EP1723336A1 - Cryogenic fluid pumping system - Google Patents

Cryogenic fluid pumping system

Info

Publication number
EP1723336A1
EP1723336A1 EP05728289A EP05728289A EP1723336A1 EP 1723336 A1 EP1723336 A1 EP 1723336A1 EP 05728289 A EP05728289 A EP 05728289A EP 05728289 A EP05728289 A EP 05728289A EP 1723336 A1 EP1723336 A1 EP 1723336A1
Authority
EP
European Patent Office
Prior art keywords
pressure
cryogenic
pumping system
fluid
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05728289A
Other languages
German (de)
French (fr)
Other versions
EP1723336B1 (en
Inventor
Laurent Allidieres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP1723336A1 publication Critical patent/EP1723336A1/en
Application granted granted Critical
Publication of EP1723336B1 publication Critical patent/EP1723336B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/01Pressure before the pump inlet

Definitions

  • the present invention relates to a pumping system for a cryogenic fluid.
  • the invention finds a particularly advantageous application in the field of pumping sparse cryogenic fluids, such as hydrogen and helium, as well as their isotopes.
  • sparse cryogenic fluids such as hydrogen and helium
  • the generation of hydrogen under high pressure remains extremely expensive in terms of compression energy. Losses by evaporation of liquid hydrogen in a cryogenic pump can also be significant in the event that the pump is not used optimally. The reduction of these losses is an essential point to optimize the costs of obtaining hydrogen under high pressure.
  • cryogenic pumps in general and liquid hydrogen pumps in particular, lies in the fact that cryogenic fluids are very sparse, 70 g / 1 to 1 bar for hydrogen for example.
  • This very low density has the consequence of causing a certain number of drawbacks: - on the one hand, it is impossible to provide the cryogenic pump with the required input pressure drop compensation (called NPSH for "Net Positive Suction Head ”) by a simple physical installation of the cryogenic source tank loaded on the pumping system.
  • NPSH input pressure drop compensation
  • an LH2 700 bar liquid hydrogen pump has an NPSH of around 250 mbar, which corresponds to a height of liquid hydrogen of 35 m.
  • saturated liquid hydrogen at low pressure is denser than saturated liquid hydrogen at high pressure.
  • the density of saturated hydrogen is, as we have seen, from 70 g / l to 1 bar, but it is not
  • cryogenic pumps are positive displacement pumps, we conclude that in order to increase the quantities of cryogenic fluid pumped there is interest to make the fluid as dense as possible, therefore to suck it by the pump at a pressure the as low as possible.
  • Document EP-A-010464 in the name of the Applicant, describes means for monitoring the starting sequence of pumping relatively dense cryogenic fluid (liquid nitrogen).
  • a technical problem to be solved by the object of the present invention is to propose a system for pumping a cryogenic fluid, comprising a reservoir of cryogenic fluid, a cryogenic pump having an input pressure drop and a line d suction connecting said reservoir to said pump, which would remedy the drawbacks related to the low density of cryogenic fluids in terms of compensation for the pressure drop of cryogenic pumps input and quantities of cryogenic fluid sucked.
  • the solution to the technical problem posed consists, according to the present invention, in that said pumping system comprises pressure control means capable of maintaining the pressure in the suction line at most equal to the increased saturation pressure of the cryogenic fluid. of the cryogenic pump inlet pressure drop.
  • said pressure control means comprise a pressurization valve and a depressurization valve of the cryogenic fluid reservoir. More specifically, the invention provides that said control means comprise a pressure sensor and a fluid temperature sensor
  • control means comprise a calculation block capable of calculating from the temperature measured by said temperature sensor a minimum value of the pressure measured by said pressure sensor equal to the saturation pressure of the liquid at said temperature increased by the pressure drop at the inlet of the pump.
  • FIG. 1 is a diagram of a pumping system for a cryogenic fluid according to the invention.
  • FIG. 1 shows a pumping system for a cryogenic fluid, essentially comprising two cryogenic tanks 8a,
  • each reservoir 8a, 8b being connected to said pump 18 by a line
  • the cryogenic pump 18 is in operation, the discharge pressure 19 being controlled by a valve 21 for regulating the high pressure fluid located after an exchanger 20 capable of vaporizing high pressure fluid.
  • the suction pressure of the pump measured by a pressure sensor 14 is controlled by control means so that the temperature measured in line 23a by a temperature sensor 16 is lower than the saturation temperature of the cryogenic liquid. corresponding to this pressure.
  • the control means comprise a block 17 for calculating the minimum value of the pressure 14 on the suction line 23a such that this pressure is equal to the saturation pressure of the liquid at temperature 16 increased by the loss of input load NPSH of the pump 18.
  • a control block 15 controls the opening or closing of a valve 12a pressurization or a valve 7a for depressurizing the tank 8a, the selector 13 being in position "A" since the tank 8a being pumped is at this time the tank 8a.
  • the pressurization of the reservoir 8a, as well as that of the reservoir 8b, is carried out by means of a source 22 of gas under pressure.
  • the pressurization gas from the source 22 of pressurized gas is part of the fluid pressurized by the pump 18.
  • the pump 18 is effectively protected against cavitation and that at the same time the pumped fluid is as dense as possible, in accordance with the aim sought by the invention.
  • the second reservoir 8b is filled with liquid fluid saturated with its vapor.
  • the low level detector 9a becomes active and the system closes the valve 4b then opens the purge valves 10b and 11b bypass return from the reservoir 8b.
  • the valves 10a and 11a are closed and the tank 8a is filled via the filling valve 4a, while the pumping and pressure control sequence of the tank 8b begins. This produces continuous production of cryogenic fluid under pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A system for the pumping of a cryogenic fluid comprises at least one reservoir of fluid, a cryogenic pump with an entry charge loss (NPSH), and an aspiration line joining the reservoir to the pump.The system comprises means for control of pressure to maintain a pressure in the aspiration lines at most equal to the saturation pressure of the cryogenic fluid augmented by the NPSH of charge entering the pump.

Description

SYSTEME DE POMPAGE D'UN FLUIDE CRYOGENIQUE CRYOGENIC FLUID PUMPING SYSTEM
La présente invention concerne un système de pompage d'un fluide cryogénique. L'invention trouve une application particulièrement avantageuse dans le domaine du pompage de fluides cryogéniques peu denses, tels que l'hydrogène et l'hélium, ainsi que leurs isotopes. Pour comprimer de l'hydrogène, par exemple, on préfère, d'une manière générale, effectuer une compression par pompage de l'hydrogène liquide que de l'hydrogène gazeux, étant donné qu'il est plus facile de comprimer un volume de liquide qu'un volume de gaz, ce qui conduit par là même à une diminution des coûts de compression. Toutefois, la génération d'hydrogène sous haute pression reste extrêmement coûteuse en terme d'énergie de compression. Les pertes par évaporation d'hydrogène liquide dans une pompe cryogénique peuvent aussi être importantes dans le cas où la pompe n'est pas utilisée de façon optimale. La réduction de ces pertes est un point essentiel pour optimiser les coûts d'obtention d'hydrogène sous haute pression. Un des problèmes posés par les pompes cryogéniques en général, et les pompes d'hydrogène liquide en particulier, réside dans le fait que les fluides cryogéniques sont très peu denses, 70 g/1 à 1 bar pour l'hydrogène par exemple. Cette densité très faible a pour conséquence d'entraîner un certain nombre d'inconvénients : - d'une part, il est impossible de fournir à la pompe cryogénique la compensation de perte de charge d'entrée requise (appelée NPSH pour « Net Positive Suction Head ») par une simple installation physique du réservoir cryogénique source en charge sur le système de pompage. Par exemple, une pompe d'hydrogène liquide LH2 700 bar a un NPSH d'environ 250 mbar, ce qui correspond à une hauteur d'hydrogène liquide de 35 m. On comprend alors qu'il n'est pas possible de faire fonctionner la pompe avec un réservoir source installé en charge sur la pompe à une hauteur de 35 m ; les pertes de charge en ligne compenseraient en effet l'installation en charge du réservoir. - d'autre part, l'hydrogène liquide saturé à basse pression est plus dense que l'hydrogène liquide saturé à haute pression. Par exemple, la densité de l'hydrogène saturé est, on l'a vu, de 70 g/l à 1 bar, mais elle n'est The present invention relates to a pumping system for a cryogenic fluid. The invention finds a particularly advantageous application in the field of pumping sparse cryogenic fluids, such as hydrogen and helium, as well as their isotopes. For compressing hydrogen, for example, it is generally preferred to perform compression by pumping liquid hydrogen than hydrogen gas, since it is easier to compress a volume of liquid than a volume of gas, which thereby leads to a reduction in compression costs. However, the generation of hydrogen under high pressure remains extremely expensive in terms of compression energy. Losses by evaporation of liquid hydrogen in a cryogenic pump can also be significant in the event that the pump is not used optimally. The reduction of these losses is an essential point to optimize the costs of obtaining hydrogen under high pressure. One of the problems posed by cryogenic pumps in general, and liquid hydrogen pumps in particular, lies in the fact that cryogenic fluids are very sparse, 70 g / 1 to 1 bar for hydrogen for example. This very low density has the consequence of causing a certain number of drawbacks: - on the one hand, it is impossible to provide the cryogenic pump with the required input pressure drop compensation (called NPSH for "Net Positive Suction Head ”) by a simple physical installation of the cryogenic source tank loaded on the pumping system. For example, an LH2 700 bar liquid hydrogen pump has an NPSH of around 250 mbar, which corresponds to a height of liquid hydrogen of 35 m. We then understand that it is not possible to operate the pump with a source tank installed under load on the pump at a height of 35 m; line pressure drops would compensate for the installation in charge of the tank. - on the other hand, saturated liquid hydrogen at low pressure is denser than saturated liquid hydrogen at high pressure. For example, the density of saturated hydrogen is, as we have seen, from 70 g / l to 1 bar, but it is not
plus que de 56 g/1 à 7 bar. Sachant que les pompes cryogéniques sont des pompes volumétriques, on en conclut qu'afin d'augmenter les quantités de fluide cryogénique pompé il y a intérêt à rendre le fluide le plus dense possible, donc à l'aspirer par la pompe à une pression la plus basse possible. Le document EP-A-010464, au nom de la Demanderesse, décrit des moyens de surveillance de séquence de démarrage de pompage de fluide cryogénique relativement dense (azote liquide). Aussi, un problème technique à résoudre par l'objet de la présente invention est de proposer un système de pompage d'un fluide cryogénique, comprenant un réservoir de fluide cryogénique, une pompe cryogénique présentant une perte de charge d'entrée et une ligne d'aspiration reliant ledit réservoir à ladite pompe, qui permettrait de remédier aux inconvénients liés à la faible densité des fluides cryogéniques en terme de compensation de la perte de charge d'entrée des pompes cryogéniques et de quantités de fluide cryogénique aspiré. La solution au problème technique posé consiste, selon la présente invention, en ce que ledit système de pompage comprend des moyens de contrôle de pression aptes à maintenir la pression dans la ligne d'aspiration au plus égale à la pression de saturation du fluide cryogénique augmentée de la perte de charge d'entrée de la pompe cryogénique. On obtient de cette manière un sous-refroidissement du fluide cryogénique et une aspiration du fluide ainsi sous-refroidi. La compensation de perte de charge d'entrée est ainsi réalisée, évitant tout phénomène de cavitation, tandis que le fluide est maintenu à une pression suffisamment faible pour rendre maximum la densité du fluide et donc la quantité pompée, ceci contrairement aux systèmes existants pour lesquels aucun contrôle n'est effectué sur la pression d'aspiration, le réservoir étant pressurisé une fois pour toutes et la pression toujours supérieure au minimum théorique pour obtenir une densité optimale. 2 -a-more than 56 g / 1 to 7 bar. Knowing that the cryogenic pumps are positive displacement pumps, we conclude that in order to increase the quantities of cryogenic fluid pumped there is interest to make the fluid as dense as possible, therefore to suck it by the pump at a pressure the as low as possible. Document EP-A-010464, in the name of the Applicant, describes means for monitoring the starting sequence of pumping relatively dense cryogenic fluid (liquid nitrogen). Also, a technical problem to be solved by the object of the present invention is to propose a system for pumping a cryogenic fluid, comprising a reservoir of cryogenic fluid, a cryogenic pump having an input pressure drop and a line d suction connecting said reservoir to said pump, which would remedy the drawbacks related to the low density of cryogenic fluids in terms of compensation for the pressure drop of cryogenic pumps input and quantities of cryogenic fluid sucked. The solution to the technical problem posed consists, according to the present invention, in that said pumping system comprises pressure control means capable of maintaining the pressure in the suction line at most equal to the increased saturation pressure of the cryogenic fluid. of the cryogenic pump inlet pressure drop. In this way one obtains a sub-cooling of the cryogenic fluid and an aspiration of the fluid thus sub-cooled. The input pressure drop compensation is thus achieved, avoiding any cavitation phenomenon, while the fluid is maintained at a pressure low enough to maximize the density of the fluid and therefore the quantity pumped, this in contrast to existing systems for which no control is carried out on the suction pressure, the tank being pressurized once and for all and the pressure always higher than the theoretical minimum to obtain an optimal density. 2 -a-
Selon un mode de réalisation du système de pompage, objet de l'invention, lesdits moyens de contrôle de pression comprennent une vanne de pressurisation et une vanne de dépressurisation du réservoir de fluide cryogénique. Plus spécialement, l'invention prévoit que lesdits moyens de contrôle comprennent un capteur de pression et un capteur de température du fluideAccording to one embodiment of the pumping system, object of the invention, said pressure control means comprise a pressurization valve and a depressurization valve of the cryogenic fluid reservoir. More specifically, the invention provides that said control means comprise a pressure sensor and a fluid temperature sensor
cryogénique dans la ligne d'aspiration, reliés à un bloc de contrôle apte à commander lesdites vannes de pressurisation et de dépressurisation. Dans ce dernier cas, il est envisagé par l'invention que lesdits moyens de contrôle comprennent un bloc de calcul apte à calculer à partir de la température mesurée par ledit capteur de température une valeur minimale de la pression mesurée par ledit capteur de pression égale à la pression de saturation du liquide à ladite température augmentée de la perte de charge d'entrée de la pompe. Un autre problème technique que se propose de résoudre l'invention concerne la possibilité de réaliser un fonctionnement en continu du système de pompage conforme à l'invention, les systèmes connus ne permettant pas un tel fonctionnement puisque la pompe doit être arrêtée à chaque fois que le réservoir est vide afin de le remplir et le mettre en pression avant de redémarrer la pompe. La solution à ce problème technique consiste, selon la présente invention, en ce que ledit système comprend une pluralité de réservoirs de fluide cryogénique disposés en parallèle, au moins un réservoir étant rempli de fluide cryogénique pendant la vidange d'un autre réservoir. La description qui va suivre en regard du dessin annexé, donné à titre d'exemple non limitatif, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée. La figure 1 est un schéma d'un système de pompage d'un fluide cryogénique conforme à l'invention. Sur la figure 1 est représenté un système de pompage d'un fluide cryogénique, comprenant essentiellement deux réservoirs cryogéniques 8a, cryogenic in the suction line, connected to a control block capable of controlling said pressurization and depressurization valves. In the latter case, it is envisaged by the invention that said control means comprise a calculation block capable of calculating from the temperature measured by said temperature sensor a minimum value of the pressure measured by said pressure sensor equal to the saturation pressure of the liquid at said temperature increased by the pressure drop at the inlet of the pump. Another technical problem which the invention proposes to solve relates to the possibility of achieving continuous operation of the pumping system according to the invention, the known systems not allowing such operation since the pump must be stopped each time the tank is empty in order to fill it and pressurize it before restarting the pump. The solution to this technical problem consists, according to the present invention, in that said system comprises a plurality of cryogenic fluid reservoirs arranged in parallel, at least one reservoir being filled with cryogenic fluid during the emptying of another reservoir. The description which follows with reference to the appended drawing, given by way of nonlimiting example, will make it clear what the invention consists of and how it can be implemented. Figure 1 is a diagram of a pumping system for a cryogenic fluid according to the invention. FIG. 1 shows a pumping system for a cryogenic fluid, essentially comprising two cryogenic tanks 8a,
8b montés en parallèle sur une même pompe 18 de fluide cryogénique liquide, chaque réservoir 8a, 8b étant reliés à ladite pompe 18 par une ligne8b mounted in parallel on the same pump 18 of liquid cryogenic fluid, each reservoir 8a, 8b being connected to said pump 18 by a line
23a, 23b d'aspiration respective. De l'hydrogène liquide saturé avec sa vapeur provenant d'une source 1 est introduit dans une ligne 2 isolée sous vide du système de pompage par l'intermédiaire d'une vanne 3 d'isolement de la source 1. Ce liquide est utilisé pour remplir successivement les réservoirs 8a, 8b, selon un mode de fonctionnement en continu qui sera détaillé plus loin dans la description. Dans un premier temps, on supposera que le réservoir cryogénique 8a est rempli. La vanne 4a de remplissage du réservoir 8a est alors fermée, les vannes 10a de purge et 11a de retour bypass du réservoir 8a sont ouvertes, tandis que les vannes 10b de purge et 11 b de retour bypass du réservoir 8b sont fermées. La pompe cryogénique 18 est en fonctionnement, la pression 19 de refoulement étant contrôlée par une vanne 21 de régulation du fluide haute pression située après un échangeur 20 apte à vaporiser du fluide haute pression. La pression d'aspiration de la pompe mesurée par un capteur 14 de pression est contrôlée par des moyens de contrôle de façon à ce que la température mesurée dans la ligne 23a par un capteur 16 de température soit inférieure à la température de saturation du liquide cryogénique correspondant à cette pression. Plus précisément, les moyens de contrôle comprennent un bloc 17 de calcul de la valeur minimale de la pression 14 sur la ligne 23a d'aspiration telle que cette pression soit égale à la pression de saturation du liquide à la température 16 augmentée de la perte de charge d'entrée NPSH de la pompe 18. Afin de maintenir la pression mesurée par le capteur 14 à la valeur de consigne déterminée par le bloc 17 de calcul, un bloc 15 de contrôle commande l'ouverture ou la fermeture d'une vanne 12a de pressurisation ou d'une vanne 7a de dépressurisation du réservoir 8a, le sélecteur 13 étant en position « A » puisque le réservoir 8a en cours de pompage est à ce moment le réservoir 8a. On observera sur la figure 1 que la pressurisation du réservoir 8a, de même que celle du réservoir 8b, est réalisée au moyen d'une source 22 de gaz sous pression. Avantageusement, le gaz de pressurisation de la source 22 de gaz sous pression est une partie du fluide pressurisé par la pompe 18. Il résulte de ce qui précède que la pompe 18 est efficacement protégée contre la cavitation et qu'en même temps le fluide pompé est le plus dense possible, conformément au but recherché par l'invention. Entre temps, le deuxième réservoir 8b est rempli de fluide liquide saturé avec sa vapeur. Lorsque le réservoir 8a est vide, le détecteur 9a de niveau bas devient actif et le système ferme la vanne 4b puis ouvre les vannes 10b de purge et 11 b de retour bypass du réservoir 8b. Les vannes 10a et 11a sont fermées et le réservoir 8a est rempli via la vanne 4a de remplissage, tandis que la séquence de pompage et de contrôle de la pression du réservoir 8b commence. On obtient ainsi une production en continu de fluide cryogénique sous pression. 23a, 23b respective suction. Liquid hydrogen saturated with its vapor from a source 1 is introduced into a line 2 vacuum-insulated from the pumping system via a valve 3 for isolating the source 1. This liquid is used for successively fill the reservoirs 8a, 8b, according to a continuous operating mode which will be detailed later in the description. Initially, it will be assumed that the cryogenic tank 8a is filled. The valve 4a for filling the tank 8a is then closed, the valves 10a for purging and 11a for bypass return from the tank 8a are open, while the valves 10b for purging and 11b for the bypass return from the tank 8b are closed. The cryogenic pump 18 is in operation, the discharge pressure 19 being controlled by a valve 21 for regulating the high pressure fluid located after an exchanger 20 capable of vaporizing high pressure fluid. The suction pressure of the pump measured by a pressure sensor 14 is controlled by control means so that the temperature measured in line 23a by a temperature sensor 16 is lower than the saturation temperature of the cryogenic liquid. corresponding to this pressure. More specifically, the control means comprise a block 17 for calculating the minimum value of the pressure 14 on the suction line 23a such that this pressure is equal to the saturation pressure of the liquid at temperature 16 increased by the loss of input load NPSH of the pump 18. In order to maintain the pressure measured by the sensor 14 at the set value determined by the calculation block 17, a control block 15 controls the opening or closing of a valve 12a pressurization or a valve 7a for depressurizing the tank 8a, the selector 13 being in position "A" since the tank 8a being pumped is at this time the tank 8a. It will be observed in FIG. 1 that the pressurization of the reservoir 8a, as well as that of the reservoir 8b, is carried out by means of a source 22 of gas under pressure. Advantageously, the pressurization gas from the source 22 of pressurized gas is part of the fluid pressurized by the pump 18. It follows from the above that the pump 18 is effectively protected against cavitation and that at the same time the pumped fluid is as dense as possible, in accordance with the aim sought by the invention. Meanwhile, the second reservoir 8b is filled with liquid fluid saturated with its vapor. When the reservoir 8a is empty, the low level detector 9a becomes active and the system closes the valve 4b then opens the purge valves 10b and 11b bypass return from the reservoir 8b. The valves 10a and 11a are closed and the tank 8a is filled via the filling valve 4a, while the pumping and pressure control sequence of the tank 8b begins. This produces continuous production of cryogenic fluid under pressure.

Claims

REVENDICATIONS
1. Système de pompage d'un fluide cryogénique, comprenant au moins un réservoir (8a,8b) de fluide cryogénique, une pompe (18) cryogénique présentant une perte (NPSH) de charge d'entrée et une ligne (23a,23b) d'aspiration reliant ledit réservoir (8a,8b) à ladite pompe (18), caractérisé en ce qu'il comprend des moyens (15) de contrôle de pression dans la ligne d'aspiration (23a, 23b) comprenant des moyens commandés de pressurisation (12a, 12b) et de dépressurisation (7) du réservoir (8a, 8b) aptes à maintenir la pression dans la ligne (23a,23b) d'aspiration au plus égale à la pression de saturation du fluide cryogénique augmentée de la perte (NPSH) de charge d'entrée de la pompe cryogénique (18). 1. System for pumping a cryogenic fluid, comprising at least one reservoir (8a, 8b) of cryogenic fluid, a cryogenic pump (18) having a loss (NPSH) of input charge and a line (23a, 23b) suction connecting said reservoir (8a, 8b) to said pump (18), characterized in that it comprises means (15) for controlling the pressure in the suction line (23a, 23b) comprising means controlled from pressurization (12a, 12b) and depressurization (7) of the reservoir (8a, 8b) capable of maintaining the pressure in the suction line (23a, 23b) at most equal to the saturation pressure of the cryogenic fluid increased by the loss (NPSH) of the cryogenic pump input charge (18).
2. Système de pompage selon la revendication 1 , caractérisé en ce que lesdits moyens de contrôle comprennent un capteur (14) de pression et un capteur (16) de température du fluide cryogénique dans la ligne (23a,23b) d'aspiration, fournissant des signaux à un bloc (15) de contrôle apte à commander lesdits moyens de pressurisation (12a, 12b) et de dépressurisation (7). . . 2. Pumping system according to claim 1, characterized in that said control means comprise a sensor (14) of pressure and a sensor (16) of temperature of the cryogenic fluid in the suction line (23a, 23b), providing signals to a control block (15) capable of controlling said pressurization means (12a, 12b) and depressurization (7). . .
3. Système de pompage selon la revendication 2, caractérisé en ce que lesdits moyens de contrôle de pressurisation et dépressurisation comprennent une vanne (12a,12b) de pressurisation et une vanne (7) de dépressurisation du réservoir (8a,8b). 3. Pumping system according to claim 2, characterized in that said pressurization and depressurization control means comprise a valve (12a, 12b) for pressurization and a valve (7) for depressurization of the reservoir (8a, 8b).
4. Système de pompage selon la revendication 2 ou la revendication 3, caractérisé en ce que lesdits moyens de contrôle comprennent un bloc (17) de calcul apte à calculer à partir de la température mesurée par ledit capteur (16) de température une valeur minimale de la pression mesurée par ledit capteur (14) de pression égale à la pression de saturation du liquide à ladite température augmentée de la perte (NPSH) de charge d'entrée de la pompe (18). 4. Pumping system according to claim 2 or claim 3, characterized in that said control means comprise a calculation block (17) able to calculate from the temperature measured by said temperature sensor (16) a minimum value of the pressure measured by said pressure sensor (14) equal to the saturation pressure of the liquid at said temperature increased by the loss (NPSH) of inlet charge of the pump (18).
5. Système de pompage selon l'une quelconque des revendications 1 à5. Pumping system according to any one of claims 1 to
4, caractérisé en ce qu'il comprend au moins deux réservoirs (8a,8b) de fluide cryogénique disposés en parallèle, au moins un réservoir étant rempli de fluide cryogénique pendant la vidange d'un autre réservoir. 4, characterized in that it comprises at least two reservoirs (8a, 8b) of fluid cryogenic arranged in parallel, at least one tank being filled with cryogenic fluid during the emptying of another tank.
6. Système de pompage selon l'une quelconque des revendications 1 à6. Pumping system according to any one of claims 1 to
5, caractérisé en ce que lesdits réservoirs (8a,8b) sont remplis de fluide cryogénique saturé avec sa vapeur. 5, characterized in that said reservoirs (8a, 8b) are filled with cryogenic fluid saturated with its vapor.
7. Système de pompage selon l'une quelconque des revendications 1 à7. Pumping system according to any one of claims 1 to
6, caractérisé en ce que ledit fluide cryogénique est un fluide peu dense. 6, characterized in that said cryogenic fluid is a sparse fluid.
8. Système de pompage selon la revendication 7, caractérisé en ce que ledit fluide cryogénique peu dense est de l'hydrogène ou de l'hélium. 8. Pumping system according to claim 7, characterized in that said sparse cryogenic fluid is hydrogen or helium.
9. Système de pompage selon l'une quelconque des revendications 1 à9. Pumping system according to any one of claims 1 to
8, caractérisé en ce que la pressurisation du réservoir (8a, 8b) est réalisée au moyen d'une source (22) de gaz sous pression. 8, characterized in that the pressurization of the reservoir (8a, 8b) is carried out by means of a source (22) of pressurized gas.
10. Système de pompage selon la revendication 9, caractérisé en ce que le gaz de pressurisation de la source (22) de gaz sous pression est une partie du fluide pressurisé par la pompe (18). 10. Pumping system according to claim 9, characterized in that the pressurizing gas from the source (22) of pressurized gas is a part of the fluid pressurized by the pump (18).
EP05728289A 2004-03-01 2005-02-16 Cryogenic fluid pumping system Active EP1723336B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450397A FR2866929B1 (en) 2004-03-01 2004-03-01 SYSTEM FOR PUMPING A CRYOGENIC FLUID
PCT/FR2005/050098 WO2005085637A1 (en) 2004-03-01 2005-02-16 Cryogenic fluid pumping system

Publications (2)

Publication Number Publication Date
EP1723336A1 true EP1723336A1 (en) 2006-11-22
EP1723336B1 EP1723336B1 (en) 2009-04-15

Family

ID=34834267

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05728289A Active EP1723336B1 (en) 2004-03-01 2005-02-16 Cryogenic fluid pumping system

Country Status (8)

Country Link
US (1) US20070186566A1 (en)
EP (1) EP1723336B1 (en)
JP (1) JP2007525619A (en)
AT (1) ATE428856T1 (en)
CA (1) CA2557948A1 (en)
DE (1) DE602005013930D1 (en)
FR (1) FR2866929B1 (en)
WO (1) WO2005085637A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197464B2 (en) * 2007-10-19 2012-06-12 Cordis Corporation Deflecting guide catheter for use in a minimally invasive medical procedure for the treatment of mitral valve regurgitation
EP2060788B1 (en) * 2007-11-16 2010-05-12 Linde AG Method for operating a pump assembly and pump assembly
FR2931213A1 (en) * 2008-05-16 2009-11-20 Air Liquide DEVICE AND METHOD FOR PUMPING A CRYOGENIC FLUID
US20210199245A1 (en) * 2019-12-30 2021-07-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for increasing pump net positive suction head
CN111734571B (en) * 2020-05-28 2021-12-07 华北电力大学 Multi-channel hydraulic cylinder compensation control device based on virtual pumping and storage
US12092093B2 (en) * 2022-03-08 2024-09-17 Air Products And Chemicals, Inc. Apparatus and method for cryogenic pump cooldown
CN114893389B (en) * 2022-06-10 2023-06-30 中国科学院上海高等研究院 System and method for testing room temperature performance of helium pressure-reducing cooling pump set

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1653732A1 (en) * 1967-03-15 1971-12-23 Klein Schanzlin & Becker Ag Cavitation protection device
US4015436A (en) * 1975-07-30 1977-04-05 Tokyo Gas Company Limited Method for controlling the capacity of a blower and a device for controlling the pressure in a liquefied gas storage tank utilizing said method
FR2439881A1 (en) * 1978-10-23 1980-05-23 Air Liquide METHOD AND DEVICE FOR STARTING A CRYOGENIC LIQUID PUMP
FR2506400B1 (en) * 1981-05-19 1986-03-21 Air Liquide METHOD AND PLANT FOR PUMP TRANSFER OF A CRYOGENIC LIQUID
US4662181A (en) * 1984-12-24 1987-05-05 Zwich Energy Research Organization, Inc. Method and apparatus for extending the duration of operation of a cryogenic pumping system
US6220037B1 (en) * 1999-07-29 2001-04-24 Halliburton Energy Services, Inc. Cryogenic pump manifold with subcooler and heat exchanger
JP2002106789A (en) * 2000-09-29 2002-04-10 Nippon Sanso Corp Liquefied gas force feed equipment
JP4832633B2 (en) * 2000-11-30 2011-12-07 Ihiプラント建設株式会社 Method and apparatus for pressurized discharge of cryogenic liquid
US6644039B2 (en) * 2000-12-21 2003-11-11 Corken, Inc. Delivery system for liquefied gas with maintained delivery tank pressure
US6799429B2 (en) * 2001-11-29 2004-10-05 Chart Inc. High flow pressurized cryogenic fluid dispensing system
WO2004020287A1 (en) * 2002-08-30 2004-03-11 Chart Inc. Liquid and compressed natural gas dispensing system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005085637A1 *

Also Published As

Publication number Publication date
EP1723336B1 (en) 2009-04-15
CA2557948A1 (en) 2005-09-15
DE602005013930D1 (en) 2009-05-28
FR2866929A1 (en) 2005-09-02
WO2005085637A1 (en) 2005-09-15
ATE428856T1 (en) 2009-05-15
US20070186566A1 (en) 2007-08-16
FR2866929B1 (en) 2008-04-04
JP2007525619A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
EP1723336B1 (en) Cryogenic fluid pumping system
US6652243B2 (en) Method and apparatus for filling a storage vessel with compressed gas
EP2889528B1 (en) Gas-filling apparatus and method for filling gas
EP2174057B1 (en) Method for filling a tank with pressurised gas
EP2288811B1 (en) Device and method for pumping a cryogenic fluid
FR3066250B1 (en) DEVICE AND METHOD FOR COOLING LIQUEFIED GAS AND / OR NATURAL EVAPORATION GAS FROM LIQUEFIED GAS
EP2179155A2 (en) Hydraulic supply for a variable compression ratio engine
WO2021233964A1 (en) Device and method for transferring cryogenic fluid
US6371145B1 (en) System and method for compressing a fluid
WO2015173495A1 (en) End-of-stroke expander for piston-type pressure converter
WO2018206511A1 (en) Device and method for supplying fuel to a power-generating facility
KR101059869B1 (en) Regasification Facility of LNG
WO1987002117A1 (en) Device for supplying a pump with a diphase fluid and plant for producing hydrocarbons comprising such a device
FR2973858A1 (en) Station for filling tank of vehicle with fuel gas containing hydrogen, has fluidic connector that selectively connects common supply line and/or conduits with emergency pressurized gas container, where supply line is connected to tank
FR3069237A1 (en) DEVICE FOR THE PRODUCTION AND DISTRIBUTION OF NITROGEN, PARTICULARLY FOR A TRANSPORT VESSEL OF LIQUEFIED GAS
EP4090880B1 (en) Plant and method for storing and distributing cryogenic fluid
KR101556296B1 (en) Fuel supply system and ship including the same and fuel sullly method
EP0586294A1 (en) Device for the distribution of cryogenic fluid to apparatuses using them
EP0949448A1 (en) Installation and method for filling bottles
JP2010059824A (en) Steam compression method and steam compressor
WO2022084071A1 (en) Method and system for transferring cryogenic hydrogen
CA2239073A1 (en) Hydraulic reciprocating positive-displacement pumping system
US20190249829A1 (en) Liquefied gas regasification system and operation method therefor
US11377225B2 (en) Fuel supply system for aerial vehicle
EP3071674B1 (en) Transfer device for granular material at reduced energy consumption

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

17Q First examination report despatched

Effective date: 20080306

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005013930

Country of ref document: DE

Date of ref document: 20090528

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090726

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

26N No opposition filed

Effective date: 20100118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100216

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120329

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100216

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

BERE Be: lapsed

Owner name: L'AIR LIQUIDE, S.A. POUR L'ETUDE ET L'EXPLOITATIO

Effective date: 20130228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005013930

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903