ladeeinrichtung 15 geladen.
  • Wenn nun der bewegliche Schaltkontakt 20 durch entsprechende Bewegung am Ende 28 vom feststehenden Schaltkontakt 19 weggezogen wird, so bildet sich zwischen den Kontakten 19 und 20 ein Lichtbogen aus, der aufgrund des Vakuums ein Plasmalichtbogen ist. Unmittelbar nach Öffnen des Leistungsschalters 6 schließt die Steuereinrichtung 11 den Schalter 14, wodurch der Kondensator 13 über den Kommutierungsschaltkreis 10 mit den Anschlusskontakten 17 und 18 des Vakuumschalters leitend verbunden wird. Der Kondensator 13 ist dabei so geladen, dass in dem Kommutierungsschaltkreis 10 ein Strom fließt, der entgegengerichtet zu dem im Lichtbogen innerhalb des Vakuumschalters 6 fließenden Stromes ist. Dabei ist die Kondensatorladung 13 so dimensioniert, dass der durch den Kommutierungsschaltkreis 10 fließende Gegenstrom ausreicht, um den Lichtbogen innerhalb des Vakuumschalters 6 zu löschen.
  • Sobald der Lichtbogen gelöscht ist, steuert die Steuereinrichtung 11 den Schalter 14 wieder öffnend an, trennt also den Kommutierungsschaltkreis 10 vom Vakuumschalter 6, wonach die Ladeeinrichtung 15 den Kondensator 13 erneut lädt, so dass beim nächsten Schaltvorgang, wenn der Leistungsschalter 6 geschlossen und anschließend wieder geöffnet wird, der vorbeschriebene Kommutierungsvorgang erneut ablaufen kann.
  • Bezugszeichenliste
  • 1
    Batterie
    2
    Generator
    3
    Brennstoffzelle
    4
    Fahrmotor
    5
    Bordnetz
    6
    Leistungsschalter
    7
    Versorgungsstrang
    8
    Versorgungsstrang
    9
    Kommutierungseinrichtung
    10
    Kommutierungsschaltkreis
    11
    Steuereinrichtung
    12
    Diode
    13
    Kondensator
    14
    Elektronischer Schalter
    15
    Ladeeinrichtung
    16
    Gehäuse
    17
    Fester Anschlusskontakt
    18
    Beweglicher Anschlusskontakt
    19
    Fester Schaltkontakt
    20
    Beweglicher Schaltkontakt
    21
    Isolatoren
    22
    Scheibenförmiger Teil
    23
    Bolzenförmiger Teil
    24
    Bolzenförmiger Teil
    25
    Zylindrischer Abschnitt
    26
    Faltenbalg
    27
    Platte
    28
    Ende
    29
    Leitung
    30
    Leitung

Claims (5)

  1. Wasserfahrzeug, insbesondere Unterseeboot, mit mindestens einer Gleichstromquelle (1, 2, 3), insbesondere einer Batterie- und/oder Brennstoffzellenanlage, und mit mindestens einem elektrischen Verbraucher (4, 5) wie Fahrmotor, Bordnetz oder dgl., und mit mindestens einem Leistungsschalter (6) zwischen Gleichstromquelle (1, 2, 3) und Verbraucher (4, 5), dadurch gekennzeichnet, dass der Leistungsschalter (6) durch einen Vakuumschalter (6) gebildet ist, welcher eine Kommutierungseinrichtung (9) aufweist.
  2. Wasserfahrzeug nach Anspruch 1, dadurch gekennzeichnet, dass der Vakuumschalter (6) ein im Wesentlichen zylindrisches Gehäuse (16) aufweist und dass der Abstand der Schaltkontakte (19, 20) in Richtung der Längsachse des Gehäuses (16) zueinander veränderbar ist.
  3. Wasserfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kommutierungseinrichtung (9) außerhalb des Gehäuses (16) angeordnet ist.
  4. Wasserfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kommutierungseinrichtung (9) einen parallel zum Vakuumschalter (6) liegenden Kommutierungsschaltkreis (10) mit einem Schalter (14) und mindestens einem Ladungsträger (13) aufweist sowie eine Steuereinrichtung (11), welche nach dem Öffnen des Vakuumschalters (6) den Schalter (14) so ansteuert, dass der Ladungsträger (13) parallel zum Vakuumschalter (6) und gegensinnig gepolt geschaltet ist, wobei Mittel (15) zum Laden des Ladungsträgers vorgesehen sind.
  5. Wasserfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kommutierungseinrichtung (9) einen parallel zum Vakuumschalter (6) liegenden Kommutierungsschaltkreis (10) mit einem Ladungserzeuger aufweist sowie eine Steuereinrichtung, welche nach dem Öffnen des Vakuumschalters (6) den Ladungserzeuger zur Kompensierung des im Lichtbogen des Vakuumschalters (6) fließenden Stroms ansteuert.
EP06011328A 2005-07-07 2006-06-01 Wasserfahrzeug mit einem Gleichstromnetz mit einem Vakuumschalter Withdrawn EP1742241A3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005031761A DE102005031761B3 (de) 2005-07-07 2005-07-07 Wasserfahrzeug

Publications (2)

Publication Number Publication Date
EP1742241A2 true EP1742241A2 (de) 2007-01-10
EP1742241A3 EP1742241A3 (de) 2008-03-12

Family

ID=36776457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06011328A Withdrawn EP1742241A3 (de) 2005-07-07 2006-06-01 Wasserfahrzeug mit einem Gleichstromnetz mit einem Vakuumschalter

Country Status (3)

Country Link
EP (1) EP1742241A3 (de)
KR (1) KR101167884B1 (de)
DE (1) DE102005031761B3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145743A (zh) * 2011-03-07 2011-08-10 上海海事大学 燃料电池船舶电力推进系统及应用方法
US9054530B2 (en) 2013-04-25 2015-06-09 General Atomics Pulsed interrupter and method of operation
US11049677B2 (en) * 2016-12-21 2021-06-29 Korea Electro Technology Research Institute Inverse current injection-type direct current blocking device and method using vacuum gap switch

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051831B4 (de) * 2006-11-03 2008-07-17 Howaldtswerke-Deutsche Werft Gmbh Unterseeboot
DE102007004528B3 (de) * 2007-01-24 2008-08-07 Siemens Ag Elektrisches Gleichstromnetz für Wasserfahrzeuge sowie für Offshoreanlagen mit erhöhter Abschaltsicherheit
DE102007004527B4 (de) 2007-01-24 2009-03-12 Siemens Ag Elektrisches Gleichstromnetz für Wasserfahrzeuge sowie für Offshoreanlagen
DE102007041396A1 (de) * 2007-08-31 2009-03-12 Howaldtswerke-Deutsche Werft Gmbh Wasserfahrzeug mit einer Mehrzahl von Energiespeichern
DE102008018457A1 (de) * 2008-04-11 2009-10-22 Howaldtswerke-Deutsche Werft Gmbh Unterseeboot
KR101110772B1 (ko) * 2008-04-11 2012-03-16 호발츠벨케 도이췌 벨프트 게엠베하 잠수함
DE102018202973A1 (de) * 2018-02-28 2019-08-29 Siemens Aktiengesellschaft Energieversorgungssystem für ein Unterwasserfahrzeug, Verfahren zum Betrieb eines Energieversorgungssystems sowie Unterwasserfahrzeug mit einem solchen Energieversorgungssystem

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390305A (en) * 1965-12-14 1968-06-25 Gen Electric Circuit interrupting means for a high voltage d-c circuit
DD119096A1 (de) * 1975-04-22 1976-04-05
JPS54149873A (en) * 1978-05-18 1979-11-24 Tokyo Shibaura Electric Co Breaker
IT1176978B (it) * 1984-10-16 1987-08-26 Sace Spa Dispositivo per la predeterminazione della durata d'arco su interruttore sotto vuoto di bassa-media tensione per corrente continua
US4740858A (en) * 1985-08-06 1988-04-26 Mitsubishi Denki Kabushiki Kaisha Zero-current arc-suppression dc circuit breaker
JPS6356369U (de) 1986-09-30 1988-04-15
US4862313A (en) * 1987-12-11 1989-08-29 Hitachi, Ltd. Driving apparatus for DC circuit breakers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIPPMANN, HANS-JOACHIM.: "Schalten im Vakuum, Physik und Technik der Vakuumschalter.", December 2002, VDE-VERLAG., ISBN: 3-8007-2317-4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145743A (zh) * 2011-03-07 2011-08-10 上海海事大学 燃料电池船舶电力推进系统及应用方法
US9054530B2 (en) 2013-04-25 2015-06-09 General Atomics Pulsed interrupter and method of operation
US11049677B2 (en) * 2016-12-21 2021-06-29 Korea Electro Technology Research Institute Inverse current injection-type direct current blocking device and method using vacuum gap switch

Also Published As

Publication number Publication date
EP1742241A3 (de) 2008-03-12
KR101167884B1 (ko) 2012-07-24
KR20070005476A (ko) 2007-01-10
DE102005031761B3 (de) 2006-08-24

Similar Documents

Publication Publication Date Title
DE102005031761B3 (de) Wasserfahrzeug
DE69836300T2 (de) Vakuumschalter und diese verwendende Vakuumschaltanlage
DE202006020625U1 (de) Kurzschlusseinrichtung zur Löschung eines Störlichtbogens innerhalb einer Mittel- und Hochspannungsschaltanlage
DE102011118713A1 (de) Ein- oder mehrpolige Schalteinrichtung, insbesondere für Gleichstromanwendungen
DE102017122008A1 (de) Elektrischer schalter
DE102013114260A1 (de) Doppelkontakt-Schalter mit Vakuumschaltkammern
EP1037232B1 (de) Hochspannungsschalgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern und Verfahren zum Betrieb des Hochspannungsschaltgerätes
DE102011087630A1 (de) Schaltgerät
EP2789068B1 (de) Schaltungsanordnung zur reduktion der stromstärke in einer hochspannungs-gleichstrom-übertragungsleitung, hochspannungs-gleichstrom-übertragungsanlage und verfahren zum reduzieren der stromstärke eines elektrischen stromes
EP2309526B1 (de) Leistungsschalter mit parallelen Nennstrompfaden
EP2054983A1 (de) Anordnung mit einem elektrischen schaltgerät
WO2005073077A2 (de) Energieversorgungseinrichtung für ein u-boot
EP3716304A1 (de) Elektrischer schalter zum unterbrechen einer elektrischen hochvoltverbindung und verfahren zum unterbrechen einer elektrischen hochvoltverbindung
EP2122647B1 (de) Elektrisches gleichstromnetz für wasserfahrzeuge sowie für offshoreanlagen mit erhöhter abschaltsicherheit
DE3407858C2 (de)
EP3561972B1 (de) Netzbeeinflussungsanlage
WO2007073726A2 (de) Vorrichtung zum speichern von energie sowie verwendung einer derartigen vorrichtung zum speichern von energie
DE3432025A1 (de) Schaltgeraet, insbesondere zum ein- und ausschalten von stromverbrauchern grosser leistung
EP0104599B1 (de) Hochspannungstrennschalter mit Vorkontakten
DE102018204973A1 (de) Schützbaugruppe, Batterie, Photovoltaikeinheit, Fortbewegungsmittel und Produktionsstraße
DE102005035487A1 (de) Leistungsschaltmodul mit skalierbarer Schaltleistung
DE102017215601A1 (de) Schaltkontaktantriebseinrichtung sowie Schaltgerät
EP1615246A1 (de) Lichtbogenlöscheinrichtung für Schutzschalter
DE102018213102A1 (de) Schütz für ein Fahrzeug
DE102013224621A1 (de) Schalteinrichtung sowie Ausschaltverfahren zum Betrieb einer Schalteinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080913

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566