EP1726063B1 - Microwave antenna for flip-chip semiconductor modules - Google Patents

Microwave antenna for flip-chip semiconductor modules Download PDF

Info

Publication number
EP1726063B1
EP1726063B1 EP05728358A EP05728358A EP1726063B1 EP 1726063 B1 EP1726063 B1 EP 1726063B1 EP 05728358 A EP05728358 A EP 05728358A EP 05728358 A EP05728358 A EP 05728358A EP 1726063 B1 EP1726063 B1 EP 1726063B1
Authority
EP
European Patent Office
Prior art keywords
microwave antenna
bumps
microwave
antenna according
previous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05728358A
Other languages
German (de)
French (fr)
Other versions
EP1726063A1 (en
Inventor
Wolfgang Heinrich
Prodyut Talukder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungsverbund Berlin FVB eV
Original Assignee
Forschungsverbund Berlin FVB eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungsverbund Berlin FVB eV filed Critical Forschungsverbund Berlin FVB eV
Publication of EP1726063A1 publication Critical patent/EP1726063A1/en
Application granted granted Critical
Publication of EP1726063B1 publication Critical patent/EP1726063B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0283Apparatus or processes specially provided for manufacturing horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/32Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being end-fed and elongated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • H01Q21/0093Monolithic arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the invention relates to a microwave antenna for semiconductor chips produced in flip-chip technology with two semiconductor substrates metallized on their surface.
  • circuits realized in flip-chip technology are well known.
  • semiconductor substrates superimposed on two levels are connected to one another.
  • a semiconductor chip may be connected to a carrier or a base substrate.
  • bumps soldered or hard-plated bumps
  • ball bumps a wire is bonded to one of the substrates and then melted off or torn off. This results in an electrically conductive increase (bumps), which can be connected when you put the two substrates with a contact point of the opposite side, for example by thermocompression.
  • Monolithically integrated circuits are usually constructed on the substrates, the bumps serving to electrically connect the circuit elements.
  • individual bumps may also be provided solely for the purpose of spacing the two substrates.
  • the bumps are often used.
  • a flip-chip module can be equipped with its own transmitting and / or receiving antenna and, if necessary, with its own power supply, so that stand-alone transceiver modules are formed.
  • patch antennas that is metallized, isolated from the rest of circuit circuit areas on an outer surface of such an assembly with a lead to the circuit.
  • the lead can be realized by a vertical via ("via") through one of the substrates.
  • a microwave radar transceiver is known in flip chip technology based on a monolithic microwave integrated circuit (MMIC) equipped to transmit and receive a near range radar signal with such a patch antenna.
  • MMIC monolithic microwave integrated circuit
  • patch antennas can be found in RE Munson, Conformed Microstrip Antennas and Microstrip Phases Arrays, IEEE Transactions on Antennas and Propagation, Vol. 22, 1975 pp. 74-78 or in J.-F. Zürcher, FE Gardiol, Broadband Patch Antennas, Boston, Artech House Inc., 1995 ,
  • US2002 / 0145566A1 is an antenna type half-wave dipole known, which is integrated on a semiconductor chip and forms the preamble of claim 1.
  • the known antennas have the property of causing vertical radiation at a relatively large angle. For certain applications, however, lateral radiation or reception or all-round radiation is also desirable.
  • the invention has for its object to provide a microwave antenna of the type mentioned, which also allows lateral or all-round radiation or reception.
  • a closed train of bumps are arranged between the metallized on their surface semiconductor substrates, that the distance of the bumps to each other is smaller than half the wavelength of the microwave signal to be emitted or received and at least one side wall pair of semiconductor substrates, an open Abstrahlschlitz formed and that between the bumps and the Abstrahlschlitz a connected to the circuit of the semiconductor device bump is arranged, via which the excitation of the microwave antenna takes place.
  • This slot opening has a height equal to the height of the bumps.
  • the Abstrahlschlitz expediently has a length such as half the wavelength of the microwave signal to be emitted or to be received.
  • the height of the bumps should be much smaller than the wavelength of the microwave signal to be radiated or received.
  • the arrangement of the bumps together with the Abstrahlschlitz preferably takes place in such a way that results in a substantially triangular shape of the antenna space.
  • the side walls of the semiconductor substrates are preferably at least partially metallized in the region of the emission slot.
  • the microwave antenna enables the realization of laterally directed radiating antennas with the help of common planar construction techniques. Up to now, this has only been possible in the vertical direction with the usual patch antennas in planar structures.
  • the extension of the microwave antenna is only half a wavelength. It is therefore particularly suitable for the frequency range between 10 and 150 GHz and enables the construction of miniaturized integrated directional spotlights.
  • microwave antenna according to the invention is that on the outer surface of the assembly only a small area for an antenna must be occupied.
  • the microwave antenna also has the particular advantage that it can be used as a filter at the same time as the bump, via which the excitation of the microwave antenna takes place, can be positioned such that the microwave antenna has an impedance matching only for the resonant frequency ,
  • the microwave antenna according to the invention can advantageously achieve an all-round radiation in all spatial directions.
  • the structure of an assembly with a microwave antenna according to the invention is carried out according to the usual flip-chip technology.
  • the substrates are made by means of a coplanar MMIC (Microwave Monolithic Integrated Circuits) process, either only as metallizations or possibly as circuits.
  • MMIC Microwave Monolithic Integrated Circuits
  • metallization of the side walls as vias on the edges and the required electrical connections of the front and back are expediently implemented as vias.
  • semiconductor devices can be produced for example for near-field radar systems and other sensors, micro-module labels and all types of smart cards and similar systems, including disposable items that communicate over a small distance in the gigahertz range.
  • a combination with the usual patch antennas is also possible, so that overall a spherical radiation can be achieved.
  • FIG. 1 shows a side view of a flip-chip assembly with a microwave antenna according to the invention.
  • the antenna is realized by the flip-chip mounting of two surface-metallized substrates a and b (metallization 1). These may also be semiconductor substrates with integrated circuits.
  • the two substrates a and b are connected to the surfaces of each other by bumps 2.
  • the result is a parallel-plate line structure with a lateral slot opening of the slot length d between the substrates a and b.
  • This slot opening has a height h, which corresponds to the height h of the bumps 2.
  • the height h is 50... 100 ⁇ m and is thus significantly smaller than the free-space wavelength ⁇ 0 for a frequency range from 10 to 150 GHz.
  • the side walls 3 and 4 of the substrates a and b should be highly conductive to achieve the lateral directivity. They are therefore provided with a metallization 5, which is indicated here as continuous, but which may also be realized by Via fences on the edge of the substrates a and b appropriate.
  • FIG. 2 shows a section in the plane AA 'in Figure 1, that is in the antenna plane
  • Figure 3 is a section through the plane of symmetry BB' in Figure 2.
  • the microwave antenna consists of a triangular cavity formed by the correspondingly arranged bumps 2 between the both substrates a and b. At the front, long side of the cavity for radiation is open (slot length d), on the other two sides it is shielded by a number of bumps 2. The distance between the bumps 2 is smaller than half the free space wavelength ⁇ 0/2. The slot length d must be approximately half the free space wavelength ⁇ 0/2, respectively.
  • the antenna arrangement is similar to a horn, but acts due to the small height h and the conductive side walls 3 and 4 rather than slot antenna.
  • the excitation of the antenna takes place locally between the two substrates a and b with an I / O bump 6. If necessary, this I / O bump 6 directly with a on connected to the substrate a and / or b integrated coplanar front-end circuit, which minimizes the feed losses. Since a coplanar circuit has interconnected ground planes and generally occupies only a small area of the triangular antenna space, this only leads to small changes in the antenna behavior.
  • the microwave antenna shown works as a cavity resonator, which is attenuated by the radiation. This property can be used for narrowband transformation by optimizing the position of the I / O bump 6. This simultaneously provides a filtering effect: all frequencies outside the resonant frequency are poorly matched and are therefore attenuated.
  • the resonance frequency is given essentially by the dimensions of the triangle formed by the bump 2.
  • FIGS. 1 to 3 can be completed to form a four-sector antenna which, as shown in FIG. 4, then covers a 360 ° region.
  • the substrates a and b were implemented as a gallium arsenide (GaAs) substrate (substrates a and b each 625 ⁇ m thick) with gold metallization.
  • the slot length d was 12.5 mm.
  • the conductive sidewalls 3, 4 were realized by means of via chains (diameter 400 ⁇ m, 1 mm pitch (center distance)).
  • the bumps 2 were designed as gold-tin (AuSn) bumps with a diameter of about 80 microns, the chips were flip-chip soldered with a resulting height h of about 80 microns.
  • the front-end circuits were arranged coplanar within a triangular antenna space (eg on the substrate a).
  • the antenna was excited via an I / O bump 6, which connects the front end to the metallization 1 on the substrate b.
  • the intermediate frequency or baseband output of the front-end circuits was carried by vias to the back of the substrate a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

The device has two metallized semiconductor substrates on its opposite surfaces, bumps in rows between the semiconductor substrates at a distance apart that is smaller than half the wavelength of the microwave signal to be radiated or received and an open radiation slot on at least one side wall pair of the semiconducting substrate. The antenna is stimulated via a bump (6) connected to the semiconductor unit and arranged between the bumps (2) and the slot.

Description

Die Erfindung betrifft eine Mikrowellenantenne für in Flip-Chip-Technologie hergestellte Halbleiterbaugruppen mit zwei an ihrer Oberfläche metallisierten Halbleitersubstraten.The invention relates to a microwave antenna for semiconductor chips produced in flip-chip technology with two semiconductor substrates metallized on their surface.

In Flip-Chip-Technologie realisierte Schaltungen sind weithin bekannt. Bei der Flip-Chip-Technologie werden in zwei Ebenen übereinander liegende Halbleitersubstrate miteinander verbunden. Beispielsweise kann ein Halbleiterchip mit einem Träger oder einem Grundsubstrat verbunden werden. Zur Verbindung der beiden Schaltungseinheiten werden anstelle von Drahtbonds sogenannte Bumps (Löt- oder hart plattierte Höcker) verwendet. Beispielsweise wird bei sogenannten Ball Bumps ein Draht an eines der Substrate angebondet und anschließend abgeschmolzen oder abgerissen. Dadurch entsteht eine elektrisch leitende Erhöhung (Höcker), die sich beim Aufeinandersetzen der beiden Substrate mit einer Kontaktstelle der gegenüberliegenden Seite, zum Beispiel durch Thermokompression, verbinden lässt.Circuits realized in flip-chip technology are well known. In flip-chip technology, semiconductor substrates superimposed on two levels are connected to one another. For example, a semiconductor chip may be connected to a carrier or a base substrate. To connect the two circuit units so-called bumps (soldered or hard-plated bumps) are used instead of wire bonds. For example, in so-called ball bumps, a wire is bonded to one of the substrates and then melted off or torn off. This results in an electrically conductive increase (bumps), which can be connected when you put the two substrates with a contact point of the opposite side, for example by thermocompression.

Auf den Substraten sind üblicherweise monolithisch integrierte Schaltungen aufgebaut, wobei die Bumps zur elektrischen Verbindung der Schaltungselemente dienen. Einzelne Bumps können jedoch auch allein aus Gründen der Abstandshalterung der beiden Substrate vorgesehen sein. Auch zur thermischen Ableitung werden die Bumps gern benutzt. Eine Flip-Chip-Baugruppe kann mit einer eigenen Sende- und/oder Empfangsantenne und gegebenenfalls mit einer eigenen Stromversorgung ausgerüstet werden, so dass autarke Sende/Empfangsbaugruppen entstehen. Bekannt sind sogenannte Patch-Antennen, das heißt metallisierte, von der übrigen Schaltung isolierte flächige Bereiche auf einer äußeren Oberfläche einer solchen Baugruppe mit einer Zuleitung zur Schaltung. Die Zuleitung kann gegebenenfalls durch eine vertikale Durchkontaktierung ("via") durch eines der Substrate realisiert werden.Monolithically integrated circuits are usually constructed on the substrates, the bumps serving to electrically connect the circuit elements. However, individual bumps may also be provided solely for the purpose of spacing the two substrates. Also For thermal dissipation, the bumps are often used. A flip-chip module can be equipped with its own transmitting and / or receiving antenna and, if necessary, with its own power supply, so that stand-alone transceiver modules are formed. Known are so-called patch antennas, that is metallized, isolated from the rest of circuit circuit areas on an outer surface of such an assembly with a lead to the circuit. Optionally, the lead can be realized by a vertical via ("via") through one of the substrates.

Aus DE 691 18 060 T2 ist zum Beispiel ein Mikrowellen-Radar-Sender/Empfänger in Flip-Chip-Technologie auf der Grundlage eines monolithisch integrierten Mikrowellen-Schaltkreises (MMIC) bekannt, der zum Senden und Empfangen eines Nahbereichs-Radarsignals mit einer solchen Patch-Antenne ausgerüstet ist. Allgemeinere Erläuterungen zu Patch-Antennen finden sich in R. E. Munson, Conformed Microstrip Antennas and Microstrip Phases arrays, IEEE Transactions on Antennas and Propagation, Vol. 22, 1975 pp. 74-78 oder in J.-F. Zürcher, F. E. Gardiol, Broadband Patch Antennas, Boston, Artech House Inc., 1995 .Out DE 691 18 060 T2 For example, a microwave radar transceiver is known in flip chip technology based on a monolithic microwave integrated circuit (MMIC) equipped to transmit and receive a near range radar signal with such a patch antenna. More general explanations of patch antennas can be found in RE Munson, Conformed Microstrip Antennas and Microstrip Phases Arrays, IEEE Transactions on Antennas and Propagation, Vol. 22, 1975 pp. 74-78 or in J.-F. Zürcher, FE Gardiol, Broadband Patch Antennas, Boston, Artech House Inc., 1995 ,

Aus US2002/0145566A1 ist eine Antenne vom Type Halbwellendipol bekannt, welche auf einem Halbleiter-Chip integriert ist und die den Oberbegriff des Anspruchs 1 bildet.Out US2002 / 0145566A1 is an antenna type half-wave dipole known, which is integrated on a semiconductor chip and forms the preamble of claim 1.

Die bekannten Antennen haben die Eigenschaft, dass sie eine vertikale Abstrahlung in einem relativ großen Winkel bewirken. Für bestimmte Anwendungen ist jedoch auch eine laterale Abstrahlung bzw. Empfang oder eine Rundum-Abstrahlung wünschenswert.The known antennas have the property of causing vertical radiation at a relatively large angle. For certain applications, however, lateral radiation or reception or all-round radiation is also desirable.

Der Erfindung liegt die Aufgabe zugrunde, eine Mikrowellenantenne der eingangs genannten Art anzugeben, die auch eine laterale oder eine Rundum-Abstrahlung bzw. -empfang erlaubt.The invention has for its object to provide a microwave antenna of the type mentioned, which also allows lateral or all-round radiation or reception.

Erfindungsgemäß wird die Aufgabe gelöst durch die Merkmale des Anspruchs 1. Zweckmäßige Ausgestaltungen sind Gegenstand der Unteransprüche.According to the invention the object is achieved by the features of claim 1. Advantageous embodiments are the subject of the dependent claims.

Danach sind zwischen den an ihrer Oberfläche metallisierten Halbleitersubstraten ein geschlossener Zug von Bumps so angeordnet, dass der Abstand der Bumps zueinander kleiner ist als die halbe Wellenlänge des abzustrahlenden oder zu empfangenden Mikrowellen-Signals und an mindestens einem Seitenwandpaar der Halbleitersubstrate ein offener Abstrahlschlitz entsteht und dass zwischen den Bumps und dem Abstrahlschlitz ein mit der Schaltung der Halbleiterbaugruppe verbundener Bump angeordnet ist, über den die Anregung der Mikrowellenantenne erfolgt.Thereafter, a closed train of bumps are arranged between the metallized on their surface semiconductor substrates, that the distance of the bumps to each other is smaller than half the wavelength of the microwave signal to be emitted or received and at least one side wall pair of semiconductor substrates, an open Abstrahlschlitz formed and that between the bumps and the Abstrahlschlitz a connected to the circuit of the semiconductor device bump is arranged, via which the excitation of the microwave antenna takes place.

Es entsteht mit den Bumps eine Parallelplatten-Leitungsstruktur mit einer lateralen Schlitzöffnung. Diese Schlitzöffnung hat eine Höhe, die der Höhe der Bumps entspricht.It creates the bumps a parallel plate line structure with a lateral slot opening. This slot opening has a height equal to the height of the bumps.

Der Abstrahlschlitz hat zweckmäßig eine Länge wie etwa die halbe Wellenlänge des abzustrahlenden oder zu empfangenden Mikrowellen-Signals. Die Höhe der Bumps sollte wesentlich kleiner sein als die Wellenlänge des abzustrahlenden oder zu empfangenden Mikrowellen-Signals.The Abstrahlschlitz expediently has a length such as half the wavelength of the microwave signal to be emitted or to be received. The height of the bumps should be much smaller than the wavelength of the microwave signal to be radiated or received.

Die Anordnung der Bumps zusammen mit dem Abstrahlschlitz erfolgt bevorzugt in der Weise, dass sich im wesentlichen eine Dreieckform des Antennenraumes ergibt.The arrangement of the bumps together with the Abstrahlschlitz preferably takes place in such a way that results in a substantially triangular shape of the antenna space.

Zu Erhöhung der lateralen Richtwirkung der Mikrowellenantenne sind die Seitenwände der Halbleitersubstrate im Bereich des Abstrahlschlitzes bevorzugt mindestens teilweise metallisiert.To increase the lateral directivity of the microwave antenna, the side walls of the semiconductor substrates are preferably at least partially metallized in the region of the emission slot.

Die Mikrowellenantenne ermöglicht die Realisierung von lateral gerichtet strahlenden Antennen mit Hilfe der gängigen planaren Aufbautechniken. Mit den bei planaren Aufbauten üblichen Patch-Antennen war dies bisher nur in vertikaler Richtung möglich. Die Ausdehnung der Mikrowellenantenne beträgt dabei nur eine halbe Wellenlänge. Sie ist daher besonders für den Frequenzbereich zwischen 10 und 150 GHz geeignet und ermöglicht den Aufbau miniaturisierter integrierter Richtstrahler.The microwave antenna enables the realization of laterally directed radiating antennas with the help of common planar construction techniques. Up to now, this has only been possible in the vertical direction with the usual patch antennas in planar structures. The extension of the microwave antenna is only half a wavelength. It is therefore particularly suitable for the frequency range between 10 and 150 GHz and enables the construction of miniaturized integrated directional spotlights.

Ein weiterer Vorteil der erfindungsgemäßen Mikrowellenantenne ist, dass auf der äußeren Oberfläche der Baugruppe nur wenig Fläche für eine Antenne belegt werden muss.Another advantage of the microwave antenna according to the invention is that on the outer surface of the assembly only a small area for an antenna must be occupied.

Bei einer Anordnung von mehreren Mikrowellenantennen auf den Halbleitersubstraten kann ein Abstrahlwinkel von bis zu 360° erreicht werden. Die Mikrowellenantenne hat gegenüber den bisherigen Patch-Antennen außerdem den besonderen Vorteil, dass sie gleichzeitig als Filter genutzt werden kann, da der Bump, über den die Anregung der Mikrowellenantenne erfolgt, so positioniert werden kann, dass die Mikrowellenantenne nur für die Resonanzfrequenz eine Impedanzanpassung aufweist.With an arrangement of a plurality of microwave antennas on the semiconductor substrates, an emission angle of up to 360 ° can be achieved. The microwave antenna also has the particular advantage that it can be used as a filter at the same time as the bump, via which the excitation of the microwave antenna takes place, can be positioned such that the microwave antenna has an impedance matching only for the resonant frequency ,

In Kombination mit einer bzw. mehreren Patch-Antennen lässt sich mit der erfindungsgemäßen Mikrowellenantenne vorteilhaft eine Rundum-Abstrahlung in alle Raumrichtungen erreichen.In combination with one or more patch antennas, the microwave antenna according to the invention can advantageously achieve an all-round radiation in all spatial directions.

Der Aufbau einer Baugruppe mit einer erfindungsgemäßen Mikrowellenantenne erfolgt nach der üblichen Flip-Chip-Technologie. Die Substrate werden mit Hilfe eines koplanaren MMIC-Prozesses (MMIC = Microwave Monolithic Integrated Circuits) hergestellt, entweder nur als Metallisierungen oder gegebenenfalls als Schaltungen. Im Rahmen der Rückseitenprozessierung werden zweckmäßig die Metallisierung der Seitenwände als Via-Zäune an den Rändern sowie die benötigten elektrischen Verbindungen von Vorder- und Rückseite als Vias realisiert. Anschließend erfolgt das Aufbringen der Bumps auf einem der Substrate und die Vereinzelung der Wafer zu Chips sowie schließlich das Flip-Chip-Bonden der beiden Chips (Substrate).The structure of an assembly with a microwave antenna according to the invention is carried out according to the usual flip-chip technology. The substrates are made by means of a coplanar MMIC (Microwave Monolithic Integrated Circuits) process, either only as metallizations or possibly as circuits. As part of the backside processing, metallization of the side walls as vias on the edges and the required electrical connections of the front and back are expediently implemented as vias. Subsequently, the application of the bumps on one of the substrates and the separation of the wafer into chips and finally the flip-chip bonding of the two chips (substrates).

Mit einem Aufbau gemäß der Erfindung lassen sich Halbleiterbaugruppen herstellen zum Beispiel für Nahfeld-Radarsysteme und andere Sensoren, Mikromodul-Etiketten sowie alle Arten von Chipkarten und ähnlichen Systemen, auch Einwegartikel, die über eine geringe Distanz im Gigahertzbereich kommunizieren. Eine Kombination mit den bisher üblichen Patch-Antennen ist ebenfalls möglich, so dass sich insgesamt eine kugelförmige Abstrahlung erreichen lässt.With a structure according to the invention, semiconductor devices can be produced for example for near-field radar systems and other sensors, micro-module labels and all types of smart cards and similar systems, including disposable items that communicate over a small distance in the gigahertz range. A combination with the usual patch antennas is also possible, so that overall a spherical radiation can be achieved.

Die Erfindung soll nachstehend anhand von Ausführungsbeispielen näher erläutert werden. In den zugehörigen Zeichnungen zeigen

Figur 1
eine Seitenansicht einer Flip-Chip-Baugruppe mit einer erfindungsgemäßen Mikrowellenantenne,
Figur 2
eine Schnittansicht der Ebene A-A' in Figur 1 mit den erfindungsgemäßen Bump-Reihen und einer typischen Anregungsstelle E/A,
Figur 3
eine Schnittansicht der Ebene B-B' in Figur 2 und
Figur 4
eine Darstellung gemäß Figur 2 für den Fall einer Vier-Sektoren-Antenne.
The invention will be explained below with reference to exemplary embodiments. In the accompanying drawings show
FIG. 1
a side view of a flip-chip assembly with a microwave antenna according to the invention,
FIG. 2
1 is a sectional view of the plane AA 'in FIG. 1 with the bump rows according to the invention and a typical excitation site I / O, FIG.
FIG. 3
a sectional view of the plane BB 'in Figure 2 and
FIG. 4
a representation according to Figure 2 for the case of a four-sector antenna.

Figur 1 zeigt eine Seitenansicht einer Flip-Chip-Baugruppe mit einer erfindungsgemäßen Mikrowellenantenne. Die Antenne wird durch die Flip-Chip-Montage zweier an der Oberfläche metallisierter Substrate a und b realisiert (Metallisierung 1). Dabei kann es sich auch um Halbleitersubstrate mit integrierten Schaltungen handeln. Wie bei der Flip-Chip-Technik üblich, werden die beiden Substrate a und b mit den Oberflächen zueinander durch Bumps 2 verbunden. Es entsteht so eine Parallelplatten-Leitungsstruktur mit einer lateralen Schlitzöffnung der Schlitzlänge d zwischen den Substraten a und b. Diese Schlitzöffnung hat eine Höhe h, die der Höhe h der Bumps 2 entspricht. Typischerweise beträgt die Höhe h 50...100 µm und ist damit deutlich kleiner als die Freiraumwellenlänge λ0 für einen Frequenzbereich von 10 bis 150 GHz. Die Seitenwände 3 und 4 der Substrate a und b sollten zur Erzielung der lateralen Richtwirkung gut leitend sein. Sie sind deshalb mit einer Metallisierung 5 versehen, die hier als durchgehend angedeutet ist, die aber zweckmäßig auch durch Via-Zäune am Rand der Substrate a und b realisiert sein kann. Die gesamte Höhe des Schichtstapels da+db+h (da, db = Dicke der Substrate a, b) sollte nicht kleiner als ein Zehntel der Freiraumwellenlänge λ0 sein.Figure 1 shows a side view of a flip-chip assembly with a microwave antenna according to the invention. The antenna is realized by the flip-chip mounting of two surface-metallized substrates a and b (metallization 1). These may also be semiconductor substrates with integrated circuits. As is customary in flip-chip technology, the two substrates a and b are connected to the surfaces of each other by bumps 2. The result is a parallel-plate line structure with a lateral slot opening of the slot length d between the substrates a and b. This slot opening has a height h, which corresponds to the height h of the bumps 2. Typically, the height h is 50... 100 μm and is thus significantly smaller than the free-space wavelength λ 0 for a frequency range from 10 to 150 GHz. The side walls 3 and 4 of the substrates a and b should be highly conductive to achieve the lateral directivity. They are therefore provided with a metallization 5, which is indicated here as continuous, but which may also be realized by Via fences on the edge of the substrates a and b appropriate. The total height of the layer stack d a + d b + h (d a , d b = thickness of the substrates a, b) should not be less than one tenth of the free space wavelength λ 0 .

Figur 2 zeigt einen Schnitt in der Ebene A-A' in Figur 1, das heißt in der Antennenebene, Figur 3 einen Schnitt durch die Symmetrieebene B-B' in Figur 2. Die Mikrowellenantenne besteht aus einem dreieckförmigen Hohlraum, gebildet durch die entsprechend angeordneten Bumps 2 zwischen den beiden Substraten a und b. An der vorderen, langen Seite ist der Hohlraum zur Abstrahlung offen (Schlitzlänge d), an den anderen beiden Seiten ist er durch jeweils eine Reihe von Bumps 2 geschirmt. Der Abstand der Bumps 2 ist kleiner als die halbe Freiraumwellenlänge λ0/2. Die Schlitzlänge d muss etwa die halbe Freiraumwellenlänge λ0/2 betragen. Die Antennenanordnung ähnelt einem Hornstrahler, wirkt aber wegen der geringen Höhe h und den leitenden Seitenwände 3 und 4 eher als Schlitzantenne.Figure 2 shows a section in the plane AA 'in Figure 1, that is in the antenna plane, Figure 3 is a section through the plane of symmetry BB' in Figure 2. The microwave antenna consists of a triangular cavity formed by the correspondingly arranged bumps 2 between the both substrates a and b. At the front, long side of the cavity for radiation is open (slot length d), on the other two sides it is shielded by a number of bumps 2. The distance between the bumps 2 is smaller than half the free space wavelength λ 0/2. The slot length d must be approximately half the free space wavelength λ 0/2, respectively. The antenna arrangement is similar to a horn, but acts due to the small height h and the conductive side walls 3 and 4 rather than slot antenna.

Die Anregung der Antenne, das heißt die Signaleinspeisung im Sende- bzw. das Ausgangstor im Empfangsfall, erfolgt lokal zwischen den beiden Substraten a und b mit einem E/A-Bump 6. Gegebenfalls kann dieser E/A-Bump 6 direkt mit einer auf dem Substrat a und/oder b integrierten koplanaren Frontend-Schaltung verbunden werden, was die Zuführungsverluste minimiert. Da eine koplanare Schaltung miteinander verbundene Masseflächen aufweist und im allgemeinen nur einen kleinen Bereich des dreieckigen Antennenraumes einnimmt, führt dies nur zu kleinen Veränderungen im Antennenverhalten.The excitation of the antenna, that is the signal input in the transmitting or the output gate in the case of reception, takes place locally between the two substrates a and b with an I / O bump 6. If necessary, this I / O bump 6 directly with a on connected to the substrate a and / or b integrated coplanar front-end circuit, which minimizes the feed losses. Since a coplanar circuit has interconnected ground planes and generally occupies only a small area of the triangular antenna space, this only leads to small changes in the antenna behavior.

Die gezeigte Mikrowellenantenne arbeitet als Hohlraumresonator, der durch die Abstrahlung bedämpft wird. Diese Eigenschaft kann zur schmalbandigen Transformation genutzt werden, indem die Position des E/A-Bumps 6 optimiert wird. Dadurch erhält man gleichzeitig eine Filterwirkung: Alle Frequenzen außerhalb der Resonanzfrequenz sind schlecht angepasst und werden deshalb gedämpft. Die Resonanzfrequenz ist im wesentlichen durch die Abmessungen des durch die Bumps 2 gebildeten Dreiecks gegeben.The microwave antenna shown works as a cavity resonator, which is attenuated by the radiation. This property can be used for narrowband transformation by optimizing the position of the I / O bump 6. This simultaneously provides a filtering effect: all frequencies outside the resonant frequency are poorly matched and are therefore attenuated. The resonance frequency is given essentially by the dimensions of the triangle formed by the bump 2.

Die Struktur gemäß den Figuren 1 bis 3 kann zu einer Vier-Sektorenantenne vervollständigt werden, die, wie in Figur 4 gezeigt ist, dann einen 360°-Bereich abdeckt.The structure according to FIGS. 1 to 3 can be completed to form a four-sector antenna which, as shown in FIG. 4, then covers a 360 ° region.

In einer konkreten Ausführungsform für eine 24 GHz-Antenne wurden die Substrate a und b als Galliumarsenid(GaAs)-Substrat (Substrate a und b jeweils 625 µm dick) mit Goldmetallisierung ausgeführt. Die Schlitzlänge d betrug 12,5 mm. Die leitenden Seitenwände 3, 4 wurden mit Hilfe von Via-Ketten realisiert (Durchmesser 400 µm, 1 mm Pitch (Abstand der Mittelpunkte)). Die Bumps 2 wurden als Gold-Zinn(AuSn)-Bumps ausgeführt mit einem Durchmesser von ca. 80 µm, die Chips wurden flip-chip-gelötet mit einer resultierenden Höhe h von ca. 80 µm. Die Frontend-Schaltungen wurden koplanar innerhalb eines dreieckförmigen Antennenraums angeordnet (z.B. auf dem Substrat a). Die Anregung der Antenne erfolgte über einen E/A-Bump 6, der das Frontend mit der Metallisierung 1 auf dem Substrat b verbindet. Der Zwischenfrequenz- oder Basisbandausgang der Frontend-Schaltungen wurde mittels Vias zur Rückseite des Substrats a ausgeführt.In a specific embodiment for a 24 GHz antenna, the substrates a and b were implemented as a gallium arsenide (GaAs) substrate (substrates a and b each 625 μm thick) with gold metallization. The slot length d was 12.5 mm. The conductive sidewalls 3, 4 were realized by means of via chains (diameter 400 μm, 1 mm pitch (center distance)). The bumps 2 were designed as gold-tin (AuSn) bumps with a diameter of about 80 microns, the chips were flip-chip soldered with a resulting height h of about 80 microns. The front-end circuits were arranged coplanar within a triangular antenna space (eg on the substrate a). The antenna was excited via an I / O bump 6, which connects the front end to the metallization 1 on the substrate b. The intermediate frequency or baseband output of the front-end circuits was carried by vias to the back of the substrate a.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Metallisierungmetallization
22
BumpBump
33
SeitenwandSide wall
44
SeitenwandSide wall
55
Metallisierungmetallization
66
E/A-BumpI / O Bump
a, ba, b
Substratsubstratum
dd
Schlitzlängeslot length
hH
Höheheight
da d a
Dicke (des Substrats a)Thickness (of the substrate a)
db d b
Dicke (des Substrats b)Thickness (of the substrate b)
λ0 λ 0
FreiraumwellenlängeFree space wavelength

Claims (10)

  1. Microwave antenna for semiconductor modules manufactured in flip-chip technology with two semiconductor substrates metallized on their surface (a, b), wherein the both substrates are connected by a closed set of bumps between the metallized surfaces wherein the distance between the bumps (2) is less than half the wavelength (λ0/2) of the microwave signal to be radiated or to be received, and, in at least one pair of side walls (3, 4) of the semiconductor substrates (a, b), an open radiation slot arises, and that, between the bumps (2) and the radiation slot, a bump (6) connected with the circuitry of the semiconductor module, is arranged, by means of which the excitation of the microwave antenna takes place.
  2. Microwave antenna according to Claim 1, wherein the arrangement of the bumps (2) together with the radiation slot basically produces a triangular shape.
  3. Microwave antenna according to Claim 1 or 2, wherein the slot length (d) of the radiation slot amounts to approximately half the free space wavelength λ0/2 of the microwave signal to be radiated or to be received.
  4. Microwave antenna according to any of the previous claims, wherein the height (h) of the bumps (2) is significantly smaller than the wavelength λ0 of the microwave signal to be radiated or to be received.
  5. Microwave antenna according to any of the previous claims, wherein the construction height of the semiconductor module is more than one-tenth of the wavelength λ0 of the microwave signal to be radiated or to be received.
  6. Microwave antenna according to any of the previous claims, wherein the side walls (3, 4) of the semiconductor module, in the area of the radiation slot, are at least partially provided with metallization (5).
  7. Microwave antenna according to any of the previous claims, wherein the bump (6) by means of which the excitation of the microwave antenna takes place is positioned in such a way that the microwave antenna exhibits an impedance adjustment for the resonance frequency.
  8. Microwave antenna according to any of the previous claims, wherein, on at least one of the semiconductor substrates (a, b), in the vicinity of the antenna area composed by the bumps (2) and the radiation slot, a monolithically integrated circuit is constructed.
  9. Microwave antenna according to any of the previous claims, wherein, between the semiconductor substrates (a, b), bumps (2) are arranged in the shape of a cross, so that a four-sector antenna is created.
  10. Microwave antenna according to any of the previous claims, wherein the metallization (5) of the side walls of the semiconductor substrates is implemented by means of via chains.
EP05728358A 2004-03-19 2005-03-16 Microwave antenna for flip-chip semiconductor modules Not-in-force EP1726063B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004014018A DE102004014018B3 (en) 2004-03-19 2004-03-19 Microwave antenna for semiconductor unit made using flip-chip technology is stimulated via bump connected to semiconductor unit and arranged between rows of bumps and open radiation slot
PCT/EP2005/003303 WO2005091438A1 (en) 2004-03-19 2005-03-16 Microwave antenna for flip-chip semiconductor modules

Publications (2)

Publication Number Publication Date
EP1726063A1 EP1726063A1 (en) 2006-11-29
EP1726063B1 true EP1726063B1 (en) 2007-07-04

Family

ID=34745452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05728358A Not-in-force EP1726063B1 (en) 2004-03-19 2005-03-16 Microwave antenna for flip-chip semiconductor modules

Country Status (6)

Country Link
US (1) US7612728B2 (en)
EP (1) EP1726063B1 (en)
JP (1) JP2007529930A (en)
AT (1) ATE366465T1 (en)
DE (2) DE102004014018B3 (en)
WO (1) WO2005091438A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103902B2 (en) * 2007-05-09 2015-08-11 Infineon Technologies Ag Packaged antenna and method for producing same
JP2009200101A (en) 2008-02-19 2009-09-03 Liquid Design Systems:Kk Semiconductor chip and semiconductor device
US8274136B2 (en) * 2009-04-09 2012-09-25 Worcester Polytechnic Institute Semiconductor patch antenna
JP5429459B2 (en) * 2009-06-01 2014-02-26 独立行政法人情報通信研究機構 Mm-wave antenna
US8489162B1 (en) * 2010-08-17 2013-07-16 Amazon Technologies, Inc. Slot antenna within existing device component
EP2667449A1 (en) * 2012-05-23 2013-11-27 Nxp B.V. Integrated circuit package having an integrated antenna
US9871299B2 (en) * 2014-12-04 2018-01-16 Qualcomm Incorporated Cavity backed aperture antenna
US9443810B1 (en) 2015-09-14 2016-09-13 Qualcomm Incorporated Flip-chip employing integrated cavity filter, and related components, systems, and methods
CN110326159B (en) * 2017-03-27 2024-08-23 英特尔公司 Antenna integrated into printed circuit board
CA3078581A1 (en) * 2017-10-05 2019-04-11 Google Llc Low footprint resonator in flip chip geometry
CN113659322B (en) * 2021-07-26 2024-04-19 西安理工大学 Wave beam reconfigurable substrate integrated waveguide antenna based on quarter mode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115245A (en) * 1990-09-04 1992-05-19 Hughes Aircraft Company Single substrate microwave radar transceiver including flip-chip integrated circuits
JP3141692B2 (en) * 1994-08-11 2001-03-05 松下電器産業株式会社 Millimeter wave detector
JP3471160B2 (en) * 1996-03-18 2003-11-25 株式会社東芝 Monolithic antenna
US6563464B2 (en) * 2001-03-19 2003-05-13 International Business Machines Corporation Integrated on-chip half-wave dipole antenna structure
US6930647B2 (en) 2001-05-17 2005-08-16 Hitachi Kokusai Electric Inc. Semicircular radial antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20080238792A1 (en) 2008-10-02
US7612728B2 (en) 2009-11-03
WO2005091438A1 (en) 2005-09-29
EP1726063A1 (en) 2006-11-29
DE102004014018B3 (en) 2005-08-11
JP2007529930A (en) 2007-10-25
DE502005000985D1 (en) 2007-08-16
ATE366465T1 (en) 2007-07-15

Similar Documents

Publication Publication Date Title
EP1726063B1 (en) Microwave antenna for flip-chip semiconductor modules
DE102010001407B4 (en) Integrated wafer-level antennas
DE102011085348B4 (en) Integrated antennas in a wafer plane housing and manufacturing method therefor
DE60221353T2 (en) radar sensor
DE69628253T2 (en) Ultra high frequency radio
DE602004008653T2 (en) FLEXIBLE CONFORMANT ANTENNA
EP1825561B1 (en) Antenna assembly for a radar transceiver
EP1245059B1 (en) Radar sensor for monitoring the environment of a motor vehicle
DE112008000985T5 (en) High-frequency circuit board, high-frequency switching module and radar device
EP2820674B1 (en) Semiconductor module having integrated antenna structures
DE102013111569B4 (en) Semiconductor packages with integrated antennas and processes for their production
DE3855146T2 (en) Monolithic microwave transmitter / receiver
DE112009002384T5 (en) Antenna and wireless ic component
EP1420267B1 (en) Radar sensor and radar antenna for monitoring the environment of a motor vehicle
EP2494655B1 (en) Antenna arrangement for signal transmission
EP3503290B1 (en) Antenna device with bond wires
WO2006061345A1 (en) Transmitting and/or receiving device comprising a leadframe antenna
EP1958002A1 (en) Antenna array for a radar sensor
EP3346545B1 (en) Strip bond antennas
DE102019128779A1 (en) High frequency device with high frequency signal routing element and associated manufacturing process
DE102013207829A1 (en) Chip antenna, electronic component and manufacturing method therefor
DE102020112787A1 (en) High frequency device with high frequency chip and waveguide structure
WO2005091437A1 (en) Antenna assembly and method for producing said assembly
DE102012025433B4 (en) Method for housing sub-millimeter-wave semiconductor circuits and semiconductor module that can be produced by the method
EP4016729A1 (en) Antenna device, antenna array, electrical circuit with antenna device and strip antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070725

REF Corresponds to:

Ref document number: 502005000985

Country of ref document: DE

Date of ref document: 20070816

Kind code of ref document: P

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071015

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071004

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

26N No opposition filed

Effective date: 20080407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

BERE Be: lapsed

Owner name: FORSCHUNGSVERBUND BERLIN E.V.

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080316

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200325

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200324

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316