EP1738817B1 - Dispositif de traitement de gaz par catalyse, notamment pour hotte de filtration - Google Patents

Dispositif de traitement de gaz par catalyse, notamment pour hotte de filtration Download PDF

Info

Publication number
EP1738817B1
EP1738817B1 EP06291065A EP06291065A EP1738817B1 EP 1738817 B1 EP1738817 B1 EP 1738817B1 EP 06291065 A EP06291065 A EP 06291065A EP 06291065 A EP06291065 A EP 06291065A EP 1738817 B1 EP1738817 B1 EP 1738817B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
treatment device
catalytic
series
plasma generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06291065A
Other languages
German (de)
English (en)
Other versions
EP1738817A1 (fr
Inventor
Jean-Paul Chevrier
Jean-Michel Tatibouet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FagorBrandt SAS
Original Assignee
FagorBrandt SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FagorBrandt SAS filed Critical FagorBrandt SAS
Priority to PL06291065T priority Critical patent/PL1738817T3/pl
Publication of EP1738817A1 publication Critical patent/EP1738817A1/fr
Application granted granted Critical
Publication of EP1738817B1 publication Critical patent/EP1738817B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2035Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2042Devices for removing cooking fumes structurally associated with a cooking range e.g. downdraft
    • F24C15/205Devices for removing cooking fumes structurally associated with a cooking range e.g. downdraft with means for oxidation of cooking fumes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2437Multilayer systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0275Other waste gases from food processing plants or kitchens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma

Definitions

  • the present invention relates to a catalyst gas treatment device.
  • It also relates to a fume hood for cooking fumes.
  • the invention is generally in the field of gas treatment, especially for recycling, in filter hoods cooking fumes.
  • catalytic gas treatment devices comprising a catalytic support traversed by the gas stream to be treated are known.
  • the catalysis phenomenon is activated by the generation of a discharge plasma in the catalytic support.
  • the use of a discharge plasma notably makes it possible to lower the temperature at which the catalytic reactions are effective for destroying the volatile organic compounds.
  • Such a gas treatment device is described in particular in the document EP 1 086 740 .
  • the plasma generation electrodes must be placed on either side of the catalytic support. A minimum distance is thus imposed between the electrodes, of the order of 90 mm, which requires a large voltage to generate the discharge plasma in the catalytic support.
  • the present invention aims to solve the aforementioned drawbacks and to provide a catalyst gas treatment device having improved technical performance.
  • the present invention thus aims at a catalytic gas treatment comprising at least one catalytic support adapted to be traversed by a gas flow and for generating a plasma for discharging the electrodes.
  • a plasma generation zone comprises a first series of rectilinear electrodes and a second series of rectilinear electrodes of opposite polarity arranged alternately in the plasma generation zone, the plasma generation zone being disposed in upstream of the catalytic support in the direction of the gas flow and adjacent to the catalytic support.
  • the plasma is no longer generated directly in the catalytic support.
  • the processing device according to the invention no longer has design constraints for plasma generation related to the dimensions of the catalytic support.
  • the plasma generation zone disposed directly upstream of the catalytic support, part of the species created in the plasma are entrained by the gas flow in the catalytic support, thus enabling the role of the catalyst to be activated and the molecules to be oxidized odorants (Volatile Organic Compounds) adsorbed there.
  • the electrodes of each series are preferably equidistant from each other.
  • the distance between two electrodes of opposite polarity is between 3 and 5 mm, and preferably substantially equal to 4 mm.
  • the treatment device comprises several catalytic supports successively arranged in the direction of the gas flow.
  • it comprises a plurality of plasma generation zones respectively located upstream of several catalytic supports.
  • each catalyst support and the nature of the catalyst, to effectively treat the gases, for example cooking fumes, volatile organic compounds or odors, throughout their crossing of the treatment device.
  • the present invention finds particular application in a fume hood cooking filter, such as a home filtration hood.
  • the gas treatment device 10 illustrated in FIG. figure 1 comprises four catalytic supports 11 arranged successively in the direction of flow of a gas flow, illustrated by the arrow F.
  • the direction of the gas flow corresponds to an axis X which may correspond to a vertical axis when the treatment device is implemented in a fume hood cooking filter.
  • the number of catalytic supports 11 arranged in the treatment device is not limiting and may be greater than or less than 4, or even 1.
  • each catalyst 11 is formed of a block in one piece adapted to be traversed by the gas flow F.
  • This monolithic catalytic support 11 may for example be made of ceramic, such as cordierite, and have a honeycomb type honeycomb structure, thus providing passages for the gas flow.
  • the support may also be made of ceramic foam sufficiently porous to allow the passage of the gas flow F. It may also be in the form of fabric, such as fibrous material.
  • catalytic supports 11 used in the processing device 10 may be different from each other.
  • any other material traversed by channels or other openings allowing the passage of gases and capable of supporting an active phase for catalysis may be suitable for producing a catalytic support 11.
  • Active particles of treatment are deposited on the catalytic support so as to form different sites of catalysis.
  • These active treatment particles may consist of noble nanodispersed platinum, palladium, rhodium or ruthenium-type metals, or may consist of other metals such as gold, silver or iridium associated with one or more metal oxides, reducible or otherwise, such as Al 2 O 3 , MnO 2 , Fe 2 O 3 , TiO 2 , ZnO, SiO 2 , or rare earth oxides.
  • the active particles may contain one of these metals or a combination of two or more of these metals.
  • These metals are deposited on the catalytic support 11 in the form of small highly dispersed particles on the surface of this support.
  • the support itself 11 could be made in an active catalytic phase, and for example be made directly in a metal oxide such as titanium oxide TiO 2 for example.
  • the nature of the catalyst may be different from one catalytic support 11 to the other, between the inlet and the outlet of the treatment device 10, depending on the desired purpose in the treatment.
  • a catalytic support 11 may be more suitable for the treatment of volatile organic compounds and another dedicated to the elimination of ozone.
  • the last catalytic support 11 used in the treatment device 10 relative to the direction of flow of the gas flow F can be dedicated to eliminating ozone and ensuring the destruction of ozone through catalysis sites consisting for example of MnO 2 manganese oxide.
  • the thickness of the catalytic support in the X direction can be adapted to the passage time of the gas flow so that the catalysis is optimal.
  • the thickness can be typically between 5 and 50 mm for ceramic-based materials or between 0.5 mm and a few millimeters for fibrous materials.
  • the thickness may be equal, for example, to 10 mm.
  • At least one catalytic support 11 is associated with a plasma generation zone disposed directly upstream of this catalytic support 11 in the direction of the gas flow F.
  • the catalytic support 11 can be at the ready, or even in contact with plasma generation electrodes.
  • three plasma generation zones 12 are arranged upstream and adjacent respectively to three catalytic supports 11 of the treatment device 10.
  • catalytic supports 11 could be directly preceded by a plasma generation zone 12, or conversely only a catalytic support 11 could be associated with a directly adjacent plasma generation zone.
  • At least one plasma generation zone 12, and in this embodiment two generation zones 12, are arranged between two successive catalytic supports 11.
  • Each plasma generation zone 12 thus disposed upstream of a catalytic support 11 is adapted to efficiently generate a plasma without being dependent on the dimensions of the adjacent catalytic support.
  • the treatment device adapts by its modular design to the treatment of a particular gas stream.
  • the treatment device may comprise a variable number of catalytic supports, of a similar nature and thickness, and coated with a catalytic deposit which may also be different from one support to the other.
  • each catalytic support may be present or absent depending on the treatment devices and the number of modules combining catalytic treatment and plasma may be variable.
  • the number of plasma modules - catalytic support can be modified depending on the nature of the volatile organic compounds and the gases to be treated, the desired treatment efficiency and the flow rate of the suction system, corresponding to the speed passage of air laden with volatile organic compounds to be treated in the treatment device.
  • Processing device comprising successively three plasma modules - catalytic support, each catalytic support having a thickness of 6 mm and a deposit consisting of Al 2 O 3 and Pt. These three plasma modules - catalytic support are followed by a module consisting solely of a catalytic support without plasma, of thickness 24 mm with a deposition of Al 2 O 3 and MnOx.
  • Processing device comprising successively six plasma modules - catalytic support, each catalytic support having a thickness of 6 mm and a deposit consisting of Al 2 O 3 and Pt.
  • the generation of a plasma in a zone 12 can be obtained by arranging electrodes of opposite polarity vis-a-vis in a plane substantially perpendicular to the direction X of the gas flow.
  • a first series of rectilinear electrodes 13 and a second series of rectilinear electrodes 14 of opposite polarity are alternately arranged in the plasma generation zone 12.
  • the electrodes of opposite polarity are made in the form of two electrode combs 13, 14 arranged facing each other and connected to an opposite terminal of a generator 15.
  • Each electrode comb thus comprises several fingers constituting rectilinear electrodes 13, 14.
  • Each finger 13, 14 consists of a relatively rigid single-core core of electrically conductive metallic material of sufficient diameter, for example of the order of 0.8 mm. This core is coated with a dielectric material of preferred thickness between 0.3 and 0.5 mm.
  • This coating may be for example silicone, enamel or any other non-porous dielectric material.
  • the dielectric material thus forms a dielectric barrier between each electrode, enabling the generation of a "dielectric barrier discharge” type plasma.
  • This type of plasma has several advantages, including that of being well distributed within the gas mixture to be treated.
  • the dielectric barrier discharge tolerates long-lasting voltage pulses, without arcing, allowing the use of a relatively simplified electric generator.
  • the electrodes 13, 14 of each comb extend parallel to each other on a surface of the plane substantially corresponding to the passage section of the gas flow.
  • each electrode comb thus comprises seven rectilinear electrodes or fingers.
  • the number of electrodes 13, 14 used is linked to the passage section of the gas flow and is chosen so as to regularly cover the entire passage section.
  • the rectilinear electrodes 13, 14 of each comb are equidistant from each other.
  • the distance thus separating the electrodes 13, 14 must be identical with a low tolerance, of the order of 0.05 mm, so as to obtain a plasma uniformly distributed in the air of the plasma generation zone 12.
  • the distance separating two electrodes of opposite polarity that is to say the distance separating each rectilinear electrode 13 from a rectilinear electrode 14, is between 3 and 5 mm, and preferably substantially equal to 4 mm.
  • the applied voltage may be low, and for example less than 20 kV measured peak-to-peak of a sinusoidal supply voltage.
  • the electrodes 13, 14 are mounted on the same support 16, for example thermoplastic or thermosetting resin.
  • the electrodes 13, 14 can thus be embedded at their connecting ends 13a, 14a to the generator 15 in the support 16.
  • the free end 13b, 14b of the electrodes 13, 14 is at a sufficient distance from the connecting end 13a, 14a of the opposite polarity electrodes. A distance of 10 mm may be sufficient.
  • the electrodes 13, 14 of each comb are arranged alternately in the same plane, perpendicular to the direction X of the gas flow.
  • each series of electrodes 13, 14 can be arranged in a different plane, always perpendicular to the direction of the gas flow. These planes are then shifted by a few millimeters in the direction of the gas flow, and for example from 1 to 2 mm in the direction X.
  • the processing device 10 is thus composed of an electrode support stack 16 also constituting means for mounting the catalytic supports 11.
  • the electrode supports 16 comprise shoulders 16a which, arranged facing each other, are adapted to house a catalytic support 11.
  • the processing device 10 also comprises simple electrode-free supports 13, 14 and intended solely for mounting a catalytic support 11 while forming a spacer to provide a space between each catalytic support 11 and thus avoid any loss of load. in the circulation of the gas stream.
  • the treatment device 10 further comprises at its ends connecting elements 18, 19 for connecting the treatment device 17 to a flow conduit of the gas stream.
  • the seal between these different supports 16, 17, 18, 19 can be achieved by means of O-rings 20, the stack of the supports being held for example by means of threaded rods or by a clipping system using the elastic characteristics of the resin constituting the various supports 16, 17, 18, 19.
  • metal blades holding the spring loaded compressed stack can be used.
  • the treatment device it is thus possible to reduce the cost of supply at the plasma generation electrodes which can be arranged at a small distance from each other. This increases the efficiency of the plasma generated in the treatment device.
  • a sinusoidal resonance power supply can be used, the frequency being higher than the audible frequencies.
  • the reduction of the supply voltage used to supply the plasma generation electrodes makes it possible in particular to reduce the cost of the electronic supply card.
  • this treatment device When this treatment device is connected to a circulation duct of a fume hood, it can effectively treat all types of odorous molecules present in the cooking fumes before rejecting them in the air ambient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Description

  • La présente invention concerne un dispositif de traitement de gaz par catalyse.
  • Elle concerne également une hotte de filtration des fumées de cuisson.
  • L'invention s'inscrit de manière générale dans le domaine du traitement des gaz, notamment en vue de leur recyclage, dans des hottes filtrantes de fumées de cuisson.
  • En effet, lors de la cuisson des aliments, les fumées et gaz de cuisson contiennent de nombreuses particules en suspension, grasses et/ou odorantes, qu'il est nécessaire de pouvoir traiter efficacement, notamment lorsque la hotte de filtration est du type à recyclage et que les gaz et fumées sont rejetés après traitement dans l'air ambiant de la pièce.
  • On connaît à cet égard des dispositifs de traitement de gaz par catalyse comprenant un support catalytique traversé par le flux gazeux à traiter. Le phénomène de catalyse est activé grâce à la génération d'un plasma de décharge dans le support catalytique. L'utilisation d'un plasma de décharge permet notamment d'abaisser la température à laquelle les réactions catalytiques sont efficaces pour détruire les composés organiques volatils.
  • Un tel dispositif de traitement de gaz est décrit notamment dans le document EP 1 086 740 .
  • On connait également dans les documents FR 2 849 395 et FR 2 812 558 des dispositifs de traitement de gaz dans lesquels un plasma est généré dans le support catalytique.
  • Cependant, pour produire le plasma à travers le support catalytique, les électrodes de génération du plasma doivent être placées de part et d'autre du support catalytique. Une distance minimum est ainsi imposée entre les électrodes, de l'ordre de 90 mm, ce qui nécessite une tension importante pour générer le plasma de décharge dans le support catalytique.
  • La présente invention a pour but de résoudre les inconvénients précités et de proposer un dispositif de traitement de gaz par catalyse ayant des performances techniques améliorées.
  • La présente invention vise ainsi un traitement de gaz par catalyse comprenant au moins un support catalytique adapté à être traversé par un flux gazeux et de génération d'un plasma de décharge des électrodes.
  • Selon l'invention, une zone de génération de plasma comporte une première série d'électrodes rectilignes et une seconde série d'électrodes rectilignes de polarité opposée, disposées alternativement dans la zone de génération de plasma, la zone de génération de plasma étant disposée en amont du support catalytique suivant le sens du flux gazeux et adjacente au support catalytique.
  • Ainsi, le plasma n'est plus généré directement dans le support catalytique. Le dispositif de traitement conforme à l'invention ne présente plus de contraintes de dimensionnement pour la génération du plasma liées aux dimensions du support catalytique.
  • Grâce à la zone de génération de plasma disposée directement en amont du support catalytique, une partie des espèces créées dans le plasma sont entraînées par le flux gazeux dans le support catalytique, permettant ainsi d'activer le rôle du catalyseur et d'oxyder les molécules odorantes (Composés Organiques Volatils) qui y sont adsorbées.
  • Grâce à ces séries d'électrodes disposées alternativement, de polarité opposée, il est possible de disposer les électrodes à faible distance les unes des autres afin de générer efficacement un plasma sans requérir une tension d'alimentation des électrodes trop élevée.
  • Afin d'obtenir un plasma uniformément réparti dans l'air, les électrodes de chaque série sont de préférence équidistantes les unes des autres.
  • A titre d'exemple pratique, la distance entre deux électrodes de polarité opposée est comprise entre 3 et 5 mm, et de préférence sensiblement égale à 4 mm.
  • Il est ainsi possible d'alimenter les électrodes de génération de plasma avec une tension inférieure à 20 kV. Cette tension permet de réduire les contraintes liées au contournement électrique et les risques de court circuit.
  • En pratique, afin d'assurer un traitement efficace des fumées, le dispositif de traitement comprend plusieurs supports catalytiques disposés successivement suivant le sens du flux gazeux. De préférence, il comprend plusieurs zones de génération de plasma disposées respectivement en amont de plusieurs supports catalytiques.
  • Il est possible en outre, en modifiant l'épaisseur de chaque support catalytique et la nature du catalyseur, de traiter efficacement les gaz, et par exemple les fumées de cuisson, les composés organiques volatils ou les odeurs, tout au long de leur traversée du dispositif de traitement.
  • La présente invention trouve notamment une application dans une hotte de filtration de fumées de cuisson, telle qu'une hotte de filtration domestique.
  • D'autres particularités et avantages de l'invention apparaîtront encore dans la description ci-après.
  • Aux dessins annexés, donnés à titre d'exemples non limitatifs :
    • la figure 1 est une vue en coupe longitudinale d'un dispositif de traitement conforme à un mode de réalisation de l'invention ; et
    • la figure 2 est une vue en section transversale du dispositif de traitement de la figure 1.
  • On va décrire en référence aux figures 1 et 2 un dispositif de traitement utilisant la combinaison du plasma et de la catalyse conforme à un mode de réalisation de l'invention.
  • Le dispositif de traitement de gaz 10 illustré à la figure 1 comprend quatre supports catalytiques 11 disposés successivement suivant le sens de circulation d'un flux gazeux, illustré par la flèche F.
  • Comme illustré sur la figure 1, la direction du flux gazeux correspond à un axe X qui peut correspondre à un axe vertical lorsque le dispositif de traitement est mis en oeuvre dans une hotte de filtration de fumées de cuisson.
  • Bien entendu, le nombre de supports catalytiques 11 disposés dans le dispositif de traitement n'est nullement limitatif et peut être supérieur ou inférieur à 4, voire égal à 1.
  • De préférence chaque catalyseur 11 est formé d'un bloc d'une seule pièce adapté à être traversé par le flux gazeux F.
  • Ce support catalytique monolithique 11 peut être par exemple réalisé en céramique, telle que de la cordiérite, et présenter une structure alvéolée de type nids d'abeille, ménageant ainsi des passages pour le flux gazeux. Le support peut également être réalisé en mousse de céramique suffisamment poreuse pour permettre le passage du flux gazeux F. II peut aussi être sous forme de tissu, tel qu'en matériau fibreux.
  • On notera à cet égard que les supports catalytiques 11 utilisés dans le dispositif de traitement 10 peuvent être différents les uns des autres.
  • Bien entendu, n'importe quel autre matériau traversé par des canaux ou des autres ouvertures autorisant le passage des gaz et capable de supporter une phase active pour la catalyse peut convenir pour réaliser un support catalytique 11.
  • Des particules actives de traitement sont déposées sur le support catalytique de manière à former différents sites de catalyse.
  • Ces particules actives de traitement peuvent être constituées de métaux nobles nanodispersés du type platine, palladium, rhodium ou ruthénium, ou être constituées d'autres métaux tels que de l'or, de l'argent ou de l'iridium associés à un ou plusieurs oxydes métalliques, réductibles ou non tels que Al2 O3, Mn O2, Fe2 O3, TiO2, ZnO, SiO2, ou des oxydes de terres rares.
  • Bien entendu, les particules actives peuvent contenir l'un de ces métaux ou une combinaison de deux ou plusieurs de ces métaux.
  • Ces métaux sont déposés sur le support catalytique 11 sous forme de petites particules très dispersées à la surface de ce support.
  • Le support lui-même 11 pourrait être réalisé dans une phase catalytique active, et par exemple être réalisé directement dans un oxyde métallique tel que l'oxyde de titane TiO2 par exemple.
  • La nature du catalyseur peut être différente d'un support catalytique 11 à l'autre, entre l'entrée et la sortie du dispositif de traitement 10, suivant le but recherché dans le traitement.
  • En particulier, un support catalytique 11 peut être plus adapté pour le traitement des composés organiques volatils et un autre dédié à l'élimination de l'ozone.
  • En particulier, le dernier support catalytique 11 utilisé dans le dispositif de traitement 10 relativement au sens de circulation du flux gazeux F peut être dédié à éliminer l'ozone et garantir la destruction de l'ozone grâce à des sites de catalyse constitués par exemple d'oxyde de manganèse MnO2.
  • En alternant ainsi des supports catalytiques différents en terme d'épaisseur et de phase active catalytique dans le dispositif de traitement 10, ce dernier peut traiter l'intégralité des gaz de cuisson circulant dans celui-ci.
  • L'épaisseur du support catalytique dans la direction X peut être adaptée au temps de passage du flux gazeux de telle sorte que la catalyse soit optimale. L'épaisseur peut être comprise typiquement entre 5 et 50 mm pour des matériaux à base de céramique ou entre 0,5 mm et quelques millimètres pour des matériaux fibreux. L'épaisseur peut être égale par exemple à 10 mm. En pratique, plus l'épaisseur du support catalytique 11 est importante, meilleurs seront le traitement de l'ozone et la purification de l'air.
  • Afin d'augmenter l'efficacité du traitement par catalyse, au moins un support catalytique 11 est associé à une zone de génération de plasma disposée directement en amont de ce support catalytique 11 suivant le sens du flux gazeux F. Le support catalytique 11 peut être au plus prêt, voire en contact avec des électrodes de génération de plasma.
  • Dans cet exemple de réalisation, trois zones de génération de plasma 12 sont disposées en amont et de manière adjacente respectivement à trois supports catalytiques 11 du dispositif de traitement 10.
  • Bien entendu, tous les supports catalytiques 11 pourraient être précédés directement d'une zone de génération de plasma 12, ou a contrario seul un support catalytique 11 pourrait être associé à une zone de génération de plasma directement adjacente.
  • Dans ce mode de réalisation dans lequel plusieurs zones de génération de plasma 12 sont associées respectivement à plusieurs supports catalytiques 11 disposés successivement dans le dispositif de traitement, au moins une zone de génération de plasma 12, et dans cet exemple de réalisation deux zones de génération de plasma 12, sont disposées entre deux supports catalytiques 11 successifs.
  • Dans ce mode de réalisation à quatre supports catalytiques 11, il est préférable que seuls les trois premiers supports catalytiques 11 soient associés à une zone de génération de plasma 12 directement adjacente, le dernier support catalytique 11 étant dédié comme indiqué précédemment à la destruction de l'ozone généré par le plasma et à la suppression des résidus de composés organiques volatils.
  • Chaque zone de génération de plasma 12 disposée ainsi en amont d'un support catalytique 11 est adaptée à générer de manière efficace un plasma sans être tributaire des dimensions du support catalytique adjacent.
  • De manière générale, le dispositif de traitement s'adapte par sa conception modulaire au traitement d'un flux gazeux particulier.
  • Ainsi, le dispositif de traitement peut comporter un nombre variable de supports catalytiques, de nature et d'épaisseur également variables, et revêtus d'un dépôt catalytique qui peut être également différent d'un support à l'autre.
  • En outre, le plasma en amont de chaque support catalytique peut être présent ou absent selon les dispositifs de traitement et le nombre de modules combinant traitement catalytique et plasma peut être variable.
  • En particulier, le nombre de modules plasma ― support catalytique peut être modifié en fonction de la nature des composés organiques volatils et des gaz à traiter, de l'efficacité de traitement recherché ainsi que du débit du système d'aspiration, correspondant à la vitesse de passage de l'air chargé de composés organiques volatils à traiter dans le dispositif de traitement.
  • On notera par ailleurs que pour une même efficacité de traitement plusieurs types de dispositif de traitement peuvent être utilisés.
  • Dans ce cas, une configuration moins coûteuse peut être privilégiée.
  • On donne ci-après deux exemples de configuration permettant d'obtenir un même taux de conversion des composés organiques volatils traités :
  • Exemple 1
  • Dispositif de traitement comprenant successivement trois modules plasma - support catalytique, chaque support catalytique ayant une épaisseur de 6 mm et un dépôt constitué de Al2 O3 et Pt. Ces trois modules plasma - support catalytique sont suivis d'un module constitué uniquement d'un support catalytique sans plasma, d'épaisseur de 24 mm avec un dépôt de Al2 O3 et MnOx.
  • Exemple 2
  • Dispositif de traitement comprenant successivement six modules plasma - support catalytique, chaque support catalytique ayant une épaisseur de 6 mm et un dépôt constitué de Al2 O3 et Pt.
  • Ces deux exemples de dispositif de traitement conduisent à une même efficacité de traitement. Toutefois, un dispositif de traitement selon l'exemple 1 sera utilisé de préférence, puisque moins coûteux.
  • On va décrire à présent plus particulièrement une structure d'électrode permettant de générer un plasma dans chaque zone de génération de plasma 12, notamment en référence à la figure 2.
  • La génération d'un plasma dans une zone 12 peut être obtenue en disposant des électrodes de polarité opposée en vis-à-vis dans un plan sensiblement perpendiculaire à la direction X du flux gazeux.
  • Dans ce mode de réalisation, une première série d'électrodes rectilignes 13 et une seconde série d'électrodes rectilignes 14 de polarité opposée sont disposées alternativement dans la zone de génération de plasma 12.
  • Ainsi, les électrodes de polarité opposée sont réalisées sous la forme de deux peignes d'électrodes 13, 14 disposés en vis-à-vis et reliés chacun, à une borne opposée d'un générateur 15.
  • Chaque peigne d'électrodes comporte ainsi plusieurs doigts constituant des électrodes rectilignes 13, 14.
  • Chaque doigt 13, 14 est constitué d'une âme monobrin relativement rigide en matériau métallique conducteur électrique d'un diamètre suffisant, et par exemple de l'ordre de 0,8 mm. Cette âme est enrobée par un matériau diélectrique d'épaisseur préférentielle comprise entre 0,3 et 0,5 mm.
  • Cet enrobage peut être par exemple en silicone, en émail ou en tout autre matériau diélectrique non poreux.
  • Le matériau diélectrique forme ainsi une barrière diélectrique entre chaque électrode, permettant la génération d'un plasma de type "décharge à barrière diélectrique".
  • Ce type de plasma possède plusieurs avantages, et notamment celui d'être bien réparti au sein du mélange de gaz à traiter. En outre, la décharge à barrière diélectrique tolère des impulsions de tension de longue durée, sans formation d'un arc électrique, permettant l'utilisation d'un générateur électrique 15 relativement simplifié.
  • Comme bien illustré sur la figure 2, les électrodes 13, 14 de chaque peigne s'étendent parallèlement les unes aux autres sur une surface du plan correspondant sensiblement à la section de passage du flux gazeux.
  • Dans ce mode de réalisation, chaque peigne d'électrodes comporte ainsi sept électrodes rectilignes ou doigts. Le nombre d'électrodes 13, 14 utilisé est lié à la section de passage du flux gazeux et est choisi de manière à couvrir régulièrement l'intégralité de la section de passage
  • Les électrodes rectilignes 13, 14 de chaque peigne sont équidistantes les unes des autres. La distance séparant ainsi les électrodes 13, 14 doit être identique avec une tolérance faible, de l'ordre de 0,05 mm, de manière à obtenir un plasma uniformément réparti dans l'air de la zone de génération de plasma 12.
  • Par ailleurs, la distance séparant deux électrodes de polarité opposée, c'est-à-dire la distance séparant chaque électrode rectiligne 13 d'une électrode rectiligne 14, est comprise entre 3 et 5 mm, et de préférence sensiblement égale à 4 mm.
  • Grâce à cette faible distance séparant les électrodes de polarité opposée, la tension appliquée peut être faible, et par exemple inférieure à 20 kV mesurée crête à crête d'une tension sinusoïdale d'alimentation.
  • En pratique, les électrodes 13, 14 sont montées sur un même support 16, par exemple en résine thermoplastique ou thermodurcissable.
  • Les électrodes 13, 14 peuvent ainsi être noyées au niveau de leurs extrémités de raccordement 13a, 14a au générateur 15 dans le support 16.
  • Afin d'éviter tout risque de contournement électrique, il est important que l'extrémité libre 13b, 14b des électrodes 13, 14 soit à une distance suffisante de l'extrémité de raccordement 13a, 14a des électrodes de polarité opposée. Une distance de 10 mm peut être suffisante.
  • Dans le mode de réalisation illustré sur les figures, les électrodes 13, 14 de chaque peigne sont disposées alternativement dans un même plan, perpendiculaire à la direction X du flux gazeux.
  • Toutefois, afin de réduire les pertes de charge au niveau de la zone de génération de plasma 12, chaque série d'électrodes 13, 14 peut être disposée dans un plan différent, toujours perpendiculairement à la direction du flux gazeux. Ces plans sont alors décalés de quelques millimètres dans le sens du flux gazeux, et par exemple de 1 à 2 mm suivant la direction X.
  • Comme bien illustré sur la figure 1, le dispositif de traitement 10 est ainsi composé d'un empilement de support d'électrodes 16 constituant également des moyens de montage des supports catalytiques 11.
  • A cet égard, les supports d'électrodes 16 comportent des épaulements 16a qui, disposés en vis-à-vis, sont adaptés à loger un support catalytique 11.
  • Bien entendu, le dispositif de traitement 10 comporte également des supports simples 17 sans électrodes 13, 14 et destinés uniquement au montage d'un support catalytique 11 tout en formant entretoise pour ménager un espace entre chaque support catalytique 11 et éviter ainsi toute perte de charge dans la circulation du flux gazeux.
  • Le dispositif de traitement 10 comporte en outre à ses extrémités des éléments de raccordement 18, 19 permettant de raccorder le dispositif de traitement 17 à un conduit de circulation du flux gazeux.
  • L'empilement de ces différents supports 16, 17, 18, 19 doit permettre en outre d'assurer l'étanchéité aéraulique du dispositif car des fuites de gaz de cuisson provoqueraient la présence d'odeur et/ou d'ozone.
  • L'étanchéité entre ces différents supports 16, 17, 18, 19 peut être réalisée grâce à des joints toriques 20, l'empilage des supports étant maintenu par exemple au moyen de tiges filetées ou par un système de clipsage utilisant les caractéristiques élastiques de la résine constituant les différents supports 16, 17, 18, 19.
  • Alternativement, des lames métalliques maintenant l'empilage comprimé avec effet ressort peuvent être utilisées.
  • Grâce au dispositif de traitement conforme à l'invention, il est ainsi possible de réduire le coût de l'alimentation au niveau des électrodes de génération de plasma qui peuvent être disposées à faible distance les unes des autres. On augmente ainsi l'efficacité du plasma généré dans le dispositif de traitement.
  • Pour réduire les coûts de l'alimentation, une alimentation à résonance sinusoïdale peut être utilisée, la fréquence étant supérieure aux fréquences audibles.
  • D'autres types d'alimentation pourraient être utilisés, et par exemple une alimentation impulsionelle.
  • La génération de plasma directement en amont des supports catalytiques et combinée à la phase active de ces supports catalytiques permet de détruire efficacement les composés organiques volatils.
  • La diminution de la tension d'alimentation utilisée pour alimenter les électrodes de génération de plasma permet notamment de réduire le coût de la carte électronique d'alimentation.
  • Lorsque ce dispositif de traitement est raccordé à un conduit de circulation d'une hotte de filtration des fumées de cuisson, il permet de traiter efficacement tous les types de molécules odorantes présentes dans les fumées de cuisson avant de rejeter celles-ci dans l'air ambiant.
  • Bien entendu, de nombreuses modifications peuvent être apportées aux exemples de réalisation décrits précédemment sans sortir du cadre de l'invention.

Claims (11)

  1. Dispositif de traitement de gaz par catalyse comprenant au moins un support catalytique (11) adapté à être traversé par un flux gazeux et des électrodes (13, 14) de génération d'un plasma de décharge, caractérisé en ce qu'une zone de génération de plasma (12) comporte une première série d'électrodes rectilignes (13) et une seconde série d'électrodes rectilignes (14) de polarité opposée, disposées alternativement dans ladite zone de génération de plasma (12), ladite zone de génération de plasma (12) étant disposée en amont dudit support catalytique (11) suivant le sens du flux gazeux (F) et adjacente audit support catalytique (11).
  2. Dispositif de traitement conforme à la revendication 1, caractérisé en ce que les électrodes (13, 14) desdites première et seconde séries sont disposées alternativement dans un même plan perpendiculaire à la direction du flux gazeux (F).
  3. Dispositif de traitement conforme à la revendication 1, caractérisé en ce que la première série d'électrodes (13) et la seconde série d'électrodes (14) sont disposées respectivement dans deux plans différents perpendiculaires à la direction du flux gazeux (F) et distants de quelques millimètres.
  4. Dispositif de traitement conforme à l'une des revendications 1 à 3, caractérisé en ce que les électrodes (13, 14) de chaque série sont équidistantes les unes des autres.
  5. Dispositif de traitement conforme à l'une des revendications 1 à 4, caractérisé en ce que les électrodes (13, 14) de chaque série s'étendent parallèlement les unes aux autres sur une surface de plan correspondant sensiblement à la section de passage du flux gazeux (F).
  6. Dispositif de traitement conforme à l'une des revendications 1 à 5, caractérisé en ce que la distance entre deux électrodes (13, 14) de polarité opposée est comprise entre 3 et 5 mm, et de préférence sensiblement égale à 4 mm.
  7. Dispositif de traitement conforme à l'une des revendications 1 à 6, caractérisé en ce qu'il comprend plusieurs supports catalytiques (11) disposés successivement suivant le sens du flux gazeux (F).
  8. Dispositif de traitement conforme à la revendication 7, caractérisé en ce qu'il comprend plusieurs zones de génération de plasma (12) disposées respectivement en amont de plusieurs supports catalytiques (11).
  9. Dispositif de traitement conforme à la revendication 8, caractérisé en ce que lesdits supports catalytiques (11) sont d'épaisseurs différentes et de nature de catalyseur différente.
  10. Hotte de filtration des fumées de cuisson, caractérisée en ce qu'elle comprend un dispositif de traitement conforme à l'une des revendications 1 à 9.
  11. Système de climatisation caractérisé en ce qu'il comprend un dispositif de traitement conforme à l'une des revendications 1 à 9.
EP06291065A 2005-06-28 2006-06-27 Dispositif de traitement de gaz par catalyse, notamment pour hotte de filtration Active EP1738817B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06291065T PL1738817T3 (pl) 2005-06-28 2006-06-27 Urządzenie do obróbki gazu przez katalizę, zwłaszcza do okapu filtracyjnego

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0506579A FR2887468B1 (fr) 2005-06-28 2005-06-28 Dispositif de traitement de gaz par catalyse, notammment pour hotte de filtration

Publications (2)

Publication Number Publication Date
EP1738817A1 EP1738817A1 (fr) 2007-01-03
EP1738817B1 true EP1738817B1 (fr) 2010-10-06

Family

ID=35852384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06291065A Active EP1738817B1 (fr) 2005-06-28 2006-06-27 Dispositif de traitement de gaz par catalyse, notamment pour hotte de filtration

Country Status (6)

Country Link
EP (1) EP1738817B1 (fr)
AT (1) ATE483513T1 (fr)
DE (1) DE602006017297D1 (fr)
ES (1) ES2353610T3 (fr)
FR (1) FR2887468B1 (fr)
PL (1) PL1738817T3 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10478517B2 (en) 2008-09-19 2019-11-19 Fipak Research And Development Company Method and apparatus for purging unwanted substances from air
CN104968413B (zh) * 2012-10-04 2017-11-21 菲帕克研究及发展公司 用于从空气中清除不期望的物质的方法和设备
CN103285703A (zh) * 2013-06-20 2013-09-11 任敏 用于连续式染带机的高压静电等离子油烟净化器
ITAN20130135A1 (it) * 2013-07-26 2015-01-27 Sifim S R L Cappa perfezionata.
EP2937633A1 (fr) * 2014-04-22 2015-10-28 E.G.O. ELEKTRO-GERÄTEBAU GmbH Dispositif de purification d'air, dispositif d'aération et procédé de purification d'air
CN107631334B (zh) * 2017-09-27 2019-10-18 安徽云松节能环保设备制造有限公司 一种新型环保脱排油烟罩
CN109289513B (zh) * 2018-11-23 2021-10-29 中山大学 一种等离子体强化氧化酮类有机污染物的方法及装置
CN109405018A (zh) * 2018-11-30 2019-03-01 江苏瑞丰科技实业有限公司 一种油烟分离与烟气净化技术
CN112082181B (zh) * 2019-06-12 2021-08-31 广东合捷电器股份有限公司 净化器及抽油烟机
DE102020120582A1 (de) * 2020-08-04 2022-02-10 Cinogy Gmbh Gasreinigungsvorrichtung und Verfahren zum Reinigen eines Gases

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534950C2 (de) * 1995-09-20 1998-07-02 Siemens Ag Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
JP2001087620A (ja) 1999-09-27 2001-04-03 Ngk Insulators Ltd 物質処理方法および装置
US6474060B2 (en) * 1999-11-17 2002-11-05 Southwest Research Institute Exhaust gas recirculation filtration system
FR2812558B3 (fr) 2000-08-04 2002-06-14 Jean Claude Planchenault Dispositif de decoupage et pliage pour former une vue en perspective
FR2818558B1 (fr) * 2000-12-21 2003-10-24 Brandt Cooking Dispositif de traitement par catalyse des odeurs et hotte de filtration equipee d'un tel dispositif
FR2849395B1 (fr) * 2002-12-27 2005-07-08 Brandt Ind Dispositif de traitement de gaz par catalyse, notamment pour une hotte de filtration de fumees de cuisson.

Also Published As

Publication number Publication date
FR2887468B1 (fr) 2008-02-01
EP1738817A1 (fr) 2007-01-03
ATE483513T1 (de) 2010-10-15
FR2887468A1 (fr) 2006-12-29
DE602006017297D1 (de) 2010-11-18
PL1738817T3 (pl) 2011-04-29
ES2353610T3 (es) 2011-03-03

Similar Documents

Publication Publication Date Title
EP1738817B1 (fr) Dispositif de traitement de gaz par catalyse, notamment pour hotte de filtration
US4871515A (en) Electrostatic filter
US8115373B2 (en) Self-regenerating particulate trap systems for emissions and methods thereof
US8771600B2 (en) Electrostatic filter and non-thermal plasma system for air pollution control of hydrocarbon combustion engines
WO2006028322A1 (fr) Appareil destine a epurer un gaz d'echappement diesel au moyen d'une couche photocatalytique appliquee par revetement et d'une electrode, et procede de fabrication de cet appareil
WO2004114728A1 (fr) Electrode generatrice de plasma, dispositif generateur de plasma, et appareil d'epuration de gaz d'echappement
JP2005076497A (ja) 排ガス処理方法及び排ガス処理装置
WO2002049767A1 (fr) Dispositif electrostatique d'emission ionique en air
WO2007023267A1 (fr) Filtre à particules à régénération autosélective
EP1355724B1 (fr) Dispositif de traitement par catalyse des odeurs et hotte de filtration equippe d'un tel dispositif
WO2008107598A1 (fr) Dispositif de filtre electrostatique pour la capture et la destruction de particules de suie contenues dans les gaz d'echappement d'un moteur a combustion
EP2707122B1 (fr) Dispositif pour le traitement des gaz par plasma de surface
EP1478455B1 (fr) Reacteur pour le traitement par plasma d'un flux gazeux, notamment des gaz d'echappement produit par le moteur a combustion interne d'un vehicule automobile.
EP1575694B1 (fr) Dispositif de traitement de gaz par catalyse, notamment pour une hotte de filtration de fumees de cuisson
WO2020084138A1 (fr) Nouveau dispositif d'epuration d'air par plasma
WO2003100226A1 (fr) Dispositif et procede de filtrage de gaz d'echappement charges de particules
FR2907843A1 (fr) Dispositif electrique de capture de particules de suie de gaz d'echappement de moteur a combustion interne.
WO2021074534A1 (fr) Dispositif de filtration électronique de particules
FR2830275A1 (fr) Systeme de traitement des gaz d'echappement d'un moteur a combustion
JPH045414A (ja) 排ガス浄化装置
JP2004332608A (ja) Pm浄化リアクター
JP2001020721A (ja) ディーゼルパティキュレートフィルタシステム
FR3003810A3 (fr) Epurateur d'air pour voiture
JP2012246776A (ja) 排気浄化装置及びその使用方法
JP2004169641A (ja) リーンバーンエンジン等の排気ガスに含まれる粒子状物質の低減方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070622

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071016

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FAGORBRANDT SAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602006017297

Country of ref document: DE

Date of ref document: 20101118

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110221

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101006

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110207

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

26N No opposition filed

Effective date: 20110707

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006017297

Country of ref document: DE

Effective date: 20110707

BERE Be: lapsed

Owner name: FAGORBRANDT SAS

Effective date: 20110630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20150612

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GROUPE BRANDT

Effective date: 20160226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006017297

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENTANWAELTE RECHTSANWAE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006017297

Country of ref document: DE

Owner name: GROUPE BRANDT, FR

Free format text: FORMER OWNER: FAGORBRANDT SAS, RUEIL-MALMAISON, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GROUPE BRANDT, FR

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

Effective date: 20160426

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160627

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190611

Year of fee payment: 14

Ref country code: IT

Payment date: 20190614

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200720

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006017297

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200627

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240604

Year of fee payment: 19