EP1725398A1 - Adhesive bond and method for the production thereof - Google Patents

Adhesive bond and method for the production thereof

Info

Publication number
EP1725398A1
EP1725398A1 EP05715086A EP05715086A EP1725398A1 EP 1725398 A1 EP1725398 A1 EP 1725398A1 EP 05715086 A EP05715086 A EP 05715086A EP 05715086 A EP05715086 A EP 05715086A EP 1725398 A1 EP1725398 A1 EP 1725398A1
Authority
EP
European Patent Office
Prior art keywords
substrate material
nanocomposites
nano
adhesive bond
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05715086A
Other languages
German (de)
French (fr)
Inventor
Manfred Danziger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I S T IonenStrahlTechnologie GmbH
Original Assignee
I S T IonenStrahlTechnologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I S T IonenStrahlTechnologie GmbH filed Critical I S T IonenStrahlTechnologie GmbH
Publication of EP1725398A1 publication Critical patent/EP1725398A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/092Particle beam, e.g. using an electron beam or an ion beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/095Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers

Definitions

  • the invention relates to an adhesive bond of a substrate material, the surface of which and the solid area close to the surface have polymer compounds with low active surface energy, with another material and a method for producing a corresponding adhesive bond.
  • the invention relates to an adhesive metallized fluoropolymer, such as polytetrafluoroethylene (PTFE ), as a base material (substrate material) for printed circuit boards with a very high structural density (fine and ultra-fine printed circuit boards) for use in the GHz range and a method for the adhesive metallization of a corresponding fluoropolymer
  • PTFE polytetrafluoroethylene
  • the adhesive bond of two different materials is an indispensable prerequisite for a large number of technical applications of corresponding composite materials.
  • the adhesive metallization of surfaces of a polymer material with extremely good dielectric properties small dielectric constant ⁇ re
  • it is necessary to make the surfaces of the metallic conductors as smooth as possible means that the adhesive bond between the fluoropolymer as substrate material and the metallic conductor strip must be realized without roughening the substrate material.
  • Analog A Requirements are for materials for the production of low-loss electrical capacitors
  • GB 816641 describes a method for metallizing a PTFE surface, in which the PTFE surface is first treated with sodium dissolved in liquid ammonia and then a nickel layer on the PTFE layer from a solution of a nickel salt and a sodium hypophosphite. Surface is applied The nickel layer forms the basis for the application of a further metal layer.
  • DE 198 17 388 AI also describes a solution in which the smooth surface of a fluoropolymer is firstly treated with a glow discharge process, a process that is carried out in a working pressure range of 10 Pa ( I0 -01 mbar) up to 1500 Pa (15 mbar) is carried out, cleaned and etched on. The pretreatment conditions are set in such a way that the substrate surface is as smooth as possible.
  • Metal is applied to the surface of the polymer in such a way that it does not form a closed metal layer, but instead deposits in the form of metal particles with dimensions in the range from 5 to 20 nm.
  • the process conditions are chosen so that there is no influence on the polymer surface ( Temperature below the glass temperature)
  • the invention is based on the problem of an adhesive bond between a substrate material, the surface of which and the near-surface solid area have polymer compounds with a low active surface energy, with another material and the creation of a method for producing a corresponding adhesive bond, the disadvantages of Prior art should be avoided
  • a network which has the features of the first claim and a method which has the features of the claim 5.
  • Claims 2 to 4 describe advantageous configurations of the network and claims 6 to 9 advantageous configurations of the method Production of the adhesive bond It was found that a bond between a substrate material, the surface and the near-surface solid region of which have polymer compounds with low active surface energy, such as fluoropolymers, and another material, such as a metal, is particularly strong if the substrate material is nanostructured into the other material, this transition taking place through nanocomposites, which are composed of the substrate material and the other material, and the material components of the nanocomposites from the substrate material in Ric Maintaining the other material from predominantly substrate material to predominantly the other material.
  • Nanostructuring means structures in the nanometer range, ie the existence of structural elements, their dimensions and length , Width, height, diameter are in the nanometer range, and in which the number of atoms and / or molecules forming a structural element is smaller than in microstructures
  • Such a nanostructured transition area forms a physical interaction system.
  • the structural elements of this nanostructured transition area are mostly nanocomposites, a nanocomposite being formed by including other elements or compounds in the substrate material. In a nanocomposite, materials with different properties in the range of a few nanometers penetrate.
  • the proportion of both materials is largely the same within a structural element nanocomposite, but it changes within the transition area formed by the structural elements (nanocomposites) from the substrate material in the direction of the other material, in that near the substrate material nanocomposites of predominantly substrate material are present to the nanocomposites with a increasingly larger proportion of the other material are deposited, until finally in the vicinity of the other material nanocomposites from predominantly de occur in another material
  • the transition area within which the substrate material changes into the other material in a nanostructured manner extends over a layer thickness of a few nanometers up to a few micrometers (20 nm to 20 ⁇ m).
  • the substrate material is largely flat, but also strongly corrugated, the waviness of the transition region moving within the specified layer thickness, ie a few nanometers to a few micrometers.
  • the composite has a particularly high strength if the nanocomposites contain metal parts and / or metal compounds, in particular metal polymeies.
  • the adhesive strength of a composite according to the invention made of a substrate material and another material that is not a metal can therefore be increased further by arranging nanocomposite within the transition region that contains the nanostructure and contains nanocomposites are, in addition to the substrate material proportions and the proportions of the other material, contain metal portions and / or portions of metal compounds, in particular metal polymers.
  • the arrangement of diamond-like components, such as ⁇ -CH, containing nanocomposites within the transition region makes the plastic inherent shadows of the transition region Significantly improved This is particularly important if the substrate material is permanently elastic, for example to create a flexible line carrier.
  • An additional effect of the composite according to the invention, which is advantageous for many applications, is that the nanostructured, nanocomposite transition area brings about a hydrophobic sealing of the surface of the substrate material
  • another material is produced according to the invention by activating, ie physically and / or chemically, stimulating a nano-crumpled surface and the corresponding nano-cragged surface near the surface of the solid material and within the energetically excited state of the nano-crumbled surface or of the nano-crumpled solid area close to the surface, the other material is applied in particles until a complete coating of the polymer compounds with a low active surface energy on the surface of the substrate material is produced with the other material, expediently the number of particles of the other material to be applied per unit time The course of the process is increased continuously or in steps.
  • the layer of the other material produced in this way can furthermore be produced using known processes (eg wet chemical and / or electrolyte isch) can be built up to the desired layer thickness.
  • the excitation of the nano-crumpled surface and the nano-crumpled solid area close to the surface takes place by means of ion and / or ion beam and / or plasma and / or electron beam and / or laser processes by PVD and / or CVD processes and / or cathode sputtering. Any combination is conceivable both with regard to the excitation method or methods used and with regard to the application method or methods used. However, it should be noted that some processes require different technical facilities to be implemented and therefore may not be able to be implemented locally at the same time
  • the processes must be used in immediate succession or alternately, so that the process steps of excitation and particle application act as a uniform overall process on the nano-crumpled surface and the nano-crumbled surface near the solid. It may be advisable to use the processes in immediate chronological order However, this is not absolutely necessary. It is important that the effect of one procedure (the stimulus procedure) continues if the other procedure (the application procedure) is used. This is the crucial prerequisite for this; that the nanostructured, nanocomposite-containing transition area is formed between the substrate material and the other material.
  • the quasi overall process comes to the formation of a complete coating of the surface of the substrate material with the other material, because only then the nanocomposites are adequately formed from portions of the substrate material and the other material and, if appropriate, an additional portion of metal or a metal compound, in particular a metal polymer
  • Another important aspect of the effect of the method according to the invention lies in the nano-crumbling of the surface and the solid area of the substrate material close to the surface.
  • This nano-cragging is with a fractal structure comparable and has geometric structural elements in the nanometer range (a few 100 nanometers to a few micrometers), so-called nanoclips, on the one hand is characterized by a low microscopic roughness depth, but on the other hand has a large ratio of surface area to geometric base area
  • the nano-crumpling of the surface leads to this physical fact that almost anywhere in the surface of different mechanical, chemical, polar, etc.
  • FIG. I a cross section through a nano-crinkled surface layer
  • FIG. 2 a section of the nano-crimped surface layer with nano-cliffs, Transition region having nanocomposites and in
  • Figure 4 shows a section of the PTFE-copper composite with clearly shown nanocomposites in the transition area Example I
  • a film material 1 consisting of a glass fabric-PTFE composite with a at least 20 ⁇ m thick PTFE surface layer, is periodically moved past an ion source in a vacuum chamber and processed with a directed ion beam.
  • the ions are accelerated with a voltage of 5 keV
  • the distance between the ion source and the film surface is approximately 10 cm.
  • Argon is used as the process gas at a pressure of 2 » 10 4 mbar.
  • the irradiation density is I mA / cm 2.
  • the process is carried out until an effective exposure time of the entire film surface is carried out reached of about one minute
  • the PTFE surface layer then has a nano-cleavage 2 with nanoclips 3 over a range of 2 to 6 ⁇ m thickness; as shown in Figure I or schematically Darge in Figure 2 ⁇ represents the PTFE surface layer is activated as a result of ion bombardment, ie the Polymermolekule are physically / chemically excited and or without time delay followed by a further continued machining is done of the excited nanozerklufte ⁇ th region of the PTFE surface layer such that are applied by means of a magnetron copper particles on the nanozerkluftete PTFE surface and age ⁇ alternately to imparting process, a further ion bombardment of the nanozerklufteten portion 2 of the PTFE surface layer is carried out the application of the copper particles by means of Kathodenzerstau- and the further ion bombardment carried out alternately in at periods of approx.
  • a polyethylene therapy film (PET) I the surface of which has already been processed in a previous processing step using ion trace technology and which has a nano-fissured surface structure 2 with nanoclips 3, as shown in FIGS. I and 2, is placed in a vacuum chamber on an ion beam from an ion source an acceleration voltage of 3 kV at a pressure of 8 * 10 ⁇ 4 mbar and activated in this way. The activation takes place within an effective processing time of approx. 20 s. Immediately afterwards, a magnet is applied to the activated one, which has a nano-crinkled surface structure 2 with nanoclips 3 Foil surface applied under oxygen Aluminum particles, which mainly oxidize to aluminum oxide particles during the application due to the oxygen.
  • a transition area 6 comprising PET, aluminum and aluminum oxide is 6 originated from the PET base I to the aluminum oxide 4, within the nanocomposites 5 of the side of the transition region 6 facing the PET base I with a high proportion of PET to nanocomposites 5 with a high proportion of aluminum oxide on the side of the transition region facing away from the PET base I.
  • Transition to this transition area 6 is subsequently applied at a pressure of 5 * I0 -3 to 7 * I0 -3 mbar aluminum oxide by thermally evaporating aluminum with the addition of oxygen, which oxidizes as a result of the oxygen and as aluminum oxide on the Surface of the transition area 6 is deposited
  • the process is continued up to a layer thickness of the aluminum oxide 4 of 10 ⁇ m to 20 ⁇ m
  • an adhesive bond was created between polyethylene terephthalate film (PEO I and aluminum oxide 4), which is formed by a nanocomposite 5 made of PET, aluminum and aluminum oxide containing nanostructured transition region 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The invention relates to an adhesive bond of a substrate material (1), whose surface and surface-near solid area contain polymer compounds with low active surface energy, and another material (4) and a method for the production of a corresponding adhesive bond. The invention more particularly relates to an adhesive metallized fluoropolymer, such as polytetrafluorethylene (PTFE), as a base material for printed circuit boards having a very high structural density (fine and very fine printed circuit boards) used in the GHz range and to a method for adhesive metallization of a corresponding fluoropolymer. According to the invention, the adhesive bond is formed by a nanostructured transition area (6), containing nanocomposites, between the substrate material (1) and the other material (4), inside which the substrate material (4) which is nanostructured changes into the other material (4). The nanocomposites are composed of substrate material (1) and the other material (4). The material parts of the nanocomposites change from the substrate material (1) in the direction of the other material (1), starting with predominantly substrate material which becomes predominantly the other material (4). According to the invention, the adhesive bond is produced by physically and/or chemically exciting a nano-indented surface of the substrate material (1) and by applying the other material (4) in the form of particles during the excited state until the surface of the other substrate material (1) is fully coated with the other material (4).

Description

Haftfester Verbund und Verfahren zur HerstellungAdhesive bond and manufacturing method
Die Erfindung betrifft einen haftfesten Verbund eines Substratmateπals, dessen Ober- flache und der oberflachennahe Festkorperbereich Polymerverbindungen mit geringer aktiver Oberflachenenergie aufweisen, mit einem anderen Material und ein Verfahren zur Herstellung eines entsprechenden haftfesten Verbundes Insbesondere betrifft die Erfindung ein haftfest metallisiertes Fluorpolymer, wie Polytetrafluorethylen (PTFE), als Basismateπal (Substratmateπal) für Leiterplatten mit einer sehr hohen Strukturdichte (Fein- und Feinstleiterplatten) für den Einsatz im GHz-Bereich und ein Verfahren zur haftfesten Metallisierung eines entsprechenden FluorpolymersThe invention relates to an adhesive bond of a substrate material, the surface of which and the solid area close to the surface have polymer compounds with low active surface energy, with another material and a method for producing a corresponding adhesive bond. In particular, the invention relates to an adhesive metallized fluoropolymer, such as polytetrafluoroethylene (PTFE ), as a base material (substrate material) for printed circuit boards with a very high structural density (fine and ultra-fine printed circuit boards) for use in the GHz range and a method for the adhesive metallization of a corresponding fluoropolymer
Der haftfeste Verbund zweier unterschiedlicher Materialien, wie beispielsweise eines Substratmaterials mit einem anderen Material, ist eine unabdmgbareVoraussetzun fur eine Vielzahl technischer Anwendungen entsprechender Verbundmateπalien So bildet die haftfeste Metallisierung von Oberflachen eines Polymermaterials mit extrem guten dielektrischen Eigenschaften (kleine Dielektrizitätskonstante εre| und geringe dielektrische Verluste tan δ) eine wesentliche Grundlage für die Herstellung hochwertiger Leiterplatten mit einer sehr hohen Strukturdichte für Arbeitsfrequenzen oberhalb einem GHz Zur Minimierung von elektrischen Verlusten, insbesondere bei Leiterplatten im Feinstleiterbereich, ist es dabei erforderlich, die Oberflachen der metallischen Leitei - zuge möglichst glatt zu gestalten Dies bedeutet, dass der haftfeste Verbund zwischen dem Fluorpolymer als Substratmateπal und dem metallischen Leiterzug ohne starkes Aufrauen des Substratmaterials realisiert werden muss Analoge Anforderungen stehen für Materialien zur Herstellung verlustarmer elektrischer KondensatorenThe adhesive bond of two different materials, such as a substrate material with another material, is an indispensable prerequisite for a large number of technical applications of corresponding composite materials. Thus, the adhesive metallization of surfaces of a polymer material with extremely good dielectric properties (small dielectric constant ε re | and low dielectric losses) tan δ) an essential basis for the production of high-quality printed circuit boards with a very high structural density for working frequencies above one GHz.To minimize electrical losses, especially with printed circuit boards in the fine conductor range, it is necessary to make the surfaces of the metallic conductors as smooth as possible means that the adhesive bond between the fluoropolymer as substrate material and the metallic conductor strip must be realized without roughening the substrate material. Analog A Requirements are for materials for the production of low-loss electrical capacitors
In der GB 816641 wird eine Methode zur Metallisierung einer PTFE-Oberfiache beschrieben, bei der die PTFE-Oberflache zunächst mit in flussigem Ammoniak gelöstem Natrium behandelt wird und danach aus einer Losung eines Nickel-Salzes und eines Natπum- hypophosphites eine Nickelschicht auf die PTFE-Oberflache aufgetragen wird Die Nickelschicht bildet die Grundlage für den Auftrag einer weiteren Metallschicht Auch in der DE 198 17 388 AI wird eine Losung beschrieben, bei welcher die glatte Oberflache eines Fluorpolymers zunächst mit einem Glimmentladungsverfahren, einem Verfahren, das in einem Arbeitsdruckbereich von 10 Pa ( I0-01 mbar) bis 1500 Pa ( 15 mbar) durchgeführt wird, gereinigt und angeatzt wird Die Vorbehandlungsbedingungen werden dabei so eingestellt, dass eine möglichst glatte Substratoberflache entsteht Für diesen Typ Glimmentladung hat sich herausgestellt, dass sich mit einer Sauerstoff/Tetrafluormethan-Mischung nach dem Anatzprozess eine sehr glatte Oberflache ausbildet Auf diese aktivierte Oberfläche wird eine erste Nickel enthaltende Metallschicht durch Zersetzen fluchtiger Nickelverbindungen aufgebracht und nachfolgend auf die Nickelschicht eine zweite Metallschicht aus einem Metallisierungsbad abgeschieden Ein so erzeugter Polymer/Metall-Verbund weist nach Aussage des Anmelders überraschenderweise eine hervorragende Haftfestigkeit auf Nachteilig bei beiden Losungen ist, dass grundsätzlich zunächst eine Nickelschicht auf die Oberflache des Fluorpolymers aufgebracht werden muss Außerdem ist die Haftfestigkeit des geschaffenen Verbundes für viele technische Anwendungen nicht ausreichend Eine ahnliche Vorgehensweise ist der DE 101 63437 AI zu entnehmen Allerdings findet hierbei der Reinigungs- und Anatzprozess in der Vakuumkammer bei einem Ai beits- druck von 0,6 Pa (6* I0"03 mbar) statt Ebenfalls bei 0 6 Pa erfolgt dann eine Beschichtung der Oberflache mit Kohlenstoff, wobei diese Beschichtung mit einer HF-Kathodenzer- staubung durchgeführt wird Der so erzeugte Sandwich-Aufbau wird anschließend in mehreren Bearbeitungsschritten weiterbearbeitet und abschließend mit Metall verklebt Es wird in der DE 101 63 437 AI darauf verwiesen, dass ein auf diese Art und Weise erzeugter Klebeverbund nicht gelost werden konnte Es verbleibt allerdings der Nachteil, dass zunächst ein zusatzlicher Stoff aufgetragen werden muss Die in der Anmeldung behauptete hohe Haftfestigkeit konnte im Übrigen nicht generell bestätigt werden Auch in der US 6 342 307 B I wird ein Verfahren zur Erzeugung eines haftfesten Verbundes einer Metallschicht mit einer Polymeroberflache beschrieben Dieses Verfahren umfasst folgende wesentliche VerfahrensschritteGB 816641 describes a method for metallizing a PTFE surface, in which the PTFE surface is first treated with sodium dissolved in liquid ammonia and then a nickel layer on the PTFE layer from a solution of a nickel salt and a sodium hypophosphite. Surface is applied The nickel layer forms the basis for the application of a further metal layer. DE 198 17 388 AI also describes a solution in which the smooth surface of a fluoropolymer is firstly treated with a glow discharge process, a process that is carried out in a working pressure range of 10 Pa ( I0 -01 mbar) up to 1500 Pa (15 mbar) is carried out, cleaned and etched on. The pretreatment conditions are set in such a way that the substrate surface is as smooth as possible. For this type of glow discharge it has been found that using an oxygen / tetrafluoromethane mixture develop a very smooth surface for the preparation process A first nickel-containing surface is formed on this activated surface The metal layer is applied by decomposing volatile nickel compounds and then a second metal layer is deposited from a metallization bath onto the nickel layer. According to the applicant, a polymer / metal composite produced in this way surprisingly exhibits excellent adhesive strength. A disadvantage of both solutions is that basically a nickel layer is initially applied to the surface of the fluoropolymer must also be applied. In addition, the adhesive strength of the composite created is not sufficient for many technical applications. A similar procedure can be found in DE 101 63437 AI. However, the cleaning and preparation process takes place in the vacuum chamber at a working pressure of 0.6 Pa (6 * I0 "03 mbar) instead of likewise at 0 6 Pa, the surface is then coated with carbon, this coating being carried out using HF cathode sputtering. The sandwich construction thus produced is then carried out in several B Processing steps further processed and finally glued with metal. DE 101 63 437 AI refers to the fact that an adhesive bond produced in this way could not be detached. However, there remains the disadvantage that an additional substance has to be applied first in the application Furthermore, the claimed high adhesive strength could not be generally confirmed. US Pat. No. 6,342,307 BI also describes a process for producing an adhesive bond between a metal layer and a polymer surface. This process comprises the following essential process steps
1 Auf die Oberflache des Polymers wird derart Metall aufgetragen, dass sich keine geschlossene Metallschicht ausbildet, sondern Ablagerungen in Form von Metallparti- keln mit Abmaßen im Bereich von 5 bis 20 nm entstehen Die Prozessbedingungen werden dabei so gewählt, dass keine Beeinflussung der Polymeroberflache stattfindet (Temperatur unterhalb der Glastemperatur)1 Metal is applied to the surface of the polymer in such a way that it does not form a closed metal layer, but instead deposits in the form of metal particles with dimensions in the range from 5 to 20 nm. The process conditions are chosen so that there is no influence on the polymer surface ( Temperature below the glass temperature)
2 Die Polymeroberflache wird dann bis oberhalb der Glastemperatur erwärmt und die Partikel so in die Oberflachenschicht des Polymers eingearbeitet, dass sie mindestens bis zur Hälfte, aber nicht vollständig in das Polymer eingebettet sind Nach dem Abkühlen sind die noch aus der Polymeroberflache herausragenden Partikel fest in dieser Oberflache verankert2 The polymer surface is then heated to above the glass transition temperature and the particles are worked into the surface layer of the polymer in such a way that they are at least half, but not completely, embedded in the polymer. After cooling, the particles still protruding from the polymer surface are solid in it Anchored surface
3 Abschließend wird auf die so vorbereitete Oberflache erneut Metall abgeschieden, wobei der Prozess so gefuhrt wird, dass sich eine geschlossene Metallschicht herausbildet Dabei verbindet sich das neu hinzukommende Metall mit den aus der Oberflache des Polymers herausragenden Metallpartikeln Es entsteht eine durch die in das Polymer eingebetteten Partikelteile fest auf der Polymeroberflache verankerte Metallschicht Bei allen Verfahrensschritten wird darauf geachtet, dass das Metall ohne chemische Veränderung abgescheiden wird Insbesondere wird Wert daraufgelegt, dass das Metall nicht oxidiert Nach dem in der US 6 342 307 B I beschriebenen Verfahren wird zur Unterstützung der Adhäsionskräfte eine formschlussige Verbindung zwischen Metall und Polymer erzeugt Nachteilig ist die infolge der Einbettung von Matallpartikeln in das Polymer hohe Strukturierung der dem Polymer zugewandten Seite der Metallschicht Ferner ist bekannt, dass für eine dauerhafte Lackbeschichtung von aus Polymeren gefer - tigten Stoßstangen diese vor dem Lackieren einem Luftplasma ausgesetzt werden, um durch die vergrößerte Oberflachenenergie des Kunststoffs eine besonders dauerhafte Beschichtung zu erzielen (Herold, Dr, Martin, Modifikation von Festkorperoberflachen und ihre Charakterisierung durch Ellipsometπe, Dissertation Universität Tubingen, 2001 ) Zur Schaffung eines haftfesten Verbundes ist die beschrieben Losung aber nur bedingt geeignet3 Finally, metal is deposited again on the surface prepared in this way, the process being carried out in such a way that a closed metal layer is formed.This combines the newly added metal with the metal particles protruding from the surface of the polymer.This results from the embedded in the polymer Particle particles firmly anchored on the polymer surface Metal layer In all process steps, care is taken to ensure that the metal is deposited without chemical change. Particular emphasis is placed on the fact that the metal not oxidized According to the process described in US Pat. No. 6,342,307 BI, a positive connection between metal and polymer is produced to support the adhesive forces. The structuring of the side of the metal layer facing the polymer, which is high due to the embedding of metal particles in the polymer, is also disadvantageous. that for a permanent paint coating of bumpers made of polymers, they are exposed to an air plasma before painting in order to achieve a particularly durable coating due to the increased surface energy of the plastic (Herold, Dr, Martin, modification of solid surfaces and their characterization by ellipsometers, Dissertation University of Tubingen, 2001) However, the solution described is only suitable to a limited extent to create a strong bond
Der Erfindung liegt das Problem eines haftfesten Verbundes zwischen einem Substrat- mateπal, dessen Oberfläche und der oberflachennahe Festkorperbereich Polymerver- bindungen mit geringer aktiver Oberflachenenergie aufweisen, mit einem anderen Material zugrunde sowie die Schaffung eines Verfahrens zur Herstellung eines entsprechenden haftfesten Verbundes, wobei die Nachteile des Standes der Technik vermieden werden sollenThe invention is based on the problem of an adhesive bond between a substrate material, the surface of which and the near-surface solid area have polymer compounds with a low active surface energy, with another material and the creation of a method for producing a corresponding adhesive bond, the disadvantages of Prior art should be avoided
Erfindungsgemaß wird dieses Problem durch einen Verbund, der die Merkmale des ersten Patentanspruches aufweist, sowie ein Verfahren, dass die Merkmale des 5 Patentanspruches aufweist, gelost Die Patentansprüche 2 bis 4 beschreiben vorteilhafte Ausgestaltungen des Verbundes und die Patentansprüche 6 bis 9 vorteilhafte Ausgestaltungen des Verfahrens zur Herstellung des haftfesten Verbundes Es wurde gefunden, dass ein Verbund zwischen einem Substratmateπal, dessen Oberflache und der oberflachennahe Festkorperbereich Polymerverbindungen mit geringer aktiver Oberflachenenergie, wie beispielsweise Fluorpolymere, aufweisen, und einem anderen Material, wie beispielsweise einem Metall, dann von besonderer Festigkeit ist, wenn das Substratmateπal nanostruktuπert in das andere Material übergeht, wobei dieser Übergang durch Nanokomposite, die sich aus dem Substratmateπal und dem anderen Mateπal zusammensetzen, erfolgt, und die Mateπalanteile der Nanokomposite vom Substratmaterial in Richtung des anderen Materials ausgehend von überwiegend Substratmateπal zu überwiegend dem anderen Material übergehen Das Substratmateπ- al geht damit innerhalb eines nanostruktuπerten Ubergangsbereiches in das andere Material über Dabei versteht man unter Nanostruktuπerung Strukturen im Nanometer- bereich, d h die Existenz von Strukturelementen, deren Abmaße wie Lange, Breite, Hohe, Durchmesser im Nanometerbereich liegen, und bei denen die Anzahl der ein Strukturelement bildenden Atome und/oder Moleküle kleiner als in MikroStrukturen ist Ein derartiger nanostruktuπerter Ubergangsbereich bildet ein physikalisches Wechselwirkungssystem Die Strukturelemente dieses nanostruktuπerten Ubergangsbereiches sind größtenteils Nanokomposite, wobei ein Nanokomposit dadurch entsteht, dass in das Substratmaterial andere Elemente oder Verbindungen eingeschlossen sind In einem Nanokomposit durchdπngen sich Materialien mit unterschiedlichen Eigenschaften im Bereich weniger Nanometer Der Anteil beider Materialien ist innerhalb eines Strukturelementes Nanokomposit weitgehend gleich, er verändert sich aber innerhalb des von den Strukturelementen (Nanokompositen) gebildeten Ubergangsbereiches vom Substratmateπal in Richtung des anderen Mateπales, indem in der Nahe des Substratma- teπales Nanokomposite aus überwiegend Substratmateπal vorhanden sind, an die Nanokomposite mit einem zunehmend größeren Anteil des anderen Mateπales angelagert sind, bis schließlich in der Nahe des anderen Mateπales Nanokomposite aus überwiegend dem anderen Material auftreten Der Ubergangsbereich, innerhalb dessen das Substratmateπal nanostruktuπert in das andere Material übergeht, erstreckt sich dabei über eine Schichtdicke von wenigen Nanometern bis hin zu einigen Mikrometern (20 nm bis 20 μm) Er kann je nach Beschaffenheit und Oberflächenstruktur der Ausgangsoberflache des Substratmateπals weitgehend eben, aber auch stark gewellt verlaufen, wobei sich die Welligkeit des Ubergangsbereiches innerhalb der angegebenen Schichtdicke, d h wenigen Nanometern bis zu einigen Mikrometern bewegt Der Verbund weist eine besonders hohe Festigkeit auf, wenn die Nanokomposite Metallanteile und/oder Metallverbindungen, insbesondere Metallpolymeie, aufweisen Die Haftfestigkeit eines erfindungsgemaßen Verbundes aus einem Substratmateπal und einem anderen Material, das kein Metall ist, kann also dadurch weiter erhöht werden, dass innerhalb des nanostruktunerten, Nanokomposite aufweisenden Ubergangsberei- ches Nanokomposite angeordnet sind, die zusätzlich zu den Substratmateπalanteilen und den Anteilen des anderen Materials Metallanteile und/oder Anteile von Metallverbindungen, insbesondere Metallpolymere, enthalten Durch die Anordnung von diamantahnlichen Komponenten, wie α-C H, enthaltenden Nanokompositen innerhalb des Ubergangsbereiches werden die plastischen Eigen- schatten des Ubergangsbereiches wesentlich verbessert Dies ist insbesondere dann von Bedeutung, wenn dass Substratmateπal dauerelastisch ist, beispielweise zur Schaffung eines flexiblen Leitungstragers Ein für viele Anwendungsfalle gunstiger Zusatzeffekt des erfindungsgemaßen Verbundes besteht dann, dass der nanostruktuπerte, Nanokomposite aufweisende Ubergangsbe- reich eine hydrophobe Versiegelung der Oberflache des Substratmateπales bewirktAccording to the invention, this problem is solved by a network which has the features of the first claim and a method which has the features of the claim 5. Claims 2 to 4 describe advantageous configurations of the network and claims 6 to 9 advantageous configurations of the method Production of the adhesive bond It was found that a bond between a substrate material, the surface and the near-surface solid region of which have polymer compounds with low active surface energy, such as fluoropolymers, and another material, such as a metal, is particularly strong if the substrate material is nanostructured into the other material, this transition taking place through nanocomposites, which are composed of the substrate material and the other material, and the material components of the nanocomposites from the substrate material in Ric Maintaining the other material from predominantly substrate material to predominantly the other material. The substrate material thus merges into the other material within a nanostructured transition area. Nanostructuring means structures in the nanometer range, ie the existence of structural elements, their dimensions and length , Width, height, diameter are in the nanometer range, and in which the number of atoms and / or molecules forming a structural element is smaller than in microstructures Such a nanostructured transition area forms a physical interaction system. The structural elements of this nanostructured transition area are mostly nanocomposites, a nanocomposite being formed by including other elements or compounds in the substrate material. In a nanocomposite, materials with different properties in the range of a few nanometers penetrate. The proportion of both materials is largely the same within a structural element nanocomposite, but it changes within the transition area formed by the structural elements (nanocomposites) from the substrate material in the direction of the other material, in that near the substrate material nanocomposites of predominantly substrate material are present to the nanocomposites with a increasingly larger proportion of the other material are deposited, until finally in the vicinity of the other material nanocomposites from predominantly de occur in another material The transition area within which the substrate material changes into the other material in a nanostructured manner extends over a layer thickness of a few nanometers up to a few micrometers (20 nm to 20 μm). Depending on the nature and surface structure of the initial surface of the The substrate material is largely flat, but also strongly corrugated, the waviness of the transition region moving within the specified layer thickness, ie a few nanometers to a few micrometers. The composite has a particularly high strength if the nanocomposites contain metal parts and / or metal compounds, in particular metal polymeies. The adhesive strength of a composite according to the invention made of a substrate material and another material that is not a metal can therefore be increased further by arranging nanocomposite within the transition region that contains the nanostructure and contains nanocomposites are, in addition to the substrate material proportions and the proportions of the other material, contain metal portions and / or portions of metal compounds, in particular metal polymers. The arrangement of diamond-like components, such as α-CH, containing nanocomposites within the transition region makes the plastic inherent shadows of the transition region Significantly improved This is particularly important if the substrate material is permanently elastic, for example to create a flexible line carrier. An additional effect of the composite according to the invention, which is advantageous for many applications, is that the nanostructured, nanocomposite transition area brings about a hydrophobic sealing of the surface of the substrate material
Ein erfindungsgemaßer haftfester Verbund zwischen einem Substratmateπal, dessen Oberflache und der oberflachennahe Festkorperbereich Polymerverbindungen mit geringer aktiver Oberflachenenergie aufweisen, und einem anderen Material wird erfin- dungsgemaß hergestellt, indem eine nanozerkluftete Oberflache und der entsprechende nanozerkluftete oberflachennahe Festkorperbereich des Substratmateπals aktiviert, d h physikalisch und/oder chemisch angeregt wird, und innerhalb des energetisch ange- regten Zustandes der nanozerklufteten Oberflache bzw des nanozerklufteten ober- flachennahen Festkorperbereiches ein partikelweiser Auftrag des anderen Mateπales erfolgt, bis ein vollständiger Überzug der Polymerverbindungen mit geringer aktiver Oberflachenenergie aufweisenden Oberflache des Substratmateπals mit dem anderen Material hergestellt ist, wobei zweckmaßigerweise die Anzahl der je Zeiteinheit aufzu- tragenden Partikel des anderen Mateπales im Verlaufe des Verfahrens kontinuierlich oder strufenweise erhöht wird Die so erzeugte Schicht des anderen Materials kann im Weiteren mittels bekannter Verfahren (z B nasschemisch und/oder elektrolytisch) bis zur gewünschten Schichtdicke aufgebaut werden Die Anregung der nanozerklufteten Oberflache und des nanozerklufteten oberflachen- nahen Festkorperbereiches erfolgt mittels Ionen- und/oder lonenstrahl- und/oder Plasma- und/oder Elektronenstrahl- und/oder Laserverfahren Der partikelweise Auftrag des anderen Materials kann durch PVD- und/oder CVD-verfahren und/oder Kathodenzer- staubung erfolgen Dabei sind sowohl in Bezug auf das oder die angewendete/n Anregungsverfahren als auch in Bezug auf das oder die angewendete/n Auftragsverfahren beliebige Kombinationen denkbar Zu beachten ist jedoch, dass einige Verfahren zu ihret Realisierung verschiedenertechnischer Einrichtungen bedürfen und daher ggf nicht gleichzeitig lokal realisiert werden könnenAn adhesive bond according to the invention between a substrate material, the surface thereof and the solid body region near the surface with polymer compounds have less active surface energy, and another material is produced according to the invention by activating, ie physically and / or chemically, stimulating a nano-crumpled surface and the corresponding nano-cragged surface near the surface of the solid material and within the energetically excited state of the nano-crumbled surface or of the nano-crumpled solid area close to the surface, the other material is applied in particles until a complete coating of the polymer compounds with a low active surface energy on the surface of the substrate material is produced with the other material, expediently the number of particles of the other material to be applied per unit time The course of the process is increased continuously or in steps. The layer of the other material produced in this way can furthermore be produced using known processes (eg wet chemical and / or electrolyte isch) can be built up to the desired layer thickness. The excitation of the nano-crumpled surface and the nano-crumpled solid area close to the surface takes place by means of ion and / or ion beam and / or plasma and / or electron beam and / or laser processes by PVD and / or CVD processes and / or cathode sputtering. Any combination is conceivable both with regard to the excitation method or methods used and with regard to the application method or methods used. However, it should be noted that some processes require different technical facilities to be implemented and therefore may not be able to be implemented locally at the same time
Die Verfahren müssen hinsichtlich ihrer physikalischen Wirkung in unmittelbarer Abfolge oder alternierend zur Anwendung kommen, so dass die Verfahrensschritte Anregung und Partikelauftrag quasi als einheitlicher Gesamtprozess auf die nanozerkluftete Obei flache und den nanozerklufteten oberflachennahen Festkorperbereich einwirken Es kann dazu zweckmäßig sein, die Verfahren in unmittelbarer zeitlicher Abfolge zur Anwendung zu bringen Dies ist aber nicht zwingend erforderlich Wichtig ist, dass die Wirkung des einen Verfahrens (des Anregungsverfährens) noch anhält, wenn das andere Verfahren (das Auftragsverfahren) zurAnwendunggebrachtwird Hierin liegt die entscheidende Voraussetzung dafür; dass der nanostruktuπerte, Nanokomposite aufweisende Ubergangsbereich zwischen dem Substratmateπal und dem anderen Material ausgebildet wird Es ist für die Haftfestigkeit des Verbundes auch von besonderer Bedeutung, dass der quasi Gesamtprozess bis zur Ausbildung eines vollständigen Überzuges der Oberflache des Substratmateπales mit dem anderen Material kommt, weil nur dann eine ausreichende Ausbildung der Nanokomposite aus Anteilen des Substratmateπals und des anderen Materials und ggf eines zusätzlichen Anteiles Metall oder einer Metallverbindung, insbesondere eines Metallpolymers, erfolgt Ein weiterer wichtiger Aspekt der Wirkung des erfindungsgemaßen Verfahrens liegt in der Nanozerkluftung der Oberflache und des oberflachennahen Festkorperbereiches des Substratmaterials Es ist davon auszugehen, dass in der Natur „ideal" glatte Oberflachen nicht existieren, jede Oberflache also eine gewisse Rauigkeit aufweist Für die Erfindung, insbesondere die Anwendung der Erfindung zur Fertigung eines im GHz- Bereich anwendbaren Leiterplattenmateπals, ist es aber wichtig, einen haftfesten Verbund zu schaffen, ohne dass die einander zugewandten Flachen der verbundenen Materialien eine große Rauigkeitstiefe aufweisen Zur Realisierung eines solchen haftfesten Verbundes ist es notwendig, die Oberflache des Substratmateπales so zu struktu- πeren, dass ein nanostruktuπerter Ubergangsbereich mit Nanokompositen ausgebildet wird Dies wird durch eine Nanozerkluftung der Oberfläche und des oberflachennahen Festkorperbereiches erreicht Diese Nanozerkluftung ist mit einer fraktalen Strukturierung vergleichbar und weist geometrische Strukturelemente im Nanometerbereich (einige 100 Nanometer bis wenige Mikrometer), sogenannte Nanoklippen, auf Sie zeichnet sich einerseits durch eine geringe mikroskopische Rauigkeitstiefe aus, weist aber andererseits ein großes Verhältnis Oberflache zu geometrischer Grundflache auf Die Nanozerkluftung der Oberflache fuhrt zu der physikalischen Tatsache, dass nahezu an jedem Ort der Oberfläche unterschiedliche mechanische, chemische, polare usw und damit oberflachenenergetische Bedingungen vorhanden sind Dies ist letztlich die Voraussetzung dafür, dass ein nanostruktuπerter, Nanokomposite enthaltender Uber¬ gangsbereich ausgebildet wird Zur Ausbildung einer entsprechenden Nanozerkluftung der Oberflache und des oberflachennahen Festkorperbereiches der Polymerverbindungen mit geringer aktiver Oberflachenenergie aufweisenden Substratmateπals sind z B die lonenspurtechnologie und/oder nasschemische Verfahren bekanntWith regard to their physical effects, the processes must be used in immediate succession or alternately, so that the process steps of excitation and particle application act as a uniform overall process on the nano-crumpled surface and the nano-crumbled surface near the solid. It may be advisable to use the processes in immediate chronological order However, this is not absolutely necessary. It is important that the effect of one procedure (the stimulus procedure) continues if the other procedure (the application procedure) is used. This is the crucial prerequisite for this; that the nanostructured, nanocomposite-containing transition area is formed between the substrate material and the other material. It is also of particular importance for the adhesive strength of the composite that the quasi overall process comes to the formation of a complete coating of the surface of the substrate material with the other material, because only then the nanocomposites are adequately formed from portions of the substrate material and the other material and, if appropriate, an additional portion of metal or a metal compound, in particular a metal polymer Another important aspect of the effect of the method according to the invention lies in the nano-crumbling of the surface and the solid area of the substrate material close to the surface. It can be assumed that "ideal" smooth surfaces do not exist in nature, that is to say that each surface has a certain roughness for the invention, in particular the application of the invention for the production of a PCB material usable in the GHz range, it is important to create an adhesive bond without the facing surfaces of the connected materials having a large depth of roughness. To realize such an adhesive bond it is necessary to have the surface to structure the substrate material in such a way that a nanostructured transition area is formed with nanocomposites. This is achieved by nano-crumpling the surface and the solid area near the surface. This nano-cragging is with a fractal structure comparable and has geometric structural elements in the nanometer range (a few 100 nanometers to a few micrometers), so-called nanoclips, on the one hand is characterized by a low microscopic roughness depth, but on the other hand has a large ratio of surface area to geometric base area The nano-crumpling of the surface leads to this physical fact that almost anywhere in the surface of different mechanical, chemical, polar, etc. and thus surface-energy conditions exist This is, ultimately, the prerequisite is that a nanostruktuπerter, nanocomposites containing Uber is formed ¬ transition region to form a corresponding Nanozerkluftung the surface and the Near-surface solid area of the polymer compounds with low active surface energy having substrate materials, for example ion track technology and / or wet chemical methods are known
Anhand der nachfolgenden Ausfuhrungsbeispiele sollen die Erfindung und ihre vorteilhaften Wirkungen weiter erläutert werden Die zugehörigen Zeichnungen zeigen in Figur I einen Querschnitt durch eine nanozerkluftete Oberflachenschicht, in Figur 2 einen Ausschnitt der nanozerklufteten Oberflachenschicht mit Nanoklippen, in Figur 3eιnen Querschnitt durch einen PTFE-Kupferverbund mit einem Nanokomposite aufweisenden Ubergangsbereich und inThe invention and its advantageous effects are to be further explained on the basis of the following exemplary embodiments.The associated drawings show in FIG. I a cross section through a nano-crinkled surface layer, in FIG. 2 a section of the nano-crimped surface layer with nano-cliffs, Transition region having nanocomposites and in
Figur 4 einen Ausschnitt des PTFE-Kupferverbundes mit deutlich dargestellten Nanokompositen im Ubergangsbereich Beispiel IFigure 4 shows a section of the PTFE-copper composite with clearly shown nanocomposites in the transition area Example I
Haftfester Verbund zwischen einem Glasgewebe-PTFE-Komposit und KupferAdhesive bond between a glass fabric-PTFE composite and copper
Ein Folienmateπal 1, bestehend aus einem Glasgewebe-PTFE-Komposit mit einer minde- stens 20 μm dicken PTFE-Oberflachenschicht, wird in einer Vakuumkammer periodisch an einer lonenquelle vorbeigefuhrt und dabei mit einem gerichteten lonenstrahl bearbeitet Die Ionen werden mit einer Spannung von 5 keV beschleunigt Der Abstand zwischen der lonenquelle und der Folienoberflache betragt ca 10 cm Als Prozessgas wird Argon bei einem Druck von 2» 10 4 mbar verwendet Die Bestrahlungsdichte betragt I mA/cm2 Der Prozess wird so lange durchgeführt, bis eine effektive Exposi- tionszeit der gesamten Folienoberflache von ca einer Minute erreicht ist Die PTFE- Oberflachenschicht weist danach über einen Bereich von 2 bis 6 μm Dicke eine Nanozerkluftung 2 mit Nanoklippen 3 auf; wie in Figur I bzw in Figur 2 schematisch darge¬ stellt Die PTFE-Oberflachenschicht ist infolge des lonenbeschusses aktiviert, d h die Polymermolekule sind physikalisch und/oder chemisch angeregt Ohne zeitlichen Verzug erfolgt danach eine weiterfuhrende Bearbeitung des angeregten nanozerklufte¬ ten Bereiches der PTFE-Oberflachenschicht derart, dass mittels eines Magnetrons Kupferpartikel auf die nanozerkluftete PTFE-Oberflache aufgetragen werden und alter¬ nierend dazu ein weiterer lonenbeschuss des nanozerklufteten Bereiches 2 der PTFE- Oberflachenschicht erfolgt Das Auftragen der Kupferpartikel mittels Kathodenzerstau- bungsprozess und der weitere lonenbeschuss erfolgen alternierend im zeitlichen Rhythmus von ca 3 s, wobei schrittweise die Partikelanzahl, d h die Auftragsrate erhöht wird Beide Verfahren wirken damit quasi als einheitlicher Gesamtprozess Nach ca 20 s effektiver Zeit (bezogen auf jedes Flachenelement der PTFE-Oberflachenschicht) in alternierender Bearbeitung von Kupferpartikelauftrag auf die nanozerkluftete PTFE- Oberflache und lonenbeschuss hat sich eine geschlossene Kupferschicht 4 ausgebildet, die im Folgenden im Magnetron mittels Kathodenzerstaubung bis zu einer Schichtdicke zwischen 0,3 und 1,0 μm ausgebaut wird Zwischen der PTFE-Oberflachenschicht des Glasgewebe-PTFE-Komposit I und der aufgetragenen Kupferschicht 4 ist ein Nanokomposite 5 aus PTFE und Kupfer aufweisen¬ der Ubergangsbereich 6 entstanden, innerhalb dessen das PTFE schrittweise in das Kupfer übergeht, d h die aus PTFE und Kupfer bestehenden Nanokomposite 5 weisen von der PTFE-Schicht I ausgehend einen zunehmend höheren Anteil an Kupfer auf, bis sie letztlich in die metallische Kupferschicht 4 übergehen Die Figur 3 und 4 veran- schaulichen diesen Ubergangsbereich 6, wobei die Dichte der Schraffurlinien der in Figur 4 deutlich dargestellten Nanokomposite tendenziell den Anteil des jeweiligen anderen Materials im Nanokomposit 5 veranschaulichen Der zwischen dem Glasgewebe-PTFE-Komposit I mit einer PTFE-Oberflachenschicht und dem Kupfer 4 erzeugte Verbund in Form eines Nanokomposite 5 aus PTFE und Kupfer aufweisenden Ubergangsbereiches 6 mit vom PTFE in Richtung Kupfer zunehmenden Kupferanteil der Nanokomposite 5 besιtzteιne Haftfestιgkeιtvon > l,6 N/mm Die dem PTFE I zugewandte Seite der aufgetragenen Kupferschicht 4 besitzt eine effektive Rauigkeit von I bis 2 μm Die haftfest mit dem PTFE I verbundene Kupferschicht 4 kann nachfolgend galvanisch oder chemisch bis zu einer gewünschten Schichtdicke beispielsweise zwischen 3 und 70 μm aufgebaut werdenA film material 1, consisting of a glass fabric-PTFE composite with a at least 20 μm thick PTFE surface layer, is periodically moved past an ion source in a vacuum chamber and processed with a directed ion beam. The ions are accelerated with a voltage of 5 keV The distance between the ion source and the film surface is approximately 10 cm. Argon is used as the process gas at a pressure of 2 » 10 4 mbar. The irradiation density is I mA / cm 2. The process is carried out until an effective exposure time of the entire film surface is carried out reached of about one minute The PTFE surface layer then has a nano-cleavage 2 with nanoclips 3 over a range of 2 to 6 μm thickness; as shown in Figure I or schematically Darge in Figure 2 ¬ represents the PTFE surface layer is activated as a result of ion bombardment, ie the Polymermolekule are physically / chemically excited and or without time delay followed by a further continued machining is done of the excited nanozerklufte ¬ th region of the PTFE surface layer such that are applied by means of a magnetron copper particles on the nanozerkluftete PTFE surface and age ¬ alternately to imparting process, a further ion bombardment of the nanozerklufteten portion 2 of the PTFE surface layer is carried out the application of the copper particles by means of Kathodenzerstau- and the further ion bombardment carried out alternately in at periods of approx. 3 s, whereby the number of particles, ie the application rate, is increased step by step. Both processes thus work as a quasi uniform process. After approx. 20 s effective time (based on each surface element of the PTFE surface layer) in alternating processing of K The application of copper particles to the nano-crinkled PTFE surface and ion bombardment has formed a closed copper layer 4, which is subsequently expanded in the magnetron by means of cathode sputtering to a layer thickness of between 0.3 and 1.0 μm between the PTFE surface layer of the glass fabric-PTFE composite I and the applied copper layer 4, a nanocomposite 5 made of PTFE and copper has been created ¬ the transition region 6, within which the PTFE gradually changes into the copper, ie the nanocomposites 5 consisting of PTFE and copper increasingly have one starting from the PTFE layer I. 3 and 4 illustrate this transition region 6, the density of the hatching lines of the nanocomposites clearly shown in FIG. 4 tending to illustrate the proportion of the respective other material in the nanocomposite 5 The between the glass fabric PTFE composite I with a PTFE surface layer and the copper 4 produced composite in the form of a nanocomposite 5 made of PTFE and copper-containing transition region 6 with increasing proportion of copper of the nanocomposites 5 from PTFE in the direction of copper to adhesion strength of> 1.6 N / mm. The side of the applied copper layer 4 facing the PTFE I has a effective roughness of I to 2 μm. The copper layer 4 bonded firmly to the PTFE I can subsequently be built up galvanically or chemically up to a desired layer thickness, for example between 3 and 70 μm
Beispiel 2 Haftfester Verbund zwischen Polyethylentheraphtalat (PET) und Aluminiumoxid (Die Figuren I bis 4 veranschaulichen dieses Beispiel in analoger Weise )Example 2 Adhesive bond between polyethylene terephthalate (PET) and aluminum oxide (Figures I to 4 illustrate this example in an analogous manner)
Eine Polyethylentheraphtalatfolie (PET) I , deren Oberflache bereits in einem vorangegangenen Bearbeitungsschritt mittels lonenspurtechnologie bearbeitet wurde und die eine, wie in den Figuren I und 2 gezeigte, nanozerkluftete Oberflächenstruktur 2 mit Nanoklippen 3 aufweist, wird in einer Vakuumkammer an einem lonenstrahl aus einer lonenquelle mit einer Beschleunigungsspannung von 3 kV bei einem Druck von 8* I0~4 mbarvorbeigefuhrt und so aktiviert Die Aktivierung erfolgt innerhalb einer effektive n Bearbeitu ngszeit von ca 20 s Unmittelbar folgend werden mittels eines Magne- trons auf die aktivierte eine nanozerkluftete Oberflachenstruktur 2 mit Nanoklippen 3 aufweisende Folienoberflache unter Sauerstoff Aluminiumpartikel aufgetragen, die infolge des Sauerstoffes wahrend des Auftrages überwiegend zu Aluminiumoxidpartikeln oxidieren Alternierend zu diesem Kathodenzerstaubungsprozess wird die PET-Folie I erneut an der lonenquelle vorbeigefuhrt Kathodenzerstaubungsprozess und lonenbe- schuss erfolgen so alternierend, d h im zeitlichen Wechsel von je ca 3 s, dass sich die Wirkungen beider Prozesse zu einem quasi Gesamtprozess überlagern Nach etwa 20 s effektiver Bearbeitungszeit von alternierendem Kathodenzerstaubungsprozess und lonenbeschuss ist ein Nanokomposite 5 aus PET, Aluminium und Aluminiumoxid aufweisender Ubergangsbereich 6 vom PET-Grundkorper I zum Aluminiumoxid 4 entstanden, innerhalb dessen Nanokomposite 5 von der dem PET-Grundkorper I zugewandten Seite des Ubergangsbereiches 6 mit hohem Anteil an PET zu Nanokompositen 5 mit hohem Anteil an Aluminiumoxid an der dem PET-Grundkorper I abgewandten Seite des Ubergangsbereiches 6 übergehen Auf diesen Ubergangsbereich 6 wird im Folgenden bei einem Druck von 5* I0-3 bis 7* I0-3 mbar Aluminiumo- xid aufgetragen, indem unter Zugabe von Sauerstoff thermisch Aluminium verdampft wird, das infolge des Sauerstoffes oxidiert und als Aluminiumoxid auf der Oberflache des Ubergangsbereiches 6 abgeschieden wird Dieser Prozess wird bis zu einer Schichtdicke des Aluminiumoxides 4 von 10 μm bis 20 μm fortgesetzt Mit dem vorstehend beschriebenen Verfahren wurde ein haftfester Verbund zwischen Polyethylentheraphtalatfolie (PEO I und Aluminiumoxid 4 geschaffen, der von einem Nanokomposite 5 aus PET, Aluminium und Aluminiumoxid aufweisenden nanostruktu- rierten Übergangsbereich 6 gebildet wird. A polyethylene therapy film (PET) I, the surface of which has already been processed in a previous processing step using ion trace technology and which has a nano-fissured surface structure 2 with nanoclips 3, as shown in FIGS. I and 2, is placed in a vacuum chamber on an ion beam from an ion source an acceleration voltage of 3 kV at a pressure of 8 * 10 ~ 4 mbar and activated in this way. The activation takes place within an effective processing time of approx. 20 s. Immediately afterwards, a magnet is applied to the activated one, which has a nano-crinkled surface structure 2 with nanoclips 3 Foil surface applied under oxygen Aluminum particles, which mainly oxidize to aluminum oxide particles during the application due to the oxygen. Alternating to this cathode sputtering process, the PET film I is again guided past the ion source. Cathode sputtering process and ion The shots occur alternately, i.e. in alternation of approx. 3 s each, so that the effects of both processes overlap to form a quasi overall process.After about 20 s effective processing time of the alternating cathode sputtering process and ion bombardment, a transition area 6 comprising PET, aluminum and aluminum oxide is 6 originated from the PET base I to the aluminum oxide 4, within the nanocomposites 5 of the side of the transition region 6 facing the PET base I with a high proportion of PET to nanocomposites 5 with a high proportion of aluminum oxide on the side of the transition region facing away from the PET base I. 6 Transition to this transition area 6 is subsequently applied at a pressure of 5 * I0 -3 to 7 * I0 -3 mbar aluminum oxide by thermally evaporating aluminum with the addition of oxygen, which oxidizes as a result of the oxygen and as aluminum oxide on the Surface of the transition area 6 is deposited The process is continued up to a layer thickness of the aluminum oxide 4 of 10 μm to 20 μm With the method described above, an adhesive bond was created between polyethylene terephthalate film (PEO I and aluminum oxide 4), which is formed by a nanocomposite 5 made of PET, aluminum and aluminum oxide containing nanostructured transition region 6.

Claims

Patentansprücheclaims
1 Haftfester Verbund eines Substratmateπals, dessen Oberflache und der oberflachennahe Festkorperbereich Polymerverbindungen mit geringer aktiver Oberflachenener- gie aufweist, mit einem anderen Material, dadurch gekennzeichnet, dass zwischen den verbundenen Materialien ( 1, 4) ein nanostruktuπerter; Nanokomposite (5) aufweisender Ubergangsbereich (6) ausgebildet ist, derart, dass dieser Bereich eine Schichtdicke zwischen 20 nm und 20 μm aufweist und überwiegend aus Nanokompositen (5) gebildet wird, die aus Substratmateπal (U und dem anderen Material (4) bestehen und sich das Verhältnis von Substratmaterial ( I ) zu dem anderen Material (4) quer zum Ubergangsbereich von überwiegend Substratmateπal in unmittelbarer Nahe des Substratmateπales ( I ) zu überwiegend dem anderen Material in unmittelbarer Nahe des anderen Mateπales (4) verschiebt, so dass Substratmaterial ( I ) nanostruktuπert in das andere Material (4) übergeht1 Adhesive bond of a substrate material, the surface of which and the near-surface solid area has polymer compounds with low active surface energy, with another material, characterized in that a nanostructured between the joined materials (1, 4); Transition region (6) comprising nanocomposites (5) is formed such that this region has a layer thickness between 20 nm and 20 μm and is predominantly formed from nanocomposites (5) which consist of substrate material (U and the other material (4) and the ratio of substrate material (I) to the other material (4) shifts transversely to the transition region from predominantly substrate material in the immediate vicinity of the substrate material (I) to predominantly the other material in the immediate vicinity of the other material (4), so that substrate material (I ) nanostructured into the other material (4)
2 Haftfester Verbund nach Anspruch I, dadurch gekennzeichnet, dass der Ubergangsbereich (6) Metallanteile und/oder Metallverbindungen, msbeson- dere Metallpolymere enthaltende Nanokomposite (5) aufweist2 Adhesive composite according to claim I, characterized in that the transition region (6) has metal parts and / or metal compounds, ms-containing metal polymers containing nanocomposites (5)
3 Haftfester Verbund nach Anspruch I oder 2, dadurch gekennzeichnet, dass der Ubergangsbereich (6) diamantahnliche Komponenten, wie α-C H enthalten- de Nanokomposite (5), aufweist3 Adhesive bond according to claim I or 2, characterized in that the transition region (6) has diamond-like components, such as α-C H-containing nanocomposites (5)
4 Haftfester Verbund nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Ubergangsbereich (6) Fluorpolymere enthaltende Nanokomposite (5) aufweist Verfahren zur Herstellung eines haftfesten Verbundes eines Substratmateπals, dessen Oberflache und der oberflachennahe Festkorperbereich Polymerverbindungen mit geringer aktiver Oberflachenenergie aufweist, mit einem anderen Material dadurch gekennzeichnet, dass zunächst eine Nanozerkluftung des Polymerverbindungen mit geringer aktiver Oberflachenenergie aufweisenden oberflachennahen Festkorperbereiches des Substratmaterials ( I ) erfolgt, die nanozerkluftete Oberflache (2) durch lonen- und/oder lonenstrahl- und/oder Plasma- und/oder Elektronenstrahl- und/oder Laserstrah Iverfahren aktiviert wird und unmittelber danach, innerhalb des Zeitraumes des energetischen, d h physikalischen und/oder chemischen, Anregungszustandes der Polymermolekule oder alternierend oder parallel zur Aktivierung der partikelweise Auftrag des anderen Materials durch PVD- und/oder CVD-Verfahren und/oder Katho- denzerstaubung erfolgt, bis ein vollständiger Überzug der Polymerverbindungen mit geringer aktiver Oberflachenenergie aufweisender Oberfläche des Substrat- mateπales ( I ) mit dem anderen Material erreicht ist4 Adhesive composite according to claim 1, 2 or 3, characterized in that the transition region (6) has fluorocomponents containing nanocomposites (5) A process for the production of an adherent bond of a substrate material, the surface of which and the near-surface solid area has polymer compounds with a low active surface energy, characterized by another material, characterized in that first of all a nano-crumpling of the near-surface solid area of the substrate material (I) having low active surface energy takes place nano-crumpled surface (2) is activated by ion and / or ion beam and / or plasma and / or electron beam and / or laser beam method and immediately thereafter, within the period of the energetic, ie physical and / or chemical, excitation state of the polymer molecules or alternately or in parallel to the activation of the particle-by-layer application of the other material by PVD and / or CVD processes and / or cathode sputtering until a complete coating of the polymer compounds with little active O. surface energy of the substrate material (I) with surface energy is reached with the other material
Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Nanozerkluftung (2) des Polymerverbindungen mit geringer aktiver Ober- flachenenergie aufweisenden oberflachennahen Festkorperbereiches des Substrat- mateπales ( I ) bereits in einem unabhängigem Vorbehandlungsverfahren durchgeführtA method according to claim 5, characterized in that the nano-crimping (2) of the polymer compounds with a low active surface energy near the surface of the solid material area of the substrate material (I) is already carried out in an independent pretreatment process
Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der partikelweise Auftrag des anderen Materials durch PVD- und/oder CVD- Verfahren und/oder Kathodenzerstaubung derart erfolgt, dass ausgehend von einer geringen Auftragsrate (wenige Partikel je Zeiteinheit) zu Beginn des partikelweisen Auftrages diese bis zur Ausbildung des vollständigen Überzuges kontinuierlich odei stufenweise erhöht wirdA method according to claim 5 or 6, characterized in that the particle-by-layer application of the other material is carried out by PVD and / or CVD processes and / or cathode sputtering such that starting from a low application rate (few particles per unit of time) at the beginning of the particle-by-layer application this is continuously or stepwise increased until the complete coating is formed
Verfahren nach Anspruch 5, 6 oder 7, dadurch gekennzeichnet, dass für den Fall, dass das andere Material (4) kein Metall ist, zu Beginn oder wahrend der ersten Phase des partikelweisen Auftrages des anderen Materials (4) Metallanteile auf die aktivierte, nanozerkluftete Polymerverbindungen mit geringer aktiver Oberflachenenergie aufweisende Oberflache (2) des Substratmateπals ( I ) aufgetragen werden Verfahren nach einem der Anspruch 5 bis 8, dadurch gekennzeichnet, dass die Aktivierung des nanozerklufteten, Polymerverbindungen mit geringer aktiver Oberflachenenergie aufweisenden oberflachennahen Festkorperbereiches des Substratmaterials ( I ) und der partikelweise Auftrag des anderen Materials im Vakuum, vorzugsweise in einem Druckbereich zwischen HO-1 und I - I0~5 mbar; erfolgen. A method according to claim 5, 6 or 7, characterized in that in the event that the other material (4) is not metal, at the beginning or during the first phase of the particle-wise application of the other material (4) metal portions on the activated, nano-crumpled Polymer compounds with a low active surface energy surface (2) of the substrate material (I) are applied Method according to one of claims 5 to 8, characterized in that the activation of the nano-crumpled, polymer compounds having a low active surface energy near the surface of the solid area of the substrate material (I) and the particle-wise application of the other material in vacuo, preferably in a pressure range between HO -1 and I - I0 ~ 5 mbar; respectively.
EP05715086A 2004-03-02 2005-03-01 Adhesive bond and method for the production thereof Withdrawn EP1725398A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410011567 DE102004011567A1 (en) 2004-03-02 2004-03-02 Adherent bond and method of manufacture
PCT/DE2005/000422 WO2005084940A1 (en) 2004-03-02 2005-03-01 Adhesive bond and method for the production thereof

Publications (1)

Publication Number Publication Date
EP1725398A1 true EP1725398A1 (en) 2006-11-29

Family

ID=34877564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05715086A Withdrawn EP1725398A1 (en) 2004-03-02 2005-03-01 Adhesive bond and method for the production thereof

Country Status (6)

Country Link
US (1) US7955697B2 (en)
EP (1) EP1725398A1 (en)
JP (2) JP5379971B2 (en)
KR (1) KR101197324B1 (en)
DE (1) DE102004011567A1 (en)
WO (1) WO2005084940A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040098A1 (en) * 2007-08-24 2009-02-26 Elringklinger Ag support film
RU2339110C1 (en) 2007-11-12 2008-11-20 Ооо "Восток" Multilayer anode
DE102008005008A1 (en) 2008-01-17 2009-07-23 Vostock Ltd. Multi-layer anode foil for electrolytic capacitor, has conformal layer with adjustable volume porosity in micro to nanometer range, connected with surface of under layer by hetero-junction and representing nano-structured compound
DE102008040782A1 (en) * 2008-07-28 2010-02-04 Robert Bosch Gmbh Composite component and method for producing a composite component
JP2012514547A (en) * 2008-12-31 2012-06-28 サン−ゴバン パフォーマンス プラスティックス コーポレイション Multilayer polymer article and method for producing the same
DE102014005441A1 (en) 2014-04-11 2015-10-29 Elena Danziger Process for producing an adhesive bond
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
US11980507B2 (en) 2018-05-02 2024-05-14 Augmedics Ltd. Registration of a fiducial marker for an augmented reality system
US11766296B2 (en) 2018-11-26 2023-09-26 Augmedics Ltd. Tracking system for image-guided surgery
US11980506B2 (en) 2019-07-29 2024-05-14 Augmedics Ltd. Fiducial marker
US11896445B2 (en) 2021-07-07 2024-02-13 Augmedics Ltd. Iliac pin and adapter
WO2024057210A1 (en) 2022-09-13 2024-03-21 Augmedics Ltd. Augmented reality eyewear for image-guided medical intervention

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB816641A (en) * 1957-03-20 1959-07-15 Britl Dielectric Res Ltd Improvements in the manufacture of metallised polytetrafluoroethylene and products thereof
US4199650A (en) * 1978-11-07 1980-04-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Modification of the electrical and optical properties of polymers
US4390567A (en) * 1981-03-11 1983-06-28 The United States Of America As Represented By The United States Department Of Energy Method of forming graded polymeric coatings or films
JPH0397861A (en) 1989-09-07 1991-04-23 Matsushita Electric Ind Co Ltd Production of metallized film for capacitor
US5389195A (en) * 1991-03-07 1995-02-14 Minnesota Mining And Manufacturing Company Surface modification by accelerated plasma or ions
JPH04346651A (en) * 1991-05-24 1992-12-02 Hitachi Ltd Metallizing method
JPH09143684A (en) * 1995-11-17 1997-06-03 Nissin Electric Co Ltd Metallic film coated high molecular article and its manufacture
US6342307B1 (en) * 1997-11-24 2002-01-29 The Board Of Trustees Of The University Of Illinois Embedded cluster metal-polymeric micro interface and process for producing the same
JP3066863B2 (en) * 1997-12-17 2000-07-17 日新電機株式会社 Manufacturing method of UV resistant article
DE19817388A1 (en) * 1998-04-20 1999-10-28 Atotech Deutschland Gmbh Metallizing a fluoropolymer substrate for forming conductor structures or a plasma etching mask on a circuit substrate
JP2000340166A (en) * 1999-05-27 2000-12-08 Sony Corp Film forming method and film formed material
JP2000345322A (en) * 1999-05-31 2000-12-12 Sony Corp Polycarbonate substrate and method for surface treatment of the same
US6887332B1 (en) * 2000-04-21 2005-05-03 International Business Machines Corporation Patterning solution deposited thin films with self-assembled monolayers
DE10058822A1 (en) 2000-11-27 2002-06-20 Danziger Manfred Process for treating a carrier film made from a plastic or polymer comprises applying a functional layer as conducting path on the film so that material parts enter recesses of the functional layer to anchor the layer in the foil
JP2003049013A (en) * 2001-08-08 2003-02-21 Tadamasa Fujimura Method for producing two-layered flexible substrate by ion plating method in plasma assist atmosphere
DE10163437A1 (en) * 2001-12-21 2003-07-17 Karlsruhe Forschzent Production of a cohesive coating for fluoropolymers comprises surface activation of the fluoropolymer using plasma discharge in an inert gas and applying a coating by a physical vapor deposition process
DE10234614B3 (en) 2002-07-24 2004-03-04 Fractal Ag Process for processing carrier material by heavy ion radiation and subsequent etching process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005084940A1 *

Also Published As

Publication number Publication date
JP2012020583A (en) 2012-02-02
KR101197324B1 (en) 2012-11-05
WO2005084940A1 (en) 2005-09-15
JP2007526147A (en) 2007-09-13
KR20060125883A (en) 2006-12-06
JP5380496B2 (en) 2014-01-08
JP5379971B2 (en) 2013-12-25
US7955697B2 (en) 2011-06-07
DE102004011567A1 (en) 2005-09-22
US20080035266A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
EP1725398A1 (en) Adhesive bond and method for the production thereof
DE102008008517B4 (en) Antimicrobial finish of titanium and titanium alloys with silver
DE102005034764A1 (en) Process for the preparation of functional fluorocarbon polymer layers by plasma polymerization of perfluorocycloalkanes
DE4141416A1 (en) METHOD FOR COATING SURFACES WITH FINE-PARTICLE SOLID PARTICLES
WO2009132885A2 (en) Method for coating a fiber composite component for an aircraft or spacecraft and fiber composite component produced by said method
EP0527980A1 (en) Specific microsieve, specific composite body.
DE10234614B3 (en) Process for processing carrier material by heavy ion radiation and subsequent etching process
WO2004020696A2 (en) Method for producing a foam metallic structure, metallic foam, and arrangement consisting of a carrier substrate and metallic foam
DE19856227C2 (en) Process for the long-term stable activation of fluoropolymer surfaces and fluoropolymer material composite
DE2457694C2 (en) Process for producing an adhesive and coatable surface on non-polar plastics
EP3130206B1 (en) Method for producing a firmly adhering assembly
DE102007041544A1 (en) Method of making DLC layers and doped polymers or diamond-like carbon layers
EP2307593A2 (en) Composite material
DE10058822A1 (en) Process for treating a carrier film made from a plastic or polymer comprises applying a functional layer as conducting path on the film so that material parts enter recesses of the functional layer to anchor the layer in the foil
DD289065A5 (en) METHOD FOR PRODUCING A DIELECTRIC LAYER ON LIGHT METALS OR ITS ALLOYS
DE102005011345A1 (en) Method for producing nanostructure on substrate involves irradiating of defined surface of substrate through ions, introduction of irradiating substrate into a supersaturated solution and removal of substrate form solution
DE60207437T2 (en) IMPROVED METHOD FOR COATING A CARRIER WITH A MATERIAL
EP1989341A2 (en) Metallized composite material
WO2002020875A2 (en) Method for producing an adhesive metal coating
DE19926775C2 (en) Process for microstructuring a plastic
DE102006050023B4 (en) Method for processing material by heavy ion irradiation and subsequent etching process
WO2018229138A1 (en) Method for producing a circuit carrier
EP1270760A1 (en) Method for coating substrates by sputtering
WO2006094574A1 (en) Method for producing a nanostructure on a substrate
DE212008000076U1 (en) Multilayer anode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151001