EP1732716A1 - Method for producing a metal - Google Patents

Method for producing a metal

Info

Publication number
EP1732716A1
EP1732716A1 EP04725880A EP04725880A EP1732716A1 EP 1732716 A1 EP1732716 A1 EP 1732716A1 EP 04725880 A EP04725880 A EP 04725880A EP 04725880 A EP04725880 A EP 04725880A EP 1732716 A1 EP1732716 A1 EP 1732716A1
Authority
EP
European Patent Office
Prior art keywords
cooling section
metal
model
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04725880A
Other languages
German (de)
French (fr)
Other versions
EP1732716B1 (en
Inventor
Klaus Weinzierl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34957437&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1732716(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT04725880T priority Critical patent/ATE373527T1/en
Publication of EP1732716A1 publication Critical patent/EP1732716A1/en
Application granted granted Critical
Publication of EP1732716B1 publication Critical patent/EP1732716B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Definitions

  • the invention relates to a method for producing a metal, wherein the thermoformed metal is cooled in a cooling section, the temperature and at least one phase component of the metal in at least one in a first step with the aid of primary data for the metal by means of a cooling section model Location of the cooling section 3oerech.net. Furthermore, the invention relates to a computing device for the corresponding control and modeling of a cooling section, as well as a corresponding system for producing a metal and a correspondingly manufactured metal.
  • DE 101 29 565 AI discloses a cooling method for a hot-rolled rolling stock, in particular a metal strip.
  • a cooling method for a hot-rolled rolling stock in particular a metal strip.
  • an initial temperature is recorded in front of the cooling section for a rolling stock point
  • a coolant quantity curve f is determined on the basis of a cooling section model and predetermined target properties of the rolling stock
  • a coolant is applied to the rolling stock point in accordance with the determined coolant quantity curve over time, on the basis of the cooling section model and of the coolant over time, an expected temperature change over time
  • Rolld goods are determined at the rolling stock point over the cross section of the rolling stock and a heat conduction equation is solved in the cooling section model to determine the temperature profile in the rolling stock, which correlates the enthalpy, the thermal conductivity, the phase conversion degree, the density and the temperature of the rolling stock.
  • AI are expected of the metal strip compared with the target temperature curves. On the basis of this comparison, a new coolant quantity curve is then calculated.
  • Warm-formed metals produced and cooled in accordance with known processes often do not meet the properties or material properties required for their later use, or do so with insufficient reliability.
  • a method of the type mentioned in the introduction in which in a second step at least one. Measured value is recorded during the production of the metal and, with the aid of the at least one measured value, at least one phase component of the metal to be expected is calculated at the at least one point of the cooling segment by means of the cooling path model, the phase component to be expected in the second step being calculated with that calculated in the first step Phase component is compared and this comparison is used to adapt at least one manipulated variable of the cooling section.
  • the phase components at the end of the cooling section can be kept largely constant over the metal.
  • the at least one manipulated variable of the cooling section By adapting at least one manipulated variable of the cooling section, deviations between different belts with the same primary data are largely eliminated.
  • the at least one phase component is calculated in such a way that the system fluctuations are not included in the calculation, ie a degree of reference conversion is determined.
  • this reference degree of conversion is regulated, the actual fluctuations in the system being largely compensated for by adapting local control variables of the cooling section. According to the invention, in the manufacture of tall a constant quality can be ensured much better than with known methods.
  • the at least one point at which at least one phase component of the metal is located in the first or in the second step of the method is calculated, located at the end of the cooling section.
  • the expected phase component calculated in the second step is advantageously compared in the second step with a predetermined phase component. In this case, it is no longer necessary to compare the expected phase component calculated in the second step with the phase component calculated in the first step. In this way, direct specifications, for example by an operator, are taken into account when setting the phase component.
  • the second step is advantageous online, i.e. executed iteratively in real time during the manufacture of the metal.
  • the accuracy of the method is further improved.
  • At least one manipulated variable of the cooling section is advantageously adapted in accordance with the comparison by a cooling section controller.
  • the cooling section controller directly adjusts the manipulated variables of the cooling section based on the comparison of the phase components in accordance with the calculations from the first or second step. This ensures high control accuracy.
  • a cascaded control structure in which case the cooling section controller is provided with setpoints by a superimposed phase component controller.
  • the phase proportion controller fits at least one setpoint for the cooling section controller and the cooling section controller adjusts at least one manipulated variable of the cooling section, taking into account set values that are predetermined for it.
  • a temperature model is advantageously used in at least one of the two steps, which calculates the temperature profile of the metal in the cooling section.
  • the temperature of the metal With regard to the temperature of the metal, a particularly high control accuracy is achieved.
  • the temperature model is advantageously adapted with the aid of the at least one measured value. In this way, fluctuations in the production of the metal can be compensated for more effectively.
  • a conversion model is preferably used which calculates the course of the at least one phase component in the cooling section.
  • a multi-phase steel is advantageously produced. Especially with multi-phase steels, e.g. Dual phase steels or trip steels, keeping the phase components constant and thus the degree of conversion in the cooling section is particularly critical and important. These steels have particularly good material properties, for example for the automotive industry.
  • the metal in the cooling section is advantageously cooled in at least two cooling sections. In this way, desired phase fractions, in particular in the case of multi-phase steels, can be set in a targeted manner.
  • a holding time is preferably adjusted.
  • a holding temperature is advantageously adjusted.
  • sizes such as holding Time and holding temperature are particularly critical for the phase components in metal.
  • At least one manipulated variable for coolant actuators is advantageously adapted.
  • Coolant actuators are local actuators of the cooling section and therefore, for example, have no effect on a finishing train upstream of the cooling section.
  • the finishing train is not undesirably influenced by the adjustment of the manipulated variables for the coolant actuators.
  • At least one manipulated variable is advantageously adapted for the speed of the metal in the cooling section.
  • the speed of the metal in the cooling section can be influenced as far as possible regardless of the speed at which the metal passes through parts of the system upstream of the cooling section.
  • At least one manipulated variable is advantageously adapted for a metal lay time.
  • the metal's idle time is another local control variable for setting the phase proportions of the metal.
  • the object on which the invention is based is also achieved by a computing device according to claim 16 or 17.
  • the invention is also achieved by a system for producing a metal with a cooling section and with such a computing device, the computing device for controlling and modeling the cooling section being coupled to signal transmitters and actuators of the Kuril section via suitably designed interfaces.
  • the invention is also achieved by a metal according to claim 19. The result is particularly uniform material properties in the metal.
  • thermoformed metal 1 runs out of a roll stand 4 at a speed v in the strip running direction x.
  • the roll stand 4 is, for example, the last roll stand of a so-called finishing train.
  • Another cooling or processing device for the metal 1 can also be arranged upstream of the cooling section 5.
  • the cooling section 5 and any one or more devices upstream of it for shaping or processing the metal 1 and any devices downstream of the cooling section 5 form a system for producing a metal 1.
  • the cooling section 5 is followed by a reel device 12 with the help of which the cooled metal 1 is coiled into a coil.
  • the cooling section 5 can also be used for other devices not shown in the drawing Processing and / or storage of the metal 1 may be subordinate.
  • the metal 1 is steel in the solid state in the present case. However, it could also have an at least partially liquid state of matter. According to Figure 1, the metal 1 is designed as a metal strip or slab. But there are also other forms of metal 1, e.g. Rod-shaped profiles such as wires, pipes or U profiles are conceivable.
  • the cooling section 5 has one or more actuators 2.
  • the temperature T of the metal 1 can be influenced directly or indirectly by means of the actuator 2 - as a rule by cooling, but in some cases also by heating.
  • An actuator 2 can have, for example, one or more valves for applying a cooling medium to the metal 1.
  • a cooling medium for example, water or a mixture of water with other substances can be used as the cooling medium.
  • the cooling section 5 is controlled by the computing device 3. In particular, that too
  • Actuator 2 controlled by computing device 3 according to a manipulated variable S.
  • Measuring elements 6, 6 are provided, by means of which the temperature T of the metal 1 is detected.
  • a first measuring element 6 for temperature detection is arranged at the entrance of the cooling section, in the example shown behind the last roll stand 4.
  • Another measuring element 6 X for temperature detection is arranged at the end of the cooling section 5 or in the example shown in front of the reel device 12.
  • the computing device 3 outputs manipulated variables S to the actuators 2 of the cooling section. Measured values such as the temperature T from the cooling section 5 and / or from the cooling section upstream or downstream devices are fed to the computing device 3.
  • the actual speed v of the metal 1 can also be supplied to the computing device 3.
  • the actual speed v of the metal can be measured and / or with the help of at least one Model are determined.
  • the computing device 3 can also be supplied, for example, with the rotational speeds of the rolls of a roll stand 4 as measured values and / or calculated or modeled values.
  • the computing device 3 is also supplied with so-called primary data P.
  • Primary data P are generally used for the pre-calculation or presetting of a system and are dependent on the metal 1 to be produced. Different metal strips or slabs are usually characterized by different primary data. Primary data can also at least partially relate to the required properties of the metal 1 produced.
  • Figure 2 shows the course of the temperature T of the metal 1 in the cooling section 5 plotted over time t.
  • the time t relates to the time during which a strip point of the metal 1 present in strip form according to FIG. 1 passes through the cooling section 5.
  • the temperature T could also be plotted over the strip running direction x, ie the position in the cooling section.
  • the temperature T is used in its capacity as a quantity describing the energy content of the metal 1.
  • the phase components Pi at the end of the cooling section 5 or at the coiler device 12 are decisive for the material properties of the metal 1 or steel produced.
  • the phase components Pi of a metal 1 are particularly critical in production, particularly in the case of multi-phase steels such as dual-phase steels. and trip steels.
  • a customary cooling method is cooling divided into three cooling sections.
  • the metal 1 is cooled in the cooling section 5 in several temporal cooling phases, cooling phases or temporal cooling sections I, II, III.
  • the temporal cooling sections I, II, III can, but need not, coincide with spatial or component-related cooling sections.
  • the metal 1 is preferably cooled at a high cooling rate up to a holding temperature T H.
  • the holding temperature T H is generally predetermined or dependent on the primary data P.
  • air cooling takes place with a predetermined holding time t H.
  • the temperature T of the metal 1 or of the steel decreases only slightly.
  • the metal 1 is quenched to the temperature T or below the temperature T, which is to be achieved at the end of the cooling section or immediately before the winding up by means of the reel device 12.
  • the metal 1 is preferably quenched below the martensite start temperature.
  • a residual austenite content of typically 20% is usually aimed for before quenching begins.
  • a residual austenite content that is metastable at room temperature remains in the material, which converts to martensite when deformed.
  • FIGS. 3 and 4 show control systems according to the invention for the cooling section 5. Both figures show a computing device 3 coupled to the cooling section 5 for controlling and modeling the cooling section 5. Interfaces are provided in order to supply the computing device 3 with signals for modeling and around the cooling section 5 Control signals to be supplied. Computing device 3 and cooling section 5 form part of a system for producing a metal 1.
  • the computing device 3 has a cooling section model 7 and a cooling section controller 8.
  • the cooling section model 7 is used in a first step to trim the temperature T and at least one phase component Pi at the end of the cooling section 5 based on the primary data P for the metal strip. or calculated in front of the reel device 12.
  • measuring elements which can be arranged, for example, in a finishing line upstream of the cooling zone 5 (not shown in the drawing) and / or with the aid of a measuring element 6 at the entrance of the cooling zone 5, measured values are obtained in a second step detected and fed to the computing device 3. The measurement values are recorded while the metal 1 passes through the plant for producing a metal 1.
  • the cooling section model 7 determines at least at the end of the cooling section 5 at least one phase component Pi of the metal 1 to be expected.
  • the expected phase component Pi calculated in the second step is compared with the phase component Pi calculated in the first step on the basis of the primary data P. This comparison is used to adapt at least one manipulated variable S of the cooling section 5.
  • the cooling section controller 8 adjusts at least one manipulated variable S of the cooling section 5.
  • a relatively simple way of realizing such a cooling distance controller is such that manipulated variables S of actuators 2 are adapted as far as possible at the end of the first cooling section I.
  • the computing device 3 has a cooling section module 7, a cooling section controller 8 and a phase component controller 11.
  • the phase proportion controller 11 is superimposed on the cooling section controller 8.
  • the P-hash component controller 11 specifies at least one desired value, for example T H or t H , on the cooling section controller 8 on the basis of the comparison of the phase component Pi calculated in the first step and the expected phase component Pi calculated in the second step.
  • the phase proportion controller 11 preferably specifies a holding time t H and / or a holding temperature T H for the cooling section controller 8.
  • the cooling section controller 8 adjusts the manipulated variables S of the cooling section 5, taking into account the target specifications of the Ptiasen fraction controller 11.
  • Both control systems that is to say both the control system according to FIG. 3 and the control system according to FIG. 4, preferably work such that the second step is carried out iteratively online, ie in real time during the production of the metal 1.
  • the phase component Pi is determined in the same way, i.e. calculated using the same calculation methods or models.
  • the calculation in the two steps differs, however, with regard to the data on which the calculation is based, in particular with regard to the input data for the calculation.
  • phase component Pi calculated on the basis of the primary data P in the first step
  • a phase component Pi for example given by an operator in a first step
  • the expected phase component Pi calculated in the second step.
  • at least one phase component P of the metal 1 at the end of the cooling section is calculated.
  • At least one phase component P of the metal 1 can be calculated at at least one other point on the cooling section 5. If, for example, it is not expedient to measure at the end of the cooling section 5, at least one phase component P of the metal 1 can be calculated at another point in the cooling section 5 both in the first and in the second step of the method, e.g. at a point where it is assumed that the essential part of the phase conversion within the cooling section 5 has already been completed.
  • the computing device 3 or the cooling section model 7 preferably have a temperature model 9 which calculates the temperature profile of the metal 1 in the cooling section 5 over time t or over the strip running direction x.
  • the temperature model 9 is advantageously adapted with the aid of at least one measured value.
  • the at least one measured value is preferably a measured value for the temperature TUR of the metal 1, which is detected by means of a measuring element 6, 6 at the entrance or at the end of the cooling section 5.
  • the measured value acquisition can also take place at another point of the cooling section 5.
  • a conversion model 10 is preferably present, which calculates the course of the at least one phase component Pi of the metal 1 in the cooling section 5 over the time t and / or the strip running direction x.
  • the cooling section model 7 and / or the temperature model 9 can also use or calculate the enthalpy or another quantity describing the energy content.
  • a conversion model 10 is not shown in more detail in FIG. 4 for the sake of clarity, but is also expedient in the exemplary embodiment according to FIG. 4.
  • Provide a conversion model 10 uss at least the phase component Pi of the metal 1 at at least one point of the cooling section 5, preferably at the end of the cooling section 5.
  • manipulated variables S for the actuators 2 of the cooling section 5 e.g. the position of valves for coolant or the coolant flow in the cooling section 5 is regulated.
  • Such local manipulated variables S i.e. Actuating variables which have no effects on upstream system parts on the cooling section 5 can, however, also be the speed v of the metal 1 in the cooling section and a idle time of the metal 1 in the production of heavy plate.
  • an LT conversion model 10 is used for the cooling section 5, with the aid of which the phase components Pi along the steel strip are also calculated in real time in addition to the temperature T of the steel.
  • a control system is implemented which keeps the phase components Pi of the steel strip wound on a reel device 12 constant holds. This is done in the following steps: In a first step, the degree of conversion, in the case of multiphase steels, for example the ferrite content, is determined from data which are given from the primary data P of the steel strip.
  • one or more parameters of the cooling strategy ie manipulated variables S
  • the holding temperature T H can be modified. Raising the holding temperature T H reduces the ferrite content, lowering the holding temperature T H increases it.
  • Deviations from the target structure are already discovered online in accordance with the method according to the invention and are not only discovered after measurements of the structure components in the laboratory (cuts) or during tensile tests.
  • the constancy of the structural components along the strip was usually assessed by quality assurance in the steelworks only on the basis of the temperature records for the intermediate temperature and the reel temperature.
  • the method according to the invention enables the phase components P on the reel device 12 to be kept largely constant along the metal strip, even in the case of fluctuating production conditions and fluctuating speed v of the metal strip. Deviations between different metal strips with the same primary data P are largely eliminated because the fluctuations in the system are not included in the initial determination of the degree of reference conversion and due to the later
  • the first determination of the degree of reference conversion or at least one phase component Pi depends only on the primary data P.
  • the subsequent determinations of the degree of conversion or a phase component Pi take into account the fluctuations in manufacture. In this way, steel or metal 1 can remain the same Quality are produced and the requirements for the material properties of metal 1 or steel are met much more reliably than before.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Control Of Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

During the production of steel, a conversion model (10) is used for the cooling line (5). Said model is used to calculate the phase fractions (Pi), in addition to the temperature (T) of the steel, along the steel strip in real time. A regulating system, which maintains the phase fractions (Pi) of a steel strip that is wound onto a reeling device (12) at a constant level, is implemented. The method comprises the following steps: in a first step, the degree of conversion, for multi-phase steel e.g. the ferrite fraction, is determined from data obtained from the primary data (P) of the steel strip. In a second step, when the strip enters the cooling line (5), one or more parameters of the cooling strategy, i.e. control values (S), are adapted online in such a way that the ferrite content of the cooled steel on the reeling device (12) is maintained at a constant level.

Description

Beschreibungdescription
Verfahren zum Herstellen eines MetallsMethod of making a metal
Die Erfindung betrifft ein Verfahren zum Herstellen eines Metalls, wobei in einer Kühlstrecke das warmgeformte Metall abgekühlt wird, wobei in einem ersten Schritt unter Zuhilfenahme von Primärdaten für das Metall mittels eines Küh-lstrecken- modells die Temperatur und mindestens ein Phasenanteil des Metalls an mindestens einer Stelle der Kühlstrecke 3oerech.net wird. Des weiteren betrifft die Erfindung eine Rechenvorrichtung zur entsprechenden Steuerung und Modellierung einer Kühlstrecke sowie eine entsprechende Anlage zum Herstellen eines Metalls und ein entsprechend hergestelltes Meiiall.The invention relates to a method for producing a metal, wherein the thermoformed metal is cooled in a cooling section, the temperature and at least one phase component of the metal in at least one in a first step with the aid of primary data for the metal by means of a cooling section model Location of the cooling section 3oerech.net. Furthermore, the invention relates to a computing device for the corresponding control and modeling of a cooling section, as well as a corresponding system for producing a metal and a correspondingly manufactured metal.
Aus der DE 101 29 565 AI ist ein Kühlverfahren für ein warmgewalztes Walzgut, insbesondere ein Metallband, bekannt. Bei diesem vorbekannten Verfahren wird vor der Kühlstrecke für eine Walzgutstelle eine Anfangstemperatur erfasst, anhand ei- nes Kühlstreckenmodells und vorgegebener Soll-Eigenschaften des Walzgutes ein zeitlicher Kühlmittelmengenverlau-f ermittelt, auf die Walzgutstelle gemäß dem ermittelten zeitlichen Kühlmittelmengenverlauf ein Kühlmittel aufgebracht, anhand des Kühlstreckenmodells und des zeitlichen Kühlmittel engen- Verlaufs ein erwarteter zeitlicher Temperaturverlau-f desDE 101 29 565 AI discloses a cooling method for a hot-rolled rolling stock, in particular a metal strip. In this known method, an initial temperature is recorded in front of the cooling section for a rolling stock point, a coolant quantity curve f is determined on the basis of a cooling section model and predetermined target properties of the rolling stock, a coolant is applied to the rolling stock point in accordance with the determined coolant quantity curve over time, on the basis of the cooling section model and of the coolant over time, an expected temperature change over time
Walzgutes an der Walzgutstelle über dem Walzgutquerschnitt ermittelt und zur Ermittlung des Temperaturverlaufs im Walzgut im Kühlstreckenmodell eine Wärmeleitungsgleichu-ng gelöst, die die Enthalpie, die Wärmeleitfähigkeit, den Phas enumwand- lungsgrad, die Dichte und die Temperatur des Walzgu-tes miteinander in Beziehung setzt. Bei dem in der DE 101 29 565 AI beschriebenen Verfahren werden erwartete des Metallbands mit Soll-Temperaturverläufen verglichen. Auf Grundlage dieses Vergleichs wird dann ein neuer Küh-lmittel- mengenverlauf berechnet. Gemäß bekannten Verfahren hergestellte und abgekühlte warmge- for te Metalle erfüllen oftmals nicht bzw. nicht mit hinreichender Zuverlässigkeit die für ihre spätere Verwendung geforderten Eigenschaften bzw. Materialeigenschaften.Rolled goods are determined at the rolling stock point over the cross section of the rolling stock and a heat conduction equation is solved in the cooling section model to determine the temperature profile in the rolling stock, which correlates the enthalpy, the thermal conductivity, the phase conversion degree, the density and the temperature of the rolling stock. In the method described in DE 101 29 565 AI are expected of the metal strip compared with the target temperature curves. On the basis of this comparison, a new coolant quantity curve is then calculated. Warm-formed metals produced and cooled in accordance with known processes often do not meet the properties or material properties required for their later use, or do so with insufficient reliability.
Es ist Aufgabe der Erfindung, die Herstellung von Metall mit hochwertigen Materialeigenschaften zu ermöglichen, wobei die geforderten Eigenschaften bzw. Materialeigenschaften des Metalls möglichst genau eingehalten werden.It is an object of the invention to enable the production of metal with high-quality material properties, the required properties or material properties of the metal being observed as precisely as possible.
Diese Aufgabe wird gelöst durch ein Verfahren der eingangs genannten Art, bei dem in einem zweiten Schritt mindestens ein. Messwert bei der Herstellung des Metalls erfasst wird und unter Zuhilfenahme des mindestens einen Messwertes mittels des Kühlstreckenmodells an der mindestens einen Stelle der Kühlstrecke mindestens ein zu erwartender Phasenanteil des Metalls berechnet wird, wobei der im zweiten Schritt berechnete zu erwartende Phasenanteil mit dem im ersten Schritt berechneten Phasenanteil verglichen wird und dieser Vergleich zur Anpassung mindestens einer Stellgröße der Kühlstrecke verwendet wird.This object is achieved by a method of the type mentioned in the introduction, in which in a second step at least one. Measured value is recorded during the production of the metal and, with the aid of the at least one measured value, at least one phase component of the metal to be expected is calculated at the at least one point of the cooling segment by means of the cooling path model, the phase component to be expected in the second step being calculated with that calculated in the first step Phase component is compared and this comparison is used to adapt at least one manipulated variable of the cooling section.
Derart können auch bei schwankenden Produktionsbedingungen bei der Herstellung des Metalls die Phasenanteile am Ende der Kühlstrecke über das Metall gesehen weitestgehend konstant gehalten werden. Durch die Anpassung mindestens einer Stellgröße der Kühlstrecke werden auch Abweichungen zwischen verschiedenen Bändern mit gleichen Primärdaten weitestgehend ausgeschaltet. Im ersten Schritt wird nämlich der mindestens eine Phasenanteil derart berechnet, dass die Schwankungen der Anlage in die Berechnung nicht eingehen, d.h. es wird eine Referenzumwandlungsgrad ermittelt. Im zweiten Schritt wird auf diesen Referenzumwandlungsgrad geregelt, wobei die tatsächlich vorhandenen Schwankungen der Anlage durch Anpassung lokaler Stellgrößen der Kühlstrecke weitestgehend ausgeglichen werden. Erfindungsgemäß kann bei der Herstellung von Me- tall eine gleichbleibende Qualität wesentlich besser sichergestellt werden, als mit bekannten Verfahren.In this way, even with fluctuating production conditions in the manufacture of the metal, the phase components at the end of the cooling section can be kept largely constant over the metal. By adapting at least one manipulated variable of the cooling section, deviations between different belts with the same primary data are largely eliminated. In the first step, the at least one phase component is calculated in such a way that the system fluctuations are not included in the calculation, ie a degree of reference conversion is determined. In the second step, this reference degree of conversion is regulated, the actual fluctuations in the system being largely compensated for by adapting local control variables of the cooling section. According to the invention, in the manufacture of tall a constant quality can be ensured much better than with known methods.
Um die Genauigkeit des erfindungsgemäßen Verfahrens weiter zu verbessern und um die Phasenanteile am Ende der Kühlstrecke noch zuverlässiger konstant zu halten, ist es zweckmäßig, dass sich die mindestens eine Stelle, an der im ersten bzw. im zweiten Schritt des Verfahrens mindestens ein Phasenanteil des Metalls berechnet wird, am Ende der Kühlstrecke befindet.In order to further improve the accuracy of the method according to the invention and to keep the phase components at the end of the cooling section even more reliably constant, it is expedient for the at least one point at which at least one phase component of the metal is located in the first or in the second step of the method is calculated, located at the end of the cooling section.
Alternativ wird mit Vorteil im zweiten Schritt der im zweiten Schritt berechnete zu erwartende Phasenanteil mit einem vorgegebenen Phasenanteil verglichen. In diesem Fall ist es nicht mehr notwendig, den im zweiten Schritt berechneten zu erwartenden Phasenanteil mit dem im ersten Schritt berechneten Phasenanteil zu vergleichen. Derart werden direkte Vorgaben beispielsweise eines Bedieners bei der Einstellung des Phasenanteils berücksichtigt.Alternatively, the expected phase component calculated in the second step is advantageously compared in the second step with a predetermined phase component. In this case, it is no longer necessary to compare the expected phase component calculated in the second step with the phase component calculated in the first step. In this way, direct specifications, for example by an operator, are taken into account when setting the phase component.
Mit Vorteil wird der zweite Schritt online, d.h. in Echtzeit während der Herstellung des Metalls iterativ ausgeführt. Durch Wiederholung des zweiten Schritts, d.h. mehrmalige Messwerterfassung, Berechnung, Vergleich und ggf. Anpassung, wird die Genauigkeit des Verfahrens weiter verbessert.The second step is advantageous online, i.e. executed iteratively in real time during the manufacture of the metal. By repeating the second step, i.e. Repeated measurement acquisition, calculation, comparison and, if necessary, adjustment, the accuracy of the method is further improved.
Mit Vorteil wird im zweiten Schritt mindestens eine Stellgröße der Kühlstrecke entsprechend dem Vergleich durch einen Kühlstreckenregler angepasst. Der Kühlstreckenregler passt aufgrund des Vergleichs der Phasenanteile gemäß den Berech- nungen aus dem ersten bzw. zweiten Schritt direkt die Stellgrößen der Kühlstrecke an. So wird eine hohe Regelgenauigkeit gewährleistet .In the second step, at least one manipulated variable of the cooling section is advantageously adapted in accordance with the comparison by a cooling section controller. The cooling section controller directly adjusts the manipulated variables of the cooling section based on the comparison of the phase components in accordance with the calculations from the first or second step. This ensures high control accuracy.
Alternativ ist eine kaskadierte Regelstruktur vorgesehen, wo- bei dem Kühlstreckenregler von einem überlagerten Phasenanteilsregler Sollwerte vorgegeben werden. Dabei passt im zweiten Schritt der Phasenanteilsregler mindestens einen Sollwert für den Kühlstreckenregier an und der Kühlstreckenregler passt unter Berücksichtigung ihm vorgegebener Sollwerte mindestens eine Stellgröße der Kühlstrecke an.Alternatively, a cascaded control structure is provided, in which case the cooling section controller is provided with setpoints by a superimposed phase component controller. In the second step, the phase proportion controller fits at least one setpoint for the cooling section controller and the cooling section controller adjusts at least one manipulated variable of the cooling section, taking into account set values that are predetermined for it.
Mit Vorteil wird in mindestens einem der beiden Schritte ein Temperatur odell verwendet, das den Temperaturverlauf des Metalls in der Kühlstrecke berechnet. Hinsichtlich der Temperatur des Metalls wird so eine besonders hohe Regelgenauigkeit erreicht .A temperature model is advantageously used in at least one of the two steps, which calculates the temperature profile of the metal in the cooling section. With regard to the temperature of the metal, a particularly high control accuracy is achieved.
Mit Vorteil wird das Temperaturmodell unter Zuhilfenahme des mindestens einen Messwerts adaptiert. Derart können Schwankungen bei der Herstellung des Metalls noch effektiver ausgeglichen werden.The temperature model is advantageously adapted with the aid of the at least one measured value. In this way, fluctuations in the production of the metal can be compensated for more effectively.
Um die Regelgenauigkeit hinsichtlich der Phasenanteile zu verbessern, wird vorzugsweise ein Umwandlungsmodell verwendet, das den Verlauf des mindestens einen Phasenanteils in der Kühlstrecke berechnet.In order to improve the control accuracy with regard to the phase components, a conversion model is preferably used which calculates the course of the at least one phase component in the cooling section.
Mit Vorteil wird ein Mehrphasenstahl hergestellt. Gerade bei Mehrphasenstählen, wie z.B. Dualphasenstählen oder Tripstählen, ist die Konstanthaltung der Phasenanteile und damit des Umwandlungsgrades in der Kühlstrecke besonders kritisch und wichtig. Diese Stähle weisen besonders gute Materialeigenschaften, beispielsweise für die Automobilindustrie, auf.A multi-phase steel is advantageously produced. Especially with multi-phase steels, e.g. Dual phase steels or trip steels, keeping the phase components constant and thus the degree of conversion in the cooling section is particularly critical and important. These steels have particularly good material properties, for example for the automotive industry.
Mit Vorteil wird das Metall in der Kühlstrecke in mindestens zwei Kühlabschnitten abgekühlt. Derart können gewünschte Pha- senanteile, insbesondere bei Mehrphasenstählen, gezielt eingestellt werden.The metal in the cooling section is advantageously cooled in at least two cooling sections. In this way, desired phase fractions, in particular in the case of multi-phase steels, can be set in a targeted manner.
Vorzugsweise wird eine Haltezeit angepasst.A holding time is preferably adjusted.
Mit Vorteil wird eine Haltetemperatur angepasst. Bei einer Abkühlung in mehreren Kühlabschnitten sind Größen wie Halte- zeit und Haltetemperatur besonders kritisch für die Phasenanteile in Metall.A holding temperature is advantageously adjusted. When cooling in several cooling sections, sizes such as holding Time and holding temperature are particularly critical for the phase components in metal.
Mit Vorteil wird mindestens eine Stellgröße für Kühlmittel- Stellglieder angepasst. Kühlmittelstellglieder sind lokale Stellglieder der Kühlstrecke und haben daher beispielsweise keine Auswirkungen auf eine der Kühlstrecke vorgeordnete Fertigstraße. Die Fertigstraße wird somit durch die Anpassung der Stellgrößen für die Kühlmittelstellglieder nicht in unge- wünschter Weise beeinflusst.At least one manipulated variable for coolant actuators is advantageously adapted. Coolant actuators are local actuators of the cooling section and therefore, for example, have no effect on a finishing train upstream of the cooling section. The finishing train is not undesirably influenced by the adjustment of the manipulated variables for the coolant actuators.
Mit Vorteil wird bei der Herstellung von Grobblech mindestens eine Stellgröße für die Geschwindigkeit des Metalls in der Kühlstrecke angepasst. Bei der Herstellung von Grobblech ist die Geschwindigkeit des Metalls in der Kühlstrecke weitestgehend unabhängig davon beeinflussbar, mit welcher Geschwindigkeit das Metall der Kühlstrecke vorgeordnete Anlagenteile durchläuft .In the production of heavy plate, at least one manipulated variable is advantageously adapted for the speed of the metal in the cooling section. In the production of heavy plate, the speed of the metal in the cooling section can be influenced as far as possible regardless of the speed at which the metal passes through parts of the system upstream of the cooling section.
Mit Vorteil wird bei der Herstellung von Grobblech mindestens eine Stellgröße für eine Liegezeit des Metalls angepasst. Bei der Herstellung von Grobblech ist die Liegezeit des Metalls eine weitere lokale Stellgröße zur Einstellung der Phasenanteile des Metalls.In the production of heavy plate, at least one manipulated variable is advantageously adapted for a metal lay time. In the production of heavy plate, the metal's idle time is another local control variable for setting the phase proportions of the metal.
Die der Erfindung zugrundeliegende Aufgabe wird auch gelöst durch eine Rechenvorrichtung gemäß Anspruch 16 oder 17.The object on which the invention is based is also achieved by a computing device according to claim 16 or 17.
Die Erfindung wird auch gelöst durch eine Anlage zum Herstel- len eines Metalls mit einer Kühlstrecke und mit einer derartigen Rechenvorrichtung, wobei die Rechenvorrichtung zur Steuerung und zur Modellierung der Kühlstrecke über entsprechend ausgestaltete Schnittstellen mit Signalgebern und Stellgliedern der Kürilstrecke gekoppelt ist. Die Erfindung wird auch gelöst durch ein Metall gemäß Anspruch 19. Es ergeben sich, besonders gleichmäßige Materialeigenschaften im Metall.The invention is also achieved by a system for producing a metal with a cooling section and with such a computing device, the computing device for controlling and modeling the cooling section being coupled to signal transmitters and actuators of the Kuril section via suitably designed interfaces. The invention is also achieved by a metal according to claim 19. The result is particularly uniform material properties in the metal.
Die Vorteile hinsichtlich der Rechenvorrichtung, der Anlage und des Metalls ergeben sich analog zu den Vorteilen des Verfahrens .The advantages with regard to the computing device, the system and the metal result analogously to the advantages of the method.
Weitere Vorteile und Einzelheiten ergeben sich aus der nach- folgenden Beschreibung von Ausführungsbeispielen in Verbindung mit den Zeichnungen. Dabei zeigen in Prinzipdarstellung:Further advantages and details emerge from the following description of exemplary embodiments in conjunction with the drawings. In principle, the following show:
FIG 1 eine Kühlstrecke,1 shows a cooling section,
FIG 2 einen Temperaturverlauf2 shows a temperature profile
FIG 3 ein einfaches Regelsystem für die Kühlstrecke, und3 shows a simple control system for the cooling section, and
FIG 4 ein kaskadiertes Regelsystem für die Kühlstrecke.4 shows a cascaded control system for the cooling section.
Figur 1 zeigt eine Kühlstrecke 5 und eine Rechenvorrichtung 3 zur Steuerung bzw. Regelung und Modellierung der Kühlstrecke 5. Im gezeigten Beispiel läuft ein warmverformtes Metall 1 mit einer Geschwindigkeit v in Bandlaufrichtung x aus einem Walzgerüst 4 aus. Das Walzgerüst 4 ist beispielsweise das letzte Walzgerüst einer sogenannten Fertigstraße. Der Kühlstrecke 5 kann aber auch eine andere Verformungs- bzw. Verarbeitungseinrichtung für das Metall 1 vorgeordnet sein. Die Kühlstrecke 5 und etwaige ein- oder mehrere ihr vorgeordnete Einrichtungen zur Verformung bzw. Verarbeitung des Metalls 1 sowie etwaige der Kühlstrecke 5 nachgeordnete Einrichtungen bilden eine Anlage zum Herstellen eines Metalls 1. Im gezeigten Beispiel ist der Kühlstrecke 5 eine Haspelvorrichtung 12 nachgeordnet, mit Hilfe derer das gekühlte Metall 1 zu einem Coil aufgehaspelt wird. Der Kühlstrecke 5 können jedoch auch andere in der Zeichnung nicht dargestellte Einrichtungen zur Bearbeitung und/oder Lagerung des Metalls 1 nachgeordnet sein.1 shows a cooling section 5 and a computing device 3 for controlling or regulating and modeling the cooling section 5. In the example shown, a thermoformed metal 1 runs out of a roll stand 4 at a speed v in the strip running direction x. The roll stand 4 is, for example, the last roll stand of a so-called finishing train. Another cooling or processing device for the metal 1 can also be arranged upstream of the cooling section 5. The cooling section 5 and any one or more devices upstream of it for shaping or processing the metal 1 and any devices downstream of the cooling section 5 form a system for producing a metal 1. In the example shown, the cooling section 5 is followed by a reel device 12 with the help of which the cooled metal 1 is coiled into a coil. However, the cooling section 5 can also be used for other devices not shown in the drawing Processing and / or storage of the metal 1 may be subordinate.
Das Metall 1 ist im vorliegenden Fall Stahl im festen Aggregatszustand. Es könnte aber auch einen zumindest teilweise flüssigen Aggregatszustand aufweisen. Gemäß Figur 1 ist das Metall 1 als Metallband bzw. Bramme ausgebildet. Es sind aber auch andere Formen des Metalls 1, z.B. stabförmige Profile wie Drähte, Rohre oder U-Profile denkbar.The metal 1 is steel in the solid state in the present case. However, it could also have an at least partially liquid state of matter. According to Figure 1, the metal 1 is designed as a metal strip or slab. But there are also other forms of metal 1, e.g. Rod-shaped profiles such as wires, pipes or U profiles are conceivable.
Zur Temperaturbeeinflussung des Metalls 1 weist die Kühlstre- cke 5 ein oder mehrere Stellglieder 2 auf. Mittels des Stellglieds 2 ist - in der Regel durch Kühlen, in einzelnen Fällen aber auch durch Beheizen - direkt oder indirekt die Tempera- tur T des Metalls 1 beeinflussbar. Ein Stellglied 2 kann beispielsweise ein oder mehrere Ventile zum Aufbringen eines Kühlmediums auf das Metall 1 aufweisen. Als Kühlmedium kann beispielsweise Wasser oder ein Gemisch von Wasser mit anderen Substanzen verwendet werden. Die Kühlstrecke 5 wird von der Rechenvorrichtung 3 gesteuert . Insbesondere wird auch dasIn order to influence the temperature of the metal 1, the cooling section 5 has one or more actuators 2. The temperature T of the metal 1 can be influenced directly or indirectly by means of the actuator 2 - as a rule by cooling, but in some cases also by heating. An actuator 2 can have, for example, one or more valves for applying a cooling medium to the metal 1. For example, water or a mixture of water with other substances can be used as the cooling medium. The cooling section 5 is controlled by the computing device 3. In particular, that too
Stellglied 2 von der Rechenvorrichtung 3 gemäß einer Stellgröße S angesteuert. Es sind Messglieder 6, 6 vorgesehen, mittels derer die Temperatur T des Metalls 1 erfasst wird. Am Eingang der Kühlstrecke, im gezeigten Beispiel hinter dem letzten Walzgerüst 4, ist ein erstes Messglied 6 zur Temperaturerfassung angeordnet. Ein weiteres Messglied 6X zur Temperaturerfassung ist am Ende der Kühlstrecke 5 bzw. im gezeigten Beispiel vor der Haspelvorrichtung 12 angeordnet.Actuator 2 controlled by computing device 3 according to a manipulated variable S. Measuring elements 6, 6 are provided, by means of which the temperature T of the metal 1 is detected. A first measuring element 6 for temperature detection is arranged at the entrance of the cooling section, in the example shown behind the last roll stand 4. Another measuring element 6 X for temperature detection is arranged at the end of the cooling section 5 or in the example shown in front of the reel device 12.
Die Rechenvorrichtung 3 gibt Stellgrößen S an die Stellglieder 2 der Kühlstrecke. Der Rechenvorrichtung 3 werden Messwerte wie beispielsweise die Temperatur T von der Kühlstrecke 5 und/oder von der Kühlstrecke vor- bzw. nachgeordneten Einrichtungen zugeführt. Der Rechenvorrichtung 3 kann auch die tatsächliche Geschwindigkeit v des Metalls 1 zugeführt werden. Die tatsächliche Geschwindigkeit v des Metalls kann durch Messung und/oder unter Zuhilfenahme mindestens eines Modells ermittelt werden. Der Rechenvorrichtung 3 können beispielsweise auch die Drehgeschwindigkeiten der Walzen eines Walzgerüsts 4 als Messwerte und/oder berechnete bzw. modellierte Werte zugeführt werden. Der Rechenvorrichtung 3 werden außerdem sogenannte Primärdaten P zugeführt. Primärdaten P werden im Allgemeinen zur Vorausberechnung bzw. Voreinstellung einer Anlage verwendet und sind vom herzustellenden Metall 1 abhängig. Unterschiedliche Metallbänder bzw. Brammen sind in der Regel durch unterschiedliche Primärdaten charak- terisiert. Primärdaten können sich auch zumindest teilweise auf die geforderten Eigenschaften des hergestellten Metalls 1 beziehen.The computing device 3 outputs manipulated variables S to the actuators 2 of the cooling section. Measured values such as the temperature T from the cooling section 5 and / or from the cooling section upstream or downstream devices are fed to the computing device 3. The actual speed v of the metal 1 can also be supplied to the computing device 3. The actual speed v of the metal can be measured and / or with the help of at least one Model are determined. The computing device 3 can also be supplied, for example, with the rotational speeds of the rolls of a roll stand 4 as measured values and / or calculated or modeled values. The computing device 3 is also supplied with so-called primary data P. Primary data P are generally used for the pre-calculation or presetting of a system and are dependent on the metal 1 to be produced. Different metal strips or slabs are usually characterized by different primary data. Primary data can also at least partially relate to the required properties of the metal 1 produced.
Figur 2 zeigt den Verlauf der Temperatur T des Metalls 1 in der Kühlstrecke 5 über die Zeit t aufgetragen. Die Zeit t bezieht sich dabei auf die Zeit, während der ein Bandpunkt des gemäß Figur 1 bandförmig vorliegenden Metalls 1 die Kühlstrecke 5 durchläuft.Figure 2 shows the course of the temperature T of the metal 1 in the cooling section 5 plotted over time t. The time t relates to the time during which a strip point of the metal 1 present in strip form according to FIG. 1 passes through the cooling section 5.
Alternativ könnte man auch die Temperatur T über der Bandlaufrichtung x, also der Position in der Kühlstrecke, auftragen. Die Temperatur T wird in ihrer Eigenschaft als eine den Energieinhalt des Metalls 1 beschreibende Größe verwendet. Man könnte daher alternativ beispielsweise auch den Verlauf der Enthalpie über der Zeit t oder über der Bandlaufrichtung x betrachten.Alternatively, the temperature T could also be plotted over the strip running direction x, ie the position in the cooling section. The temperature T is used in its capacity as a quantity describing the energy content of the metal 1. One could therefore alternatively also consider, for example, the course of the enthalpy over time t or over the strip running direction x.
Entscheidend für die Materialeigenschaften des hergestellten Metalls 1 bzw. Stahls sind die Phasenanteile Pi am Ende der Kühlstrecke 5 bzw. an der Haspelvorrichtung 12. Besonders entscheidend aber auch kritisch, bei der Herstellung sind die Phasenanteile Pi eines Metalls 1 insbesondere bei Mehrphasenstählen, wie Dualphasen- und Tripstählen. Bei derartigen Stählen ist ein übliches Kühlverfahren eine in drei Kühlab- schnitte aufgeteilte Kühlung. Dabei wird das Metall 1 in der Kühlstrecke 5 in mehreren zeitlichen Kühlphasen, Abkühlungsphasen bzw. zeitlichen Kühlabschnitten I, II, III abgekühlt. Die zeitlichen Kühlabschnitte I, II, III können, müssen aber nicht, mit räumlichen bzw. Komponenten-bezogenen Kühlabschnitten zusammenfallen. Im ersten Kühlabschnitt I, bzw. in der ersten Abkühlungsphase, wird das Metall 1 vorzugsweise bei einer hohen Kühlrate bis zu einer Haltetemperatur TH abgekühlt. Die Haltetemperatur TH ist in der Regel vorgegeben bzw. von den Primärdaten P abhängig. In einem zweiten Kühlabschnitt II erfolgt eine Luftkühlung mit vorgegebener Haltezeit tH. Im zweiten Kühlabschnitt II nimmt die Temperatur T des Metalls 1 bzw. des Stahls nur gering ab. Anschließend erfolgt in einem dritten Kühlabschnitt III ein Abschrecken des Metalls 1 auf die Temperatur T bzw. unter die Temperatur T die am Ende der Kühlstrecke bzw. unmittelbar vor dem Aufwickeln mittels der Haspelvorrichtung 12 erreicht werden soll. Vorzugsweise wird das Metall 1 unter die Martensit- Starttemperatur abgeschreckt.The phase components Pi at the end of the cooling section 5 or at the coiler device 12 are decisive for the material properties of the metal 1 or steel produced. The phase components Pi of a metal 1 are particularly critical in production, particularly in the case of multi-phase steels such as dual-phase steels. and trip steels. In the case of such steels, a customary cooling method is cooling divided into three cooling sections. The metal 1 is cooled in the cooling section 5 in several temporal cooling phases, cooling phases or temporal cooling sections I, II, III. The temporal cooling sections I, II, III can, but need not, coincide with spatial or component-related cooling sections. In the first cooling section I, or in the first cooling phase, the metal 1 is preferably cooled at a high cooling rate up to a holding temperature T H. The holding temperature T H is generally predetermined or dependent on the primary data P. In a second cooling section II, air cooling takes place with a predetermined holding time t H. In the second cooling section II, the temperature T of the metal 1 or of the steel decreases only slightly. Subsequently, in a third cooling section III, the metal 1 is quenched to the temperature T or below the temperature T, which is to be achieved at the end of the cooling section or immediately before the winding up by means of the reel device 12. The metal 1 is preferably quenched below the martensite start temperature.
Um beispielsweise bei Dualphasenstählen ein Gefüge mit einem Phasenanteil Pi von ca. 80% Ferrit und einen Phasenanteil Pi von ca. 20% Martensit bzw. Bainit zu erhalten, wird üblicherweise ein Rest-Austenitgehalt von typisch 20% vor Beginn des Abschreckens angestrebt. Bei Tripstählen verbleibt zusätzlich ein bei Raumtemperatur metastabiler Restaustenitgehalt im Material, der bei Verformung in Martensit umwandelt.In order to obtain, for example, a structure with a phase component Pi of approximately 80% ferrite and a phase component Pi of approximately 20% martensite or bainite in dual-phase steels, a residual austenite content of typically 20% is usually aimed for before quenching begins. In the case of trip steels, a residual austenite content that is metastable at room temperature remains in the material, which converts to martensite when deformed.
Sowohl Dualphasenstähle als auch Tripstähle lassen sich bei ihrer späteren Verwendung anfangs mit geringem Kraftaufwand verformen; mit zunehmender Verformung nimmt die Festigkeit aber stark zu, wobei dieses Verhalten bei Tripstählen noch deutlich ausgeprägter ist als bei Dualphasenstählen. Typische Anwendungen von Dualphasen- und Tripstählen sind Karrosseriebleche und Felgen für Kraftfahrzeuge, wo gute Tiefzieheigenschaften, hohe Endfestigkeit und hohes Energieabsorptionsvermögen bei weiterer Verformung, z.B. durch Unfälle, gefor- dert sind. Bei der Herstellung dieser Stahle ist die Konstanthaltung der Phasenanteile T?x und damit des Umwandlungsgrades in der Kuhlstrecke 5 äußerst kritisch. Werden beispielsweise in einer der Kuhlstrecke 5 vorgeordneten Warmwalzstraße unerwünschte Oberflachentemperaturbeeintrachtigungen wie z.B. sogenannte Skidmarks am Metall 1, hier einer Stahlbramme, verursacht, so fuhren diese unerwünschten Skidmarks zu weichen Stellen im Metallband. An derartigen weichen Stellen ist der Umwandlungsgrad im Metall 1 vor Beginn des Abschreckens bereits zu weit fortgeschritten, um genügend Martensit bzw. Bainit zu bilden. Andere Schwankungen der Prozessparameter in der Kuhlstrecke 5 vorgeordneten Einrichtungen können weitere Abweichungen vom gewünschten Gefuge und den gewünschten Phasenanteilen Pj. im Metall 1 verursachen.Both dual-phase steels and trip steels can be deformed with little effort when they are later used; With increasing deformation, the strength increases strongly, whereby this behavior is even more pronounced with trip steels than with dual-phase steels. Typical applications of dual-phase and trip steels are body panels and rims for motor vehicles, where good deep-drawing properties, high final strength and high energy absorption capacity are required in the event of further deformation, for example due to accidents. In the manufacture of these steels, the phase components T? x and thus the degree of conversion in the cooling section 5 is extremely critical. If, for example, undesired surface temperature impairments, such as so-called skid marks on the metal 1, here a steel slab, are caused in a hot rolling mill upstream of the cooling section 5, these undesirable skid marks lead to soft spots in the metal strip. At such soft spots, the degree of conversion in metal 1 has already progressed too far before quenching begins to form sufficient martensite or bainite. Other fluctuations in the process parameters in the cooling section 5 upstream devices can further deviations from the desired structure and the desired phase components Pj. cause in metal 1.
Die Figuren 3 und 4 zeigen erfindungsgemaße Regelsysteme für die Kuhlstrecke 5. Beide Figuren zeigen eine mit der Kuhlstrecke 5 gekoppelte Rechenvorrichtung 3 zur Steuerung und Modellierung der Kuhlstrecke 5. Dabei sind Schnittstellen vorgesehen, um der Rechenvorrichtung 3 Signale zur Modellierung zuzuführen und um der Kuhlstrecke 5 Steuer- bzw. Regelsignale zuzuführen. Rechenvorrichtung 3 und Kuhlstrecke 5 bilden einen Teil einer Anlage zum Herstellen eines Metalls 1.FIGS. 3 and 4 show control systems according to the invention for the cooling section 5. Both figures show a computing device 3 coupled to the cooling section 5 for controlling and modeling the cooling section 5. Interfaces are provided in order to supply the computing device 3 with signals for modeling and around the cooling section 5 Control signals to be supplied. Computing device 3 and cooling section 5 form part of a system for producing a metal 1.
Gemäß Figur 3 weist die Rechenvorrichtung 3 ein Kuhlstreckenmodell 7 und einen Kuhlstreckenregler 8 auf. Für ein Metall 1, beispielsweise ein Metallband aus Stahl, das m die Kuhlstrecke 5 einlauft, wird mit Hilfe des Kuhlstreckenmodells 7 in einem ersten Schritt gestutzt auf die Primardaten P für das Metallband die Temperatur T und mindestens ein Phasenanteil Pi am Ende der Kuhlstrecke 5, bzw. vor der Haspelvorrichtung 12 berechnet. Mit Hilfe von Messgliedern, die beispielsweise in einer der Kuhlstrecke 5 vorgeordneten Fertig- straße angeordnet sein können (in der Zeichnung nicht naher dargestellt) und/oder mit Hilfe eines Messglieds 6 am Eingang der Kuhlstrecke 5 werden in einem zweiten Schritt Messwerte erfasst und der Rechenvorrichtung 3 zugeführt. Die Erfassung von Messwerten erfolgt dabei während das Metall 1 die Anlage zum Herstellen eines Metalls 1 durchläuft.According to FIG. 3, the computing device 3 has a cooling section model 7 and a cooling section controller 8. For a metal 1, for example a metal strip made of steel, which enters the cooling section 5, the cooling section model 7 is used in a first step to trim the temperature T and at least one phase component Pi at the end of the cooling section 5 based on the primary data P for the metal strip. or calculated in front of the reel device 12. With the help of measuring elements, which can be arranged, for example, in a finishing line upstream of the cooling zone 5 (not shown in the drawing) and / or with the aid of a measuring element 6 at the entrance of the cooling zone 5, measured values are obtained in a second step detected and fed to the computing device 3. The measurement values are recorded while the metal 1 passes through the plant for producing a metal 1.
Unter Zuhilfenahme des oder der Messwerte ermittelt das Kühlstreckenmodell 7 zumindest am Ende der Kühlstrecke 5 mindestens einen zu erwartenden Phasenanteil Pi des Metalls 1. Der im. zweiten Schritt berechnete zu erwartende Phasenanteil Pi wird mit dem im ersten Schritt auf Basis der Primärdaten P berechneten Phasenanteil Pi verglichen. Dieser Vergleich wird zur Anpassung mindestens einer Stellgröße S der Kühlstrecke 5 verwendet. Gemäß Figur 3 passt der Kühlstreckenregler 8 mindestens eine Stellgröße S der Kühlstrecke 5 an. Eine verhältnismäßig einfache Weise der Realisierung eines solchen Kühl- Streckenreglers erfolgt derart, dass Stellgrößen S von Stellgliedern 2 möglichst am Ende des ersten KühlabSchnitts I angepasst werden.With the aid of the measured value or values, the cooling section model 7 determines at least at the end of the cooling section 5 at least one phase component Pi of the metal 1 to be expected. The expected phase component Pi calculated in the second step is compared with the phase component Pi calculated in the first step on the basis of the primary data P. This comparison is used to adapt at least one manipulated variable S of the cooling section 5. According to FIG. 3, the cooling section controller 8 adjusts at least one manipulated variable S of the cooling section 5. A relatively simple way of realizing such a cooling distance controller is such that manipulated variables S of actuators 2 are adapted as far as possible at the end of the first cooling section I.
Gemäß Figur 4 weist die Recheneinrichtung 3 ein Kühlstrecken- modeil 7, einen Kühlstreckenregler 8 sowie einen Phasenanteilsregler 11 auf. Regelungstechnisch ist der Phasenanteilsregler 11 dem Kühlstreckenregler 8 überlagert. So gibt der P-hasenanteilsregler 11 dem Kühlstreckenregler 8 mindestens einen Sollwert, z.B. TH bzw. tH, aufgrund des Vergleichs des im ersten Schritt berechneten Phasenanteils Pi und des im zweiten Schritt berechneten zu erwartenden Phasenanteils Pi vor. Bei einem Abkühlverlauf mit mehreren Kühlabschnitten I, II, III bzw. Kühlphasen, wie er beispielsweise in Figur 2 gezeigt wird, gibt der Phasenanteilsregler 11 dem Kühlstrecken- regier 8 vorzugsweise eine Haltezeit tH und/oder eine Haltetemperatur TH vor. Der Kühlstreckenregler 8 passt die Stellgrößen S der Kühlstrecke 5 an, wobei er die Sollvorgaben es Ptiasenanteilsreglers 11 berücksichtigt.According to FIG. 4, the computing device 3 has a cooling section module 7, a cooling section controller 8 and a phase component controller 11. In terms of control technology, the phase proportion controller 11 is superimposed on the cooling section controller 8. For example, the P-hash component controller 11 specifies at least one desired value, for example T H or t H , on the cooling section controller 8 on the basis of the comparison of the phase component Pi calculated in the first step and the expected phase component Pi calculated in the second step. In the case of a cooling process with a plurality of cooling sections I, II, III or cooling phases, as is shown, for example, in FIG. 2, the phase proportion controller 11 preferably specifies a holding time t H and / or a holding temperature T H for the cooling section controller 8. The cooling section controller 8 adjusts the manipulated variables S of the cooling section 5, taking into account the target specifications of the Ptiasen fraction controller 11.
Beide Regelsysteme, also sowohl das -Regelsystem gemäß Figur 3 als auch das Regelsystem gemäß Figur 4, arbeiten vorzugsweise derart, dass der zweite Schritt online, d.h. in Echtzeit während der Herstellung des Metalls 1 iterativ ausgeführt wird.Both control systems, that is to say both the control system according to FIG. 3 and the control system according to FIG. 4, preferably work such that the second step is carried out iteratively online, ie in real time during the production of the metal 1.
Sowohl im ersten Schritt als auch im zweiten Schritt wird der Phasenanteil Pi auf dieselbe Weise, d.h. unter Zuhilfenahme derselben Rechenverfahren bzw. Modelle berechnet. Die Berechnung in den beiden Schritten unterscheidet sich jedoch hinsichtlich der der Berechnung zugrundeliegenden Daten, insbesondere hinsichtlich der Eingangsdaten für die Berechnung.In both the first step and the second step, the phase component Pi is determined in the same way, i.e. calculated using the same calculation methods or models. The calculation in the two steps differs, however, with regard to the data on which the calculation is based, in particular with regard to the input data for the calculation.
Alternativ zu dem auf Grundlage der Primärdaten P im ersten Schritt berechneten Phasenanteil Pi kann auch ein beispielsweise von einem Bediener in einem ersten Schritt vorgegebener Phasenanteil Pi im zweiten Schritt mit dem im zweiten Schritt berechneten zu erwartenden Phasenanteil Pi verglichen werden. Um eine gleichbleibend hohe Qualität des Metalls 1 am Ende der Kühlstrecke 5 sicherzustellen, wird zumindest ein Phasenanteil P des Metalls 1 am Ende der Kühlstrecke berechnet.As an alternative to the phase component Pi calculated on the basis of the primary data P in the first step, a phase component Pi, for example given by an operator in a first step, can also be compared in the second step with the expected phase component Pi calculated in the second step. In order to ensure a consistently high quality of the metal 1 at the end of the cooling section 5, at least one phase component P of the metal 1 at the end of the cooling section is calculated.
Alternativ oder zusätzlich kann zumindest ein Phasenanteil P des Metalls 1 an mindestens einer anderen Stelle der Kühl- strecke 5 berechnet werden. Ist es beispielsweise nicht zweckmäßig, am Ende der Kühlstrecke 5 zu messen, kann zumindest ein Phasenanteil P des Metalls 1 sowohl im ersten als auch im zweiten Schritt des Verfahrens an einer anderen Stelle der Kühlstrecke 5 berechnet werden, z.B. an einer Stelle, bei der man davon ausgeht, dass der wesentliche Teil der Pha- senumwandlung innerhalb der Kühlstrecke 5 bereits abgeschlossen ist.Alternatively or additionally, at least one phase component P of the metal 1 can be calculated at at least one other point on the cooling section 5. If, for example, it is not expedient to measure at the end of the cooling section 5, at least one phase component P of the metal 1 can be calculated at another point in the cooling section 5 both in the first and in the second step of the method, e.g. at a point where it is assumed that the essential part of the phase conversion within the cooling section 5 has already been completed.
Die Rechenvorrichtung 3 bzw. das Kühlstreckenmodell 7 weisen vorzugsweise ein Temperaturmodell 9 auf, das den Temperaturverlauf des Metalls 1 in der Kühl strecke 5 über der Zeit t oder über der Bandlaufrichtung x berechnet. Mit Vorteil wird das Temperaturmodell 9 unter Zuhilfenahme mindestens eines Messwerts adaptiert. Bei dem mindestens einen Messwert handelt es sich vorzugsweise um einen Messwert für die Tempera- tur T des Metalls 1, der mittels eines Messglieds 6, 6 am Eingang bzw. am Ende der Kühlstrecke 5 erfasst wird. Alternativ oder zusätzlich kann die Messwerterfassung auch an einer anderen Stelle der Kühlstrecke 5 erfolgen. Vorzugsweise ist ein Umwandlungsmodell 10 vorhanden, das den Verlauf des mindestens einen Phasenanteils Pi des Metalls 1 in der Kühlstrecke 5 über der Zeit t und/oder der Bandlaufrichtung x berechnet. Alternativ und/oder zusätzlich zur Temperatur T kann das Kühlstreckenmodell 7 und/oder das Temperaturmodell 9 auch die Enthalpie oder eine andere Energieinhalts-beschreibende Größe verwenden bzw. berechnen.The computing device 3 or the cooling section model 7 preferably have a temperature model 9 which calculates the temperature profile of the metal 1 in the cooling section 5 over time t or over the strip running direction x. The temperature model 9 is advantageously adapted with the aid of at least one measured value. The at least one measured value is preferably a measured value for the temperature TUR of the metal 1, which is detected by means of a measuring element 6, 6 at the entrance or at the end of the cooling section 5. As an alternative or in addition, the measured value acquisition can also take place at another point of the cooling section 5. A conversion model 10 is preferably present, which calculates the course of the at least one phase component Pi of the metal 1 in the cooling section 5 over the time t and / or the strip running direction x. As an alternative and / or in addition to the temperature T, the cooling section model 7 and / or the temperature model 9 can also use or calculate the enthalpy or another quantity describing the energy content.
Ein Umwandlungsmodell 10 ist zwar in Figur 4 der Übersichtlichkeit halber nicht näher dargestellt, jedoch auch im Aus- führungsbeispiel gemäß Figur 4 zweckmäßig. Ein Umwandlungsmo- dell 10 uss mindestens den Phasenanteil Pi des Metalls 1 an mindestens einer Stelle der Kühlstrecke 5, vorzugsweise am Ende der Kühlstrecke 5, bereitstellen.A conversion model 10 is not shown in more detail in FIG. 4 for the sake of clarity, but is also expedient in the exemplary embodiment according to FIG. 4. Provide a conversion model 10 uss at least the phase component Pi of the metal 1 at at least one point of the cooling section 5, preferably at the end of the cooling section 5.
Über die Stellgrößen S für die Stellglieder 2 der Kühlstrecke 5 wird z.B. die Stellung von Ventilen für Kühlmittel bzw. der Kühlmittelfluss in der Kühlstrecke 5 geregelt. Derartige lokale Stellgrößen S, d.h. Stellgrößen, die auf der Kühlstrecke 5 vorgeordnete Anlagenteile keine Auswirkungen haben, können bei der Herstellung von Grobblech jedoch auch die Geschwindigkeit v des Metalls 1 in der Kühlstrecke sowie eine Liegezeit des Metalls 1 sein.Via the manipulated variables S for the actuators 2 of the cooling section 5, e.g. the position of valves for coolant or the coolant flow in the cooling section 5 is regulated. Such local manipulated variables S, i.e. Actuating variables which have no effects on upstream system parts on the cooling section 5 can, however, also be the speed v of the metal 1 in the cooling section and a idle time of the metal 1 in the production of heavy plate.
Der Erfindungsgedanke lässt sich im wesentlichen wie folgt zusammenfassen:The idea of the invention can essentially be summarized as follows:
Bei der Herstellung von Stahl wird für die Kühlstrecke 5 ein LTmwandlungsmodell 10 verwendet, mit dessen Hilfe zusätzlich zur Temperatur T des Stahls auch die Phasenanteile Pi entlang des Stahlbandes in Echtzeit berechnet werden. Es wird ein Regelungssystem implementiert, das die Phasenanteile Pi des an einer Haspelvorrichtung 12 aufgewickelten Stahlbands konstant hält. Dazu wird in folgenden Schritten verfahren: In einem ersten Schritt wird aus Daten, die aus den Primärdaten P des Stahlbands gegeben sind, der Umwandlungsgrad, bei Mehrphasenstählen z.B. der Ferritanteil, ermittelt. In einem zweiten Schritt werden bei Bandeintritt in die Kühlstrecke 5 ein oder mehrere Parameter der Kühlstrategie, d.h. Stellgrößen S, im Sinne einer Regelung online so angepasst, dass der Ferritanteil des gekühlten Stahls an der Haspelvorrichtung 12 konstant gehalten wird. Bei einer Kühlung mit mehreren Kühlab- schnitten kann dazu die Haltetemperatur TH modifiziert werden. Die Anhebung der Haltetemperatur TH reduziert den Ferritanteil, die Absenkung der Haltetemperatur TH erhöht ihn.In the production of steel, an LT conversion model 10 is used for the cooling section 5, with the aid of which the phase components Pi along the steel strip are also calculated in real time in addition to the temperature T of the steel. A control system is implemented which keeps the phase components Pi of the steel strip wound on a reel device 12 constant holds. This is done in the following steps: In a first step, the degree of conversion, in the case of multiphase steels, for example the ferrite content, is determined from data which are given from the primary data P of the steel strip. In a second step, when the strip enters the cooling section 5, one or more parameters of the cooling strategy, ie manipulated variables S, are adjusted online in the sense of a regulation in such a way that the ferrite content of the cooled steel on the coiler device 12 is kept constant. When cooling with several cooling sections, the holding temperature T H can be modified. Raising the holding temperature T H reduces the ferrite content, lowering the holding temperature T H increases it.
Abweichungen vom Sollgefüge werden gemäß dem erfindungsgemä- ßen Verfahren bereits online entdeckt und werden nicht erst nach Messungen der Gefügeanteile im Labor (Schliffe) oder bei Zugversuchen entdeckt.Deviations from the target structure are already discovered online in accordance with the method according to the invention and are not only discovered after measurements of the structure components in the laboratory (cuts) or during tensile tests.
Bei vorbekannten Verfahren wurde die Konstanz der Gefügean- teile entlang des Bandes von der Qualitätssicherung im Stahlwerk üblicherweise nur anhand der Temperaturschriebe für Zwischentemperatur und Haspeltemperatur beurteilt. Das erfindungsgemäße Verfahren hingegen ermöglicht die weitgehende Konstanthaltung der Phasenanteile P an der Haspelvorrichtung 12 entlang des Metallbandes auch bei schwankenden Produktionsbedingungen und schwankender Geschwindigkeit v des Metallbandes. Abweichungen zwischen verschiedenen Metallbändern mit gleichen Primärdaten P werden weitestgehend ausgeschaltet, weil in die Erstermittlung des Referenzumwandlungsgrades die Schwankungen der Anlage nicht eingehen und durch die spätereIn the case of previously known methods, the constancy of the structural components along the strip was usually assessed by quality assurance in the steelworks only on the basis of the temperature records for the intermediate temperature and the reel temperature. By contrast, the method according to the invention enables the phase components P on the reel device 12 to be kept largely constant along the metal strip, even in the case of fluctuating production conditions and fluctuating speed v of the metal strip. Deviations between different metal strips with the same primary data P are largely eliminated because the fluctuations in the system are not included in the initial determination of the degree of reference conversion and due to the later
Regelung auf den Referenzumwandlungsgrad die Schwankungen der Anlage weitestgehend ausgeglichen werden. Die Erstermittlung des Referenzumwandlungsgrades bzw. mindestens eines Phasenanteils Pi hängt nur von den Primärdaten P ab. Die nachfolgen- den Ermittlungen des Umwandlungsgrades bzw. eines Phasenanteils Pi berücksichtigen die Schwankungen bei der Herstellung. Derart kann Stahl bzw. Metall 1 von gleichbleibender Qualität hergestellt werden und die Anforderungen an die Materialeigenschaften des Metalls 1 bzw. des Stahls werden wesentlich zuverlässiger als bisher erfüllt. Regulation on the degree of reference conversion, the fluctuations of the system are largely compensated. The first determination of the degree of reference conversion or at least one phase component Pi depends only on the primary data P. The subsequent determinations of the degree of conversion or a phase component Pi take into account the fluctuations in manufacture. In this way, steel or metal 1 can remain the same Quality are produced and the requirements for the material properties of metal 1 or steel are met much more reliably than before.

Claims

Patentansprüche claims
1. Verfahren zum Herstellen eines Metalls (1), wobei in einer Kühlstrecke (5) das warmgeformte Metall (1) abgekühlt wird, wobei in einem ersten Schritt unter Zuhilfenahme von Primärdaten (P) für das Metall (1) mittels eines Kühlstreckenmodells (7) die Temperatur (T) und mindestens ein Phasenanteil (Px) des Metalls (1) an mindestens einer Stelle der Kühlstrecke (7) berechnet wird, dadurch gekennzeichnet, dass in einem zweiten Schritt1. A method for producing a metal (1), the thermoformed metal (1) being cooled in a cooling section (5), wherein in a first step with the aid of primary data (P) for the metal (1) by means of a cooling section model (7 ) the temperature (T) and at least one phase component (P x ) of the metal (1) is calculated at at least one point on the cooling section (7), characterized in that in a second step
- mindestens ein Messwert bei der Herstellung des Metalls (1) erfasst wird,- at least one measured value is recorded during the manufacture of the metal (1),
- unter Zuhilfenahme des mindestens einen Messwertes mittels des Kühlstreckenmodells (7) an der mindestens einen Stelle der Kühlstrecke (5) mindestens ein zu erwartender Phasenanteil (Px) des Metalls (1) berechnet wird,at least one phase component (P x ) of the metal (1) to be expected is calculated with the aid of the at least one measured value by means of the cooling section model (7) at the at least one point of the cooling section (5),
- der zu erwartende Phasenanteil (Pj.) mit dem im ersten Schritt berechneten Phasenanteil (Px) verglichen wird und- The expected phase component (Pj.) is compared with the phase component (P x ) calculated in the first step and
- dieser Vergleich zur Anpassung mindestens einer Stellgröße (S) der Kühlstrecke (5) verwendet wird.- This comparison is used to adapt at least one manipulated variable (S) of the cooling section (5).
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass sich die mindestens eine Stelle, an der im ersten und zweiten Schritt mindestens ein Phasenanteil (P des Metalls (1) berechnet wird, am Ende der Kühlstrecke (5) befindet.2. The method as claimed in claim 1, so that the at least one point at which at least one phase component (P of the metal (1) is calculated in the first and second step) is located at the end of the cooling section (5).
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass im zwei- ten Schritt der zu erwartende Phasenanteil (Px) mit einem vorgegebenen Phasenanteil (Px) verglichen wird.3. The method according to claim 1 or 2, characterized in that in the second step is compared anticipated phase fraction (P x) with a predetermined phase fraction (P x).
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass der zweite Schritt online iterativ ausgeführt wird. 4. The method according to any one of claims 1 to 3, characterized in that the second step is carried out iteratively online.
5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass im zweiten Schritt ein Kühlstreckenregler (8) mindestens eine Stellgröße (S) der Kühlstrecke (5) entsprechend dem Vergleich an- passt.5. The method according to any one of claims 1 to 4, so that in the second step a cooling section controller (8) adjusts at least one manipulated variable (S) of the cooling section (5) in accordance with the comparison.
6. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass im zweiten Schritt - ein Phasenanteilsregler (11) mindestens einen Sollwert für einen Kühlstreckenregler (8) entsprechend dem Vergleich an- passt und - der Kühlstreckenregler (8) unter Berücksichtigung ihm vorgegebener Sollwerte mindestens eine Stellgröße (S) der Kühlstrecke (5) anpasst.6. The method according to any one of claims 1 to 4, characterized in that in the second step - a phase proportion controller (11) adjusts at least one setpoint for a cooling section controller (8) in accordance with the comparison and - the cooling section controller (8) taking into account setpoint values given to it adapts at least one manipulated variable (S) to the cooling section (5).
7. Verfahren einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass mindestens in einem der beiden Schritte ein Temperaturmodell (9) verwendet wird, das den Temperaturverlauf des Metalls (1) in der Kühlstrecke (5) berechnet.7. The method as claimed in one of claims 1 to 6, that a temperature model (9) is used in at least one of the two steps, which calculates the temperature profile of the metal (1) in the cooling section (5).
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , dass das Tem- peraturmodell (9) unter Zuhilfenahme des mindestens einen Messwerts adaptiert wird.8. The method as claimed in claim 7, so that the temperature model (9) is adapted with the aid of the at least one measured value.
9. Verfahren nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass ein U - wandlungsmodell (10) verwendet wird, das den Verlauf des mindestens einen Phasenanteils (Pi) in der Kühlstrecke (5) berechnet .9. The method according to claim 1, wherein a conversion model (10) is used that calculates the course of the at least one phase component (Pi) in the cooling section (5).
10. Verfahren nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , dass ein Mehrphasenstahl hergestellt wird. 10. The method according to any one of claims 1 to 9, characterized in that a multi-phase steel is produced.
11. Verfahren nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , dass das Metall (1) in der Kühlstrecke (5) in mindestens zwei Kühlabschnitten (1,11, III) abgekühlt wird.11. The method according to any one of claims 1 to 10, so that the metal (1) in the cooling section (5) is cooled in at least two cooling sections (1, 11, III).
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass eine Haltezeit (tH) angepasst wird.12. The method according to claim 11, characterized in that a holding time (t H ) is adjusted.
13. Verfahren nach einem der Ansprüche 11 oder 12, d a d u r c h g e k e n n z e i c h n e t , dass eine Haltetemperatur (TH) angepasst wird.13. The method according to any one of claims 11 or 12, characterized in that a holding temperature (T H ) is adjusted.
14. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass mindestens eine Stellgröße (S) für Kühlmittelstellglieder angepasst wird.14. The method according to any one of the preceding claims, that at least one manipulated variable (S) for coolant actuators is adapted.
15. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass bei der Herstellung von Grobblech mindestens eine Stellgröße (S) für die Geschwindigkeit (v) des Metalls (1) in der Kühlstrecke (5) angepasst wird.15. The method according to any one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that at least one manipulated variable (S) for the speed (v) of the metal (1) in the cooling section (5) is adapted in the production of heavy plate.
16. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass bei der Herstellung von Grobblech mindestens eine Stellgröße (S) für eine Liegezeit des Metalls (1) angepasst wird.16. The method according to any one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that at least one manipulated variable (S) is adjusted for a lay time of the metal (1) in the production of heavy plate.
17. Rechenvorrichtung (3) zur Steuerung und Modellierung einer Kühlstrecke (5) , die zur Durchführung eines Verfahrens nach einem der vorangehenden Ansprüche programmiert ist, mit mindestens einem Kilhlstreckenmodell (7) und mindestens einem Kühlstreckenregler (8), wobei das Kühlstreckenmodell (7) min- destens ein Temperaturmodell (9) aufweist. 17. Computing device (3) for controlling and modeling a cooling section (5), which is programmed to carry out a method according to one of the preceding claims, with at least one cooling section model (7) and at least one cooling section controller (8), the cooling section model (7) has at least one temperature model (9).
18. Rechenvorrichtung (3) zur Steuerung und Modellierung einer Kühlstrecke (5), die zur Durchführung eines Verfahrens nach einem der Ansprüche 6 bis 16 programmiert ist, mit mindestens einem Kühlstreckenmodell (7) und mindestens einem Kühlstreckenregler (8), wobei das Kühlstreckenmodell (7) mindestens ein Temperaturmodell aufweist (9) , wobei ein Phasenanteilsregler (11) zum .Anpassen der Sollwerte des Kühlstreckenreglers (8) vorgesehen ist.18. Computing device (3) for controlling and modeling a cooling section (5), which is programmed to carry out a method according to one of claims 6 to 16, with at least one cooling section model (7) and at least one cooling section controller (8), the cooling section model ( 7) has at least one temperature model (9), a phase component controller (11) being provided for adapting the setpoints of the cooling section controller (8).
19. Anlage zum Herstellen eines Metalls (1) mit einer Kühlstrecke (5) und mit einer Rechenvorrichtung (3) nach Anspruch 17 oder 18, wobei die Rechenvorrichtung (3) zur Steuerung und zur Modellierung der Kühlstrecke (5) über entsprechend ausgestaltete Schnittstellen mit Signalgebern (6, 6') und Stell- gliedern (2) der Kühlstrecke (5) gekoppelt ist.19. Plant for producing a metal (1) with a cooling section (5) and with a computing device (3) according to claim 17 or 18, wherein the computing device (3) for controlling and modeling the cooling section (5) via appropriately designed interfaces with Signal transmitters (6, 6 ') and actuators (2) of the cooling section (5) is coupled.
20. Metall (1), das auf einer Anlage nach Anspruch 19 gemäß einem Verfahren nach einem der Ansprüche 1 bis 16 hergestellt wurde . 20. metal (1), which was produced on a plant according to claim 19 according to a method according to any one of claims 1 to 16.
EP04725880A 2004-04-06 2004-04-06 Method for producing a metal Revoked EP1732716B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT04725880T ATE373527T1 (en) 2004-04-06 2004-04-06 METHOD FOR PRODUCING A METAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2004/000724 WO2005099923A1 (en) 2004-04-06 2004-04-06 Method for producing a metal

Publications (2)

Publication Number Publication Date
EP1732716A1 true EP1732716A1 (en) 2006-12-20
EP1732716B1 EP1732716B1 (en) 2007-09-19

Family

ID=34957437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04725880A Revoked EP1732716B1 (en) 2004-04-06 2004-04-06 Method for producing a metal

Country Status (7)

Country Link
US (1) US7853348B2 (en)
EP (1) EP1732716B1 (en)
JP (1) JP2007531629A (en)
CN (1) CN101056721B (en)
DE (2) DE502004005051D1 (en)
ES (1) ES2291867T3 (en)
WO (1) WO2005099923A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8369979B2 (en) 2008-02-27 2013-02-05 Siemens Aktiengesellschaft Method of operation for a cooling track for cooling a rolling product, with cooling to an end enthalpy value uncoupled from temperature
US10413950B2 (en) 2014-01-28 2019-09-17 Primetals Technologies Germany Gmbh Cooling path with twofold cooling to a respective target value
WO2020053230A1 (en) 2018-09-10 2020-03-19 voestalpine Automotive Components Dettingen GmbH & Co. KG Method and device for connecting lamination parts to form lamination stacks

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100507770C (en) * 2006-05-30 2009-07-01 宝山钢铁股份有限公司 Method for determining the time of hot rolling heating stove bar plate leavings in furnace
DE102007007560A1 (en) 2007-02-15 2008-08-21 Siemens Ag Method for supporting at least partially manual control of a metalworking line
DE102008010062A1 (en) * 2007-06-22 2008-12-24 Sms Demag Ag Process for hot rolling and heat treatment of a strip of steel
CN101844157B (en) * 2010-04-28 2013-09-18 刘森 Integrated roll line control-based hot rolling cooling water control method and system
EP2468905A1 (en) 2010-12-22 2012-06-27 Siemens VAI Metals Technologies GmbH Cooling section with integrated vertical belt storage
EP2540404A1 (en) * 2011-06-27 2013-01-02 Siemens Aktiengesellschaft Operating method for a hot strip mill
CN102284521B (en) * 2011-08-24 2013-05-15 中冶赛迪工程技术股份有限公司 Steel plate uniform-cooling device with water outlets arranged in shape of curve
CN102749863B (en) * 2012-07-09 2014-10-29 首钢总公司 Methods for synchronizing data of steel rolls
AT513750B1 (en) * 2013-05-03 2014-07-15 Siemens Vai Metals Tech Gmbh Determination of the ferritic phase components during cooling of a steel strip
AT514380B1 (en) 2013-05-03 2015-04-15 Siemens Vai Metals Tech Gmbh Determination of the ferritic phase content after heating or cooling of a steel strip
DE102014224461A1 (en) 2014-01-22 2015-07-23 Sms Siemag Ag Process for the optimized production of metallic steel and iron alloys in hot rolling and heavy plate mills by means of a microstructure simulator, monitor and / or model
DE102014222827A1 (en) * 2014-11-07 2016-05-12 Sms Group Gmbh Method for controlling and / or regulating a metallurgical plant
CN110199036B (en) * 2016-12-20 2022-02-01 安赛乐米塔尔公司 Dynamic adjustment method for manufacturing heat-treated steel sheet
DE102018205685A1 (en) * 2018-04-13 2019-10-17 Sms Group Gmbh Cooling device and method for its operation
KR102639249B1 (en) 2019-03-05 2024-02-22 삼성전자주식회사 Method for sharing channel information and electronic device therefor
DE102019209163A1 (en) * 2019-05-07 2020-11-12 Sms Group Gmbh Process for the heat treatment of a metallic product
DE102019216261A1 (en) * 2019-07-02 2021-01-07 Sms Group Gmbh Method for controlling a cooling device in a rolling train
EP4101553B1 (en) * 2021-06-07 2024-01-31 Primetals Technologies Austria GmbH Cooling of a rolled stock upstream of a finishing train of a hot rolling plant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2004006A (en) 1934-06-20 1935-06-04 Harry J Mckeon Fastening device
DE19639062A1 (en) * 1996-09-16 1998-03-26 Mannesmann Ag Model-based process for the controlled cooling of hot strip or heavy plate in a computer-controlled rolling and cooling process
DE19963186B4 (en) * 1999-12-27 2005-04-14 Siemens Ag Method for controlling and / or regulating the cooling section of a hot strip mill for rolling metal strip and associated device
DE10129565C5 (en) * 2001-06-20 2007-12-27 Siemens Ag Cooling method for a hot-rolled rolling stock and corresponding cooling line model
DE10156008A1 (en) * 2001-11-15 2003-06-05 Siemens Ag Control method for a finishing train upstream of a cooling section for rolling hot metal strip
CA2422025A1 (en) * 2002-03-12 2003-09-12 Bombardier Inc. Helmet with breathing mask air passages

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005099923A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8369979B2 (en) 2008-02-27 2013-02-05 Siemens Aktiengesellschaft Method of operation for a cooling track for cooling a rolling product, with cooling to an end enthalpy value uncoupled from temperature
US10413950B2 (en) 2014-01-28 2019-09-17 Primetals Technologies Germany Gmbh Cooling path with twofold cooling to a respective target value
WO2020053230A1 (en) 2018-09-10 2020-03-19 voestalpine Automotive Components Dettingen GmbH & Co. KG Method and device for connecting lamination parts to form lamination stacks

Also Published As

Publication number Publication date
EP1732716B1 (en) 2007-09-19
DE502004005051D1 (en) 2007-10-31
ES2291867T3 (en) 2008-03-01
US7853348B2 (en) 2010-12-14
DE112004002902A5 (en) 2007-05-24
CN101056721A (en) 2007-10-17
WO2005099923A1 (en) 2005-10-27
US20070198122A1 (en) 2007-08-23
CN101056721B (en) 2010-09-01
JP2007531629A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
EP1732716B1 (en) Method for producing a metal
DE69102280T2 (en) METHOD AND SYSTEM FOR THE PRODUCTION OF STEEL TAPE COILS DIRECTLY GENERATED FROM A HOT ROLLING MILL WITH COLD ROLLING PROPERTIES.
EP1799368B1 (en) Method and device for continuously producing a thin metal strip
DE3036997C2 (en)
EP2712332B1 (en) Method for controlling a hot strip rolling line
EP1444059A1 (en) Control method for a production line for rolling hot-rolled metal strips disposed upstream of a cooling stretch
EP0121148B1 (en) Method of making hot rolled strip with a high quality section and flatness
EP2603337B1 (en) Method for producing rolling stock by means of a combined continuous casting and rolling system, control device for a combined continuous casting and rolling system, and combined continuous casting and rolling system
EP2195127A1 (en) Operating method for introducing a product to be rolled into a roll stand of a roll mill, control device, data carrier, and roll mill for rolling a strip-type product to be rolled
EP2817425B1 (en) Cooling control
EP3107666A1 (en) Simple pre-control of a wedge-type roll-gap adjustment of a roughing stand
EP2790846B1 (en) Method for processing milled goods in a hot rolling mill
WO2001061073A2 (en) Method and device for pickling rolled metal, in particular steel strip
DE69913538T2 (en) Method and device for flatness control
WO2013167366A1 (en) Method for processing rolling stock and rolling mill
EP3194087B1 (en) Width adjustment in a finishing train
EP3642372A1 (en) Method for operating an annealing surface
EP4061552B1 (en) Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train
EP3494239B1 (en) Method for operating an annealing furnace for annealing a metal strip
DE102009043401A1 (en) Method for the model-based determination of actuator setpoints for the symmetrical and asymmetric actuators of the rolling mills of a hot strip mill
AT525283B1 (en) Method for producing a dual-phase steel strip in a combined casting and rolling plant, a dual-phase steel strip produced using the method and a combined casting and rolling facility
EP3009205B1 (en) Consideration of a reference speed when determining a transport speed
DE102020214643A1 (en) Process for adjusting the properties of a hot strip with a specific chemical composition in a hot rolling mill

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004005051

Country of ref document: DE

Date of ref document: 20071031

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

ET Fr: translation filed
REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2291867

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071220

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SMS DEMAG AG

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

NLR1 Nl: opposition has been filed with the epo

Opponent name: SMS DEMAG AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080406

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120510

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120504

Year of fee payment: 9

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SMS SIEMAG AKTIENGESELLSCHAFT

Effective date: 20080619

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120309

Year of fee payment: 9

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130430

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140414

Year of fee payment: 11

Ref country code: SE

Payment date: 20140407

Year of fee payment: 11

Ref country code: DE

Payment date: 20140620

Year of fee payment: 11

Ref country code: FI

Payment date: 20140411

Year of fee payment: 11

Ref country code: NL

Payment date: 20140404

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502004005051

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502004005051

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 373527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140406

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140406

27W Patent revoked

Effective date: 20141212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502004005051

Country of ref document: DE

Effective date: 20150507

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 373527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141212

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150428

Year of fee payment: 12