EP1715184B1 - Système de contrôle pour un compresseur linéaire - Google Patents

Système de contrôle pour un compresseur linéaire Download PDF

Info

Publication number
EP1715184B1
EP1715184B1 EP06006967A EP06006967A EP1715184B1 EP 1715184 B1 EP1715184 B1 EP 1715184B1 EP 06006967 A EP06006967 A EP 06006967A EP 06006967 A EP06006967 A EP 06006967A EP 1715184 B1 EP1715184 B1 EP 1715184B1
Authority
EP
European Patent Office
Prior art keywords
piston
power
collision
back emf
reciprocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06006967A
Other languages
German (de)
English (en)
Other versions
EP1715184A1 (fr
Inventor
Zhuang Tian
John H. Boyd Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisher and Paykel Appliances Ltd
Original Assignee
Fisher and Paykel Appliances Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NZ53955405A external-priority patent/NZ539554A/en
Application filed by Fisher and Paykel Appliances Ltd filed Critical Fisher and Paykel Appliances Ltd
Publication of EP1715184A1 publication Critical patent/EP1715184A1/fr
Application granted granted Critical
Publication of EP1715184B1 publication Critical patent/EP1715184B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0202Linear speed of the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0206Length of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0209Duration of piston stroke

Definitions

  • This invention relates to a system of control for a free piston linear compressor and in particular, but not solely, a refrigerator compressor.
  • the control system allow a high power mode of operation in which piston stroke is maximised and collisions deliberately occur.
  • Linear compressors operate on a free piston basis and require close control of stroke amplitude since, unlike conventional rotary compressors employing a crank shaft, stroke amplitude is not fixed.
  • the application of excess motor power for the conditions of the fluid being compressed may result in the piston colliding with the head gear of the cylinder in which it reciprocates.
  • US 6,809,434 discloses a control system for a free piston compressor which limits motor power as a function of a property of the refrigerant entering the compressor.
  • linear compressors it is useful to be able to detect an actual piston collision and then to reduce motor power in response.
  • Such a strategy can be used purely to prevent compressor damage, when excess motor power occurs for any reason or, can be used as a way of ensuring high volumetric efficiency by gradually increasing power until a collision occurs and then decrementing power before gradually increasing power again.
  • the periodic light piston collisions inherent in this mode of operation cause negligible damage and can easily be tolerated.
  • US 6,536,326 discloses a system for detecting piston collisions in a linear compressor which uses a vibration detector such as a microphone.
  • US 6,812,597 discloses a method and system for detecting piston collisions based on the linear motor back EMF and therefore without the need for any sensors and their associated cost. This uses the sudden change in period that has been found to occur on a piston collision. Reciprocation period and/or half periods can be obtained from measuring the time between zero-crossings of the back EMF induced in the motor stator windings.
  • the back EMF is a function of motor armature velocity and therefore piston velocity and zero-crossings indicate the points when the piston changes direction during its reciprocation cycles.
  • one aspect of the present invention provides a method of controlling a free-piston linear compressor characterized by :
  • the linear compressor (1) includes a free piston (22) reciprocating in a cylinder (12) driven by an electric motor having a stator (5) with one or more excitation windings (33) and an armature (17) connected to said piston, further including the step of:
  • the linear compressor (1) includes a free piston (22) reciprocating in a cylinder (12) driven by an electric motor having a stator (5) with one or more excitation windings (33) and an armature (17) connected to said piston, further including the step of:
  • the present invention relates to controlling a free piston reciprocating compressor powered by a linear electric motor.
  • a typical, but not exclusive, application would be in a refrigerator.
  • a compressor for a vapour compression refrigeration system includes a linear compressor 1 supported inside a shell 2.
  • the housing 2 is hermetically sealed and includes a gases inlet port 3 and a compressed gases outlet port 4.
  • Uncompressed gases flow within the interior of the housing surrounding the compressor 1. These uncompressed gases are drawn into the compressor during the intake stroke, are compressed between a piston crown 14 and valve plate 5 on the compression stroke and expelled through discharge valve 6 into a compressed gases manifold 7.
  • Compressed gases exit the manifold 7 to the outlet port 4 in the shell through a flexible tube 8.
  • the tube is preferably arranged as a loop or spiral transverse to the reciprocating axis of the compressor. Intake to the compression space may be through the head, suction manifold 13 and suction valve 29.
  • the illustrated linear compressor 1 has, broadly speaking, a cylinder part and a piston part connected by a main spring.
  • the cylinder part includes cylinder housing 10, cylinder head 11, valve plate 5 and a cylinder 12.
  • the main spring may be formed as a combination of coil spring 19 and flat spring 20 as shown in Figure 1 .
  • the piston part includes a hollow piston 22 with sidewall 24 and crown 14.
  • the compressor electric motor is integrally formed with the compressor structure.
  • the cylinder part includes motor stator 15.
  • a co-acting linear motor armature 17 connects to the piston through a rod 26 and a supporting body 30.
  • the linear motor armature 17 comprises a body of permanent magnet material (such as ferrite or neodymium) magnetised to provide one or more poles directed transverse to the axis of reciprocation of the piston within the cylinder liner.
  • An end portion 32 of armature support 30, distal from the piston 22, is connected with the main spring.
  • the linear compressor 1 is mounted within the shell 2 on a plurality of suspension springs to isolate it from the shell. In use the linear compressor cylinder part will oscillate but because the piston part is made very light compared to the cylinder part the oscillation of the cylinder part is small compared with the relative reciprocation between the piston part and cylinder part.
  • An alternating current in stator windings 33 not necessarily sinusoidal, creates an oscillating force on armature magnets 17 to give the armature and stator substantial relative movement provided the oscillation frequency is close to the natural frequency of the mechanical system. This natural frequency is determined by the stiffness of the spring 19, and mass of the cylinder 10 and stator 15.
  • control system of the present invention operates in conjunction with the control system disclosed in US 6,809,434 .
  • FIG. 2 To provide context for the linear compressor control system in the present invention a basic control system for a refrigerator is shown in Figure 2 .
  • a refrigerator 101 incorporating an evaporator 102 and a compressor 103 is set by a user to operate at a desired cabinet temperature through a control which produces a signal 104.
  • compressor 103 is switched off.
  • the cabinet temperature exceeds a predetermined threshold the magnitude of error signal 106 exceeds the predetermined value and the compressor is again turned on. This is the conventional non-linear feedback system used in refrigerators.
  • the control system of the present invention resides within the conventional loop described with reference to Figure 2 . It receives as an input the output signal from amplifier 107 and controls the compressor 103 which in the present invention will be a free piston linear compressor.
  • linear compressor 103A which may be of the type already described with reference to Figure 1 , has its stator windings energised by an alternating voltage supplied from power switching circuit 107 which may take the form of the bridge circuit shown in Figure 7 which uses switching devices 411 and 412 to commutate current of reversing polarity through compressor stator winding 33.
  • the other end of the stator winding is connected to the junction of two series connected capacitors which are also connected across the DC power supply.
  • the "half" bridge shown in Figure 7 may be replaced with a full bridge using four switching devices.
  • the control system is preferably implemented as a programmed microprocessor controlling the operation of the power switching circuit 107.
  • the switching circuit 107 is thus controlled by a switching algorithm 108 executed by the control system microprocessor.
  • the microprocessor is programmed to execute various functions or use tables to be described which for the purposes of explanation are represented as blocks in the block diagrams of Figures 3 to 5 .
  • Reciprocations of the compressor piston and the frequency or period thereof are detected by movement detector 109 which in the preferred embodiment comprises the process of monitoring the back EMF induced in the compressor stator windings by the reciprocating compressor armature and detecting the zero crossings of that back EMF signal.
  • Switching algorithm 108 which provides microprocessor output signals for controlling the power switch 107 has its switching times initiated from logic transitions in the back EMF zero crossing signal 110. This ensures the reciprocating compressor peaks maximum power efficiency.
  • the compressor input power may be determined by controlling either the current magnitude or current duration applied to the stator windings by power switch 107. Pulse width modulation of the power switch may also be employed.
  • Figure 4 shows the basic compressor control system of Figure 3 enhanced by the control technique disclosed in US 6,809,434 which minimises piston/cylinder collisions in normal operation by setting a maximum power based on piston frequency and evaporator temperature.
  • Output 111 from an evaporator temperature sensor is applied to one of the microprocessor inputs and piston frequency is determined by a frequency routine 112 which times the time between zero crossings in back EMF signal 110. Both the determined frequency and measured evaporator temperature are used to select a maximum power from a maximum power lookup table 113 which sets a maximum allowable power P t for a comparator routine 114.
  • Comparator routine 114 receives as a second input value 106 representing the power demand (P r ) required from the overall refrigerator control. The comparator routine 114 is used by switching algorithm 118 to control switching current magnitude or duration. Comparator routine 114 provides an output value 115 which is the minimum of the power required by the refrigerator P r and the power P t allowed from maximum power table 113.
  • linear compressor 103A when active operating with no or minimal piston collisions in normal operation.
  • linear compressor 103A may be run in a "maximum power mode" where higher power can be achieved than with the Figure 4 control system, but with the inevitability of some piston collisions.
  • the control system of the present invention facilitates this mode as will now be described.
  • a power algorithm 116 is employed which provides values to a another input to comparison routine 114.
  • Power algorithm 116 slowly ramps up the compressor input power by providing successively increasing values to comparator routine 114 which causes switching algorithm 108 to ramp up the power switch 107 current magnitude or preferably ON time duration.
  • Collision detection process 117 is preferably determined from an analysis of the back EMF induced in the compressor windings and the technique used may be either that disclosed in US 6,812,597 , which looks for sudden decreases in piston period ( Figures 8(a) and 8(b) show graphs of piston half-periods against time as mentioned below), or that disclosed in US 10/880,389 which looks for discontinuities on the slope of the analogue back EMF signal.
  • power algorithm 116 Upon detection of a collision, power algorithm 116 causes a decremented value to be input to comparator routine 114 to achieve a decrease of power. Power algorithm 116 then again slowly ramps up the compressor input power until another collision is detected and the process is repeated.
  • the effective power ramping signal provided by power algorithm 116 is periodically pulsed every m cycles by a perturbation algorithm 119 (see Figure 6 ) with an increase (R b ) in power for a very short duration.
  • a typical valve of m might be 100. In one embodiment this is achieved by increasing the ON time of power switch 107 by 100 ⁇ s every 1 second (see Figure 8(c) ). Shorter increases in ON times, say 50 ⁇ s, could be used dependent on the collision detection system employed.
  • the linear compressor can be operated at maximum power and volumetric efficiency when required with low energy non-damaging piston collisions in the certainty that continued collisions at increasing power will be avoided.
  • the high power control methodology described is used in conjunction with control for normal operation where collision avoidance is employed as described with reference to Figure 4 .
  • a control system employing both techniques is shown in Figure 9 .
  • the comparison routine 114 receives three inputs, P r , P t and P a .
  • input P a from power algorithm 116 may be decremented by one or both of two collision detection processes 117 and 118.
  • Process 117 looks for period change and process 118 looks for back EMF slope change as previously mentioned.
  • Pt is a function of Running Frequency and Evaporating Pressure (or temperature, as evaporating temperature is closely correlated to pressure)
  • Pt C1 Collision reaction If a collision is detected power is decreased by about Rp Pt - Rp or Pr - Rp C2 Frequent collisions If there have been more than 1 collision in the last p cycles then decrease power by n x Rp Pt - nRp or Pr- nRp C3 No collisions recently If there has been no collisions in the last q cycles then increase Power by DP (this can continue until Power gets to its original value, Pt).
  • Pr, Pa Power levels that are set by altering the commutation time Pt Rp Power step that reduces the power level.
  • a preset minimum power normally about 20W Case Situation Description Output
  • a Normal running Output power is the minimum, of the power required by the refrigerator, Pr, and the power allowed by the Collision Analyser, Pa.
  • the collision detection algorithm is one derived from the ascertainment of a sudden decrease in piston period as disclosed in US 6,812,597 .
  • An enhanced technique derived from this method will now be described.
  • the period of the oscillating piston 22 is made up of two half periods between bottom dead centre and top dead centre respectively, but neither successive or even alternate half periods are symmetrical.
  • the half period expansion stroke when the piston moves away from the head (valve plate 5) is longer than the half period compression stroke when the piston moves towards the head.
  • four periods are stored and monitored; compression and expansion for the even cycles, plus compression and expansion for the odd cycles.
  • a sudden change in either of the two shorter half cycles (compression strokes) is assumed in this method to indicate a piston collision.
  • Figure 8(b) typical even short cycle periods are shown whereas Figure 8(a) shows typical even expansion stroke half periods.
  • the process used in the preferred collision detection algorithm 117 is to store the back EMF zero crossing time intervals from detector 109 for the four half periods mentioned above as an exponentially weighted moving average (ewma) to give a smoothed or filtered value for each of the first and second half periods of the odd and even cycles.
  • an infinite impulse response (IIR) filter is used with weightings such that the outputted latest estimate of half period time is 1 / 8 of the last value + 7 / 8 of the previous estimates. These estimates are continually compared with the detected period of the most recent corresponding half cycle and the comparison monitored for an abrupt reduction. If the difference exceeds an amount "A", algorithm 117 implies a collision.
  • a value for the threshold difference "A" may be 20 microseconds. Other thresholds could be used, especially if the perturbation impulse energy is different from that resulting from a 100 ⁇ s ON time.
  • the ON time of power switch 107 is reduced by (see for example transition D in Figure 8(c) ) to stop further collisions.
  • the ON period is reduced by 51.2 ⁇ s to produce the previously mentioned s.R p decrement.
  • the ON time of power switch 107 is allowed to slowly increase to its previous value over a period of time (see the ramp function R in Figure 8(c) ).
  • a value for the period of time for satisfactory operation may be approximately 1 hour.
  • power control may be achieved by controlling current magnitude or by pulse width modulation to achieve the same effect as that described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)
  • Air-Conditioning For Vehicles (AREA)

Claims (14)

  1. Procédé de commande d'un compresseur linéaire à piston libre, caractérisé par :
    (a) une augmentation progressive de la puissance d'entrée fournie au compresseur ;
    (b) une perturbation de la fonction de puissance de l'étape (a) en superposant des augmentations transitoires de puissance (Rb);
    (c) la surveillance de collisions du piston;
    (d) lorsqu'une collision de piston est détectée, la réduction de ladite puissance d'entrée ; et
    (e) la répétition continue des étapes (a) à (d).
  2. Procédé selon la revendication 1, dans lequel l'étape de perturbation de la fonction de puissance est mise en oeuvre périodiquement.
  3. Procédé selon la revendication 1, dans lequel le compresseur linéaire (1) comprend un piston libre (22) effectuant un mouvement de va-et-vient dans un cylindre (12) mû par un moteur électrique comprenant un stator (5) avec un ou plusieurs enroulement(s) d'excitation (33) et une armature (17) connectée audit piston, comprenant en outre l'étape suivante:
    fournir un courant alternatif audit enroulement de stator pour que ladite armature et ledit piston effectuent un mouvement de va-et-vient,
    où l'étape d'augmentation progressive de la puissance d'entrée consiste à augmenter progressivement la puissance fournie auxdits enroulements du stator sur de nombreuses périodes de mouvement de va-et-vient, et
    où l'étape de surveillance de collisions du piston consiste à obtenir une mesure indicative de la période du mouvement de va-et-vient dudit piston, et à détecter toute réduction brusque de ladite mesure indicative, ladite réduction brusque indiquant une collision du piston avec la tête du cylindre.
  4. Procédé selon la revendication 1, dans lequel le compresseur linéaire (1) comprend un piston libre (22) effectuant un mouvement de va-et-vient dans un cylindre (12) mû par un moteur électrique comprenant un stator (5) avec un ou plusieurs enroulement(s) d'excitation (33) et une armature (17) connectée audit piston, comprenant en outre l'étape suivante :
    fournir un courant alternatif audit enroulement de stator pour que ladite armature et ledit piston effectuent un mouvement de va-et-vient,
    où l'étape d'augmentation progressive de la puissance d'entrée consiste à augmenter progressivement la puissance fournie auxdits enroulements du stator sur de nombreuses périodes de mouvement de va-et-vient, et
    où l'étape de surveillance de collisions du piston consiste à surveiller la force contre-électromotrice du moteur, à détecter les passages par zéro de ladite force contre-électromotrice du moteur, à surveiller la pente du signal de la force contre-électromotrice du moteur à proximité desdits passages par zéro et à détecter les discontinuités dans ladite pente du signal, lesdites discontinuités indiquant une collision du piston avec la tête du cylindre.
  5. Compresseur linéaire à piston libre, caractérisé par :
    des moyens permettant d'augmenter progressivement la puissance d'entrée fournie au compresseur;
    des moyens permettant de perturber la puissance croissante fournie en superposant les augmentations transitoires de puissance (Rb);
    des moyens permettant de surveiller des collisions du piston ; et
    des moyens permettant de décrémenter ladite puissance d'entrée lorsqu'une collision de piston est détectée.
  6. Compresseur à gaz à piston libre selon la revendication 5, comprenant :
    un cylindre (12),
    un piston (17),
    ledit piston (17) pouvant effectuer un mouvement de va-et-vient à l'intérieur dudit cylindre (12),
    un moteur électrique linéaire à mouvement alternatif couplé audit piston et ayant au moins un enroulement d'excitation (33), et
    des moyens permettant d'obtenir une mesure indicative de la période du mouvement de va-et-vient dudit piston (109), où
    les moyens de surveillance de collisions du piston comprennent des moyens (117) permettant de détecter toute réduction soudaine de ladite mesure indicative de la période du de va-et-vient, ladite réduction indiquant une collision de piston avec la tête du cylindre due audit signal de perturbation, et
    les moyens permettant de décrémenter ladite puissance d'entrée lorsqu'une collision de piston est détectée comprennent des moyens (116) permettant de réduire la puissance fournie audit enroulement d'excitation en réponse à tout changement soudain de la période du mouvement de va-et-vient qui est détecté.
  7. Compresseur à gaz à piston libre selon la revendication 6, dans lequel ledit moteur est un moteur à courant continu à aimant permanent commuté par voie électronique.
  8. Compresseur à gaz à piston libre selon l'une ou l'autre des revendications 6 et 7, dans lequel lesdits moyens d'obtention d'une mesure indicative d'une période de mouvement de va-et-vient comprennent des moyens de détection (98) de la force contre-électromotrice pour échantillonner la force contre-électromotrice induite dans au moins un enroulement d'excitation (33) lorsque le courant d'excitation ne circule pas, des moyens de détection des passages par zéro connectés à la sortie desdits moyens de détection de la force contre-électromotrice et des moyens de temporisation (112) déterminant l'intervalle de temps s'écoulant entre les passages par zéro pour ainsi déterminer la durée de chaque demi-cycle du mouvement de va-et-vient dudit piston.
  9. Compresseur à gaz à piston libre selon l'une quelconque des revendications 6 à 8, dans lequel lesdits moyens de détection de tout changement soudain de la période du mouvement de va-et-vient comprennent des moyens d'établissement de la moyenne fournissant une valeur moyenne des durées des demi-cycles alternés des de va-et-vient, des moyens de comparaison comparant le demi-cycle du mouvement de va-et-vient mesuré le plus récent avec ladite valeur moyenne des durées des demi-cycles correspondants pour obtenir une valeur de différence, et des moyens de détermination permettant de savoir si ladite valeur de différence est supérieure à un seuil prédéterminé pour une période prédéterminée.
  10. Compresseur à gaz à piston libre selon l'une quelconque des revendications 6 à 9, dans lequel lesdits moyens de réglage de la puissance comprennent un dispositif de commutation de la puissance (107) et lesdits moyens (116) de commande déterminent la puissance fournie au moteur en commandant le temps de MARCHE dudit dispositif de commutation au cours de ladite période du mouvement de va-et-vient.
  11. Compresseur à gaz à piston libre selon la revendication 10, dans lequel lesdits moyens de perturbation (119) obligent lesdits moyens de commande (116) à augmenter le temps de MARCHE dudit dispositif de commutation d'une quantité transitoire prédéterminée à intervalles périodiques égale à un multiple de la période du mouvement de va-et-vient.
  12. Réfrigérateur comprenant un compresseur à gaz à piston libre selon l'une quelconque des revendications 8 à 11 et évaporateur (102), ledit compresseur comprenant des moyens de détermination (112) de la fréquence du mouvement de va-et-vient associés auxdits moyens de temporisation et un capteur thermique (97) détectant la température au niveau de l'évaporateur, dans lequel la puissance d'entrée maximale du compresseur est déterminée en fonction de la fréquence et de la température de l'évaporateur.
  13. Réfrigérateur selon la revendication 12 comprenant des moyens (118) da contrôle de la pente du signal de la force contre-électromotrice à proximité des passages par zéro, des moyens permettant de détecter les discontinuités dans ladite pente du signal, lesdites discontinuités indiquant une collision, du piston avec la tête du cylindre, et desdits moyens (116) permettant de réduire la puissance fournie audit enroulement d'excitation également sensibles à la détection de n'importe quelle discontinuité de la pente de la force contre-électromotrice.
  14. Compresseur à gaz à piston libre selon la revendication 5, comprenant:
    un cylindre (12),
    un piston (17),
    ledit piston (17) pouvant effectuer un mouvement de va-et-vient à l'intérieur dudit cylindre (12),
    un moteur électrique linéaire à mouvement alternatif couplé audit piston et ayant au moins un enrobement d'excitation (33), et
    des moyens permettant de surveiller la force conùe-électromotrice (98) du moteur,
    des moyens permettant de détecter les passages par zéro de ladite force contre-électromotrice (99) du moteur,
    des moyens (118) permettant de surveiller la pente du signal de la force contre-électromotrice à proximité desdits passages par zéro,
    des moyens (118) permettant de détecter les discontinuités dans ladite pente du signal, lesdites discontinuités indiquant une collision du piston avec la tête du cylindre, et
    des moyens (119) permettant de perturber ladite augmentation progressive de la puissance fournie par des augmentations transitoires de la puissance,
    où:
    les moyens de surveiller des collisions du piston comprennent des moyens permettant de détecter lesdites discontinuités indicatives d'une collision de piston avec la tête du cylindre à cause dudit signal de perturbation, et
    les moyens de décrémentation de ladite puissance d'entrée lorsqu'une collision de piston est détectée comprennent des moyens (116) permettant de réduire la puissance fournie audit enroulement d'excitation en réponse à toute discontinuité de la pente de la force contre-électromotrice qui est détectée.
EP06006967A 2005-04-19 2006-03-31 Système de contrôle pour un compresseur linéaire Not-in-force EP1715184B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ53955405A NZ539554A (en) 2005-04-19 2005-04-19 Free piston linear compressor controller
NZ54164605 2005-07-25

Publications (2)

Publication Number Publication Date
EP1715184A1 EP1715184A1 (fr) 2006-10-25
EP1715184B1 true EP1715184B1 (fr) 2008-03-19

Family

ID=36600702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06006967A Not-in-force EP1715184B1 (fr) 2005-04-19 2006-03-31 Système de contrôle pour un compresseur linéaire

Country Status (3)

Country Link
EP (1) EP1715184B1 (fr)
AT (1) ATE389803T1 (fr)
DE (1) DE602006000730T2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007030383A1 (de) * 2007-06-29 2009-01-08 Braun Gmbh Schaltungsanordnung und Verfahren zum Ansteuern eines oszillierenden Elektromotors sowie Elektrokleingerät
US8694131B2 (en) 2009-06-30 2014-04-08 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling operations of vapor compression system
CN112746948B (zh) * 2019-10-31 2022-07-26 青岛海尔智能技术研发有限公司 用于控制直流线性压缩机的方法及装置、直流线性压缩机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE397802T1 (de) * 1999-06-21 2008-06-15 Fisher & Paykel Appliances Ltd Linearmotor
US6536326B2 (en) * 2001-06-15 2003-03-25 Sunpower, Inc. Control system and method for preventing destructive collisions in free piston machines
NZ515578A (en) * 2001-11-20 2004-03-26 Fisher & Paykel Appliances Ltd Reduction of power to free piston linear motor to reduce piston overshoot

Also Published As

Publication number Publication date
ATE389803T1 (de) 2008-04-15
EP1715184A1 (fr) 2006-10-25
DE602006000730D1 (de) 2008-04-30
DE602006000730T2 (de) 2009-04-23

Similar Documents

Publication Publication Date Title
US7618243B2 (en) Linear compressor controller
US8221088B2 (en) Linear compressor controller
US5897296A (en) Vibrating compressor
EP1446579B1 (fr) Regulateur de moteur linaire
JP5406218B2 (ja) リニアコンプレッサの制御システム、及びその方法
US8231355B2 (en) Linear motor controller improvements
KR100865434B1 (ko) 리니어 압축기의 구동제어방법 및 차량용 리니어 압축기의구동제어방법
EP1715184B1 (fr) Système de contrôle pour un compresseur linéaire
NZ539554A (en) Free piston linear compressor controller
MXPA06004217A (en) Linear compressor controller

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061124

17Q First examination report despatched

Effective date: 20061222

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602006000730

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

26N No opposition filed

Effective date: 20081222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200228

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200225

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006000730

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001