EP1717522B1 - Klimaanlage - Google Patents

Klimaanlage Download PDF

Info

Publication number
EP1717522B1
EP1717522B1 EP05009355A EP05009355A EP1717522B1 EP 1717522 B1 EP1717522 B1 EP 1717522B1 EP 05009355 A EP05009355 A EP 05009355A EP 05009355 A EP05009355 A EP 05009355A EP 1717522 B1 EP1717522 B1 EP 1717522B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
water
pipe
indoor
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05009355A
Other languages
English (en)
French (fr)
Other versions
EP1717522A1 (de
Inventor
Hidenori Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to DE200560026103 priority Critical patent/DE602005026103D1/de
Priority to EP05009355A priority patent/EP1717522B1/de
Publication of EP1717522A1 publication Critical patent/EP1717522A1/de
Application granted granted Critical
Publication of EP1717522B1 publication Critical patent/EP1717522B1/de
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units

Definitions

  • the present invention relates to an air conditioner, and particularly to an air conditioner using an absorption type refrigerating machine and a fine coil unit.
  • the absorption type cold/hot water machine or the chiller heat source machine is used as a heat source machine
  • facilities such as a cooling water system, etc. are also required. Therefore, it is sufficient to use only one heat source machine, however, the number of places to which maintenance is required is larger than the case where the outdoor unit having the compressor is used as a heat source machine, and also it is impossible to dispersively set up the heat source machine.
  • the laying of the water pipe in the building must be replaced by the laying of the refrigerant pipe in the building, that is, the pipe laying is carried out again by using a water pipe, and also the fan coil unit must be replaced by the indoor unit.
  • US 5 272 885 A describes an air conditioner according to the preamble of claim 1 wherein during cooling operation the chiller unit serves as a condenser for the refrigerant and during heating operation as evaporator.
  • an obj ect of the present invention is to provide an air conditioner that is equipped with a heat source machine having a compressor therein and supplies heat source from both of a refrigerant pipe and a water pipe to carry out air conditioning operation.
  • the air conditioner is provided with the fan coil unit for circulating cold/hot water in a water pipe to carry out air conditioning operation and also the indoor unit for directly heat-exchanging the refrigerant discharged from the compressor with indoor air. Therefore, the fan coil unit which has been hitherto connected to the water pipe can be directly successively used, and also the air conditioning area can be expanded or the air conditioning performance can be improved by newly laying a refrigerant pipe. Furthermore, the newly laid pipe is the refrigerant pipe, and thus the laying cost in a building can be suppressed to a low cost.
  • Fig. 1 is a diagram showing the construction of an air conditioner according to the present invention.
  • An air conditioner 100 comprises an outdoor unit 1 containing an engine 10, a compressor 11, etc., a chiller unit 2 for heat-exchanging refrigerant discharged from the compressor 11 with water in a water heat exchanger to generate cold water or hot water, and direct expansion type of plural indoor units 3a, 3b for directly heat-exchanging the refrigerant from the compressor 1 with indoor air, which are connected to one another through liquid pipes 5a, 5b and a gas pipe 5c, and further comprises fan coil units 4a, 4b which are connected to the chiller unit 2 through water pipes 7a, 7b and circulate the cold water or hot water generated in the chiller unit 2 by a circulating pump 6 to heat-exchange the cold water or hot water with the indoor air.
  • the outdoor unit 1 In the outdoor unit 1 are accommodated an engine 10 for combustion fuel such as gas or the like to generate driving force, a compressor 11 which is driven by the driving force generated in the engine 10, a four-way valve 12 for changing the circulating direction of refrigerant discharged from the compressor 11, an outdoor heat exchanger 13 for carrying out the exchange between the refrigerant and outside air, an outdoor expansion valve 14 for reducing the pressure of the refrigerant, an accumulator 15 for conducting gas-liquid separation on the refrigerant sucked into the compressor 11, and an outdoor controller 16 for controlling the outdoor unit 1 and carrying out communications with a chiller controller 24 of the chiller unit 2 and indoor controllers 32a, 32b.
  • an engine 10 for combustion fuel such as gas or the like to generate driving force
  • a compressor 11 which is driven by the driving force generated in the engine 10
  • a four-way valve 12 for changing the circulating direction of refrigerant discharged from the compressor 11
  • an outdoor heat exchanger 13 for carrying out the exchange between the refrigerant and outside air
  • the chiller unit 2 In the chiller unit 2 are accommodated a plurality of refrigerant/water heat exchangers 20a, 20b as plate type heat exchangers, a refrigerant heat exchanger 20c, a motor-driven expansion valve 21 for controlling the flow amount of refrigerant flowing through the refrigerant/water heat exchangers 20a, 20b and the refrigerant heat exchanger 20c, a receiver tank 22 for temporarily stocking the refrigerant, check valves 23a, 23b, and the chiller controller 24 for adjusting the opening degree of the motor-driven expansion valve 21, controlling the operation of the circulating pump 6 and carrying out communications with the outdoor controller 16 of the outdoor unit 1 and the fan coil controllers 42a, 42b of the fan coil units 4a, 4b.
  • a liquid pipe 5a extending from the outdoor unit 1 is connected to one end of the receiver tank 22, and the other end of the receiver tank 22 is branched to two parts at a branch point X.
  • One branched part of the receiver tank 22 extends as a liquid pipe 5b and is connected to the indoor units 3a, 3b described later, and the other branched part of the receiver tank 22 is connected through the check valve 23 to a refrigerant port A of the refrigerant heat exchanger 20c. That is, the chiller unit 2 is connected to the indoor units 3a, 3b in parallel through the liquid pipe 5b and the gas pipe 5c at the other end side of the receiver tank 22.
  • the check valve 23a is disposed so that the refrigerant flows from the receiver tank 22 through the check valve 23a to the refrigerant heat exchanger 20c, and the other end of the receiver tank 22 is connected to the check valve 23b whose one end is connected to a refrigerant port B of the refrigerant heat exchanger 20c.
  • the check valve 23b is disposed so that the refrigerant flows from the refrigerant port B of the refrigerant heat exchanger 20c through the check valve 23b to the other end of the receiver tank 22.
  • the refrigerant port B of the refrigerant heat exchanger 20c is connected through the motor-driven expansion valve 21 to a refrigerant port C of the refrigerant/water heat exchanger 20a, and a refrigerant port D of the refrigerant/water heat exchanger 20a is connected to a refrigerant port E of the refrigerant/water heat exchanger 20b.
  • a refrigerant port Fof the refrigerant/water heat exchanger 20b is connected to a refrigerant port of the refrigerant heat exchanger 20c, and a refrigerant port H of the refrigerant heat exchanger 20c is connected to the refrigerant pipe 5c extending from the outdoor unit 1. That is, the refrigerant/water heat exchanger 20a, 20b are connected to each other in series in the refrigerant circuit.
  • the chiller unit 2 is provided with the water pipes 7a, 7b for circulating cold water or hot water generated in the chiller unit 2 into the fan coil units 4a, 4b described later.
  • One end of the water pipe 7a is branched into two parts which are connected to cold/hot water ports I, K of the refrigerant/water heat exchangers 20a, 20b, and the other end of the water pipe 7a is branched into two parts through the circulating pump 6, the two parts thus branched being connected to one ends of the water heat exchangers 40a, 40b of the fan coil units 4a, 4b through cold/hot water valves 41a, 41b, respectively.
  • one end of the water pipe 7b is branched and then connected to cold/hot water ports J, L of the refrigerant/water heat exchangers 20a, 20b while the other end of the water pipe 7b is branched and then connected to the other ends of the water heat exchangers 40a, 40b of the fan coil units 4a, 4b. That is, the refrigerant/water heat exchangers 20a, 20b are connected to each other in parallel through the water pipes 7a, 7b connected to the fan coil units 4a, 4b.
  • the air conditioner 100 can perform both the air conditioning operation carried out by heat-exchanging the cold/hot water circulated in the water pipes 7a, 7b with indoor air and the air conditioning operation carried out by directly heat-exchanging the refrigerant discharged from the compressor 11 with the indoor air. Therefore, when a heat source machine such as an absorption type refrigerating machine or the like is replaced by the air conditioner of this embodiment, water pipes which have been laid in a building can be successively used. Furthermore, even when an air conditioning area is newly enlarged or the air conditioning performance is improved, a refrigerant pipe for circulating refrigerant discharged from the compressor 11 may be laid, so that the laying cost of the pipe can be reduced to a small level.
  • indoor heat exchanges 30a, 30b for directly heat-exchanging the refrigerant discharged from the compressor 11 of the outdoor unit 1 with indoor air
  • indoor expansion valves 31a, 31b for controlling the amounts of the refrigerant flowing into the indoor heat exchangers 20a, 20b, etc., which are connected to each other through the refrigerant pipes.
  • indoor controllers 32a, 32b for controlling the indoor units 3a, 3b respectively and carrying out communications with the outdoor controller 16 of the outdoor unit 1.
  • the indoor heat exchangers 30a, 30b for directly heat-exchanging the indoor air with the refrigerant discharged from the compressor 11 of the outdoor unit 1, and the indoor expansion valves 31a, 31b for controlling the amounts of the refrigerant flowing into the indoor heat exchangers 20a, 20b, which are connected to each other through the refrigerant pipes.
  • the indoor controllers 32a, 32b for controlling the indoor units 3a, 3b respectively and carrying out communications with the outdoor controller 16 of the outdoor unit 1.
  • the fan coil units 4a, 4b are accommodated the water heat exchangers 40a, 40b for heat-exchanging indoor air with cold water or hot water generated in the chiller unit 2 and circulated by the circulating pump 6, and the cold/hot water valves 41a, 41b for controlling flow of the cold water or hot water flowing into the water heat exchangers 40a, 40b, which are connected to each other through the water pipes, and in the fan coil units 4a, 4b are also accommodated the fan coil controllers 42a, 42b for controlling the fan coil units 4a, 4b respectively and carrying out communications with the chiller controller 24 of the chiller unit 2, respectively.
  • a passage along which the refrigerant supplied from the chiller unit 2 to the using side heat exchangers 30 is heat-exchanged with the cold/hot water can be set to a long value, and thus the heat exchange efficiency between the refrigerant and the cold/hot water can be enhanced.
  • the flow rate of the cold/hot water in the refrigerant/water heat exchangers 20a, 20b and the respective pipe-connected cold/hot water pipes can be reduced without reducing the flow amount of the cold/hot water supplied from the chiller unit 2 to the fan coil units 4a, 4b, so that corrosion of the pipes, etc. by the cold/hot water can be suppressed.
  • the outdoor controller 16 When the driving of the air conditioner 100 is started by the outdoor controller 16, combustion gas of the mixture of fuel such as gas or the like from a fuel supply device (not show) and atmospheric air is supplied to start the driving of the engine 10.
  • the driving of the engine 10 generates driving force, and the compressor 11 is driven by the driving force thus generated to compress and discharge the refrigerant from the compressor 11, and also the driving of the circulating pump 6 is started by the chiller controller 24 of the chiller unit 2.
  • the four-way valve 12 Under cooling operation, the four-way valve 12 is set as indicated by a solid line by the outdoor controller 16 of the outdoor unit 1, and the opening degrees of the indoor expansion valves 31a, 31b are set on the basis of an air conditioning load calculated by the indoor controllers 32a, 32b.
  • the opening degree of the motor-driven expansion valve 21 of the chiller unit 2 is controlled, and also the cold/hot water valves 41a, 41b of the fan coil units 4a, 4b,are opened, so that the refrigerant discharged from the compressor 11 flows through the four-way valve 12 into the outdoor heat exchanger 13, and the refrigerant is heat-exchanged with outside air and condensed in the outdoor heat exchanger 13.
  • the pressure of the refrigerant thus condensed is reduced in the outdoor expansion valve 14, and the pressure-reduced refrigerant flows into the receiver tank 22 of the chiller unit 2 and is temporarily stocked in the receiver tank 22. Thereafter, the refrigerant flows out from the receiver tank 22 and then it is distributed into two passages.
  • the refrigerant in one distributed passage flows through the refrigerant pipe 5b to the indoor units 3a, 3b.
  • the refrigerant in the other distributed passage flows through the check valve 23a to one port of the refrigerant heat exchanger 20c.
  • the refrigerant flowing into the refrigerant heat exchanger 20c is heat-exchanged with the refrigerant flowing through the refrigerant/water heat exchangers 20a, 20b, and then the refrigerant thus heat-exchanged passes through the motor-driven expansion valve 21 and flows into the refrigerant/water heat exchangers 20a, 20b successively to be evaporated, so that cold water is generated. Furthermore, the refrigerant flows into the other port of the refrigerant heat exchanger 20c and flows out to the refrigerant pipe 5c.
  • the refrigerant passing through the refrigerant pipe 5b and flowing into the indoor units 3a, 3b is branched in accordance with the opening degrees of the indoor expansion valves 31a, 31b and then flows into the indoor units 3a, 3b.
  • the refrigerant flowing into the indoor units 3a, 3b is evaporated, and flows out to the refrigerant pipe 5c.
  • the refrigerant thus evaporated flows in the refrigerant pipe 5c wile being confluent with the evaporated refrigerant flowing through the chiller unit 2, and is returned to the outdoor unit 1.
  • the refrigerant thus returned to the outdoor unit 1 passes through the four-way valve 12 and the accumulator 15 and is returned to the compressor 11.
  • the cold water generated in the chiller unit 2 flows through the water pipe 7a by the driving of the circulating pump 6, and is branched into two streams. These refrigerant streams are passed through the cold/hot water valves 41a, 41b and heat-exchanged with indoor air in the water heat exchangers 40a, 40b, and then the refrigerant thus heat-exchanged with the indoor air is passed through the cold/hot water pipe 7b and returned to the chiller unit 2.
  • the indoor expansion valves 31a, 31b of the indoor units 3a, 3b are fully closed, and all the refrigerant discharged from the compressor 11 passes from the receiver tank 22 of the chiller unit 2 through the check valve 23a to the refrigerant heat-exchanger 20c, flows through the refrigerant/water heat exchangers 20a, 20b and then returns to the compressor 11.
  • the cold/hot water valves 41a, 41b of the fan coil units 4a, 4b are closed, and also the motor-driven valve 21 of the chiller unit 2 is closed, so that all the refrigerant discharged from the compressor 11 is distributed to the indoor units 3a, 3b.
  • plate type heat exchangers are used as the refrigerant/water heat exchangers 20a, 20b, and they have high heat-exchanger capabilities. Therefore, there is a risk that the refrigerant which flows from the gas pipe 5c side into the refrigerant/water heat exchangers 20a, 20b and is heat-exchanged with water trapped in the water pipes 7a, 7b to be condensed and then circulated in the refrigerant pipes 5a to 5c runs short temporarily, that is, an out-of-gas state may temporarily occur.
  • the circulating pump 6 is also driven to prevent the water trapped in the refrigerant/water heat exchangers 20a, 20b from being frozen.
  • step S1 it is judged whether the air conditioner 100 is driven or not. If the air conditioner 100 is not driven, the judgment of step S1 is repeated. If the air conditioner 100 is driven, it is judged whether both the fan coil units 4a, 4b are at a stop or under the termo-off operation (step S2). If anyone of the fan coil units 4a, 4b is under the thermo-on operation, the judgment of step S2 is repeated. If both the fan coil units 4a, 4b are at a stop or under the thermo-off operation, it is judged on the basis of detection signals from sensors provided to the outdoor unit 1 and/or the indoor units 3a, 3b whether the air conditioner is under out-of-gas state or not (step S3).
  • the signal is output from temperature sensors, pressure sensors, etc. provided to the outdoor unit 1 and/or the indoor units 3a, 3b.
  • the signals represent the temperature and pressure at the inlet/outlet ports of the outdoor heat exchanger 13 or the opening degree of the outdoor expansion valve 14 or the like.
  • the signals represent the temperature at the suction ports of the indoor units 3a, 3b, the temperature at the discharge ports of the indoor units 3a, 3b, the pressure at the inlet/outlet ports of the indoor heat exchangers 30a, 30b, or the opening degrees of the indoor expansion valves 31a, 31b.
  • step S5 If the air conditioner is not under the out-of-gas state, the processing returns to step S2 to repeat the judgment as to the driving state of the fan coil units 4a, 4b. If the air conditioner is under the out-of-state, the circulating pump is forcedly driven by the chiller controller 24 (step S4), and the motor-driven expansion valve 21 is opened (step S5).
  • the refrigerant which is condensed and trapped in the refrigerant/water heat exchangers 20a, 20b, etc. is pushed out from the inside of the chiller unit 2 to the liquid pipe 5a or the gas pipe 5c. Therefore, the out-of-gas state can be overcome.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Claims (9)

  1. Klimaanlage mit:
    einer Wärmequellenmaschine, die einen Kompressor (11) zum Komprimieren eines Kühlmittels enthält,
    einer Inneneinheit vom Direktexpansionstyp mit einem Innenwärmetauscher (30a, 30b) zum direkten Wärmetauschen des Kühlmittels, das von dem Kompressor abgegeben wird, mit Innenluft über eine Kühlmittelleitung, die eine Flüssigkeitsleitung (5a, 5b) und eine Gasleitung (5c) aufweist, und
    einer Kühleinheit (2) mit einem ersten und einem zweiten Wärmetauscher (20a, 20b) zum Wärmetauschen des Kühlmittels mit Wasser, um Kaltwasser oder Heißwasser zu erzeugen,
    gekennzeichnet durch
    eine Lüfterspiraleneinheit (4a, 4b) mit einem Wasserwärmetauscher zum Wärmetauschen des Kaltwassers oder des Heißwassers von der Kühleinheit (2) mit Innenluft, und
    eine Wasserleitung (7a, 7b), die mit der Lüfterspiraleneinheit (4a, 4b) verbunden ist und durch die das flüssige Kaltwasser oder Heißwasser zwischen der Kühleinheit (2) und der Lüfterspiraleneinheit (4a, 4b) durch eine Umlaufpumpe (6) zirkuliert wird, wobei der erste und der zweite Wärmetauscher (20a, 20b) der Kühleinheit (2) so angeordnet sind, dass sie mit der Wasserleitung (7a, 7b) parallel und mit der Kühlmittelleitung in Reihe verbunden sind.
  2. Klimaanlage nach Anspruch 1, wobei ein Ende der Flüssigkeitsleitung mit der Wärmequellenmaschine verbunden ist, während das andere Ende der Flüssigkeitsleitung durch einen Aufnahmetank (22) verläuft, der in der Kühleinheit (2) fest vorgesehen ist und in zwei Teile verzweigt ist, wobei ein Teil mit einer Endseite eines Wasserwärmetauschers verbunden ist, der in der Kühleinheit vorgesehen ist, und der andere Teil mit der Inneneinheit verbunden ist, und wobei ein Ende der Gasleitung mit der Wärmequellenmaschine (1) verbunden ist, während das andere Ende der Gasleitung in zwei Teile verzweigt ist, wobei ein Teil mit der anderen Endseite des Wasserwärmetauschers verbunden ist und der andere Teil mit der Inneneinheit verbunden ist.
  3. Klimaanlage nach Anspruch 1, wobei eine Anzahl von Inneneinheiten zueinander parallel über die Flüssigkeitsleitung und die Gasleitung verbunden sind.
  4. Klimaanlage nach Anspruch 3, wobei ein Ende der Flüssigkeitsleitung mit der Wärmequellenmaschine (1) verbunden ist, während das andere Ende der Flüssigkeitsleitung durch einen Aufnahmetank (22) verläuft, der in der Kühleinheit vorgesehen ist, und in zwei Teile verzweigt ist, wobei ein Teil mit einer Endseite eines Wasserwärmetauschers verbunden ist, der in der Kühleinheit (2) vorgesehen ist, und der andere Teil mit der Anzahl von Inneneinheiten parallel verbunden ist, und wobei ein Ende der Gasleitung mit der Wärmequellenmaschine (1) verbunden ist, während das andere Ende der Gasleitung in zwei Teile verzweigt ist, wobei ein Teil mit der anderen Endseite des Wasserwärmetauschers verbunden ist und der andere Teil mit der Anzahl der Inneneinheiten parallel verbunden ist.
  5. Klimaanlage nach Anspruch 1, wobei die Kühleinheit (2) einen Kühlmittel/Wasserwärmetauscher zum Wärmetauschen des Kühlmittels, das von dem Kompressor (11) abgegeben wird, mit Wasser, um Kaltwasser oder Heißwasser zu Erzeugen, aufweist.
  6. Klimaanlage nach Anspruch 5, wobei die Kühleinheit (2) ein Steuerventil (21) zwischen dem Kühlmittel/Wasserwärmetauscher und einem Verzweigungspunkt aufweist, in dem die Kühlmittelleitung in einen Teil verzweigt, der sich zu dem Kühlmittel/Wasserwärmetauscher erstreckt, und einen anderen Teil, der sich zu der Inneneinheit erstreckt, und wenn ein gasloser Zustand des Kühlmittels erfasst wird, das in der Inneneinheit zirkuliert, während der Antrieb der Umlaufpumpe (6) gestoppt ist, das Steuerventil geöffnet wird und die Umlaufpumpe betrieben wird.
  7. Klimaanlage nach Anspruch 6, wobei der Kühlmittel/Wasserwärmetauscher und das Steuerventil parallel über die Flüssigkeitsleitung, die sich von einer Endseite des Aufnahmetanks (22) und der Gasleitung erstreckt, mit der Inneneinheit verbunden sind.
  8. Klimaanlage nach Anspruch 1, wobei der Kompressor (11) der Wärmequellenmaschine durch eine Maschine (10) zum Erzeugen von Antriebskraft durch Brennstoff wie Gas oder dergleichen angetrieben wird.
  9. Klimaanlage nach Anspruch 1, wobei die Kühleinheit (2) zwei Kühlmittel/Wasserwärmetauscher (20a, 20b) und einen Kühlmittelwärmetauscher (20c) aufweist, die miteinander in Reihe zwischen der Flüssigkeitsleitung (5b) und der Gasleitung (5c) verbunden sind.
EP05009355A 2005-04-28 2005-04-28 Klimaanlage Ceased EP1717522B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200560026103 DE602005026103D1 (de) 2005-04-28 2005-04-28 Klimaanlage
EP05009355A EP1717522B1 (de) 2005-04-28 2005-04-28 Klimaanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05009355A EP1717522B1 (de) 2005-04-28 2005-04-28 Klimaanlage

Publications (2)

Publication Number Publication Date
EP1717522A1 EP1717522A1 (de) 2006-11-02
EP1717522B1 true EP1717522B1 (de) 2011-01-26

Family

ID=34935903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05009355A Ceased EP1717522B1 (de) 2005-04-28 2005-04-28 Klimaanlage

Country Status (2)

Country Link
EP (1) EP1717522B1 (de)
DE (1) DE602005026103D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2450212C2 (ru) * 2010-08-20 2012-05-10 Олег Савельевич Кочетов Кондиционер для цехов с избыточным выделением тепла
WO2016094949A1 (en) * 2014-12-17 2016-06-23 HABCHI, Jason A hide-away air-conditioning system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1959204B1 (de) * 2007-02-13 2011-08-03 Mitsubishi Electric Corporation Luft-/Wasserwärmeaustauschervorrichtung
RU2509265C2 (ru) * 2010-08-20 2014-03-10 Олег Савельевич Кочетов Кондиционер с оптимальным орошением
RU2509960C2 (ru) * 2010-08-20 2014-03-20 Олег Савельевич Кочетов Кондиционер
WO2013007031A1 (zh) * 2011-07-14 2013-01-17 Feng Zhengyi 冷热水复合空调

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986000976A1 (en) * 1984-07-27 1986-02-13 Uhr Corporation Residential heating, cooling and energy management system
DE3635425A1 (de) * 1985-10-17 1987-04-23 Mitsubishi Electric Corp Klimatisierungs- und heisswasserversorgungssystem
US4754614A (en) * 1986-02-07 1988-07-05 Mitsubishi Denki Kabushiki Kaisha Prime-motor-driven room warming/cooling and hot water supplying apparatus
EP0775875B1 (de) * 1995-11-24 2001-05-23 Hans Gössi Einrichtung zur Luftentfeuchtung und Wassererwärmung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161435A (en) * 1981-03-31 1982-10-05 Komatsu Zenoa Kk Cooling and heating equipment by heat pump system
JP3322684B2 (ja) * 1992-03-16 2002-09-09 東芝キヤリア株式会社 空気調和機
JP3588155B2 (ja) * 1995-02-28 2004-11-10 三洋電機株式会社 エンジン駆動式冷凍装置
JP3692630B2 (ja) * 1995-10-24 2005-09-07 ダイキン工業株式会社 熱搬送装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986000976A1 (en) * 1984-07-27 1986-02-13 Uhr Corporation Residential heating, cooling and energy management system
DE3635425A1 (de) * 1985-10-17 1987-04-23 Mitsubishi Electric Corp Klimatisierungs- und heisswasserversorgungssystem
US4754614A (en) * 1986-02-07 1988-07-05 Mitsubishi Denki Kabushiki Kaisha Prime-motor-driven room warming/cooling and hot water supplying apparatus
EP0775875B1 (de) * 1995-11-24 2001-05-23 Hans Gössi Einrichtung zur Luftentfeuchtung und Wassererwärmung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2450212C2 (ru) * 2010-08-20 2012-05-10 Олег Савельевич Кочетов Кондиционер для цехов с избыточным выделением тепла
WO2016094949A1 (en) * 2014-12-17 2016-06-23 HABCHI, Jason A hide-away air-conditioning system

Also Published As

Publication number Publication date
DE602005026103D1 (de) 2011-03-10
EP1717522A1 (de) 2006-11-02

Similar Documents

Publication Publication Date Title
EP3511651B1 (de) Klimatisierungsvorrichtung
US7185505B2 (en) Refrigerant circuit and heat pump type hot water supply apparatus
EP1762796B1 (de) Klimaanlage
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
US20150176864A1 (en) Air-conditioning apparatus
KR101706865B1 (ko) 공기조화기
EP2891849A1 (de) Wärmerückgewinnung für eine Multifunktionswärmepumpe und Multifunktionsklimaanlage
WO2006003860A1 (ja) マルチ形空気調和装置
EP1717522B1 (de) Klimaanlage
CN103221759A (zh) 空调机
KR100641774B1 (ko) 공기 조화 장치
EP3715732A1 (de) Klimatisierungsvorrichtung
EP3715736A1 (de) Klimatisierungsvorrichtung
CN110579036A (zh) 一种多联机冷热水系统及其控制方法
EP3872408B1 (de) Wasserfüllverfahren für eine klimaanlage
JP4626380B2 (ja) 内燃機関駆動ヒートポンプ式空調装置
KR102493392B1 (ko) 열 교환 장치를 포함하는 에어컨 실외기
EP3742072B1 (de) Klimatisierungsvorrichtung
KR101160351B1 (ko) 멀티 공기조화기 및 그 제어방법
KR20140089796A (ko) 급탕 겸용 공기조화기
WO2023190202A1 (ja) 冷凍サイクル装置
JP7566032B2 (ja) 空気調和装置および空気調和装置の水充填方法
CN116465026A (zh) 空调器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): BE DE ES FR NL

17Q First examination report despatched

Effective date: 20071109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR NL

REF Corresponds to:

Ref document number: 602005026103

Country of ref document: DE

Date of ref document: 20110310

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005026103

Country of ref document: DE

Effective date: 20110310

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

BERE Be: lapsed

Owner name: SANYO ELECTRIC CO., LTD.

Effective date: 20110430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005026103

Country of ref document: DE

Effective date: 20111027

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170313

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170426

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005026103

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430