EP1726967B1 - Procédé et dispositif destinés à mesurer un courant passant dans un conducteur électrique - Google Patents

Procédé et dispositif destinés à mesurer un courant passant dans un conducteur électrique Download PDF

Info

Publication number
EP1726967B1
EP1726967B1 EP06010079.9A EP06010079A EP1726967B1 EP 1726967 B1 EP1726967 B1 EP 1726967B1 EP 06010079 A EP06010079 A EP 06010079A EP 1726967 B1 EP1726967 B1 EP 1726967B1
Authority
EP
European Patent Office
Prior art keywords
section
sensor
electrical conductor
magnetic field
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06010079.9A
Other languages
German (de)
English (en)
Other versions
EP1726967A1 (fr
Inventor
Christian Hausperger
Edgar Kindler
Ricardo Erckert
Bernhard Röllgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1726967A1 publication Critical patent/EP1726967A1/fr
Application granted granted Critical
Publication of EP1726967B1 publication Critical patent/EP1726967B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC

Definitions

  • the present invention relates to a method and apparatus for measuring a current flowing in an electrical conductor.
  • the on-board battery is increasingly loaded, which serves as a buffer during operation of the vehicle engine and maintains the power supply of the vehicle in the off state of the engine.
  • this may mean that the battery is no longer fully charged during operation of the engine. This can result in the vehicle remaining idle with a discharged battery or being unable to start due to low battery voltage.
  • Such energy management has to ensure that the state of charge of the battery does not reach a critical state and has to ensure a positive charge balance of the battery.
  • the basis for such a system is the analysis of the battery status, which is derived from the measured quantities battery current, battery voltage and battery temperature. In this case, it is above all the detection of the charging or discharging current that is of crucial importance in order to keep the battery at a non-critical charging level and to ensure the starting capability of the vehicle.
  • the challenge in detecting the charge or discharge current is that the currents to be measured are spread over a very large range, for example, from -200 A to 1500 A.
  • a suitable sensor for energy management in vehicles must cover this wide range So have a high dynamic.
  • a measuring method and apparatus for measuring large dynamic range currents by means of a compensation current sensor is described.
  • a magnetic core is driven by applying current pulses to a compensation coil in a first and an opposite second direction to saturation and determined in each case a first and second primary current value.
  • a corrected primary current value is calculated by averaging the first and second primary current values.
  • a first and a second toroid wound with a wire are used, wherein the electrical conductor and the second ring core extend through the inner diameter of the first ring core.
  • For determining the current flowing through the electrical conductor is an alternating current for periodically and magnetically saturating a Part of the first and second toroidal core to the wire, which stimulates the second ring core applied.
  • FIGS. 9 and 10 shown sensor for use in a motor vehicle for monitoring the flowing currents known.
  • a measuring resistor 202 is inserted in the ground line 201.
  • a suitable evaluation electronics 203 directly measures the voltage drop across the measuring resistor and calculates the flowing current from this.
  • the measuring resistor can for example consist of manganin.
  • FIG. 9 the measuring setup to be realized with this sensor is shown.
  • a car battery 205 is connected via a ground line 202 to the vehicle ground.
  • the sensor consisting of the measuring resistor 202 and the evaluation electronics 203 are integrated in the ground line 201.
  • Electrical consumers 206 of the motor vehicle are connected to the positive pole of the battery 205 via a line 207.
  • a disadvantage of this known from the prior art solution is that the measuring resistor must be integrated in the current-carrying conductor, which causes additional design effort, since it must be ensured that shear and tensile forces kept away from the measuring resistor become. A deformation of the measuring resistor can influence the measurement result and in extreme cases leads to a defect in the sensor.
  • Another disadvantage is that above the measuring resistor necessarily dissipates a power loss. However, even when using small resistors, for example a 100 ⁇ measuring resistor, loss of heat still falls, which must be dissipated.
  • the object is achieved by a method for measuring a current flowing in an electrical conductor according to claim 1 and by a device for measuring a current flowing in an electrical conductor according to claim 11.
  • a sensor arranged in the region of the electrical conductor is used for measuring the magnetic field surrounding the electrical conductor, the sensor having a magnetic circuit with a first and a second section. Furthermore, a magnetizing device for magnetic saturation of the second portion is provided.
  • the sensor used Due to its special design, the sensor used has a measuring range switchover, which is described in detail in the description of the figures. Due to the measuring range switchover, a wide measuring range, ie high dynamics of the sensor, is achieved. However, this high dynamics is accompanied by system-related measurement errors resulting from a possible hysteresis of the second section and a possible temperature drift of individual components. The following process steps allow a measurement that eliminates these measurement errors.
  • the steps described below are carried out according to the method.
  • a first step the magnetic field is measured in each case after switching off both a positive and a negative saturation of the second section, and then the mean value is calculated from the measured values.
  • a second step the magnetic field is measured at both positive and negative saturation of the second section, and then the mean value is calculated from the measured values.
  • the current flowing through the electrical conductor is calculated by subtracting the mean value calculated in the second step from the mean value calculated in the first step and multiplying the result by a constant.
  • the order of the first and second steps can also be reversed.
  • This method ensures that with a potential-free sensor, the current can be measured over a wide measuring range and possible system-related measurement errors can be eliminated.
  • the constant is chosen such that it takes into account the sensitivity of the sensor both in the saturated and in the unsaturated second section. hereby can be specified directly from the measured values of the current flowing through the conductor.
  • the second section is positively saturated and the magnetic field is measured.
  • the saturation is switched off and then the magnetic field is measured again.
  • the second section is negatively saturated and then the magnetic field is measured.
  • the magnetic field is measured.
  • the mean value is then formed from the values measured in steps two and four, and in a sixth step the mean value is formed from the values measured in the first and third steps.
  • the current flowing through the conductor is then calculated by subtracting the mean calculated in the seventh step from the mean calculated in the sixth step and then multiplying by a constant taking into account the sensitivity of the saturated and unsaturated second section sensor.
  • This procedure can be used to shorten the time required to record the required readings.
  • the individual process steps can be carried out repeatedly in order to determine the course of the current over time.
  • the execution of the method is simplified if all steps are performed automatically in an evaluation device.
  • This evaluation device advantageously outputs only the determined value of the current and / or makes it available.
  • the evaluation device controls automatically with advantage the measuring process, in particular the switching on and off of the magnetizing device.
  • the method described can be carried out in a vehicle, in particular in a motor vehicle, in particular for monitoring the battery current of a vehicle or for monitoring individual consumers or consumer groups.
  • the first section has a first saturation magnetization and the second section has a second saturation magnetization, wherein the first saturation magnetization is smaller, equal to or greater than the second saturation magnetization.
  • the parameters of the sensor can be adjusted by selecting the respective combination of saturation magnetizations.
  • the device for measuring a current flowing in an electrical conductor comprises a sensor arranged in the region of the electrical conductor for measuring the magnetic field surrounding the electrical conductor.
  • the sensor has a magnetic circuit with a first and a second section and a magnetizing device for saturating the second section is provided.
  • An evaluation device for calculating the current flowing through the electrical conductor as a function of measured values of the magnetic field surrounding the electrical conductor and as a function of the respective magnetization of the second section is furthermore provided.
  • the magnetic circuit has an air gap and an air gap arranged magnetic field-sensitive component, in particular a Hall sensor, for measuring the magnetic field surrounding the electrical conductor.
  • the magnetic circuit substantially surrounds the electrical conductor.
  • the evaluation device comprises means for performing, in particular for the automatic implementation of the method described above.
  • This also includes, in particular, means for controlling the magnetization device.
  • a compact design By integrating the evaluation device with the sensor, a compact design can be achieved.
  • a high flexibility in the arrangement can be achieved by spatial separation of evaluation device and sensor.
  • the first section of the magnetic circuit has at least two legs which overlap one another and form an air gap in the region of the overlap.
  • the legs may be substantially arcuately shaped to allow overstretching of a conductor.
  • the second section can furthermore be designed as a rectangular ferrite core frame, which carries a control winding on at least one side.
  • the ferrite core frame may each support a control winding on each long side of the rectangular ferrite core frame to achieve a symmetrical construction.
  • the senor in the region of a ground conductor or a positive conductor of a vehicle battery, in particular a Motor vehicle battery, be arranged, or in the range of an electrical load or a group of electrical consumers of a vehicle, in particular a motor vehicle, be arranged.
  • the method described and the device described can be used in a motor vehicle for monitoring currents in the electrical system.
  • Fig. 1 shows schematically a possible first embodiment of a sensor used in the device for measuring a magnetic field surrounding the electrical conductor, which can also be used to carry out the method.
  • the sensor 1 is used to measure the magnetic field surrounding the electrical conductor 2 when current flows through it.
  • the sensor 1 has a magnetic circuit which essentially encloses the electrical conductor 2.
  • the magnetic circuit has a first, substantially U-shaped section 3, which is formed from an amorphous material with a high saturation magnetization.
  • the magnetic circuit is closed on the open side of the first section 3 except for an air gap 30 through a second section 41 of the magnetic circuit.
  • the second section of the magnetic circuit is part of a closed, frame-shaped ferrite core 4, which has a lower saturation magnetization than the first section.
  • the air gap 30 formed between the one leg of the U-shaped first section 3 and the end of the second section 41 is completely filled by a Hall sensor 5.
  • the Hall sensor serves to measure the magnetic field surrounding the electrical conductor.
  • the second portion 41 opposite leg of the ferrite core 4 carries a control winding 40, with which the ferrite core can be saturated.
  • the sensor For the application of the sensor 1 over the largest possible measuring range, ie with the highest possible dynamics, the sensor is operated as follows: At low currents, the sensor is operated with high sensitivity. For this purpose, the ferrite core 4 is operated unsaturated, the control winding 40 is thus de-energized. The magnetic circuit then consists of the first section 3 and the second section 41. Only the small air gap 30, which is filled with the Hall sensor 5, is provided. In this way, small magnetic fields can be measured at currents of up to about 20A.
  • the ferrite core 4 is operated by applying a magnetic field by means of the control winding 40 in saturation.
  • the ferrite core 4 and thus also the second portion 41 of the magnetic circuit for the magnetic circuit is no longer effective.
  • the air gap of the magnetic circuit is therefore increased by the leg length of the second section 41.
  • the bound field in the magnetic circuit is attenuated by the now large air gap 31, so that the sensitivity of the sensor 1 is reduced and with the Hall sensor 5 large currents can be detected.
  • Fig. 2 shows exemplary measuring curves to illustrate the context.
  • the magnetic field H surrounding the electrical conductor which is likewise bound in the magnetic circuit and which is dependent on the current flowing through the electrical conductor I DC, is plotted here on the X axis.
  • the magnetic field B measured by the Hall sensor is plotted on the Y axis.
  • the solid curve 90 shows the relationship when the control winding 40 is switched off, that is to say with a small air gap. Here is a high sensitivity to observe.
  • the dashed line 91 shows the relationship when the control winding 40 is switched on, that is to say with a large air gap. Here, a low sensitivity of the measuring sensor is observed.
  • the sensor 1 described above is used in the following to explain the method underlying the application and the device.
  • the hysteresis of the ferrite core 4 can lead to an error in the measurement result.
  • a temperature drift of the Hall sensor and a long-term drift of the other components from which the sensor is constructed can also lead to a distortion of the measurement signal.
  • These two possible causes of error can result in a zero offset, i. the respective measurement curves no longer run through the origin of the H / B coordinate system.
  • the method described below is used to correct these possible errors.
  • the point B (P1) lies on the lower branch 93 of the hysteresis curve, whereas the measuring point B (P2) lies on the upper branch 92 of the hysteresis curve.
  • the ideal magnetization curve 94 is as shown in FIG Fig. 3 can be seen, even offset by an offset B offset , which is caused by temperature influences or by a general component drift.
  • the Indian Fig. 3 shown offset error can be corrected by determining another point.
  • the determination of this further point B (P4) is made on the basis of Fig. 4 explained.
  • Fig. 4 is the solid curve 90 again the curve at a small air gap, so high sensitivity of the sensor and the curve 91, which is shown in dashed lines, the curve at a large air gap, so low sensitivity of the sensor.
  • the measuring points B (P4 +) and B (P4-) are now measured, while the ferrite core 4 is operated saturated, so the sensor is operated with low sensitivity.
  • the measuring point B (P4 +) adjusts itself when the ferrite core 4 is positively saturated by corresponding excitation of the control coil 40.
  • the measurement point B (P4-) however, with correspondingly negative saturation of the ferrite core 4.
  • the magnetization of the ferrite core 4 causes a positive or negative stray field, which distorts the respective measurement results.
  • the subsequent averaging of the measured values B (P4 +) and B (P4-) shortens the influence of this stray field.
  • B (P4) is also shifted by an error B offset .
  • S sat is the sensitivity of the sensor when the ferrite core 4 is saturated, so a large air gap 31 is provided.
  • the device which is composed of the sensor 1 and the evaluation device 6.
  • the evaluation device 6 is designed so that it can process measured values of the Hall sensor 5 as well as information about the respective control voltage of the control coil 40 in order to calculate the current flowing through the electrical conductor.
  • the evaluation device 6 can also control the method, that is to say cause the current to be supplied to the control coil 40 and to record, store and process the measured values at the correct time.
  • the evaluation device 6 may have an interface, not shown in the figures, which communicates with an amplifier for energizing the control coil 40 and the Hall probe 5.
  • means for storing the measured data are provided.
  • the amplifier may also be integrated with the evaluation device.
  • Fig. 5 is the combination of sensor 1 and evaluation device 6 in the leading to an electrical load 23 of a vehicle positive line 20th brought in.
  • the positive line 20 leads from a battery 22 to the electrical consumer 23.
  • the ground line 21 is connected to the ground conductor of the vehicle.
  • the sensor 1 is arranged directly after the positive pole of the battery 22. This is also referred to as a "high-side" arrangement of the sensor.
  • Fig. 6 the corresponding arrangement of the sensor 1 is shown in the ground line 21 of the respective on-board circuit. This is also referred to as a "low-side" arrangement of the sensor.
  • the evaluation device 6 can also be arranged separately from the sensor 1.
  • FIGS. 7 and 8 a second embodiment of a current sensor 1 is shown, with which the method can be carried out and which can be provided in the device, wherein Fig. 7 a side view and Fig. 8 a plan view of the sensor shows.
  • a flat electrical conductor 2, for example a ribbon conductor, a sheet metal conductor or a conductor provided on a printed circuit board is enclosed by the sensor 1.
  • the sensor 1 has a magnetic circuit which consists of a first section 3, which is here formed by a first leg 3a and a second leg 3b and a second section 41.
  • the legs 3a and 3b of the first section 3 overlap each other in the central region of this section, but are spaced apart by an air gap 30.
  • the legs 3 a, 3 b are arcuately shaped and together form a semicircle.
  • a Hall sensor 5 is introduced, which serves to measure the existing flux in the magnetic circuit.
  • the second portion is, as seen in the plan view, designed as a rectangular ferrite core 4 and carries in the area 41 in turn a magnetization device in the form of control windings 40, which are respectively applied to the respective long sides of the rectangular ferrite core 4.
  • the lower legs of the first section are connected to this rectangular ferrite frame 4 in the central region of the short sides of the rectangular ferrite frame 4.
  • the control windings 40 remain de-energized.
  • the ferrite core frame 4 is operated by applying a magnetic field by means of the control windings 40 in saturation.
  • the ferrite core frame 4 and thus also the second portion 41 of the magnetic circuit for the magnetic circuit is no longer effective.
  • the air gap of the magnetic circuit is therefore increased by the leg length of the second section 41.
  • the bound field in the magnetic circuit is attenuated by the additional large air gap 31, so that the sensitivity of the sensor 1 is reduced and with the Hall sensor 5 large currents can be detected.
  • the total air gap in this second embodiment of the sensor is the sum of the air gap 30 of the first section 3 of the magnetic circuit and the air gap 31 of the second section 41 of the magnetic circuit.
  • the device and the method can not only serve to monitor the entire vehicle electrical system, but can also measure current values of individual consumers or individual consumer groups.
  • the use of the sensor is independent of the applied voltage in all cases. Since this is also a potential-free measurement, it is also possible to use it at high voltages.
  • a universal use of the device for measuring the current is possible with it. In particular, use in vehicles with a higher vehicle electrical system voltage, for example in vehicles with a hybrid drive is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Claims (27)

  1. Procédé, destiné à mesurer un courant passant dans un conducteur électrique (2), au moyen d'un capteur (1) placé dans la région du conducteur électrique, pour la mesure du champ magnétique qui entoure le conducteur électrique, le capteur comportant un circuit magnétique doté d'un premier (3) et d'un deuxième (41) segments et un dispositif d'aimantation (40) pour la saturation magnétique du deuxième segment étant prévu, comportant les étapes suivantes, consistant à :
    a. mesurer le champ magnétique, chaque fois après la mise à l'arrêt, aussi bien d'une saturation positive que négative du deuxième segment et à calculer consécutivement calcul la valeur moyenne (B(P0)), à partir des valeurs mesurées (B(P1), B (P2)),
    b. mesurer le champ magnétique, aussi bien dans le cas d'une saturation magnétique positive que négative du deuxième segment et à calculer consécutivement la valeur moyenne (B(P4)), à partir des valeurs mesurées (B(P4+), B(P4-)),
    c. calculer le courant circulant à travers le conducteur électrique par soustraction de la valeur moyenne (B(P4)) obtenue dans l'étape b. de la valeur moyenne (B(P0) calculée dans l'étape a. et à multiplier la différence avec une constante.
  2. Procédé selon la revendication 1, caractérisé en ce que la constante dans l'étape c. prend en considération la sensibilité du capteur, aussi bien lorsque le deuxième segment est magnétiquement saturé, que lorsque le deuxième segment est magnétiquement insaturé.
  3. Procédé selon la revendication 1, caractérisé en ce que le procédé revendiqué dans la revendication 1 est réalisé avec les étapes suivantes, consistant dans :
    a. la saturation magnétique positive du deuxième et dans la mesure du champ magnétique (B(P4+)),
    b. la mise à l'arrêt de la saturation magnétique du deuxième segment et la mesure consécutive du champ magnétique (B(P2)),
    c. la saturation magnétique négative du deuxième segment et la mesure du champ magnétique (B(P4-)),
    d. la mise à l'arrêt de la saturation magnétique du deuxième segment et la mesure consécutive du champ magnétique (B(P1)),
    e. le calcul de la valeur moyenne (B(P0)) à partir des valeurs (B(P1), B(P2)) mesurées dans les étapes b. et d.,
    f. le calcul de la valeur moyenne (B(P4)) des valeurs (B(P4+), B(P4-)) obtenues dans les étapes a. et c.,
    g. le calcul du courant (IDC) circulant à travers le conducteur électrique par soustraction de la valeur moyenne (B(P4)) calculée dans l'étape f. de la valeur moyenne (B(P0)) calculée dans l'étape e. et la multiplication consécutive avec une constante (1/Sunsat (1-K)) (B(P0)) tenant compte de la sensibilité du capteur, lorsque le deuxième segment est magnétiquement saturé et magnétiquement insaturé.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les étapes de procédé sont réalisées de manière répétitive.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que toutes les étapes sont réalisées automatiquement dans un dispositif d'évaluation (6).
  6. Procédé selon la revendication 5, caractérisé en ce que le dispositif d'évaluation n'édite ou ne met à disposition que la valeur déterminée du courant (IDC) .
  7. Procédé selon la revendication 5 ou 6, caractérisé en ce que le dispositif d'évaluation commande automatiquement le processus de mesure, notamment la mise en route et à l'arrêt du dispositif d'aimantation (40).
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est réalisé dans un véhicule, notamment dans un véhicule automatique.
  9. Procédé selon la revendication 8, caractérisé en ce qu'il est destiné à la supervision du courant de batterie d'un véhicule ou à la supervision de consommateurs (23) individuels ou de groupes de consommateurs.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier tronçon fait preuve d'une première aimantation de saturation et en ce que le deuxième tronçon fait preuve d'une deuxième aimantation de saturation et en ce que la première aimantation de saturation est supérieure, inférieure ou égale à la deuxième aimantation de saturation.
  11. Dispositif, destiné à mesurer un courant circulant dans un conducteur électrique (2), pourvu d'un capteur (1) placé dans la région du conducteur électrique, destiné à mesurer le champ magnétique entourant le conducteur électrique, le capteur comportant un circuit magnétique doté d'un premier (3) et d'un deuxième (41) segments, d'un dispositif d'aimantation (40), destiné à la saturation magnétique du deuxième segment et par ailleurs le dispositif d'évaluation (6) étant conçu pour le champ magnétique destiné à calculer le courant passant par ailleurs par l'intermédiaire du conducteur électrique en fonction de valeurs de mesure (B(PO), B(P1), B(P2)), B(P4), B(P4+), B(P4-)) du champ magnétique entourant le conducteur électrique et en fonction de l'aimantation respective du deuxième segment, le dispositif d'évaluation (6) étant conçu pour réaliser les étapes suivantes, consistant à :
    a. mesurer le champ magnétique, chaque fois après la mise à l'arrêt, aussi bien d'une saturation magnétique positive que négative du deuxième segment et à calculer consécutivement la valeur moyenne (B(PO)) à partir des valeurs mesures (B(P1), B(P2)),
    b. mesurer le champ magnétique, aussi bien à saturation magnétique positive que négative des deux segments et à calculer consécutivement la valeur moyenne (B(P4)) à partir des valeurs de mesure (B(P4+), (B(P4-)),
    c. calculer le courant circulant à travers le conducteur électrique, par soustraction de la valeur moyenne (B(P4)) calculée dans l'étape a. de la valeur moyenne (B(PO) calculée dans l'étape b. et par multiplication de la différence avec une constante.
  12. Dispositif selon la revendication 11, caractérisé en ce que le circuit magnétique comporte un entrefer (30, 31) et un composant (5) sensible au champ magnétique, placé dans l'entrefer, notamment un capteur de Hall destiné à mesurer le champ magnétique entourant le conducteur électrique.
  13. Dispositif selon la revendication 11 ou 12, caractérisé en ce que le circuit magnétique enveloppe sensiblement le conducteur électrique.
  14. Dispositif selon l'une quelconque des revendications 11 à 13, caractérisé en ce que le dispositif d'évaluation comporte des moyens, destinés à réaliser, notamment à réaliser automatiquement les étapes a. à c.
  15. Dispositif selon la revendication 14, caractérisé en ce que le dispositif d'évaluation comporte des moyens destinés à commander le dispositif d'aimantation (40).
  16. Dispositif selon l'une quelconque des revendications 11 à 15, caractérisé en ce que le dispositif d'évaluation est intégré avec le capteur.
  17. Dispositif selon l'une quelconque des revendications 11 à 15, caractérisé en ce que le dispositif d'évaluation et le capteur sont conçus en étant séparés l'un de l'autre dans l'espace.
  18. Dispositif selon l'une quelconque des revendications 11 à 17, caractérisé en ce que le capteur est placé dans la région d'un conducteur de masse (21) ou d'un conducteur positif (20) d'une batterie de véhicule (22), notamment d'une batterie de véhicule automobile.
  19. Dispositif selon l'une quelconque des revendications 11 à 18, caractérisé en ce que le capteur est placé dans la région d'un consommateur (23) électrique ou d'un groupe de consommateurs électriques d'un véhicule, notamment d'un véhicule automobile.
  20. Dispositif selon l'une quelconque des revendications 11 à 19, caractérisé en ce que le premier segment présente une première aimantation de saturation et le deuxième segment présente une deuxième aimantation de saturation et en ce que la première aimantation de saturation est supérieure, inférieure ou égale à la deuxième aimantation de saturation.
  21. Dispositif selon l'une quelconque des revendications 11 à 20, caractérisé en ce que le premier segment (3) du circuit magnétique comporte au moins deux branches (3a, 3b) qui se chevauchent mutuellement et qui dans la région du chevauchement forment un entrefer (30).
  22. Dispositif selon la revendication 21, caractérisé en ce que les branches (3a, 3b) sont façonnées sensiblement en forme d'arc.
  23. Dispositif selon l'une quelconque des revendications 11 à 22, caractérisé en ce que le deuxième segment (41) est conçu sous la forme d'un cadre (4) à noyau de ferrite rectangulaire qui au moins sur un côté porte un enroulement de commande (40) .
  24. Dispositif selon la revendication 23, caractérisé en ce que le cadre (4) à noyau de ferrite comporte respectivement un enroulement de commande (40) sur chaque côté longitudinal du cadre (4) à noyau de ferrite rectangulaire.
  25. Dispositif selon la revendication 23 ou 24, caractérisé en ce que le premier segment (3) est assemblé dans la zone centrale des côtés étroits du cadre (4) à noyau de ferrite rectangulaire.
  26. Utilisation d'un dispositif selon l'une quelconque des revendications 11 à 25 dans un véhicule automobile, pour la supervision de courants dans le réseau de bord d'un véhicule automobile.
  27. Utilisation d'un procédé selon l'une quelconque des revendications 1 à 10 dans un véhicule automobile, pour la supervision de courants dans le réseau de bord du véhicule.
EP06010079.9A 2005-05-25 2006-05-16 Procédé et dispositif destinés à mesurer un courant passant dans un conducteur électrique Expired - Fee Related EP1726967B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005024075A DE102005024075B4 (de) 2005-05-25 2005-05-25 Verfahren und Vorrichtung zur Messung eines in einem elektrischen Leiter fließenden Stroms

Publications (2)

Publication Number Publication Date
EP1726967A1 EP1726967A1 (fr) 2006-11-29
EP1726967B1 true EP1726967B1 (fr) 2018-10-10

Family

ID=36839446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06010079.9A Expired - Fee Related EP1726967B1 (fr) 2005-05-25 2006-05-16 Procédé et dispositif destinés à mesurer un courant passant dans un conducteur électrique

Country Status (3)

Country Link
US (1) US7541799B2 (fr)
EP (1) EP1726967B1 (fr)
DE (1) DE102005024075B4 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006016745B4 (de) * 2005-04-08 2014-07-03 Epcos Ag Stromsensor mit hoher Dynamik und Verfahren zu seinem Betrieb
DE102006032763B4 (de) 2006-07-14 2009-05-07 Lisa Dräxlmaier GmbH Vorrichtung und Verfahren zur Messung eines in einem elektrischen Leiter fließenden Stromes
DE102006032762B8 (de) 2006-07-14 2009-10-08 Lisa Dräxlmaier GmbH Verfahren zur Messung eines in einem elektrischen Leiter fließenden Stromes und Verwendung des Verfahrens sowie einer Vorrichtung zur Überwachung von Strömen im Bordnetz eines Kraftfahrzeugs
DE102007003830B4 (de) * 2007-01-25 2009-08-06 Robert Seuffer Gmbh & Co. Kg Vorrichtung zur Messung eines durch einen elektrischen Leiter fließenden elektrischen Stroms
DE102007025505A1 (de) 2007-06-01 2008-12-04 Epcos Ag Anordnung zur Messung eines in einem elektrischen Leiter fließenden Stroms
DE102007036573A1 (de) 2007-08-03 2009-02-19 Epcos Ag Anordnung und Verfahren zur Messung eines in einem elektrischen Leiter fließenden Stroms
DE102007036674A1 (de) 2007-08-03 2009-02-05 Epcos Ag Anordnung zur Messung eines in einem elektrischen Leiter fließenden Stroms
DE102008041546A1 (de) * 2008-08-26 2010-03-04 Robert Bosch Gmbh Verfahren zur Berechnung des Ladezustandes einer Batterie
EP2284549A1 (fr) 2009-08-11 2011-02-16 Liaisons Electroniques-Mècaniques LEM S.A. Transducteur de courant à barrière de flux en mode mixte
EP2515125B1 (fr) * 2011-04-21 2017-02-01 Abb Ag Capteur de courant doté d'un noyau magnétique
JP5703518B2 (ja) * 2011-10-12 2015-04-22 アルプス・グリーンデバイス株式会社 電流センサ

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1209198B (de) 1963-11-30 1966-01-20 Siemens Ag Einrichtung mit einem magnetfeldabhaengigen Halbleiterwiderstand
US3482163A (en) * 1967-05-24 1969-12-02 Tektronix Inc Magnetic signal measuring device including degaussing means
JPS5354202Y2 (fr) 1974-03-08 1978-12-25
US4059798A (en) 1976-03-08 1977-11-22 F. W. Bell, Inc. Method and apparatus for measuring the current flowing in a workpiece
DE3532044A1 (de) * 1985-09-09 1987-03-19 Vdo Schindling Polklemme
CH674088A5 (fr) 1987-10-16 1990-04-30 Lem Liaisons Electron Mec
CH674089A5 (fr) 1987-10-16 1990-04-30 Lem Liaisons Electron Mec
JPH01281715A (ja) * 1988-05-09 1989-11-13 Fuji Electric Co Ltd 計器用変流器
DE3905060A1 (de) 1989-02-18 1990-08-23 Diehl Gmbh & Co Einrichtung zum beruehrungslosen messen eines gleichstroms
US5091697A (en) * 1989-07-31 1992-02-25 Ii Morrow, Inc. Low power, high accuracy magnetometer and magnetic field strength measurement method
JP2867276B2 (ja) * 1989-11-30 1999-03-08 株式会社トーキン 電流検出器
FR2665543B1 (fr) * 1990-08-02 1993-02-19 Lethiec Philippe Capteur de champ magnetique a haute sensibilite.
CH684216A5 (fr) 1991-02-15 1994-07-29 Lem Liaisons Electron Mec Dispositif de mesure de courants.
US5446435A (en) 1991-09-20 1995-08-29 Liaisons Electroniques-Mecaniques Lem S.A. Current sensor comprising a magnetic circuit with an air gap
CH685892A5 (fr) 1992-01-21 1995-10-31 Lem S.A. Procédé de montage d'une bobine électrique sur un circuit magnétique à entrefer
CA2100135C (fr) * 1992-07-10 1997-11-04 Makoto Kawakami Capteur de courant continu
DE4229065A1 (de) * 1992-09-01 1994-03-03 Bosch Gmbh Robert Strommeßzange
DE4229948A1 (de) * 1992-09-08 1994-03-10 Vacuumschmelze Gmbh Hysteresefreier Stromsensor
US5552700A (en) * 1994-09-30 1996-09-03 Stanley Electric Co., Ltd. Current detecting device with a core having an integrally fixed engaging member
JP3007553B2 (ja) 1995-03-24 2000-02-07 日本レム株式会社 電流センサ
US5831424A (en) * 1996-05-01 1998-11-03 Southwest Research Institute Isolated current sensor
US6548998B1 (en) 1998-06-05 2003-04-15 Liaisons Electroniques-Mecaniques Lem S.A. Electric current sensor with wide passband
DE19910411C2 (de) 1999-03-10 2001-08-30 Daimler Chrysler Ag Verfahren und Vorrichtung zur Offset-kompensierten Magnetfeldmessung mittels eines Hallsensors
GB9928246D0 (en) 1999-11-30 2000-01-26 Honeywell C S Limited Screened core current sensor
DE10003638A1 (de) 2000-01-28 2001-08-09 Vacuumschmelze Gmbh Kompensationsstromsensor
DE10105186A1 (de) * 2001-02-06 2002-08-29 Bosch Gmbh Robert Halbleiteranordnung, Strommesser und Kraftfahrzeug
DE10212685A1 (de) * 2002-03-22 2004-01-08 Robert Bosch Gmbh Schaltungsanordnung und Verfahren zum Überprüfen eines Stromkreises
DE10229871A1 (de) 2002-07-03 2004-01-15 Robert Bosch Gmbh Zerstäubungsanordnung
AU2003300064A1 (en) 2003-01-03 2004-08-10 Johnson Controls Technology Company Battery monitoring system and method
DE10331883B4 (de) * 2003-07-14 2018-01-18 Vacuumschmelze Gmbh & Co. Kg Messverfahren und Messanordnung zum Messen von Strömen mit grossem Dynamikbereich

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102005024075A1 (de) 2006-11-30
DE102005024075B4 (de) 2007-04-12
EP1726967A1 (fr) 2006-11-29
US20060290341A1 (en) 2006-12-28
US7541799B2 (en) 2009-06-02

Similar Documents

Publication Publication Date Title
EP1726967B1 (fr) Procédé et dispositif destinés à mesurer un courant passant dans un conducteur électrique
DE102006032762B4 (de) Verfahren zur Messung eines in einem elektrischen Leiter fließenden Stromes und Verwendung des Verfahrens sowie einer Vorrichtung zur Überwachung von Strömen im Bordnetz eines Kraftfahrzeugs
EP3259603B1 (fr) Dispositif de mesure de courant et procédé pour la détermination d'un courant electrique
EP2666023B1 (fr) Appareil de mesure de courant
EP1762852B1 (fr) Dispositif et procédé pour mesurer un courant passant dans un conducteur électrique
DE102005036552A1 (de) Hochgenauer Stromsensor
DE102012006269A1 (de) Stromsensor
EP2174147B1 (fr) Dispositif de mesure d'un courant circulant dans un conducteur électrique
DE102006032763B4 (de) Vorrichtung und Verfahren zur Messung eines in einem elektrischen Leiter fließenden Stromes
EP2174146B1 (fr) Ensemble et procédé pour la mesure d'un courant circulant dans un conducteur électrique
DE19947301C1 (de) Vorrichtung und Verfahren zur Kalibrierung von Sensoren
DE102014216404B4 (de) Strommessvorrichtung und Verfahren zum Erfassen eines Stroms
EP3265832A1 (fr) Montage électrique pour la mesure d'une intensité de courant d'un circuit à courant continu au moyen de l'effet magnétorésistif anisotrope
DE102019218027A1 (de) Verfahren zur Prüfung eines Batteriesensors und Batteriesensor
EP3640652B1 (fr) Procédé de fonctionnement d'un capteur de batterie et capteur de batterie
DE102009058893A1 (de) Verfahren zur Überwachung eines Batterieladezustands
DE102020215410A1 (de) Stromstärkemessung
DE102012220474A1 (de) Verfahren und Vorrichtung zur Überwachung eines Zustands eines Transformators
EP2992337B1 (fr) Procédé et dispositif pour la surveillance et la mesure de courant d'une bobine soumise à une précontrainte magnétique
DE102019126136A1 (de) Verfahren und Einrichtung zum Ermitteln einer eine Temperatur eines Widerstandstemperaturfühlers beschreibenden Temperaturinformation, Wechselrichter, Fahrzeug und Computerprogramm
CH704267B1 (de) Vorrichtung zur Messung der Flussdichte im Magnetkreis von Mittelfrequenz-Hochleistungstransformatoren.
DE102012202077A1 (de) Verfahren zum Bestimmen eines Stroms, Batteriemanagementeinheit, Batterie und Kraftfahrzeug
DE102020207874A1 (de) Widerstandsmesselement und Strommessschaltung mit einem solchen Widerstandsmesselement
DE102021100735A1 (de) Verfahren und Vorrichtung zur Erfassung eines veränderten Messverhaltens einer Strommessvorrichtung mit einem Magnetkern und mindestens einen Sensor
DE102006043239A1 (de) Vorrichtung zum Ermitteln von magnetischen Kenngrößen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070418

AKX Designation fees paid

Designated state(s): FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20140730

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EPCOS AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EPCOS AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180525

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ERCKERT, RICARDO

Inventor name: HAUSPERGER, CHRISTIAN

Inventor name: KINDLER, EDGAR

Inventor name: ROELLGEN, BERNHARD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TDK ELECTRONICS AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190711

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531