EP1735229B1 - Verfahren zur steuerung eines aufzugssystems - Google Patents

Verfahren zur steuerung eines aufzugssystems Download PDF

Info

Publication number
EP1735229B1
EP1735229B1 EP05730844A EP05730844A EP1735229B1 EP 1735229 B1 EP1735229 B1 EP 1735229B1 EP 05730844 A EP05730844 A EP 05730844A EP 05730844 A EP05730844 A EP 05730844A EP 1735229 B1 EP1735229 B1 EP 1735229B1
Authority
EP
European Patent Office
Prior art keywords
elevator
call
time
floor
destination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05730844A
Other languages
English (en)
French (fr)
Other versions
EP1735229A2 (de
Inventor
Marja-Liisa Siikonen
Jari Ylinen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kone Corp
Original Assignee
Kone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kone Corp filed Critical Kone Corp
Publication of EP1735229A2 publication Critical patent/EP1735229A2/de
Application granted granted Critical
Publication of EP1735229B1 publication Critical patent/EP1735229B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/2408Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration where the allocation of a call to an elevator car is of importance, i.e. by means of a supervisory or group controller
    • B66B1/2458For elevator systems with multiple shafts and a single car per shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/10Details with respect to the type of call input
    • B66B2201/103Destination call input before entering the elevator car
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/214Total time, i.e. arrival time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/235Taking into account predicted future events, e.g. predicted future call inputs

Definitions

  • the present invention relates to control of an elevator group.
  • An elevator system can be controlled by two different principal methods, of which the more traditional and more widely used method is up-down call buttons at the elevator landing floors and a car call panel inside the elevator car.
  • This traditional call system requires that the elevator passenger give two successive calls: a landing call (ordering an elevator to the particular departure floor) and a car call (indicating the target floor to the elevator system).
  • the elevator to serve the call can be announced either immediately after the elevator control system has allocated the call (decided which elevator is to serve the call), or e.g. only after an arriving elevator starts braking to stop at the departure floor of the person having issued the call.
  • the other call system is so-called destination control, in which the elevator customer gives only one call.
  • the call is given like a car call at the elevator landing floor by inputting destination floor information via a floor button panel or e.g. using a numeric keypad.
  • the allocation of elevators can be accomplished in a more sensible way because the system learns the information relating to each passenger (departure floor and destination floor) at an earlier stage and the passengers' destination floors can already be taken into account when a suitable elevator is being allocated. In the case of large elevator systems and large numbers of passengers, it is thus possible e.g. to assign the same elevator to customers traveling to the same floor.
  • the cost function may comprise summed passenger waiting times, traveling times, electric energy consumption of the system, numbers of times the elevator car has stopped at different floors, or the aforesaid or other desired quantities may be weighted with desired weighting coefficients.
  • the most optimal elevator is found e.g. by the ESP method (Enhanced Spacing Principle).
  • ESP Enhanced Spacing Principle
  • the issued calls are observed and the passenger waiting times are optimized.
  • the number of passengers associated with each landing call and waiting on the floor in question is estimated as far as possible on the basis of statistical data. Those landing calls that the system assumes to be associated with the largest number of elevator customers are served fastest.
  • Another method for allocating elevators on the basis of calls is to use genetic algorithms, especially in large elevator systems. Genetic algorithms are described e.g. in patent specification FI112856B . Genetic algorithms do not guarantee that the absolutely most optimal value is found, but the results obtained in practical applications are quite close to it.
  • the routes of the elevators in the system can be encoded in different chromosomes, in which one gene defines an elevator customer and the elevator to serve him/her. The system starts the process e.g. from a randomly selected route alternative and applies to it various genetic procedures, such as proliferation, crossbreeding and mutation.
  • a number of new chromosomes are generated via these genetic procedures and at the same time the chromosomes thus obtained are examined to determine whether they are viable for further processing. Viability may mean e.g. that the waiting time falls below a given value.
  • Crossbreeding means that two route alternatives are combined at random to create one new route alternative.
  • the values of the genes of the chromosome are changed arbitrarily. The chromosome results given by the algorithm converge at some stage, and from the last processed set of chromosomes the one having the best viability is selected. The passengers are allocated to elevators according to the genes of the best chromosome.
  • the starting point is optimization of total journey time.
  • an allocation principle is described in patent specification FI82917C .
  • Internal service costs here refer to the waste time spent by passengers in the elevator car due to intermediate stops, and external service costs refer to the waiting time spent by passengers in an elevator lobby.
  • the cost function optimizes the waiting time, which is obtained as the sum of the waiting time spent in the lobby and the waste time spent in the elevator car due to stops.
  • Coincident calls (which here means that an active landing call addressed to the elevator is simultaneously a destination floor given as an active car call) are taken into account in the method.
  • Patent specification US4991694 deals with immediate allocation of destination calls.
  • the costs are optimized on the basis of passenger waiting times. As stated above, waiting time is accumulated from waiting in the elevator lobby and from intermediate stops due to landing calls and car calls.
  • the US 2002/0112922 discloses a method for assigning hall calls in an elevator group.
  • a call cost value for a hall call is calculated as a function of the estimated time to the desired destination of the passenger requesting the new hall call an of the delay that other passengers who are using the elevator car will experience. This method provides the option of using destination call allocation.
  • the WO 2004/031062 discloses a method for allocating calls in an elevator group. This document discloses the possibility of optimising the waiting time for the passengers in low traffic intensity conditions while in a more intensive traffic situation the travelling time for the passengers is optimised.
  • the object of the present invention is to overcome some of the above-mentioned problems in elevator control.
  • the aim is to create a control method in which both the waiting time and the traveling time of passengers are optimized.
  • the present invention deals with a method for allocating elevators on the basis of call data, and the method is especially intended for use in a destination call system, wherein both the source floor and the destination floor of the customer are already known after the customer has given a call in an elevator lobby.
  • Source floor refers to the floor where the customer gives a landing call or destination call and where the customer en-ters the elevator. The source floor is thus the same as the customer's departure floor. Based on active calls and the location and operational condition of the elevators at the instant under consideration, all possible elevator route alternatives are calculated.
  • a cost function is calculated wherein passenger-specific average total traveling time, i.e. the time from the instant the person gives a destination floor call to the instant he/she leaves the elevator at the destination call floor, is minimized.
  • the procedure takes into account the waiting time spent at the elevator landing floor, besides the traveling time spent in the elevator car as well as the delays caused by intermediate stops that, as far as known, are to be made during the journey. Intermediate stops may be due to active destination floor calls or source floor calls given by new passengers along the route of the elevator. Further delays arise in consequence of destination floor calls given by new customers boarding at intermediate stops.
  • DOP panel Device for inputting a destination floor call
  • the method of the present invention can be combined with the use genetic algorithms to determine the most advantageous route alternative.
  • the route alternatives processed by the algorithm can also be created in other ways.
  • a feature characteristic of the method of the present invention is that it employs passenger-specific calculation instead of call-specific calculation.
  • the capacity of the elevator system can be better utilized as compared to the control algorithms used in the traditional up-down call system.
  • Another significant advantage of the present invention is that the same control system can be used to control both systems using destination calls and systems using traditional up-down calls.
  • the traveling times are optimized and the serving elevator is immediately signaled to the customer.
  • the number of intermediate stops can be effectively reduced and the elevator capacity can be more efficiently utilized.
  • Immediate signaling can also be used in a system comprising up-down call buttons. The signaling can be given automatically or it can be set manually to a suitable value with respect to usability.
  • the control system also permits the destination operating mode to be set into an active state e.g. only during peak traffic hours while at other times traditional call buttons are in operation. As anoth er alternative, the destination operating mode may be continuously in use.
  • Fig. 1 presents the components of a cost function generated in elevator control according to the present invention.
  • Fig. 2 presents the components of an elevator system associated with the present invention.
  • the present invention is applied in so-called destination call control, wherein the elevator system control receives the information regarding the customer's source and target floors at an early stage.
  • the present invention is also applicable for use i n a traditional elevator system provided with up-down call buttons.
  • Fig. 1 presents in a simple form the time terms needed in the generation of the cost function.
  • the object of optimization 11 is the passenger's average traveling time.
  • the traveling time contains the passenger's waiting time on his/her source floor 10, which means the time interval from the input of a landing call to the arrival of the elevator car. Further, the traveling time contains the ride time in the elevator car 12.
  • the car calls 14 given by new passengers boarding the elevator car have to be taken into account in the traveling time (provided that the system already knows of these calls as destination calls), because they have a similar effect of increasing the traveling time of the passengers already in the car.
  • JT f_enter,lift is the sum of passenger waiting times associated with a given destination floor or, in the case of a destination call, the traveling time of the person having input the call.
  • JT inc,lift is the length of the waste time that, for different reasons, is summed in the traveling time of the passengers riding in the car.
  • the call data is available immediately in connection with the input of the landing call (in the case of a destination call)
  • optimization 11 can be performed immediately and the most advantageous elevator obtained as a final result 15 of the optimization can be notified to the elevator customer.
  • the elevator is originally located at floor 'liftpos' (which is different from the elevator customer's source floor)
  • the sum term represents the extra time resulting from stops due to landing and car calls, which is spent during the trip before floor x 2 is reached.
  • N i,in,lift and N i,out,lift are the numbers of passengers entering and leaving the elevator, respectively.
  • T pass is the average time required for a passenger to step into or out of the elevator.
  • T door,lift is the additional time consumed by the door opening and closing operations, and T acc,dec represents the delay resulting from the acceleration and braking of the elevator as compared to travel at an even travel speed.
  • the traveling time of the elevator customers already riding in the elevator car is increased by new elevator customers giving new landing calls (destination calls) on their entry floor and by the stops required to drop these new customers off at their destination floors when the destination floor is between x 1 ... x 2 .
  • Y i,lift 0 if the elevator would have stopped at floor i without the new passenger giving a call, otherwise Y i,
  • the average traveling time can be determined from the statistics when the time of the day and the source floor are known. In this way, the calculation can be executed efficiently immediately upon input of a landing call in a traditional system provided with up-down call buttons and it is not strictly necessary to await a destination call given by the customer in the elevator car.
  • P f_enter,lift is the number of new passengers entering the elevator from a given floor
  • P i,lift is the number of passengers leaving the elevator from the number that boarded the elevator at floor f_enter.
  • K i,lift 0.
  • the cost function (3) has now been defined for both the destination call system and the traditional call system.
  • the cost function minimizes the average passenger-specific traveling time, which comprises the time spent while waiting for an elevator, the actual ride time and additionally the delays caused by passengers subsequently entering the elevator. Once the minimum has been found, each passenger is directed to his/her right elevator according to the elevator allocation consistent with the shortest traveling time.
  • the elevator system control naturally performs calculations continuously so that new calls entered and the continually changing positions of the elevators in the system are properly taken into account in the control of the elevators. Since the total traveling time is the object of optimization in the case of intensive traffic, the elevator capacity can be effectively reused after the customer's elevator trip.
  • the algorithm minimizes passenger-specific average waiting time.
  • the elevator arrives quickly to the call input floor, but the elevator is allowed to make even several intermediate stops if necessary.
  • the car loads are balanced by the algorithm so that the given car load limits are not exceeded.
  • the control method allows the cars to be filled to the upper limit of the number of persons if people enter the elevator from the same source floor. In practice, this limit is only reached when a special peak traffic condition prevails in the system. Peak traffic again can be identified e.g. from measured statistical traffic data or from traffic forecasts made.
  • Fig. 2 presents an example of an actual elevator system employing the above-described method, showing the essential parts of the system.
  • the building is provided with an elevator system comprising elevators 20.
  • the call input equipment 21 includes both traditional up-down call buttons and a car call panel placed in the car. Furthermore, the call input equipment 21 contains the buttons required in a destination call system on each floor.
  • the intelligence of the system is located in a control system 22 comprising a microprocessor (not shown in the figures) as an essential part of it.
  • the microprocessor contains a memory, in which a computer program capable of executing the method of the present invention (or a part of it) is stored. The memory may also be implemented as an external part connected to the computer.
  • the microprocessor runs the program code comprised in the computer program, thus executing the various stages of the method of the present invention (or part of them).
  • the traveling time is calculated by a time counter 23.
  • the control system 22 performs the required optimization operations by using the input data and method of the present invention.
  • Previously measured traffic statistics 24 can be utilized when an optimization algorithm is used.
  • the traffic statistics 24 may be stored in a separate memory block.
  • the control system 22 calculates the optimal elevator route alternative that minimizes the average traveling time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)

Claims (14)

  1. Verfahren für die Zuweisung von Aufzügen zu Passagieren in einem Aufzugsystem, in welchem Verfahren dem Aufzugssystem die Abfahrt- und Zielstockwerke jedes Passagiers über eine Rufeingabeeinrichtung mitgeteilt werden, welches Verfahren folgende Schritte enthält: Bilden der möglichen Aufzugwegalternativen auf der Basis aktiver Rufe und des Status der Aufzüge zum Zeitpunkt der Betrachtung; Bestimmen einer Wartezeit für die Aufzugswegalternativen von der Eingabe des Abfahrtstockwerkrufs bis zur Ankunft des Aufzugs an dem Rufeingabestockwerk und einer Fahrzeit der Aufzugskabine von dem Abfahrtsstockwerk bis zum Zielstockwerk; Bestimmen einer erste Verzögerung für die Aufzugwegalternativen, die durch Zwischenstops zwischen dem Abfahrtstockwerk und dem Zielstockwerk der Passagiere verursacht wird; Bestimmen einer zweiten Verzögerung für die Aufzugwegalternativen, die durch Zwischenstops aufgrund Zielstockwerkrufen verursacht wird, die von Passagieren abgegeben wurden, die den Aufzug zwischen dem Abfahrt- und dem Zielstockwerk des Passagiers betreten haben; Bestimmen einer Passagierwegzeit für die Aufzugswegalternativen basierend auf der Wartezeit, der Fahrzeit, der ersten und zweiten Verzögerung; und Zuweisen der Aufzüge zu den Passagieren gemäß der Verkehrsintensität in Übereinstimmung mit der Wegalternative, welche die kürzeste Warte- oder Wegzeit ergibt, dadurch gekennzeichnet, dass das Aufzugssystem ein Steuerungssystem für Zielrufe und traditionelle Auf-/Abwärts-Rufe aufweist, wobei in intensiven Verkehrssituationen die durchschnittliche Wegzeit des Passagiers optimiert wird und der Zielstockwerksbetriebsmodus aktiviert wird, und in ruhigen Verkehrssituationen die durchschnittliche Wartezeit des Passagiers optimiert wird und das traditionelle Auf-/Abwärts-Rufsystem verwendet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die oben genannte erste Verzögerung aus Stockwerkrufen, die dem Aufzug zugewiesen werden und aus Kabinenrufen resultiert, die in der Aufzugskabine abgegeben werden.
  3. Verfahren nach einem der vorhergehenden Ansprüche 1 - 2, dadurch gekennzeichnet, dass das Verfahren weiterhin folgende Schritte umfasst: Bestimmen der oben genannten ersten und zweiten Verzögerung durch Aufsummieren der Durchschnittszeit, die jeder Passagier benötigt, um sich von dem Stockwerk zum Aufzug zu bewegen oder vice versa, der Zeit, die das Öffnen und Schließen der Aufzugstüre erfordert, der Zeit, die das Abbremsen und Beschleunigen des Aufzugs erfordert, und der Zeit die der den Betrieb des Systems erfordert.
  4. Verfahren nach einem der vorhergehenden Ansprüche 1 - 3, dadurch gekennzeichnet, dass genetische Algorithmen bei Zuweisung der Aufzüge verwendet werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche 1 - 4, dadurch gekennzeichnet, dass die vorgenannten Abfahrt- und Zielstockwerkdaten dem System über ein Zielstockwerkrufsystem (DOP) gegeben werden.
  6. Verfahren nach einem der vorhergehenden Ansprüche 1 - 5, dadurch gekennzeichnet, dass die vorgenannten Abfahrtsstockwerkdaten dem System über Stockwerkrufknöpfe und die Zielstockwerkdaten über ein Kabinenrufpanel gegeben werden.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Verfahren weiterhin folgende Schritte umfasst: Errechnen der Wegzeit, die mit einem Stockwerkruf assoziiert ist, durch Multiplizieren der definierten Wegzeit mit einer vorhergesagten Anzahl an Passagieren, die mit einem Stockwerkruf assoziiert sind; und Vorhersagen der Zielstockwerke der Passagiere auf der Basis von Verkehrsstatistiken.
  8. System für die Zuweisung von Aufzügen zu Passagieren in einem Aufzugssystem, welches System folgende Merkmale umfasst: Wenigstens einen Aufzug (20), eine Rufgabeeinrichtung (21), welche die in einem Zielstockwerkrufsystem auf jedem Stockwerk erforderlichen Knöpfe aufweist, um dem Aufzugssystem das Abfahrtsstockwerk und das Zielstockwerk jedes Passagiers mitzuteilen, als auch traditionelle Auf-/Abrufknöpfe und ein Kabinenrufpanel, das in der Kabine angeordnet ist; ein Aufzugssteuerungssystem (22) zum Bilden der möglichen Aufzugwegalternativen auf der Basis der aktiven Rufe und des Status der Aufzüge zum Zeitpunkt der Betrachtung, welches Steuerungssystem konzipiert ist, um sowohl ein Zielrufsystem als auch ein traditionelles Auf/Abrufsystem zu handhaben; einen Zeitzähler (23) zum Bestimmen einer Wartezeit für die Aufzugwegalternativen, die sich ergibt aus der Eingabe des Abfahrtstockwerkrufes bis zur Ankunft des Aufzugs an dem Rufeingabestockwerk, und einer Fahrzeit in der Aufzugskabine von dem Abfahrtstockwerk bis zum Zielstockwerk; einen Zeitzähler (23) zum Bestimmen einer ersten Verzögerung für die Aufzugwegalternativen, die durch Zwischenstops zwischen dem Abfahrts- und dem Zielstockwerk der Passagiere verursacht wird; einen Zeitzähler (23) zum Bestimmen einer zweiten Verzögerung für die Aufzugwegalternativen, die durch Zwischenstops verursacht wird, welche aus Zielstockwerkrufen resultieren, die von Passagieren abgegeben werden, welche den Aufzug zwischen dem Abfahrt- und dem Zielstockwerk des Passagiers betreten haben; einen Zeitzähler (23) zum Bestimmen einer Passagierwegzeit für die Aufzugswegalternativen, die erhalten wird auf der Basis der Wartezeit, der Fahrzeit, und der ersten und zweiten Verzögerung; und ein Aufzugssteuerungssystem (22) zum Zuweisen der Aufzüge zu den Passagieren entsprechend der Verkehrsintensität in Übereinstimmung mit den Wegalternativen, welche die kürzeste Warte- oder Fahrzeit ergeben, wobei das System konzipiert ist, in intensiven Verkehrssituationen die durchschnittliche Passagierfahrzeit zu optimieren und ein Zielrufbetriebssystem in den aktiven Status zu setzen, und in ruhigen Verkehrssituationen die durchschnittliche Passagierwartezeit zu optimieren und die traditionellen Rufknöpfe in Betrieb zu setzen.
  9. System nach Anspruch 8, dadurch gekennzeichnet, dass in dem Zeitzähler (23) die erste Verzögerung verursacht wird durch Stockwerkrufe, die dem Aufzug zugewiesen werden, und Kabinenrufe, die in der Aufzugskabine abgegeben werden.
  10. Ein System nach einem der vorhergehenden Ansprüche 8 - 9, dadurch gekennzeichnet, dass das System weiterhin folgende Merkmale enthält: Einen Zeitzähler (23) zum Aufsummieren der Durchschnittszeit, die jeder Passagier benötigt, um von dem Stockwerk zu dem Aufzug oder vice versa zu gelangen, der Zeit, die durch das Öffnen und Schließen der Aufzugstüre verursacht wird, der Zeit die durch das Abbremsen und die Beschleunigung des Aufzugs verursacht wird, und der Zeit, die durch den Betrieb des Systems verursacht wird, welches die erste und zweite Verzögerung bestimmt.
  11. System nach einem der vorhergehenden Ansprüche 8 - 10, dadurch gekennzeichnet, dass in dem Aufzugssteuerungssystem (22) genetische Algorithmen für die Zuweisung der Aufzüge verwendet werden.
  12. System nach einem der vorhergehenden Ansprüche 8 - 11, dadurch gekennzeichnet, dass die Rufeingabeeinrichtung (21) eine Zielrufeinrichtung (DOP) für die Eingabe von Abfahrt- und Zielstockwerkdaten in das System ist.
  13. System nach einem der vorhergehenden Ansprüche 8 - 12, dadurch gekennzeichnet, dass die Rufeingabeeinrichtung (21) aus Stockwerkrufknöpfen und Kabinenrufknöpfen die Eingabe von Abfahrts- und Zielstockwerkdaten in das System besteht.
  14. System nach Anspruch 13, dadurch gekennzeichnet, dass das System weiterhin umfasst: Einen Zeitzähler (23) zum Errechnen der Wegzeit, die mit einem Stockwerkruf assoziiert ist, durch Multiplizieren der definierten Wegzeit mit einer vorhergesagten Anzahl von Passagieren, die mit einem Stockwerkruf verknüpft sind; und Verkehrsstatistiken (24) zum Vorhersagen der Zielstockwerke der Passagiere.
EP05730844A 2004-04-15 2005-04-12 Verfahren zur steuerung eines aufzugssystems Expired - Fee Related EP1735229B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20040544A FI115396B (fi) 2004-04-15 2004-04-15 Hissijärjestelmän ohjausmenetelmä
PCT/FI2005/000181 WO2005100223A2 (en) 2004-04-15 2005-04-12 Method for controlling an elevator system

Publications (2)

Publication Number Publication Date
EP1735229A2 EP1735229A2 (de) 2006-12-27
EP1735229B1 true EP1735229B1 (de) 2010-03-10

Family

ID=32104188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05730844A Expired - Fee Related EP1735229B1 (de) 2004-04-15 2005-04-12 Verfahren zur steuerung eines aufzugssystems

Country Status (5)

Country Link
EP (1) EP1735229B1 (de)
DE (1) DE602005019866D1 (de)
ES (1) ES2340689T3 (de)
FI (1) FI115396B (de)
WO (1) WO2005100223A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2384695T3 (es) 2007-08-28 2012-07-11 Thyssenkrupp Elevator Capital Corporation Procedimiento y aparato para reducir los tiempos de espera en sistemas de distribución basados en destinos
JP6431841B2 (ja) * 2012-09-11 2018-11-28 コネ コーポレイションKone Corporation エレベータシステム
EP3377432B1 (de) * 2015-11-16 2022-01-12 KONE Corporation Verfahren und vorrichtung zur bestimmung einer zuweisungsentscheidung für mindestens einen aufzug
CN110171753B (zh) * 2019-06-03 2021-09-21 日立楼宇技术(广州)有限公司 一种电梯调度策略处理方法、装置、设备和存储介质
CN112441481A (zh) * 2019-08-28 2021-03-05 崇友实业股份有限公司 电梯的智能控制系统与方法
CN114104887B (zh) * 2021-11-23 2023-06-06 上海三菱电梯有限公司 电梯目的层建议系统与方法以及电梯系统和建筑物管理系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1315900C (en) * 1988-09-01 1993-04-06 Paul Friedli Group control for lifts with immediate allocation of target cells
FI113467B (fi) * 2002-11-29 2004-04-30 Kone Corp Allokointimenetelmä
FI98720C (fi) * 1992-05-07 1997-08-11 Kone Oy Menetelmä hissiryhmän ohjaamiseksi
FI107379B (fi) * 1997-12-23 2001-07-31 Kone Corp Geneettinen menetelmä hissiryhmän ulkokutsujen allokoimiseksi
US6439349B1 (en) * 2000-12-21 2002-08-27 Thyssen Elevator Capital Corp. Method and apparatus for assigning new hall calls to one of a plurality of elevator cars
FI113163B (fi) * 2002-10-01 2004-03-15 Kone Corp Hissiryhmän ohjausmenetelmä

Also Published As

Publication number Publication date
FI20040544A0 (fi) 2004-04-15
WO2005100223A3 (en) 2006-03-02
ES2340689T3 (es) 2010-06-08
DE602005019866D1 (de) 2010-04-22
EP1735229A2 (de) 2006-12-27
WO2005100223A2 (en) 2005-10-27
FI115396B (fi) 2005-04-29

Similar Documents

Publication Publication Date Title
EP0895506B1 (de) Passagier-reisezeit optimierendes steuerverfahren für aufzugsgruppen aus doppeldeck-aufzügen
EP2195270B1 (de) Aufzugssystem
EP2029466B1 (de) Aufzugssystem
JP5351510B2 (ja) 乗り場行先階予約式群管理エレベーターの制御装置
EP1021368B1 (de) Verfahren für aufzugsgruppe-steuerung in der virtueller personenverkehr erzeugt wird
JP5705704B2 (ja) エレベータ群管理システムおよびその制御方法
US10183836B2 (en) Allocating destination calls using genetic algorithm employing chromosomes
JP2011190058A (ja) エレベータの制御装置
EP1735229B1 (de) Verfahren zur steuerung eines aufzugssystems
EP2621847B1 (de) Aufzugsystem
GB2555747A (en) Group-control elevator device, and method for assigning boarding car numbers using group control
US9580271B2 (en) Elevator system configured to decentralize allocation of hall calls
JP2020019611A (ja) マルチカーエレベーター及びマルチカーエレベーター制御方法
US10071879B2 (en) Method for controlling an elevator system
WO2005121002A1 (ja) エレベータの群管理制御装置
KR20070088519A (ko) 엘리베이터 그룹 관리 제어 장치
JP4357248B2 (ja) エレベータの群管理制御装置
JP4569197B2 (ja) エレベータの群管理装置
JP6420217B2 (ja) エレベータ装置及びエレベータ装置の制御方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060929

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20070824

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005019866

Country of ref document: DE

Date of ref document: 20100422

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2340689

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120425

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130424

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140412

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140413

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190418

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190418

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190418

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005019866

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200412