EP1716033A1 - Device and method for driving a motor vehicle traction chain whose transmission member has an automatically changeable gearing reduction mode and a motor vehicle provided with said device - Google Patents

Device and method for driving a motor vehicle traction chain whose transmission member has an automatically changeable gearing reduction mode and a motor vehicle provided with said device

Info

Publication number
EP1716033A1
EP1716033A1 EP05717639A EP05717639A EP1716033A1 EP 1716033 A1 EP1716033 A1 EP 1716033A1 EP 05717639 A EP05717639 A EP 05717639A EP 05717639 A EP05717639 A EP 05717639A EP 1716033 A1 EP1716033 A1 EP 1716033A1
Authority
EP
European Patent Office
Prior art keywords
torque
setpoint
function
target value
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05717639A
Other languages
German (de)
French (fr)
Inventor
Eric Donati
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP1716033A1 publication Critical patent/EP1716033A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0096Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method using a parameter map
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0223Generating of new shift maps, i.e. methods for determining shift points for a schedule by taking into account driveline and vehicle conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration

Definitions

  • Device and method for controlling a traction chain for a motor vehicle with a transmission member having an automatic gear change mode, and equipped vehicle are provided.
  • the present invention relates to a device for controlling a traction chain for a motor vehicle, said chain comprising at least one engine and a power transmission member with variable gear ratio, provided with an automatic gear change mode, said device comprising - means for acquiring a first significant variable of the speed of the vehicle; means for acquiring a second significant variable of the driver's acceleration setpoint; and a control member connected at the input to said acquisition means and adapted to calculate and deliver at output a gear reduction gear setpoint and a motor torque setpoint.
  • Such devices are well known in the state of the art, and generally comprise two separate computers working independently. A first computer determines and regulates the torque that the engine must supply depending on the position of the accelerator pedal and the engine speed.
  • the second computer determines the gear to be engaged as a function of the position of the accelerator pedal and the speed of the vehicle.
  • engine torque the energy source, that is to say the engine, is controlled directly and independently of the state of the transmission.
  • the engine torque setpoint therefore does not take into account the gearbox gear engaged. This means that the driver only controls the engine torque, i.e. the input torque of the gearbox, but not the torque at the wheel. Since the selection of the gearbox reduction is managed independently, the wheel torque available at the output of the gearbox is not the faithful translation of the driver's will.
  • the laws for selecting the speed ratio are expressed as a function of the speed of the vehicle and of the position of the accelerator pedal, this latter variable not being representative of the torque at the wheel desired by the driver.
  • the selection laws which are obtained empirically by tests on vehicles, and programmed in the corresponding computer, are only valid for a given vehicle and powertrain. These selection laws cannot be transposed to a different powertrain, especially on a vehicle of the same model with a different engine. A change of engine therefore involves a new study of the selection laws and new vehicle tests. It has already been proposed, in particular in document US Pat. No. 6,095,945, to control the engine and the transmission in a combined manner.
  • the drive chain control device as described in this document is essentially designed to adapt the engine and transmission controls to the driving style of the user, but does not make it possible to remedy all the drawbacks mentioned. upper.
  • the invention aims to provide a control device as described above, which provides a solution to all the aforementioned drawbacks, both in the case of a transmission unit with discrete reports (gearbox) than in the case of a continuous gear unit, for example a speed variator.
  • the control member comprises a driver-interface adapted to calculate the target value of a significant physical quantity of the torque at the wheel desired by the driver, as a function of said first and second variables, and in that said control member is adapted to calculate on the one hand the gear ratio setpoint as a function of said target value, and on the other hand the engine torque setpoint as a function of said value- target and said reduction ratio setpoint.
  • the driver interface is adapted to calculate said target value independently of the state of the gear ratio and of the state of the engine torque;
  • the power transmission member is a gearbox, and the control member is programmed with gearshift laws making it possible to calculate the gear ratio setpoint, said shifting laws being materialized, in a reference expressing the torque to the wheel as a function of the speed of the vehicle, by a first beam of lines corresponding to upshifts, and a second beam of lines corresponding to downshifts, each line extending from a point at zero torque successively according to. a first substantially linear and vertical portion; . a second transition portion; and.
  • the invention also relates to a method for driving a traction chain of a motor vehicle, said chain comprising at least one engine and a power transmission member with variable gear ratio, provided with an automatic gear change mode.
  • the value of a first significant variable of the speed of the vehicle is estimated; the value of a second significant variable of the driver's acceleration setpoint is estimated, and the successive steps are carried out consisting in: calculating the target value of a significant quantity of the torque at the wheel desired by the driver as a function of said values first and second variables; calculating a gear ratio setpoint as a function of said target value; and. calculating a setpoint of engine torque as a function of said target value and of said gear ratio setting.
  • - said target value is calculated independently of the state of the gear ratio and of the state of the engine torque;
  • the power transmission member being a gearbox, the ratio ratio setpoint is calculated gearbox by means of gear shifting laws, in a reference frame expressing the torque at the wheel as a function of the speed of the vehicle, by a first beam of lines corresponding to upshifts, and a second beam of lines corresponding to downshifts, each line extending from a zero torque point successively in a first substantially linear and vertical portion; .
  • a second transition portion and a third substantially linear and vertical portion; and - the passage laws are provided for: mainly optimizing the fuel consumption of the engine and the pollution in carbon oxides generated, in the low torque areas corresponding to said first portions; and mainly optimize driving pleasure in the areas of intermediate torque corresponding to said second portions.
  • the invention further relates to a data structure recorded on a data storage medium for the control by computer of a traction chain for a motor vehicle, from a first significant variable of the speed of the vehicle and from a second significant variable of the driver's acceleration setpoint, this method consisting in calculating the target value of a significant magnitude of the wheel torque desired by the driver as a function of said first and second variables, calculating a gear ratio setpoint as a function of said target value and an engine torque setpoint as a function of said target value and of said gear ratio.
  • this data structure defines laws for shifting of gear ratios represented, in a reference frame expressing the torque at the wheel as a function of the speed of the vehicle, by - a first beam of lines corresponding to gear shifts amounts, and - a second bundle of lines corresponding to downshifts, each line extending from a zero torque point successively along - a first substantially linear and vertical portion; - A second transition portion, and - a third substantially linear and vertical portion.
  • the invention finally relates to a motor vehicle comprising a traction chain having at least one engine and a power transmission member with variable gear ratio, provided with an automatic gear shift mode, and a device for controlling said chain. of traction as described above.
  • Figure 1 is a block diagram of a control device according to the invention
  • - Figure 2 shows wheel torque values as a function of vehicle speed values, according to laws pre-programmed in the driver interface
  • FIG. 3 represents, in the reference frame expressing the torque at the wheel as a function of the speed of the vehicle, possible operating domains for each of the speed ratios, as well as the lines representative of the laws of upward and downward passage.
  • a traction chain 1 of a motor vehicle and its control device 3.
  • the traction chain 1 essentially comprises a motor 5 and a gearbox 7, which can be of any type having at least an automatic gear change mode.
  • the gearbox 7 can be of the automatic gearbox, or controlled manual gearbox type.
  • the description which follows relates only to the automatic operating mode of this gearbox, both with regard to the control device and the corresponding control method.
  • the motor 5 delivers a motor torque C m at the input of the transmission, in particular from the gearbox 7, and the gearbox 7 outputs the motor torque to the wheel C r resulting from the motor torque C m and from the reduction corresponding to the gear ratio.
  • the engine torque C m and the gearbox ratio are determined by setpoint values delivered by the control device 3, respectively to the engine 5 and to the gearbox 7.
  • the engine torque setpoint and the gear ratio setpoint will be respectively denoted S c and S R.
  • the control device 3 includes means 11 for acquiring vehicle status and / or operating parameters, including the speed of the vehicle, and means 13 for acquiring parameters expressing the will of the driver, including the acceleration setpoint.
  • the means 11 comprise, for example, a vehicle speed sensor, a sensor to which the means 11 will be assimilated in the following, and which delivers a measured value V of the vehicle speed.
  • the means 13 comprise, for example, a position sensor of the accelerator pedal, a sensor to which the means 13 will be assimilated in the following, and which delivers a value P measured from the position of the accelerator pedal.
  • the value P will for example be expressed as a percentage of penetration.
  • the control device 3 further comprises a control member 15 connected, at the input, to the acquisition means 11, 13, and outputting the setpoints of engine torque S c and of speed ratio S R / as a function of the values received from parameters V, P.
  • the control member 15 comprises a calculation member 17 called a “supervisor”, and a member 19 for close control of the mechanical members of the traction chain 1, namely the motor 5 and the gearbox 7.
  • the supervisor 17 comprises a driver interface 21 which receives the parameters V, P of the acquisition means 11, 13, and calculates, from the values of these parameters, a target value C of torque to the wheel.
  • An example of characteristic curves of the driver-interface is given in the form of a graph in Figure 2.
  • the driver interface 21 can be provided, as in the example shown, to associate, with a given depressing value of the accelerator pedal, a value from a discrete set. It is thus possible, by selecting a representative curve from those predefined, as represented in FIG. 2, to associate with a value of vehicle speed, a target value of torque to the wheel.
  • the driver interface could consist of a mapping associating, continuously, a target value C of torque to the wheel with a pair of values (P, V) of the driving parameter and of the vehicle speed. It is important to note that the driver interface 21 calculates the target value C of torque at the wheel, which is significant of the torque at the wheel desired by the driver, independently of the gearbox ratio already engaged, and independently of the state of engine torque C m .
  • the supervisor 17 further comprises a first subset 23 for calculating the gearbox ratio S R , and a second subset 25 for calculating the engine torque setpoint.
  • the operating domains of a five-speed gearbox have been represented in a reference frame having on the abscissa the speed of the vehicle expressed in km / h, and on the ordinate the torque at the wheel expressed in Nm
  • the domain D x delimited at its apex by the line l ⁇ represents the set of operating points which can be achieved at first speed, the line l ⁇ corresponding to the maximum torque at the wheel achievable at first for all the speed values of the domain.
  • the domains D 2 , D 3 , D 4 , D 5 represent the operating points which can be reached respectively at the second, third, and fourth speeds.
  • Lines 1 2 , 1 3 , 1, I5 materialize the upper limit of torque to the wheel which can be reached at each of these speed ratios, depending on the speed of the vehicle.
  • the first subset 23 performs the calculation of the gearbox ratio S R from the speed V of the vehicle and the target value C of the torque at the wheel, which are transmitted to it by the driver interface 21, in accordance to the operating areas D 1 -D 5 which are stored in the subset 23.
  • pre-recorded passing laws which can be characterized by beams lines, each of which separates regions common to at least two areas of operation.
  • a first bundle of lines which are designated by the references R ⁇ - 2 , R 2 - 3 , R 3 - 4 , R4-5 for a five-speed gearbox, corresponds to the uplift laws, that is to say incrementing the gear ratios.
  • a second bundle of lines (shown in dotted lines in FIG.
  • the line R ⁇ _ 2 represents the upward shift law from the speed ratio 1 to the ratio 2
  • the line R 2 _ ⁇ represents the downward shift law from the ratio 2 to the ratio 1.
  • the shift laws are defined by a data structure recorded on any suitable memory medium, such as a permanent memory.
  • the lines R 1 - 2 , R 2 - 3 ⁇ R 3 _ 4 , R 4 _5 and R 2 - ⁇ , R3-2, R 4 -3, 5- are stored on a look-up table.
  • the calculation of the speed ratio S R at a given instant, by the first subset 23, is carried out as a function of the target value C of the torque at the wheel obtained from the driver-interface 21, and of the speed V of the vehicle, on the one hand by means of the operating ranges D ⁇ ⁇ D 5 , and on the other hand as a function of the position of the operating point in the reference frame (vehicle speed, torque at the wheel) at l 'previous instant, vis-à-vis the characteristic lines by means of the prerecorded laws of passage. It should be noted that the laws of passage can be unique and invariant or depend, for example, on the driving style of the user.
  • the characteristic curves of the laws of passage are continuous, but have distinct portions, which are, successively from a foot of curve originating from the point of zero torque: a first substantially linear and vertical portion defined by how to minimize engine fuel consumption and polluting emissions, especially carbon oxides; a second portion, called “transition”, intended to optimize the gear change mainly according to driving pleasure criteria; and a third substantially linear and vertical portion, corresponding to an optimization of the performance of the traction chain in acceleration or in developed power.
  • the optimization of driving pleasure means the reduction or elimination of jolts. (i.e. sudden variations in acceleration) when shifting.
  • the other criteria retained for the definition of passing laws are, for example: the guarantee of a reserve of torque at the available wheel, once the gear change has been made; maintaining engine speed above a certain limit at low speeds; and - maintaining the engine speed below a certain limit in high speeds.
  • Concerning the upshifting shift laws other optimization criteria can be added, such as the possibility of keeping the same torque at the wheel before and after shifting.
  • Regarding the laws of descending passages still other optimization criteria can be taken into account.
  • the gearbox ratio S R calculated by the first subset 23, and the target value C of the wheel torque calculated by the interface 21, are transmitted to corresponding inputs of the second subset 25, which develops, in function of these two data and the characteristics of the traction chain 1, the engine torque setpoint S c .
  • the close control member 19 comprises a first member 31 for close control of the engine, and a second member 32 for close control of the gearbox. These two members 31, 32 carry out the control and command of the actuators which make it possible to control the operation of the engine and of the gearbox respectively.
  • the first close control member 31 receives as input the engine torque setpoint S from the supervisor 17, setpoint which it commands and controls the execution by the motor 5.
  • the second close control member 32 receives the speed ratio setpoint S R from supervisor 17, setpoint for which it is responsible for commanding and controlling the execution by the gearbox 7.
  • control structure means that gear changes are naturally adapted to driving situations, and that it is not necessary to resort to self-adaptive laws, which have the defect of making the gearbox work non reproducible speeds.
  • the proposed control architecture guarantees that the same behavior of the powertrain will always be obtained for identical situations. Controlling the engine and the gearbox simultaneously makes it possible to obtain gear changes without loss of acceleration of the vehicle, since any change in gear can be compensated automatically by a modification of the engine torque.
  • the steering device which has just been described can naturally be connected with other electronic systems capable of being mounted on the vehicle, such as braking control systems, trajectory control systems, speed control systems, etc.
  • Such a device could also be provided in order to be able to operate in conjunction with devices capable of providing information on the state of the vehicle, on the state of the road and road traffic, and on the driver.
  • the coupling of such a device with a GPS navigation system may make it possible to select in advance a piloting mode suited to road conditions, such as slopes or sequences of curves.
  • Such a device could also be coupled with a radar making it possible to provide information on the position of the surrounding vehicles. in order to deduce, ultimately, the wheel torque necessary to maintain a safety distance.
  • the device and method described above are applicable not only to a transmission chain with a gearbox, but also, essentially, to a transmission chain provided with a transmission member with continuously varying the reduction ratio.

Abstract

The inventive device comprises means (13) for determining the speed (V) of the vehicle, means (13) for determining the acceleration specified by a driver, a control unit (15) for calculating the gearbox ratio and the engine torque ratio (Sc). Said control unit (15) comprises the driver interface (21) for calculating the desired wheel torque according to the variables thereof and calculates a specified gearing reduction ratio (Rs) according to said desired torque value and the specified engine torque (Sc) according to said torque value and specified gearing reduction ratio (Rs). An associated driving method and a motor vehicle provided with said device are also disclosed.

Description

Dispositif et procédé de pilotage d'une chaîne de traction pour véhicule automobile à organe de transmission ayant un mode automatique de changement de démultiplication, et véhicule équipé. Device and method for controlling a traction chain for a motor vehicle with a transmission member having an automatic gear change mode, and equipped vehicle.
La présente invention concerne un dispositif de pilotage d'une chaîne de traction pour véhicule automobile, ladite chaîne comprenant au moins un moteur et un organe de transmission de puissance à rapport de démultiplication variable, doté d'un mode automatique de changement de rapport, ledit dispositif comprenant - des moyens d'acquisition d'une première variable significative de la vitesse du véhicule ; - des moyens d'acquisition d'une deuxième variable significative de la consigne d'accélération du conducteur ; et - un organe de commande relié en entrée auxdits moyens d'acquisition et adapté pour calculer et délivrer en sortie une consigne de rapport de démultiplication et une consigne de couple-moteur. De tels dispositifs sont bien connus dans l'état de la technique, et comprennent généralement deux calculateurs distincts travaillant de manière indépendante. Un premier calculateur détermine et régule le couple que le moteur doit fournir en fonction de la position de la pédale d'accélérateur et du régime-moteur. Dans le cas d'un organe de transmission à rapports discrets, du type boîte de vitesses, le second calculateur détermine le rapport à engager en fonction de la position de la pédale d'accélérateur et de la vitesse du véhicule. Dans une telle structure dite « en couple moteur », la source d'énergie, c'est-à-dire le moteur, est pilotée directement et indépendamment de l'état de la transmission. La consigne de couple moteur ne tient donc pas compte du rapport de boîte engagé. Cela signifie que le conducteur ne contrôle que le couple moteur, c'est-à-dire le couple en entrée de la boîte de vitesses, mais pas le couple à la roue . Puisque la sélection de la démultiplication de la boîte de vitesses est gérée de manière indépendante, le couple à la roue disponible en sortie de boîte n'est pas la traduction fidèle de la volonté du conducteur. En outre, les lois de sélection du rapport de vitesse sont exprimées en fonction de la vitesse du véhicule et de la position de la pédale d'accélérateur, cette dernière variable n' étant pas représentative du couple à la roue désiré par le conducteur. Les lois de sélection, qui sont obtenues de façon empirique par des essais sur les véhicules, et programmées dans le calculateur correspondant, ne sont valables que pour un véhicule et une chaîne de traction donnés. Ces lois de sélection ne peuvent être transposées sur une chaîne de traction différente, notamment sur un véhicule de même modèle disposant d'une motorisation différente. Un changement de motorisation implique donc une nouvelle étude des lois de sélection et de nouveaux essais sur véhicule. Il a déjà été proposé, notamment dans le document US 6 095 945, de piloter de façon combinée le moteur et la transmission. Cependant, le dispositif de pilotage de la chaîne de traction tel que décrit dans ce document est essentiellement conçu pour adapter les commandes du moteur et de la transmission au style de conduite de l'utilisateur, mais ne permet pas de remédier à tous les inconvénients cités plus haut. L'invention a pour but de proposer un dispositif de pilotage tel que décrit précédemment, qui apporte une solution à tous les inconvénients précités, aussi bien dans le cas d'un organe de transmission à rapports discrets (boîte de vitesses) que dans le cas d'un organe à rapports continus, par exemple un variateur de vitesse. A cet effet, dans un dispositif selon l'invention, l'organe de commande comprend une interface-conducteur adaptée pour calculer la valeur-cible d'une grandeur physique significative du couple à la roue désiré par le conducteur, en fonction desdites première et deuxième variables, et en ce que ledit organe de commande est adapté pour calculer d'une part la consigne de rapport de démultiplication en fonction de ladite valeur-cible, et d' autre part la consigne de couple-moteur en fonction de ladite valeur-cible et de ladite consigne de rapport de démultiplication . Suivant d'autres caractéristiques du dispositif selon l'invention : - l'interface-conducteur est adaptée pour calculer ladite valeur-cible indépendamment de l'état du rapport de démultiplication et de l'état du couple-moteur ; l'organe de transmission de puissance est une boîte de vitesses, et l'organe de commande est programmé avec des lois de passage de rapports permettant de calculer la consigne de rapport de boîte, lesdites lois de passage étant matérialisées, dans un repère exprimant le couple à la roue en fonction de la vitesse du véhicule, par un premier faisceau de lignes correspondant à des passages de vitesses montants, et un deuxième faisceau de lignes correspondant à des passages de vitesses descendants, chaque ligne s' étendant à partir d'un point à couple nul successivement selon . une première portion sensiblement linéaire et verticale ; . une deuxième portion de transition ; et . selon une troisième portion sensiblement linéaire et verticale ; et - les lois de passage sont prévues pour : optimiser principalement la consommation en carburant du moteur et la pollution en oxyde de carbone engendrée, dans les domaines à faible couple correspondant auxdites premières portions ; et optimiser principalement l'agrément de conduite dans les domaines à couple intermédiaire _correspondant auxdites deuxièmes portions. L'invention vise également un procédé de pilotage d'une chaîne de traction de véhicule automobile, ladite chaîne comportant au moins un moteur et un organe de transmission de puissance à rapport de démultiplication variable, doté d'un mode automatique de changement de rapport . Dans ce procédé : on estime la valeur d'une première variable significative de la vitesse du véhicule ; on estime la valeur d'une deuxième variable significative de la consigne d'accélération du conducteur, et on effectue les étapes successives consistant à : calculer la valeur-cible d'une grandeur significative du couple à la roue désiré par le conducteur en fonction desdites première et deuxième variables ; calculer une consigne de rapport de démultiplication en fonction de ladite valeur-cible ; et . calculer une consigne de couple-moteur en fonction de ladite valeur-cible et de ladite consigne de rapport de démultiplication. Selon d'autres caractéristiques du procédé : - on calcule ladite valeur-cible indépendamment de l'état du rapport de démultiplication et de l'état du couple-moteur ; - l'organe de transmission de puissance étant une boîte de vitesses, on calcule la consigne de rapport de boîte au moyen de lois de passage de rapports matérialisées, dans un repère exprimant le couple à la roue en fonction de la vitesse du véhicule, par un premier faisceau de lignes correspondant à des passages de vitesses montants, et un deuxième faisceau de lignes correspondant à des passages de vitesses descendants, chaque ligne s' étendant à partir d'un point à couple nul successivement selon une première portion sensiblement linéaire et verticale ; . une deuxième portion de transition ; et une troisième portion sensiblement linéaire et verticale ; et - les lois de passage sont prévues pour : optimiser principalement la consommation en carburant du moteur et la pollution en oxydes de carbone engendrée, dans les domaines à faible couple correspondant auxdites premières portions ; et optimiser principalement l'agrément de conduite dans les domaines à couple intermédiaire correspondant auxdites deuxièmes portions. L'invention vise en outre une structure de données enregistrée sur un support de mémorisation de données pour le pilotage par calculateur d'une chaîne de traction pour véhicule automobile, à partir d'une première variable significative de la vitesse du véhicule et d'une deuxième variable significative de la consigne d'accélération du conducteur, ce procédé consistant à calculer la valeur-cible d'une grandeur significative du couple à la roue désiré par le conducteur en fonction desdites première et deuxième variables, calculer une consigne de rapport de boîte en fonction de ladite valeur-cible et une consigne de couple- moteur en fonction de ladite valeur-cible et de ladite consigne de rapport de boîte. Selon l'invention, cette structure de données définit des lois de passage de rapports de vitesses représentées, dans un repère exprimant le couple à la roue en fonction de la vitesse du véhicule, par - un premier faisceau de lignes correspondant à des passages de vitesses montants, et - un deuxième faisceau de lignes correspondant à des passages de vitesses descendants, chaque ligne s' étendant à partir d'un point à couple nul successivement selon - une première portion sensiblement linéaire et verticale ; - une deuxième portion de transition, et - une troisième portion sensiblement linéaire et verticale. L' invention vise enfin un véhicule automobile comprenant une chaîne de traction ayant au moins un moteur et un organe de transmission de puissance à rapport de démultiplication variable, doté d'un mode automatique de passage des rapports, et un dispositif de pilotage de ladite chaîne de traction tel que décrit précédemment. Un mode de réalisation de l'invention va maintenant être décrit plus en détail en référence aux Figures des dessins annexés, sur lesquels : la Figure 1 est un schéma synoptique d'un dispositif de pilotage conforme à l'invention ; - la Figure 2 représente des valeurs de couple à la roue en fonction de valeurs de vitesse du véhicule, selon des lois pré-programmées dans l'interface-conducteur ; et - la Figure 3 représente, dans le repère exprimant le couple à la roue en fonction de la vitesse du véhicule, des domaines de fonctionnement possibles pour chacun des rapports de vitesse, ainsi que les lignes représentatives des lois de passage montantes et descendantes. Sur la Figure 1, on a schématisé une chaîne de traction 1 de véhicule automobile, et son dispositif de pilotage 3. La chaîne de traction 1 comprend essentiellement un moteur 5 et une boîte de vitesses 7, qui peut être de tout type ayant au moins un mode automatique de passage des rapports. En particulier, la boîte de vitesses 7 peut être du type boîte de vitesses automatique, ou boîte de vitesses manuelle pilotée. La description qui va suivre se rapporte uniquement au mode de fonctionnement automatique de cette boîte de vitesses, tant en ce qui concerne le dispositif de pilotage que le procédé de pilotage correspondant. Le moteur 5 délivre un couple-moteur Cm en entrée de la transmission, en particulier de la boîte de vitesses 7, et la boîte de vitesses 7 délivre en sortie le couple moteur à la roue Cr résultant du couple moteur Cm et de la démultiplication correspondant au rapport de boîte. Le couple moteur Cm et le rapport de boîte sont déterminés par des valeurs de consigne délivrées par le dispositif de pilotage 3, respectivement au moteur 5 et à la boîte de vitesses 7. La consigne en couple moteur et la consigne en rapport de vitesse seront respectivement notées Sc et SR. Le dispositif de pilotage 3 comporte des moyens 11 d'acquisition de paramètres d'état et/ou de fonctionnement du véhicule, parmi lesquels la vitesse du véhicule, et des moyens 13 d'acquisition de paramètres exprimant la volonté du conducteur, parmi lesquels la consigne en accélération. Les moyens 11 comprennent, par exemple, un capteur de vitesse du véhicule, capteur auquel seront assimilés les moyens 11 dans ce qui suit, et qui délivre une valeur V mesurée de la vitesse du véhicule. Les moyens 13 comprennent, par exemple, un capteur de position de la pédale d'accélération, capteur auquel seront assimilés les moyens 13 dans ce qui suit, et qui délivre une valeur P mesurée de la position de la pédale d'accélération. La valeur P sera par exemple exprimée en pourcentage d'enfoncement. Le dispositif de pilotage 3 comprend en outre un organe de commande 15 relié, en entrée, aux moyens d'acquisition 11, 13, et délivrant en sortie les consignes de couple moteur Sc et de rapport de vitesse SR/ en fonction des valeurs reçues des paramètres V, P. A cet effet, l'organe de commande 15 comprend un organe de calcul 17 appelé « superviseur », et un organe 19 de contrôle rapproché des organes mécaniques de la chaîne de traction 1, à savoir le moteur 5 et la boîte de vitesses 7. Le superviseur 17 comprend une interface-conducteur 21 qui reçoit les paramètres V, P des moyens d'acquisition 11, 13, et calcule, à partir des valeurs de ces paramètres, une valeur-cible C de couple à la roue. Un exemple de courbes caractéristiques de l'interface-conducteur est donné sous forme d'un graphique à la Figure 2. Sur cette Figure, on a représenté, dans un repère dont l'abscisse est constituée par la vitesse du véhicule (en km/h) et l'ordonnée est constituée par la valeur-cible de couple à la roue C (exprimée en N.m), un faisceau de courbes caractéristiques correspondant chacune à une valeur d'enfoncement de la pédale d'accélérateur, exprimée en pourcentage de course d'enfoncement. Sur la Figure 2, les courbes représentées correspondent à un incrément de pourcentage d'enfoncement de 10%, à partir de la courbe à enfoncement de pédale nul, désignée par la référence L0, jusqu'à la courbe à enfoncement de pédale de 100%, désignée par la référence Lι00. L'interface-conducteur 21 peut être prévue, comme dans l'exemple représenté, pour associer, à une valeur d'enfoncement donnée de la pédale d'accélérateur, une valeur parmi un ensemble discret. Il est ainsi possible, en sélectionnant une courbe représentative parmi celles prédéfinies, telles que représentées sur la Figure 2, d'associer à une valeur de vitesse du véhicule, une valeur- cible de couple à la roue. En variante, l'interface-conducteur pourrait être constituée d'une cartographie associant, de façon continue, une valeur-cible C de couple à la roue à un couple de valeurs (P, V) du paramètre d'enfoncement et du paramètre de vitesse du véhicule. Il est important de noter que l'interface-conducteur 21 calcule la valeur-cible C de couple à la roue, qui est significative du couple à la roue désiré par le conducteur, indépendamment du rapport de boîte déjà engagé, et indépendamment de l'état du couple moteur Cm. Le superviseur 17 comprend en outre un premier sous- ensemble 23 de calcul du rapport de boîte SR, et un deuxième sous-ensemble 25 de calcul de la consigne de couple-moteur. Sur la Figure 3, on a représenté les domaines de fonctionnement d'une boîte à cinq rapports dans un repère ayant en abscisse la vitesse du véhicule exprimée en km/h, et en ordonnée le couple à la roue exprimé en N.m. Le domaine Dx délimité à son sommet par la ligne lχ représente l'ensemble des points de fonctionnement qui peuvent être réalisés en première vitesse, la ligne lχ correspondant au maximum de couple à la roue réalisable en première pour l'ensemble des valeurs de vitesse du domaine. De façon analogue, les domaines D2, D3, D4, D5 représentent les points de fonctionnement qui peuvent être atteints respectivement aux deuxième, troisième, et quatrième vitesses. Les lignes 12, 13, 1 , I5, matérialisent la limite supérieure de couple à la roue qui peut être atteinte à chacun de ces rapports de vitesse, en fonction de la vitesse du véhicule. Ainsi, le premier sous-ensemble 23 réalise le calcul du rapport de boîte SR à partir de la vitesse V du véhicule et de la valeur-cible C du couple à la roue, qui lui sont transmises par l'interface conducteur 21, conformément aux domaines de fonctionnement D1-D5 qui sont mémorisés dans le sous-ensemble 23. Les informations pré-enregistrées relatives aux domaines de fonctionnement D1-D5 sont complétées par des lois de passage pré-enregistrées, qui peuvent être caractérisées par des faisceaux de lignes, dont chacune sépare des régions communes à au moins deux domaines de fonctionnement. Un premier faisceau de lignes, lesquelles sont désignées par les références Rι-2, R2-3, R3-4, R4-5 pour une boîte à cinq rapports, correspond aux lois de passage montantes, c'est-à-dire à l'incrémentation des rapports de vitesse. Un deuxième faisceau de lignes (représentées en pointillés sur la Figure 3) , lesquelles sont désignées par les références R2-ι, R3-2, R-3, Rs-4, correspond aux lois de passage descendantes, c'est-à-dire à une décrémentation des rapports de vitesse. A titre d'exemple, la ligne Rι_2 représente la loi de passage montante du rapport de vitesse 1 au rapport 2, alors que la ligne R2_χ représente la loi de passage descendante du rapport 2 au rapport 1. Les lois de passages sont définies par une structure de données enregistrée sur tout support-mémoire adapté, tel qu'une mémoire permanente. Par exemple, les lignes R1-2, R2- R3_4, R4_5 et R2-ι, R3-2, R4-3, 5- sont mémorisées sur une table de consultation. On comprend que le calcul du rapport de vitesse SR à un instant donné, par le premier sous-ensemble 23, est effectué en fonction de la valeur-cible C du couple à la roue obtenue de l'interface-conducteur 21, et de la vitesse V du véhicule, d'une part au moyen des domaines de fonctionnement Dι~D5, et d'autre part en fonction de la position du point de fonctionnement dans le repère (vitesse du véhicule, couple à la roue) à l'instant précédent, vis-à- vis des lignes caractéristiques au moyen des lois de passage pré-enregistrées. On notera que les lois de passage peuvent être uniques et invariantes ou dépendre, par exemple, du style de conduite de l'utilisateur. De façon générale, les courbes caractéristiques des lois de passage sont continues, mais présentent des portions distinctes, qui sont, successivement à partir d'un pied de courbe ayant pour origine le point de couple nul : une première portion sensiblement linéaire et verticale définie de façon minimiser la consommation en carburant du moteur et les émissions polluantes, notamment d'oxydes de carbone; une deuxième portion, dite « de transition », prévue pour optimiser le passage de vitesse principalement selon des critères d'agrément de conduite; et - une troisième portion sensiblement linéaire et verticale, correspondant à une optimisation des performances de la chaîne de traction en accélération ou en puissance développée. Dans ce qui précède, on entend par l'optimisation de l'agrément de conduite, la diminution ou la suppression des à-coups. (c'est-à-dire les variations brusques d'accélération) au passage des rapports. Les autres critères retenus pour la définition des lois de passage sont, par exemple : la garantie d'une réserve de couple à la roue disponible, une fois le changement de rapport effectué ; le maintien du régime moteur au-dessus d'une certaine limite dans les bas régimes ; et - le maintien du régime moteur au-dessous d'une certaine limite dans les hauts régimes. Concernant les lois de passage de rapport montantes, d'autres critères d'optimisation peuvent être ajoutés, comme la possibilité de conserver le même couple à la roue avant et après changement de rapport. Concernant les lois de passages descendantes, encore d'autres critères d'optimisation peuvent être pris en considération. Le rapport de boîte SR calculé par le premier sous- ensemble 23, et la valeur-cible C du couple à la roue calculée par l'interface 21, sont transmis à des entrées correspondantes du deuxième sous-ensemble 25, lequel élabore, en fonction de ces deux données et des caractéristiques de la chaîne de traction 1, la consigne de couple-moteur Sc. L'organe de contrôle rapproché 19 comprend un premier organe 31 de contrôle rapproché du moteur, et un deuxième organe 32 de contrôle rapproché de la boîte de vitesses. Ces deux organes 31, 32 réalisent le contrôle et la commande des actionneurs qui permettent de piloter le fonctionnement respectivement du moteur et de la boîte de vitesses . Le premier organe de contrôle rapproché 31 reçoit en entrée la consigne de couple moteur S du superviseur 17, consigne dont il commande et contrôle l'exécution par le moteur 5. Le deuxième organe de contrôle rapproché 32 reçoit la consigne de rapport de vitesse SR du superviseur 17, consigne dont il est chargé de commander et de contrôler l'exécution par la boîte de vitesses 7. L'invention qui vient d'être décrite permet, pour le conducteur, un gain en agrément de conduite significatif. En effet, la structure de commande fait que les changements de rapport sont naturellement adaptés aux situations de conduite, et qu'il n'est pas nécessaire de recourir à des lois auto-adaptatives, qui ont le défaut de rendre le fonctionnement de la boîte de vitesses non reproductible. L'architecture de commande proposée garantit, elle, d'obtenir toujours le même comportement de la chaîne de traction pour des situations identiques. Le fait de piloter simultanément le moteur et la boîte de vitesses permet d'obtenir des changements de rapport sans perte d'accélération du véhicule, puisque tout changement de démultiplication peut être compensé automatiquement par une modification du couple moteur. Le dispositif de pilotage qui vient d'être décrit pourra naturellement être relié avec d'autres systèmes électroniques susceptibles d'être montés sur le véhicule, tels que des systèmes de contrôle de freinage, de contrôle de trajectoire, des systèmes de régulation de vitesse, etc.. Un tel dispositif pourra également être prévu pour pouvoir fonctionner en liaison avec des dispositifs capables de fournir des informations sur l'état du véhicule, sur l'état de la route et du trafic routier, et sur le conducteur. A titre d'exemple, le couplage d'un tel dispositif avec un système de navigation par GPS pourra permettre de sélectionner à l'avance un mode de pilotage adapté à des conditions de route, tels que des pentes ou des enchaînements de courbes. Un tel dispositif pourra également être couplé avec un radar permettant de fournir des renseignements sur la position des véhicules environnants dans le but de déduire, in fine, le couple à la roue nécessaire au respect d'une distance de sécurité. Le dispositif et le procédé décrits précédemment sont applicables non seulement à une chaîne de transmission à boîte de vitesses, mais également, pour l'essentiel, à une chaîne de transmission pourvue d'un organe de transmission à variation continue du rapport de démultiplication. The present invention relates to a device for controlling a traction chain for a motor vehicle, said chain comprising at least one engine and a power transmission member with variable gear ratio, provided with an automatic gear change mode, said device comprising - means for acquiring a first significant variable of the speed of the vehicle; means for acquiring a second significant variable of the driver's acceleration setpoint; and a control member connected at the input to said acquisition means and adapted to calculate and deliver at output a gear reduction gear setpoint and a motor torque setpoint. Such devices are well known in the state of the art, and generally comprise two separate computers working independently. A first computer determines and regulates the torque that the engine must supply depending on the position of the accelerator pedal and the engine speed. In the case of a transmission unit with discrete ratios, of the gearbox type, the second computer determines the gear to be engaged as a function of the position of the accelerator pedal and the speed of the vehicle. In such a structure known as “engine torque”, the energy source, that is to say the engine, is controlled directly and independently of the state of the transmission. The engine torque setpoint therefore does not take into account the gearbox gear engaged. This means that the driver only controls the engine torque, i.e. the input torque of the gearbox, but not the torque at the wheel. Since the selection of the gearbox reduction is managed independently, the wheel torque available at the output of the gearbox is not the faithful translation of the driver's will. In addition, the laws for selecting the speed ratio are expressed as a function of the speed of the vehicle and of the position of the accelerator pedal, this latter variable not being representative of the torque at the wheel desired by the driver. The selection laws, which are obtained empirically by tests on vehicles, and programmed in the corresponding computer, are only valid for a given vehicle and powertrain. These selection laws cannot be transposed to a different powertrain, especially on a vehicle of the same model with a different engine. A change of engine therefore involves a new study of the selection laws and new vehicle tests. It has already been proposed, in particular in document US Pat. No. 6,095,945, to control the engine and the transmission in a combined manner. However, the drive chain control device as described in this document is essentially designed to adapt the engine and transmission controls to the driving style of the user, but does not make it possible to remedy all the drawbacks mentioned. upper. The invention aims to provide a control device as described above, which provides a solution to all the aforementioned drawbacks, both in the case of a transmission unit with discrete reports (gearbox) than in the case of a continuous gear unit, for example a speed variator. To this end, in a device according to the invention, the control member comprises a driver-interface adapted to calculate the target value of a significant physical quantity of the torque at the wheel desired by the driver, as a function of said first and second variables, and in that said control member is adapted to calculate on the one hand the gear ratio setpoint as a function of said target value, and on the other hand the engine torque setpoint as a function of said value- target and said reduction ratio setpoint. According to other characteristics of the device according to the invention: the driver interface is adapted to calculate said target value independently of the state of the gear ratio and of the state of the engine torque; the power transmission member is a gearbox, and the control member is programmed with gearshift laws making it possible to calculate the gear ratio setpoint, said shifting laws being materialized, in a reference expressing the torque to the wheel as a function of the speed of the vehicle, by a first beam of lines corresponding to upshifts, and a second beam of lines corresponding to downshifts, each line extending from a point at zero torque successively according to. a first substantially linear and vertical portion; . a second transition portion; and. in a third substantially linear and vertical portion; and the passing laws are provided for: mainly optimizing the fuel consumption of the engine and the carbon monoxide pollution generated, in the low torque areas corresponding to said first portions; and mainly to optimize driving pleasure in the areas of intermediate torque corresponding to said second portions. The invention also relates to a method for driving a traction chain of a motor vehicle, said chain comprising at least one engine and a power transmission member with variable gear ratio, provided with an automatic gear change mode. In this method: the value of a first significant variable of the speed of the vehicle is estimated; the value of a second significant variable of the driver's acceleration setpoint is estimated, and the successive steps are carried out consisting in: calculating the target value of a significant quantity of the torque at the wheel desired by the driver as a function of said values first and second variables; calculating a gear ratio setpoint as a function of said target value; and. calculating a setpoint of engine torque as a function of said target value and of said gear ratio setting. According to other characteristics of the process: - said target value is calculated independently of the state of the gear ratio and of the state of the engine torque; - the power transmission member being a gearbox, the ratio ratio setpoint is calculated gearbox by means of gear shifting laws, in a reference frame expressing the torque at the wheel as a function of the speed of the vehicle, by a first beam of lines corresponding to upshifts, and a second beam of lines corresponding to downshifts, each line extending from a zero torque point successively in a first substantially linear and vertical portion; . a second transition portion; and a third substantially linear and vertical portion; and - the passage laws are provided for: mainly optimizing the fuel consumption of the engine and the pollution in carbon oxides generated, in the low torque areas corresponding to said first portions; and mainly optimize driving pleasure in the areas of intermediate torque corresponding to said second portions. The invention further relates to a data structure recorded on a data storage medium for the control by computer of a traction chain for a motor vehicle, from a first significant variable of the speed of the vehicle and from a second significant variable of the driver's acceleration setpoint, this method consisting in calculating the target value of a significant magnitude of the wheel torque desired by the driver as a function of said first and second variables, calculating a gear ratio setpoint as a function of said target value and an engine torque setpoint as a function of said target value and of said gear ratio. According to the invention, this data structure defines laws for shifting of gear ratios represented, in a reference frame expressing the torque at the wheel as a function of the speed of the vehicle, by - a first beam of lines corresponding to gear shifts amounts, and - a second bundle of lines corresponding to downshifts, each line extending from a zero torque point successively along - a first substantially linear and vertical portion; - A second transition portion, and - a third substantially linear and vertical portion. The invention finally relates to a motor vehicle comprising a traction chain having at least one engine and a power transmission member with variable gear ratio, provided with an automatic gear shift mode, and a device for controlling said chain. of traction as described above. An embodiment of the invention will now be described in more detail with reference to the Figures of the accompanying drawings, in which: Figure 1 is a block diagram of a control device according to the invention; - Figure 2 shows wheel torque values as a function of vehicle speed values, according to laws pre-programmed in the driver interface; and FIG. 3 represents, in the reference frame expressing the torque at the wheel as a function of the speed of the vehicle, possible operating domains for each of the speed ratios, as well as the lines representative of the laws of upward and downward passage. In Figure 1, there is shown schematically a traction chain 1 of a motor vehicle, and its control device 3. The traction chain 1 essentially comprises a motor 5 and a gearbox 7, which can be of any type having at least an automatic gear change mode. In particular, the gearbox 7 can be of the automatic gearbox, or controlled manual gearbox type. The description which follows relates only to the automatic operating mode of this gearbox, both with regard to the control device and the corresponding control method. The motor 5 delivers a motor torque C m at the input of the transmission, in particular from the gearbox 7, and the gearbox 7 outputs the motor torque to the wheel C r resulting from the motor torque C m and from the reduction corresponding to the gear ratio. The engine torque C m and the gearbox ratio are determined by setpoint values delivered by the control device 3, respectively to the engine 5 and to the gearbox 7. The engine torque setpoint and the gear ratio setpoint will be respectively denoted S c and S R. The control device 3 includes means 11 for acquiring vehicle status and / or operating parameters, including the speed of the vehicle, and means 13 for acquiring parameters expressing the will of the driver, including the acceleration setpoint. The means 11 comprise, for example, a vehicle speed sensor, a sensor to which the means 11 will be assimilated in the following, and which delivers a measured value V of the vehicle speed. The means 13 comprise, for example, a position sensor of the accelerator pedal, a sensor to which the means 13 will be assimilated in the following, and which delivers a value P measured from the position of the accelerator pedal. The value P will for example be expressed as a percentage of penetration. The control device 3 further comprises a control member 15 connected, at the input, to the acquisition means 11, 13, and outputting the setpoints of engine torque S c and of speed ratio S R / as a function of the values received from parameters V, P. For this purpose, the control member 15 comprises a calculation member 17 called a “supervisor”, and a member 19 for close control of the mechanical members of the traction chain 1, namely the motor 5 and the gearbox 7. The supervisor 17 comprises a driver interface 21 which receives the parameters V, P of the acquisition means 11, 13, and calculates, from the values of these parameters, a target value C of torque to the wheel. An example of characteristic curves of the driver-interface is given in the form of a graph in Figure 2. In this Figure, there is shown, in a reference frame the abscissa of which is constituted by the speed of the vehicle (in km / h) and the ordinate is constituted by the target value of torque at wheel C (expressed in Nm), a bundle of characteristic curves each corresponding to a value for depressing the accelerator pedal, expressed as a percentage of travel driving. In FIG. 2, the curves shown correspond to a 10% increment in depressing percentage, starting from the curve with zero pedal depressing, designated by the reference L 0 , up to the pedal depressing curve of 100 %, designated by the reference Lι 00 . The driver interface 21 can be provided, as in the example shown, to associate, with a given depressing value of the accelerator pedal, a value from a discrete set. It is thus possible, by selecting a representative curve from those predefined, as represented in FIG. 2, to associate with a value of vehicle speed, a target value of torque to the wheel. As a variant, the driver interface could consist of a mapping associating, continuously, a target value C of torque to the wheel with a pair of values (P, V) of the driving parameter and of the vehicle speed. It is important to note that the driver interface 21 calculates the target value C of torque at the wheel, which is significant of the torque at the wheel desired by the driver, independently of the gearbox ratio already engaged, and independently of the state of engine torque C m . The supervisor 17 further comprises a first subset 23 for calculating the gearbox ratio S R , and a second subset 25 for calculating the engine torque setpoint. In FIG. 3, the operating domains of a five-speed gearbox have been represented in a reference frame having on the abscissa the speed of the vehicle expressed in km / h, and on the ordinate the torque at the wheel expressed in Nm The domain D x delimited at its apex by the line lχ represents the set of operating points which can be achieved at first speed, the line lχ corresponding to the maximum torque at the wheel achievable at first for all the speed values of the domain. Similarly, the domains D 2 , D 3 , D 4 , D 5 represent the operating points which can be reached respectively at the second, third, and fourth speeds. Lines 1 2 , 1 3 , 1, I5, materialize the upper limit of torque to the wheel which can be reached at each of these speed ratios, depending on the speed of the vehicle. Thus, the first subset 23 performs the calculation of the gearbox ratio S R from the speed V of the vehicle and the target value C of the torque at the wheel, which are transmitted to it by the driver interface 21, in accordance to the operating areas D 1 -D 5 which are stored in the subset 23. The pre-recorded information relating to the operating areas D1-D5 is supplemented by pre-recorded passing laws, which can be characterized by beams lines, each of which separates regions common to at least two areas of operation. A first bundle of lines, which are designated by the references Rι- 2 , R 2 - 3 , R 3 - 4 , R4-5 for a five-speed gearbox, corresponds to the uplift laws, that is to say incrementing the gear ratios. A second bundle of lines (shown in dotted lines in FIG. 3), which are designated by the references R 2 -ι, R 3 - 2 , R- 3 , Rs- 4 , corresponds to the downward passing laws, that is to say that is to say a decrementation of the gear ratios. By way of example, the line Rι_ 2 represents the upward shift law from the speed ratio 1 to the ratio 2, while the line R 2 _χ represents the downward shift law from the ratio 2 to the ratio 1. The shift laws are defined by a data structure recorded on any suitable memory medium, such as a permanent memory. For example, the lines R 1 - 2 , R 2 - R 3 _ 4 , R 4 _5 and R 2 -ι, R3-2, R 4 -3, 5- are stored on a look-up table. It is understood that the calculation of the speed ratio S R at a given instant, by the first subset 23, is carried out as a function of the target value C of the torque at the wheel obtained from the driver-interface 21, and of the speed V of the vehicle, on the one hand by means of the operating ranges Dι ~ D 5 , and on the other hand as a function of the position of the operating point in the reference frame (vehicle speed, torque at the wheel) at l 'previous instant, vis-à-vis the characteristic lines by means of the prerecorded laws of passage. It should be noted that the laws of passage can be unique and invariant or depend, for example, on the driving style of the user. In general, the characteristic curves of the laws of passage are continuous, but have distinct portions, which are, successively from a foot of curve originating from the point of zero torque: a first substantially linear and vertical portion defined by how to minimize engine fuel consumption and polluting emissions, especially carbon oxides; a second portion, called “transition”, intended to optimize the gear change mainly according to driving pleasure criteria; and a third substantially linear and vertical portion, corresponding to an optimization of the performance of the traction chain in acceleration or in developed power. In the foregoing, the optimization of driving pleasure means the reduction or elimination of jolts. (i.e. sudden variations in acceleration) when shifting. The other criteria retained for the definition of passing laws are, for example: the guarantee of a reserve of torque at the available wheel, once the gear change has been made; maintaining engine speed above a certain limit at low speeds; and - maintaining the engine speed below a certain limit in high speeds. Concerning the upshifting shift laws, other optimization criteria can be added, such as the possibility of keeping the same torque at the wheel before and after shifting. Regarding the laws of descending passages, still other optimization criteria can be taken into account. The gearbox ratio S R calculated by the first subset 23, and the target value C of the wheel torque calculated by the interface 21, are transmitted to corresponding inputs of the second subset 25, which develops, in function of these two data and the characteristics of the traction chain 1, the engine torque setpoint S c . The close control member 19 comprises a first member 31 for close control of the engine, and a second member 32 for close control of the gearbox. These two members 31, 32 carry out the control and command of the actuators which make it possible to control the operation of the engine and of the gearbox respectively. The first close control member 31 receives as input the engine torque setpoint S from the supervisor 17, setpoint which it commands and controls the execution by the motor 5. The second close control member 32 receives the speed ratio setpoint S R from supervisor 17, setpoint for which it is responsible for commanding and controlling the execution by the gearbox 7. The invention which has just been described allows, for the driver, a significant gain in driving pleasure. Indeed, the control structure means that gear changes are naturally adapted to driving situations, and that it is not necessary to resort to self-adaptive laws, which have the defect of making the gearbox work non reproducible speeds. The proposed control architecture guarantees that the same behavior of the powertrain will always be obtained for identical situations. Controlling the engine and the gearbox simultaneously makes it possible to obtain gear changes without loss of acceleration of the vehicle, since any change in gear can be compensated automatically by a modification of the engine torque. The steering device which has just been described can naturally be connected with other electronic systems capable of being mounted on the vehicle, such as braking control systems, trajectory control systems, speed control systems, etc. Such a device could also be provided in order to be able to operate in conjunction with devices capable of providing information on the state of the vehicle, on the state of the road and road traffic, and on the driver. By way of example, the coupling of such a device with a GPS navigation system may make it possible to select in advance a piloting mode suited to road conditions, such as slopes or sequences of curves. Such a device could also be coupled with a radar making it possible to provide information on the position of the surrounding vehicles. in order to deduce, ultimately, the wheel torque necessary to maintain a safety distance. The device and method described above are applicable not only to a transmission chain with a gearbox, but also, essentially, to a transmission chain provided with a transmission member with continuously varying the reduction ratio.

Claims

REVENDICATIONS 1. Dispositif de pilotage d'une chaîne de traction pour véhicule automobile, ladite chaîne (1) comprenant au moins un moteur (5) et un organe de transmission de puissance à rapport de démultiplication variable (7) , doté d'un mode automatique de changement de rapport, ledit dispositif (3) comprenant des moyens (11) d'acquisition d'une première variable significative de la vitesse (V) du véhicule ; - des moyens (13) d'acquisition d'une deuxième variable (P) significative de la consigne d'accélération du conducteur ; et - un organe de commande (15) relié en entrée auxdits moyens d'acquisition (11, 13) et adapté pour calculer et délivrer en sortie une consigne de rapport de démultiplication (SR) et une consigne de couple-moteur (Sc) , caractérisé en ce que ledit organe de commande (15) comprend une interface-conducteur (21) adaptée pour calculer la valeur-cible (C) d'une grandeur physique significative du couple à la roue désiré par le conducteur, en fonction desdites première (V) et deuxième (P) variables, et en ce que ledit organe de commande (15) est adapté pour calculer d'une part la consigne de rapport de démultiplication (SR) en fonction de ladite valeur-cible (C) , et d'autre part la consigne de couple-moteur (Sc) en fonction de ladite valeur- cible (C) et de ladite consigne de rapport de démultiplication (SR) . 2. Dispositif suivant la revendication 1, caractérisé en ce que l'interface-conducteur (21) est adaptée pour calculer ladite valeur-cible (C) indépendamment de l'état du rapport de démultiplication et de l'état du couple-moteur (Cm> . 3. Dispositif suivant la revendication 1 ou 2, dans lequel ledit organe de transmission de puissance (7) est une boîte de vitesses, caractérisé en ce que l'organe de commande (15) est programmé avec des lois de passage de rapports permettant de calculer la consigne de rapport de boîte (SR) , lesdites lois de passage étant matérialisées, dans un repère exprimant le couple à la roue en fonction de la vitesse du véhicule, par un premier faisceau de lignes (Rι_2, R2-3r 3-4r R4-5) correspondant à des passages de vitesses montants, et un deuxième faisceau de lignes (R2-ι,CLAIMS 1. Device for controlling a traction chain for a motor vehicle, said chain (1) comprising at least one motor (5) and a power transmission unit with variable reduction ratio (7), provided with a mode automatic gear change, said device (3) comprising means (11) for acquiring a first variable significant for the speed (V) of the vehicle; - Means (13) for acquiring a second variable (P) significant of the driver's acceleration instruction; and - a control member (15) connected at input to said acquisition means (11, 13) and adapted to calculate and deliver at output a gear reduction ratio set point (S R ) and a motor torque set point (S c ), characterized in that said control member (15) comprises a driver interface (21) adapted to calculate the target value (C) of a significant physical quantity of the torque at the wheel desired by the driver, as a function of said first (V) and second (P) variables, and in that said control member (15) is adapted to calculate on the one hand the gear ratio setpoint (S R ) as a function of said target value (C) , and on the other hand the engine torque setpoint (S c ) as a function of said target value (C) and of said gear reduction setpoint (S R ). 2. Device according to claim 1, characterized in that the driver interface (21) is adapted to calculate said target value (C) independently of the state of the gear ratio and the state of the engine torque ( C m >. 3. Device according to claim 1 or 2, wherein said power transmission member (7) is a gearbox, characterized in that the control member (15) is programmed with gearshift laws enabling the gearbox ratio setpoint (S R ) to be calculated, said shifting laws being materialized, in a frame expressing the torque at the wheel as a function of the vehicle speed, by a first set of lines (Rι_ 2 , R 2 -3r 3-4 r R4-5) corresponding to upshifts, and a second set of lines ( R 2 -ι,
R3_2, R4_3 , Rδ- ) correspondant à des passages de vitesses descendants, chaque ligne s' étendant à partir d'un point à couple nul successivement selon une première portion sensiblement linéaire et verticale ; - une deuxième portion de transition ; et - une troisième portion sensiblement linéaire et verticale . 4. Dispositif suivant la revendication 3, caractérisé en ce que les lois de passage sont prévues pour : - optimiser principalement la consommation en carburant du moteur (5) et la pollution en oxydes de carbone engendrée, dans les domaines à faible couple correspondant auxdites premières portions ; et - optimiser principalement l'agrément de conduite dans les domaines à couple intermédiaire correspondant auxdites deuxièmes portions. 5. Procédé de pilotage d'une chaîne de traction de véhicule automobile, ladite chaîne (1) comportant au moins un moteur (5) et un organe de transmission de puissance à rapport de démultiplication variable (7) doté d'un mode automatique de changement de rapport, procédé dans lequel : - on estime la valeur d'une première variable (V) significative de la vitesse du véhicule ; - on estime la valeur d'une deuxième variable (P) significative de la consigne d'accélération du conducteur, ledit procédé étant caractérisé par les étapes successives consistant à : - calculer la valeur-cible (C) d'une grandeur significative du couple à la roue désiré par le conducteur, en fonction desdites première (V) et deuxième (P) variables ; calculer une consigne de rapport de démultiplication (SR) en fonction de ladite valeur- cible (C) ; et - calculer une consigne de couple-moteur (Sc) en fonction de ladite valeur-cible (C) et de ladite consigne de rapport de démultiplication (SR) . 6. Procédé suivant la revendication 5, caractérisé en ce qu'on calcule ladite valeur-cible (C) indépendamment de l'état du rapport de démultiplication et de l'état du couple-moteur (Cm) . 7. Procédé suivant la revendication 5 ou 6, dans lequel ledit organe de transmission de puissance (7) est une boîte de vitesses, caractérisé en ce qu'on calcule la consigne de rapport de boîte (SR) au moyen de lois de passage de rapports matérialisées, dans un repère exprimant le couple à la roue en fonction de la vitesse du véhicule, par un premier faisceau de lignes (Rι-2y 2-3, 3-Λ R4-5) correspondant à des passages de vitesses montants, et un deuxième faisceau de lignes {R∑-ir R3-2 R-3Λ R5-4) correspondant à des passages de vitesses descendants, chaque ligne s'étendant à partir d'un point à couple nul successivement selon - une première portion sensiblement linéaire et verticale ; - une deuxième portion de transition ; et - une troisième portion sensiblement linéaire et verticale . 8. Procédé suivant la revendication 7, caractérisé en ce que les lois de passage sont prévues pour : - optimiser principalement la consommation en carburant du moteur (5) et la pollution en oxydes de carbone engendrée, dans les domaines à faible couple correspondant auxdites premières portions ; et - optimiser principalement l'agrément de conduite dans les domaines à couple intermédiaire correspondant auxdites deuxièmes portions. 9. Structure de données enregistrée sur un support de mémorisation de données pour le pilotage par calculateur d'une chaîne de traction pour véhicule automobile, à partir d'une première variable (V) significative de la vitesse du véhicule et d'une deuxième variable (P) significative de la consigne d'accélération du conducteur, ce procédé consistant à calculer la valeur-cible (C) d'une grandeur significative du couple à la roue désiré par le conducteur en fonction desdites première (V) et deuxième (P) variables, calculer une consigne de rapport de boîte (SR) en fonction de ladite valeur-cible (C) et une consigne de couple-moteur (Sc) en fonction de ladite valeur-cible (C) et de ladite consigne de rapport de boîte (SR) , caractérisée en ce que ladite structure de données définit des lois de passage de rapport de vitesses représentées, dans un repère exprimant le couple à la roue en fonction de la vitesse du véhicule, par - un premier faisceau de lignes (Rι-2, R2-3, 13-4/ R4-5) correspondant à des passages de vitesses montants, et - un deuxième faisceau de lignes (R2-1, R3-2Λ Ri-3rR 3 _ 2 , R 4 _ 3 , Rδ-) corresponding to downshifts, each line extending from a zero torque point successively in a first substantially linear and vertical portion; - a second transition portion; and - a third substantially linear and vertical portion. 4. Device according to claim 3, characterized in that the passage laws are provided for: - mainly optimizing the fuel consumption of the engine (5) and the carbon oxide pollution generated, in the low torque areas corresponding to said first portions; and - mainly optimizing the driving pleasure in the areas of intermediate torque corresponding to said second portions. 5. Method for controlling a traction chain of a motor vehicle, said chain (1) comprising at least one motor (5) and a power transmission member with variable reduction ratio (7) provided with an automatic mode of gear change, process in which: - the value of a first variable (V) significant of the vehicle speed is estimated; - the value of a second variable (P) significant of the driver's acceleration setpoint is estimated, said method being characterized by the successive steps consisting in: - calculating the target value (C) of a significant quantity of the torque to the wheel desired by the driver, as a function of said first (V) and second (P) variables; calculating a reduction ratio setpoint (S R ) as a function of said target value (C); and - calculating an engine torque setpoint (S c ) as a function of said target value (C) and of said gear reduction setpoint (S R ). 6. Method according to claim 5, characterized in that said target value (C) is calculated independently of the state of the gear ratio and of the state of the engine torque (C m ). 7. The method of claim 5 or 6, wherein said power transmission member (7) is a gearbox, characterized in that the gear ratio setpoint (S R ) is calculated by means of passage laws of materialized reports, in a benchmark expressing the torque at the wheel as a function of the speed of the vehicle, by a first beam of lines (Rι-2y 2 -3, 3-Λ R4-5) corresponding to upshifts, and a second bundle of lines (R∑-ir R3-2 R-3Λ R5-4) corresponding to downshifts, each line extending from a zero torque point successively along - a first portion substantially linear and vertical; - a second transition portion; and - a third substantially linear and vertical portion. 8. Method according to claim 7, characterized in that the passage laws are provided for: - mainly optimizing the fuel consumption of the engine (5) and the pollution in carbon oxides generated, in the low torque areas corresponding to said first portions; and - mainly optimizing the driving pleasure in the areas of intermediate torque corresponding to said second portions. 9. Data structure recorded on a data storage medium for the control by computer of a traction chain for a motor vehicle, from a first variable (V) significant of the speed of the vehicle and from a second variable (P) significant of the driver's acceleration setpoint, this method consisting in calculating the target value (C) of a significant quantity of the torque at the wheel desired by the driver as a function of said first (V) and second (P ) variables, calculate a gear ratio setpoint (S R ) as a function of said target value (C) and a motor torque setpoint (S c ) as a function of said target value (C) and said setpoint gearbox ratio (S R ), characterized in that said data structure defines gearshift laws represented, in a frame expressing the torque at the wheel as a function of the speed of the vehicle, by - a first beam of line s (Rι- 2 , R 2 - 3 , 13-4 / R4-5) corresponding to upshifts, and - a second set of lines (R2-1, R3-2Λ Ri-3r
R5-4 ) correspondant à des passages de vitesses descendants, chaque ligne s' étendant à partir d'un point à couple nul successivement selon une première portion sensiblement linéaire et verticale ; - une deuxième portion de transition, et - une troisième portion sensiblement linéaire et verticale. 10. Véhicule automobile comportant une chaîne de traction (1), qui comprend au moins un moteur (5) et un organe de transmission de puissance à rapport de démultiplication variable, notamment une boîte de vitesses (7), doté d'un mode automatique de passages des rapports, caractérisé en ce qu'il comporte en outre un dispositif de pilotage de ladite chaîne de traction (3) conforme à l'une quelconque des revendications 1 à 4. R 5 - 4 ) corresponding to downshifts, each line extending from a zero torque point successively along a first substantially linear and vertical portion; - A second transition portion, and - a third substantially linear and vertical portion. 10. Motor vehicle comprising a traction chain (1), which comprises at least one motor (5) and a power transmission member with variable gear ratio, in particular a gearbox (7), provided with an automatic mode of gearshifts, characterized in that it further comprises a device for controlling said traction chain (3) according to any one of claims 1 to 4.
EP05717639A 2004-02-16 2005-02-16 Device and method for driving a motor vehicle traction chain whose transmission member has an automatically changeable gearing reduction mode and a motor vehicle provided with said device Withdrawn EP1716033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0401534A FR2866284B1 (en) 2004-02-16 2004-02-16 DEVICE AND METHOD FOR DRIVING A TRACTION CHAIN FOR A MOTOR VEHICLE WITH A TRANSMISSION MEMBER HAVING AN AUTOMATIC DEMULTIPLICATION CHANGE MODE, AND EQUIPPED VEHICLE
PCT/FR2005/000359 WO2005080123A1 (en) 2004-02-16 2005-02-16 Device and method for driving a motor vehicle traction chain whose transmission member has an automatically changeable gearing reduction mode and a motor vehicle provided with said device

Publications (1)

Publication Number Publication Date
EP1716033A1 true EP1716033A1 (en) 2006-11-02

Family

ID=34803394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05717639A Withdrawn EP1716033A1 (en) 2004-02-16 2005-02-16 Device and method for driving a motor vehicle traction chain whose transmission member has an automatically changeable gearing reduction mode and a motor vehicle provided with said device

Country Status (4)

Country Link
EP (1) EP1716033A1 (en)
BR (1) BRPI0506806A (en)
FR (1) FR2866284B1 (en)
WO (1) WO2005080123A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016204657A1 (en) * 2016-03-21 2017-09-21 Volkswagen Aktiengesellschaft Method and control device for selecting a gear of a transmission in a drive train of a motor vehicle
CN108533739B (en) * 2018-03-27 2020-06-23 吉利汽车研究院(宁波)有限公司 Gear shifting method and device for automatic transmission vehicle
CN115217948B (en) * 2021-11-08 2023-11-03 广州汽车集团股份有限公司 Correction method for vehicle gear shifting point

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2757193B2 (en) * 1988-11-18 1998-05-25 トヨタ自動車株式会社 Vehicle travel target value setting device
JPH0617684A (en) * 1992-07-02 1994-01-25 Hitachi Ltd Method for controlling acceleration of automobile
KR19980081709A (en) * 1997-04-25 1998-11-25 가나이쯔도무 Control device and control method of vehicle
US6434466B1 (en) * 1999-05-06 2002-08-13 Ford Global Technologies, Inc. System and method for determining engine torque for controlling a powertrain
US6220987B1 (en) * 1999-05-26 2001-04-24 Ford Global Technologies, Inc. Automatic transmission ratio change schedules based on desired powertrain output
JP3285842B2 (en) * 1999-05-27 2002-05-27 株式会社日立製作所 Transmission control device
US6418367B1 (en) * 1999-10-08 2002-07-09 Nissan Motor Co., Ltd. Engine transmission control system
JP3573066B2 (en) * 2000-06-07 2004-10-06 日産自動車株式会社 Vehicle driving force control device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2005080123A1 *

Also Published As

Publication number Publication date
FR2866284B1 (en) 2007-04-27
BRPI0506806A (en) 2007-05-29
WO2005080123A1 (en) 2005-09-01
FR2866284A1 (en) 2005-08-19

Similar Documents

Publication Publication Date Title
EP2109562B1 (en) System and method for controlling a hybrid power propulsion unit for a permanent four wheel drive mode operation
EP2111515A2 (en) Method and device for vehicle driving assistance
FR2898097A1 (en) DEVICE AND METHOD FOR CONTROLLING VEHICLE
EP1792106B1 (en) Method for multi-operating mode control of an automated transmission for a motor vehicle, in particular for idle speed running with inactivated brake and corresponding device
JP5300260B2 (en) Automatic gear ratio adjustment method
EP0819227A2 (en) Automated mechanical gearbox system including improved control means for when the vehicle is stationary
EP1716033A1 (en) Device and method for driving a motor vehicle traction chain whose transmission member has an automatically changeable gearing reduction mode and a motor vehicle provided with said device
FR2844227A1 (en) Vehicle speed limiting method involves determining limit value for output quantity of drive unit, based on determined maximum permissible acceleration and by utilizing vehicle dynamics equation
FR2928122A1 (en) Hybrid drive train control system for e.g. hybrid front wheel drive motor vehicle, has prevention units preventing passing from hybrid mode to electric mode with respect to parameter representing volition of driver
EP1481876A1 (en) Method for controlling an electric power steering mechanism for a motor vehicle
FR2846606A1 (en) Method for regulating vehicle speed comprises reducing actual speed by changing down gearbox rather than controlling brake control
EP1791715B1 (en) Method for multi-operating mode control of an automated transmission for a motor vehicle, in particular for idle speed running with activated brake and corresponding device
FR2861860A1 (en) Vehicle driving unit management method, involves predefining set point value for magnitude of output of driving unit, and releasing thrust of unit when set point value of magnitude passes below characteristic thrust value
EP1846647B1 (en) Method for control of the reversal of power in a system comprising a torque converter and mechanical unit encompassing said method
JPS60143132A (en) Gear-shift controlling method of electronically controlled transmission
FR2746887A1 (en) SYSTEM FOR DETERMINING VARIATIONS IN THE RATIO OF AN AUTOMATIC TRANSMISSION
FR2729343A1 (en) Management of continuously variable automobile transmissions
EP1344964B1 (en) Procedure and device for upshift in an automatic or automatized transmission
JPH102407A (en) Transmission gear ratio adjusting device
JP2004263875A (en) Automatic gear shifting device and control method of throttle valve
WO1998017928A1 (en) Method for controlling gearbox input torque
EP1590583B1 (en) Method of controlling a continuously-variable traction chain of a motor vehicle, which is designed to improve noise characteristics
FR2856021A1 (en) Vehicle motive power unit controlling method, involves detecting whether vehicle is in pressure mode or propulsion mode using detection unit for changing output variable value of motive power unit
FR2936984A1 (en) Automatic regulation system i.e. anti-skid regulation system, for regulating driveability of motor vehicle, has storage unit to storing engine overspeed regulation torque, and selection unit selecting torque to be applied to output
FR2806672A1 (en) METHOD FOR CONTROLLING DIFFERENT COMPONENTS OF A TRANSMISSION SYSTEM OF A MOTOR VEHICLE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070305

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071016