EP1721121B1 - Dispositif et procede pour mesurer l'epaisseur d'un echantillon transparent - Google Patents

Dispositif et procede pour mesurer l'epaisseur d'un echantillon transparent Download PDF

Info

Publication number
EP1721121B1
EP1721121B1 EP04804156A EP04804156A EP1721121B1 EP 1721121 B1 EP1721121 B1 EP 1721121B1 EP 04804156 A EP04804156 A EP 04804156A EP 04804156 A EP04804156 A EP 04804156A EP 1721121 B1 EP1721121 B1 EP 1721121B1
Authority
EP
European Patent Office
Prior art keywords
sample
light beam
reflected
angle
incidence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04804156A
Other languages
German (de)
English (en)
Other versions
EP1721121A1 (fr
Inventor
Ulrich Pingel
Stefan Leute
Paul Weigt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isra Surface Vision GmbH
Original Assignee
Isra Surface Vision GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isra Surface Vision GmbH filed Critical Isra Surface Vision GmbH
Publication of EP1721121A1 publication Critical patent/EP1721121A1/fr
Application granted granted Critical
Publication of EP1721121B1 publication Critical patent/EP1721121B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material

Definitions

  • the invention relates to a device for measuring the thickness of a transparent sample, in particular a glass band or a glass plate, which preferably has smooth surfaces, with a first incident at a first angle incident on the front surface of the sample first light beam, in particular a first laser beam, with a at a second incident angle obliquely incident on the front surface of the sample second light beam, in particular a second laser beam, wherein the first angle of incidence and the second angle of incidence are different, and at least one detector for detecting the reflected light from the sample of the first and second incident light beams and to determine their position.
  • the invention further relates to a corresponding method for measuring thickness, which can preferably be carried out with the device according to the present invention.
  • Glass thicknesses in the production of glass panes, glass tapes or the like are standardized. These standard thicknesses are provided with tolerances to be observed during production. If one can manufacture by constant measurement of the thickness and by a stable process at the lower tolerance limit, substantial amounts of glass can be saved in mass production. Furthermore, the yield of good glass can be increased if one can increase the width of salable glass within the given machine width due to good control. Even with thickness changes on a float glass system can be at a continuous possibility for measurement, the times when changing from one thickness to another minimize, which also increases the yield of salable glass.
  • the DE 41 43 186 A1 proposed a device with two laser light sources, two beam splitters and two line sensors, which are arranged symmetrically in the manner of a deflection prism that the rays are guided from the laser light sources in changing directions on the measurement object and the reflections of the front and back again by the deflection prism and the beam splitter fall through the line sensors.
  • the beam path is comparatively complicated and a large number of optical elements are necessary.
  • the object of the invention is therefore to propose a method for thickness measurement, which is easy to implement and can determine the thickness very accurately.
  • a device of the type mentioned essentially in that at least one incident, to the first or second light beam substantially parallel light beam to the front Surface of the sample is directed and that at least one detector for detecting a light reflected from the sample of the light beam of the parallel beam and to determine its position is provided.
  • the thickness sensor according to the device according to the invention provides a high precision in the determined thickness in a comparatively simple and compact construction.
  • the third light beam is designed to be switched off in order to avoid interference in measurements in which the third light beam is not needed. This applies in particular to the inclination and the wedge angle correction.
  • the incident light beams and / or the reflected light beams lie in a common beam plane. Then the interpretation of the measurement results and the realization of the structure are particularly easy.
  • the device and the transparent To move sample relative to each other.
  • the device associated guide means are provided with which the sample, for example.
  • the glass or the glass ribbon are fed past the device.
  • the guide means also serve to align the transparent sample in front of the device for measuring its thickness, so that the sample can be arranged in a defined orientation in front of the thickness sensor. This serves in particular for aligning the surface of the sample relative to the optical system of the device, in particular its measuring head.
  • the optical errors are generally transverse to the pulling or moving direction of the glass are greater than the optical disturbances in the drawing direction, to find these errors is particularly advantageous if the relative direction of movement, in a fixed thickness sensor in particular the pulling or moving direction of the Sample, in the common beam plane of the incident light rays and / or the reflected light rays, advantageously perpendicular to the sample normal.
  • the invention is also applicable if the relative direction of movement is not arranged in the common beam plane, but transversely thereto.
  • the first angle of incidence and the second angle of incidence in the spanned by the first and the second light beam plane on different sides relative to the pro bennormale in the incidence area If the sample standard is not in the common plane of the beam when the thickness sensor is not in front of the sample horizontally, the projection of the sample normal into the beam plane serves as a reference.
  • the angles of incidence lying on both sides of the sample standard are equal in magnitude. They are, for example, in the order of 45 °.
  • two detectors can be arranged spaced apart from one another, preferably perpendicular to the surface of the sample, their sensor surfaces preferably facing one another. With such a sensor arrangement, normally all the light beams reflected by the incident light beams on the sample can be detected in a spatially resolved manner in the two detectors.
  • Suitable detectors are CCD chips, line scan cameras or other spatially resolving detectors.
  • the incidence range of the incident first, second and third light beams on the sample is smaller than the distance between the two detectors located opposite one another, which preferably detect all the reflected light beams.
  • the incidence area defined by the points of incidence of all incident light rays on the front surface of the sample is advantageously chosen so that all reflected light rays are detected in the detectors.
  • two beam splitters for generating the three light beams from a light beam can be provided according to a preferred embodiment.
  • the thickness sensor according to the invention becomes less expensive to manufacture.
  • the adjustment is generally easier because the emerging from the beam splitter beams emerge at a defined angle, so that after adjustment of the original light beam, the beam splitter unit and possibly two deflecting mirrors that limit the optical measuring head, the beam guide of the system according to the invention is adjusted.
  • the beam splitter can output the decoupled beam at an angle of 90 ° relative to the passing beam.
  • One of the beam splitters for generating the third light beam can be designed to be switchable in order to switch the third laser beam on and off.
  • an evaluation device connected to the at least one detector can be provided for determining the thickness of the sample, in particular an inclination correction, an angle correction and / or a curvature correction being carried out.
  • this evaluation unit in particular, the method according to the invention described below is then implemented, which, however, can also be applied detached from the device described above.
  • a first light beam obliquely incident on the front surface of the sample at a first angle of incidence and the positions of the light reflected at the front surface of the light beam and It is determined that a second light beam is obliquely incident on the front surface of the sample at a second incident angle other than the first incident angle, and the positions of the light beam reflected on the front surface and the reflected light on the back surface are determined in which the thickness of the transparent sample is determined from the distance of the light beams of the first light beam and / or of the second light beam reflected at the front surface and the rear surface, and wherein by comparison Positions of at least a portion of the reflected light beams, a tilt and / or wedge angle correction is performed.
  • a curvature correction is performed.
  • the first light beam and the second light beam are incident on the front surface of the sample in the incidence range from different sides in the radiation plane spanned by them.
  • the incidence area is the area in which the incident light rays strike the sample.
  • the first and the second angle of incidence may be equal in magnitude, preferably about 45 °.
  • the distance to the sample is determined according to the invention from the position of the preferably reflected on the front surface light beams each time the impact on the detector, wherein at a non-corresponding distance a wedge angle and / or a tilt correction is made.
  • a different beam path for example, by amount different angles of incidence, are taken into account.
  • a wedge or inclination angle can then be determined according to the invention, with which a correction of the previously determined thickness value is made.
  • the distance between the reflected light beams of the third light beam and the first or second light beam substantially parallel thereto can be determined and a curvature correction can be carried out.
  • the angle of curvature and / or radius is advantageously determined from the distance between the reflected light beams of the third light beam and the first or second light beam substantially parallel thereto. This then further corrects the thickness value previously determined and already corrected by the inclination or wedge angle correction.
  • a thickness sensor 1 is shown schematically, which is an apparatus for measuring the thickness of a transparent sample with preferably smooth surfaces.
  • the sample is a glass ribbon 2 or a glass sheet.
  • the thickness sensor 1 has a laser, not shown, which generates a collimated parallel light or laser beam L, which passes through two beam splitters 3, 4 arranged one behind the other.
  • the laser beam L is divided into a total of three laser beams L1, L2, L3.
  • the first laser beam L1 passes through both beam splitters 3, 4 in the direction of the laser beam L, strikes a first mirror 5 at an angle of approximately 45 ° and is reflected there.
  • the second laser beam L2 is in the second beam splitter 4th coupled out at an angle of about 90 ° from the laser beam L, meets at an angle of about 45 ° to a second mirror 6 and is reflected there.
  • the two mirrors 5, 6 delimit the optical beam space of the thickness sensor 1 forming the measuring head and are arranged parallel to one another on opposite sides of the beam splitters 3, 4 with mutually facing mirror surfaces.
  • the mirrors 5, 6 are arranged perpendicular to the surface of the glass ribbon 2.
  • the incident beams L1 and L2 are partially reflected and fall as reflected laser beams L1 ', L2' on correspondingly arranged detectors 11, 12.
  • Another portion of the incident light beams L1 and L2 is refracted into the glass sheet 2, on the rear surface 13 reflects and exits after a repeated refraction on the front surface 8 of the glass ribbon 2.
  • These further laser beams L1 "and L2" reflected on the rear surface 13 are substantially parallel to the light beams L1 'and L2' reflected on the front surface and also incident on the detectors 11, 12.
  • the detectors 11, 12 are each arranged in parallel in front of a mirror 5, 6 and have mutually facing sensor surfaces, which are aligned substantially perpendicular to the surface 8 of the glass ribbon 2.
  • the detectors 11 and 12 are arranged so that they can each receive both reflected laser beams L1 'and L1 "or L2' and L2" of the first and second incident laser beam L1 and L2 and determine their position.
  • the detectors 11, 12 have position-resolving sensors, with which the position of a light beam incident on them can be accurately determined. Suitable for this are CCD chips, line scan cameras or the like. Sensors.
  • the beam splitter 3 upstream of the beam splitter 4 a parallel to the second incident laser beam L2 incident laser beam L3 is generated, which is deflected as the laser beam L2 on the mirror 6 and parallel to the laser beam L2 at a distance s in the assembly accuracy.
  • the third laser beam L3 impinges on the front surface 8 of the glass ribbon 2.
  • the incidence region 10 is defined by the region in which the incident laser beams L1, L2 and L3 impinge on the front surface 8. This incidence area 10 is smaller than the distance of the two opposing detectors 11, 12 and extends approximately over half their distance.
  • the arrangement of the laser beams L1, L2, L3 and the detectors 11, 12 is selected so that the reflected beams L2 ', L2 "and L3' of the second and third incident beams L2 and L3 on the sensor surface of the detector 11 and the reflected beams L1 'and L1 "of the first incident beam L1 fall on the sensor surface of the detector 12.
  • the beam planes of the incident and the reflected laser beams can also fall apart.
  • the sample standards are not in any of the radiation levels.
  • the thickness sensor 1 described above can be used, in particular, to measure the thickness d of the sample 2, in particular a glass band or a glass pane, directly during production.
  • the glass band 2 or the glass pane is then moved past the thickness sensor and the thickness d of the sample 2 is measured continuously or at predetermined time intervals.
  • the direction of movement 15 of the glass band 2 is then preferably also in the common beam plane 14.
  • the method according to the invention for determining the thickness d will be explained below.
  • the method is preferably carried out with the thickness sensor 1, which is arranged in particular perpendicular to the glass band 2.
  • the thickness d of the glass ribbon 2 is first calculated from the distance d 'of the laser beams L1', L1 "reflected by the first laser beam L1 at the front and rear surfaces 8, 13 of the glass ribbon 2 the condition that the glass is perfectly flat with parallel front and rear surfaces 8, 13 and the angle of incidence ⁇ 1 is accurately known, the thickness d can be determined with a simple method, which is explained below with reference to FIG. 2.
  • the vertical distance d 'between the two reflected beams L1', L1 " is calculated from the position data of the beams L1 'and. Using the known angle of incidence ⁇ ( ⁇ 1 for L1) and the position of the detector 12 with respect to the glass sheet 2 L1 "detected on the detector 12.
  • d ' is the vertical distance between the reflected beams L1', L1 ", n is the refractive index and ⁇ is equal to the angle of incidence ⁇ 1.
  • the thickness of the glass ribbon 2 can be determined for the laser beam L2 incident from the right under the angle of incidence ⁇ 2. from that result in two first thickness values d1 and d2, which ideally coincide.
  • the second incident laser beam L2 which does not come from the left but from the right and lies in the same beam plane 14.
  • a possibly present wedge angle of the glass strip 2 can also be determined and corrected with this system, the method steps being explained below with reference to FIGS. 3 and 4.
  • FIG. 2 shows, without reference number, a light beam that runs off a horizontal glass band 2 at the angle ⁇ 1 and corresponds to the beam L1 'from FIG. 2.
  • the distance b1 of the beam L1 'reflected at the front surface 8 from the surface 8 in the detector 12 is determined, the distance b1 being determined in the direction of the sample standard 9 of the non-inclined sample 2.
  • the glass sheet 2 itself may also have a ⁇ wedge angle, as shown in Fig. 4.
  • the glass ribbon 2 is provided with a wedge. This can be determined from the positions of the reflected beams L1 ', L1 "and L2', L2" on the detector.
  • thickness values d1 and d2 can be determined for the beams L1 and L2 incident from the left and right, respectively, in accordance with FIG. 4, the thickness d of the sample 2 then being the average value thereof. It is also possible to average the distances M1 and M2 between the reflected beams L1 'and L1 "or L2' and L2" and to determine therefrom the sample thickness.
  • the glass ribbon 2 may also be curved in addition.
  • the third laser beam L3 becomes parallel to one of the first two incident ones Beams, in the illustrated case the laser beam L2, irradiated in a known by the construction of the thickness sensor 1 distance s.
  • the beam direction of the beams L2, L3 is reversed in comparison to FIG.
  • the reflection of the rays L2, L3 on the front surface can be used to determine the radius of curvature R of the sample 2, as will be explained below with reference to FIG.
  • the measured quantities are determined in each case for the two incident beams L1 and L2. This results in two thickness values d1 and d2, from which the mean value is formed.
  • the angles of incidence ⁇ 1 and ⁇ 2 and thus also the angles ⁇ 1 and ⁇ 2 are different for the two incident rays. They arise in the tilt correction for the glass ribbon 2.
  • the glass or material thickness of a transparent sample can be determined with a high accuracy of 0.1%.
  • the device according to the invention is preferably used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Claims (18)

  1. Dispositif de mesure de l'épaisseur d'un échantillon transparent (2), notamment d'une bande ou d' un disque en fibres de verre, comprenant
    ■ un premier faisceau lumineux (L1) incident sur la surface avant (8) de l'échantillon (2) selon un premier angle d'incidence (α1), notamment un premier faisceau laser,
    ■ un deuxième faisceau lumineux (L2) incident sur la surface avant (8) de l'échantillon (2) selon un deuxième angle d'incidence (α2), notamment un deuxième faisceau laser,
    ■ dans lequel le premier angle d'incidence (α1) et le deuxième angle d'incidence (α2) sont différents,
    ■ et comprenant au moins un détecteur (11, 12) pour détecter les faisceaux lumineux (L1', L1", L2', L2") réfléchis par l'échantillon (2) des premier et deuxième faisceaux lumineux (L1, L2) incidents et pour déterminer leur position, caractérisé en ce
    qu'au moins un faisceau lumineux (L3) incident essentiellement parallèle au premier ou au deuxième faisceau lumineux (L1, L2) est aligné sur la surface avant (8) de l'échantillon (2) et
    qu'au moins un détecteur (11) est prévu pour détecter un faisceau lumineux (L3') réfléchi par l'échantillon (2) du faisceau lumineux parallèle (L3) pour déterminer sa position.
  2. Dispositif selon la revendication 1, caractérisé en ce que le troisième faisceau lumineux (L3) peut être désactivé.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que les faisceaux lumineux incidents (L1, L2, L3) et/ou les faisceaux lumineux réfléchis (L1', L1 " L2', L2" , L3') reposent dans un plan de faisceau commun (14).
  4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le dispositif (1) et l'échantillon transparent (2) sont mobiles l'un par rapport à l'autre.
  5. Dispositif selon les revendications 3 et 4, caractérisé en ce que la direction de mouvement relatif (15) repose le plan de faisceau commun (14) des faisceaux lumineux incidents (L1, L2, L3) et/ou des faisceaux lumineux réfléchis (L1', L1" L2', L2" L3').
  6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le premier angle d'incidence (α1) et le deuxième angle d'incidence (α2) reposent dans le plan de faisceau (14) défini par le premier et le deuxième faisceau lumineux (L1, L2) sur différents côtés par rapport à la normale de l'échantillon (9) dans la zone d'incidence (10).
  7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que deux détecteurs (11, 12) sont placés à distance l'un de l'autre de préférence perpendiculaire à la surface (8) de l'échantillon (2).
  8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la zone d'incidence (10) des premier, deuxième et troisième faisceaux lumineux incidents (L1, L2, L3) sur l'échantillon (2) est plus petite que la distance des deux détecteurs se faisant face pour détecter les faisceaux lumineux réfléchis (L1' , L1" L2', L2", L3').
  9. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend deux diviseurs de faisceau (3, 4) pour produire les trois faisceaux lumineux incidents (L1, L2, L3) à partir d'un faisceau lumineux (L).
  10. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un dispositif d'évaluation relié à l'au moins un détecteur (11, 12) pour définir l'épaisseur de l'échantillon (2), moyennant quoi particulièrement une correction de l'inclinaison, de l'angle et/ou de la courbure est réalisée.
  11. Procédé de mesure de l'épaisseur d'un échantillon transparent (2), notamment avec un dispositif (1) selon les revendications 1 à 9, dans lequel
    ■ un premier faisceau lumineux (L1) est incident sur la surface avant (8) de l'échantillon (2) selon un premier angle d'incidence (α1) et les positions du faisceau lumineux (L1') réfléchi sur la surface avant (8) et du faisceau lumineux (L1") réfléchi sur la surface arrière (13) sont définies,
    ■ un deuxième faisceau lumineux (L2) est incident sur la surface avant (8) de l'échantillon (2) selon un deuxième angle d'incidence (α2) différent du premier angle d'incidence (α1) et les positions du faisceau lumineux (L2') réfléchi sur la surface avant (8) et du faisceau lumineux (L2") réfléchi sur la surface arrière (13) sont définies,
    ■ moyennant quoi à partir de la distance des faisceaux lumineux (L1', L1" L2', L2") du premier faisceau lumineux (L1) et/ou du deuxième faisceau lumineux (L2) réfléchis sur la surface avant (8) et sur la surface arrière (13), l'épaisseur de l'échantillon transparent (2) est calculée,
    ■ moyennant quoi en comparant la position d'au moins une partie des faisceaux lumineux (L1' , L1", L2', L2") réfléchis, une correction de l'inclinaison et/ou de l'angle de coin est réalisée, caractérisé en ce
    qu'au moins un troisième faisceau lumineux (L3) est incident sur la surface avant (8) à une distance connue (s) essentiellement parallèle du premier ou le deuxième faisceau lumineux (L2), et par calcul des positions des faisceaux lumineux (L2', L3') de ces faisceaux lumineux parallèles (L2, L3) réfléchis respectivement sur la surface avant (8) respectivement la surface arrière (13), une correction de la courbure est réalisée.
  12. Procédé selon la revendication 11, caractérisé en ce que le premier faisceau lumineux (L1) et le deuxième faisceau lumineux (L2) sont incidents sur la surface avant (8) de l'échantillon (2) dans le plan de faisceau (14) défini par eux par rapport à la normale de l'échantillon (9) dans la zone d'incidence (10) de différents côtés.
  13. Procédé selon la revendication 12, caractérisé en ce que le premier et le deuxième angle d'incidence (α1, α2) sont égaux en degrés et sont de préférence de 45°.
  14. Procédé selon l'une des revendications 11 à 13, caractérisé en ce que pour la correction de l'inclinaison et/ou de l'angle de coin, la distance jusqu'à l'échantillon (2) est respectivement calculée à partir de la position des faisceaux lumineux (L1', L2') réfléchis de préférence sur la surface avant (8), moyennant quoi si les distances ne correspondent pas l'une à l'autre, une correction de l'angle de coin ou de l'inclinaison est réalisée.
  15. Procédé selon la revendication 14, caractérisé en ce qu'à partir d'une distance qui ne correspond pas des faisceaux lumineux réfléchis, un angle de coin respectivement d'inclinaison (δ, σ) est calculé.
  16. Procédé selon l'une des revendications 11 à 15, caractérisé en ce que la distance entre les faisceaux lumineux (L3', L2') réfléchis du troisième faisceau lumineux (L3) et le premier ou deuxième faisceau lumineux (L2) essentiellement parallèle à celui-ci est calculée et que le cas échéant une correction de la courbure est réalisée.
  17. Procédé selon la revendication 16, caractérisé en ce qu'à partir de la distance entre les faisceaux lumineux (L3', L2') réfléchis du troisième faisceau lumineux (L3) et le premier ou deuxième faisceau lumineux (L2) essentiellement parallèle à celui-ci, le faisceau (R) et/ou l'angle de courbure est calculé.
  18. Procédé selon la revendication 17, caractérisé en ce que la puissance de réfraction est calculée à partir du rayon de courbure (R).
EP04804156A 2004-03-03 2004-12-22 Dispositif et procede pour mesurer l'epaisseur d'un echantillon transparent Not-in-force EP1721121B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004010311A DE102004010311A1 (de) 2004-03-03 2004-03-03 Vorrichtung und Verfahren zur Messung der Dicke einer transparenten Probe
PCT/EP2004/014560 WO2005085751A1 (fr) 2004-03-03 2004-12-22 Dispositif et procede pour mesurer l'epaisseur d'un echantillon transparent

Publications (2)

Publication Number Publication Date
EP1721121A1 EP1721121A1 (fr) 2006-11-15
EP1721121B1 true EP1721121B1 (fr) 2007-08-01

Family

ID=34877289

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04804156A Not-in-force EP1721121B1 (fr) 2004-03-03 2004-12-22 Dispositif et procede pour mesurer l'epaisseur d'un echantillon transparent

Country Status (8)

Country Link
US (1) US7554678B2 (fr)
EP (1) EP1721121B1 (fr)
JP (1) JP2007526461A (fr)
CN (1) CN100437023C (fr)
AT (1) ATE368839T1 (fr)
DE (2) DE102004010311A1 (fr)
ES (1) ES2290778T3 (fr)
WO (1) WO2005085751A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034693B4 (de) * 2004-07-17 2006-05-18 Schott Ag Verfahren und Vorrichtung zur berührungslosen optischen Messung der Dicke von heißen Glaskörpern mittels der chromatischen Aberration
US8913254B1 (en) * 2010-04-01 2014-12-16 Clifton George Daley Measuring device
US8582123B2 (en) * 2010-09-03 2013-11-12 Accolade Electronics Company Limited Apparatus for determining thickness of a banknote
CN103868462A (zh) * 2012-12-11 2014-06-18 致伸科技股份有限公司 厚度检测方法
EP2801258B1 (fr) * 2013-05-10 2016-09-14 Albert Handtmann Maschinenfabrik GmbH & Co. KG Dispositif et procédé de détermination d'au moins un paramètre d'une saucisse produite
TWI509215B (zh) * 2015-07-02 2015-11-21 Ta Jen Kuo 高準確度即時鑑別光電玻璃基板的裝置及其方法
CN105606034A (zh) * 2015-10-16 2016-05-25 北京奥博泰科技有限公司 一种玻璃厚度检测装置及玻璃厚度检测方法
CN105806229A (zh) * 2016-05-27 2016-07-27 四川三维测控设备有限公司 一种厚度、宽度在线无接触测量方法
US11867630B1 (en) 2022-08-09 2024-01-09 Glasstech, Inc. Fixture and method for optical alignment in a system for measuring a surface in contoured glass sheets

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320139A3 (fr) * 1987-12-08 1990-08-08 Emhart Industries, Inc. Mesure optique de l'épaisseur de la paroi d'articles transparents
DE4035168A1 (de) * 1990-11-06 1992-05-07 Flachglas Ag Verfahren und vorrichtung zur bestimmung der optischen qualitaet einer transparenten platte
US5251010A (en) * 1991-06-07 1993-10-05 Glasstech, Inc. Optical roller wave gauge
DE4143186A1 (de) * 1991-12-30 1993-07-01 Vma Ges Fuer Visuelle Messtech Vorrichtung zur beruehrungslosen messung der wanddicke
CA2067400A1 (fr) * 1992-04-28 1993-10-29 Robert E. Bredberg Dispositif de mesure d'epaisseur au laser
JP3438832B2 (ja) * 1994-07-04 2003-08-18 旭硝子株式会社 板状透明体の板厚測定方法及び装置
DE4434822C1 (de) 1994-09-29 1996-01-11 Schott Glaswerke Vorrichtung zur berührungslosen Messung von Abständen zu reflektierenden Grenzflächen oder Abstandsdifferenzen dazwischen, insbesondere zur Bestimmung der Dicke von Meßobjekten aus transparentem Material
US6285451B1 (en) * 1999-04-30 2001-09-04 John M. Herron Noncontacting optical method for determining thickness and related apparatus
US6549292B1 (en) 2000-10-17 2003-04-15 Agr International, Inc. Method and apparatus for inspecting hollow transparent articles
US6961133B2 (en) * 2003-08-29 2005-11-01 The Boeing Company Method and apparatus for non-contact thickness measurement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE502004004539D1 (de) 2007-09-13
ATE368839T1 (de) 2007-08-15
US7554678B2 (en) 2009-06-30
US20070052978A1 (en) 2007-03-08
WO2005085751A1 (fr) 2005-09-15
EP1721121A1 (fr) 2006-11-15
CN1894554A (zh) 2007-01-10
CN100437023C (zh) 2008-11-26
DE102004010311A1 (de) 2005-09-22
ES2290778T3 (es) 2008-02-16
JP2007526461A (ja) 2007-09-13

Similar Documents

Publication Publication Date Title
DE2256736C3 (de) Meßanordnung zur automatischen Prüfung der Oberflächenbeschaffenheit und Ebenheit einer Werkstückoberfläche
EP0099023B1 (fr) Tête de mesure pour la mesure de réflexion
DE2313439A1 (de) Profilbreite-messvorrichtung
EP0485043A2 (fr) Procédé et appareil pour la détermination de la qualité d'une lame transparente
EP0075032B1 (fr) Méthode pour la topographie interférométrique de surface
EP2044387B1 (fr) Procédé et dispositif pour la mesure d'épaisseur de substrats en verre à grande surface
DE2658609A1 (de) Optisches messverfahren und vorrichtung zur durchfuehrung des verfahrens
EP1721121B1 (fr) Dispositif et procede pour mesurer l'epaisseur d'un echantillon transparent
WO2005073698A1 (fr) Procede de determination de la profondeur d'un defaut dans une bande de verre
DE102013227031A1 (de) Vorrichtung und Verfahren zum Analysieren eines auf ein Substrat auftreffenden Lichtstrahls und zum Korrigieren einer Brennweitenverschiebung
DE3503086C1 (de) Verfahren bzw.Vorrichtung zur Messung der Wanddicke von transparenten Gegenstaenden
DE4434822C1 (de) Vorrichtung zur berührungslosen Messung von Abständen zu reflektierenden Grenzflächen oder Abstandsdifferenzen dazwischen, insbesondere zur Bestimmung der Dicke von Meßobjekten aus transparentem Material
DE3610484A1 (de) Verfahren und vorrichtung zum bestimmen des orts von im flachglas vorhandenen fehlern
WO2008049640A2 (fr) Procédé et dispositif de détermination d'ondulations qui déforment des vitres
EP0585893A1 (fr) Dispositif et procédé pour la mesure très précise de la distance de surfaces
EP0331272B1 (fr) Procédé et dispositif pour l'inspection de bandes transparentes
WO2005022127A2 (fr) Dispositif de mesure d'un element plan
EP0255552A1 (fr) Méthode et dispositif pour la mesure sans contact de changements de longueur de pièces détachées
DE4025682C2 (fr)
DE3503116A1 (de) Messinstrument
EP0600048A1 (fr) Procede de mesure d'angles relatifs
DE3643723C2 (fr)
DE2531097A1 (de) Verfahren und vorrichtung zur pruefung der brechkraft einer linse
DE3219388C2 (de) Optisch-elektrische Meßeinrichtung zum Messen der Lage und/oder der Abmessung von Gegenständen
DE3229263C2 (de) Optisch-elektrische Meßeinrichtung zum Messen der Lage und/oder der Abmessung von Gegenständen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004004539

Country of ref document: DE

Date of ref document: 20070913

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071003

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071201

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2290778

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: ISRA SURFACE VISION G.M.B.H.

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071101

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

26N No opposition filed

Effective date: 20080506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20141215

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20151222

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181011

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211222

Year of fee payment: 18

Ref country code: FR

Payment date: 20211220

Year of fee payment: 18

Ref country code: DE

Payment date: 20211217

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004539

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221222

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231