EP1715184B1 - Steuerungsvorrichtung für einen linear angetriebenen Verdichter - Google Patents

Steuerungsvorrichtung für einen linear angetriebenen Verdichter Download PDF

Info

Publication number
EP1715184B1
EP1715184B1 EP06006967A EP06006967A EP1715184B1 EP 1715184 B1 EP1715184 B1 EP 1715184B1 EP 06006967 A EP06006967 A EP 06006967A EP 06006967 A EP06006967 A EP 06006967A EP 1715184 B1 EP1715184 B1 EP 1715184B1
Authority
EP
European Patent Office
Prior art keywords
piston
power
collision
back emf
reciprocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06006967A
Other languages
English (en)
French (fr)
Other versions
EP1715184A1 (de
Inventor
Zhuang Tian
John H. Boyd Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisher and Paykel Appliances Ltd
Original Assignee
Fisher and Paykel Appliances Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NZ53955405A external-priority patent/NZ539554A/en
Application filed by Fisher and Paykel Appliances Ltd filed Critical Fisher and Paykel Appliances Ltd
Publication of EP1715184A1 publication Critical patent/EP1715184A1/de
Application granted granted Critical
Publication of EP1715184B1 publication Critical patent/EP1715184B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0202Linear speed of the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0206Length of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0209Duration of piston stroke

Definitions

  • This invention relates to a system of control for a free piston linear compressor and in particular, but not solely, a refrigerator compressor.
  • the control system allow a high power mode of operation in which piston stroke is maximised and collisions deliberately occur.
  • Linear compressors operate on a free piston basis and require close control of stroke amplitude since, unlike conventional rotary compressors employing a crank shaft, stroke amplitude is not fixed.
  • the application of excess motor power for the conditions of the fluid being compressed may result in the piston colliding with the head gear of the cylinder in which it reciprocates.
  • US 6,809,434 discloses a control system for a free piston compressor which limits motor power as a function of a property of the refrigerant entering the compressor.
  • linear compressors it is useful to be able to detect an actual piston collision and then to reduce motor power in response.
  • Such a strategy can be used purely to prevent compressor damage, when excess motor power occurs for any reason or, can be used as a way of ensuring high volumetric efficiency by gradually increasing power until a collision occurs and then decrementing power before gradually increasing power again.
  • the periodic light piston collisions inherent in this mode of operation cause negligible damage and can easily be tolerated.
  • US 6,536,326 discloses a system for detecting piston collisions in a linear compressor which uses a vibration detector such as a microphone.
  • US 6,812,597 discloses a method and system for detecting piston collisions based on the linear motor back EMF and therefore without the need for any sensors and their associated cost. This uses the sudden change in period that has been found to occur on a piston collision. Reciprocation period and/or half periods can be obtained from measuring the time between zero-crossings of the back EMF induced in the motor stator windings.
  • the back EMF is a function of motor armature velocity and therefore piston velocity and zero-crossings indicate the points when the piston changes direction during its reciprocation cycles.
  • one aspect of the present invention provides a method of controlling a free-piston linear compressor characterized by :
  • the linear compressor (1) includes a free piston (22) reciprocating in a cylinder (12) driven by an electric motor having a stator (5) with one or more excitation windings (33) and an armature (17) connected to said piston, further including the step of:
  • the linear compressor (1) includes a free piston (22) reciprocating in a cylinder (12) driven by an electric motor having a stator (5) with one or more excitation windings (33) and an armature (17) connected to said piston, further including the step of:
  • the present invention relates to controlling a free piston reciprocating compressor powered by a linear electric motor.
  • a typical, but not exclusive, application would be in a refrigerator.
  • a compressor for a vapour compression refrigeration system includes a linear compressor 1 supported inside a shell 2.
  • the housing 2 is hermetically sealed and includes a gases inlet port 3 and a compressed gases outlet port 4.
  • Uncompressed gases flow within the interior of the housing surrounding the compressor 1. These uncompressed gases are drawn into the compressor during the intake stroke, are compressed between a piston crown 14 and valve plate 5 on the compression stroke and expelled through discharge valve 6 into a compressed gases manifold 7.
  • Compressed gases exit the manifold 7 to the outlet port 4 in the shell through a flexible tube 8.
  • the tube is preferably arranged as a loop or spiral transverse to the reciprocating axis of the compressor. Intake to the compression space may be through the head, suction manifold 13 and suction valve 29.
  • the illustrated linear compressor 1 has, broadly speaking, a cylinder part and a piston part connected by a main spring.
  • the cylinder part includes cylinder housing 10, cylinder head 11, valve plate 5 and a cylinder 12.
  • the main spring may be formed as a combination of coil spring 19 and flat spring 20 as shown in Figure 1 .
  • the piston part includes a hollow piston 22 with sidewall 24 and crown 14.
  • the compressor electric motor is integrally formed with the compressor structure.
  • the cylinder part includes motor stator 15.
  • a co-acting linear motor armature 17 connects to the piston through a rod 26 and a supporting body 30.
  • the linear motor armature 17 comprises a body of permanent magnet material (such as ferrite or neodymium) magnetised to provide one or more poles directed transverse to the axis of reciprocation of the piston within the cylinder liner.
  • An end portion 32 of armature support 30, distal from the piston 22, is connected with the main spring.
  • the linear compressor 1 is mounted within the shell 2 on a plurality of suspension springs to isolate it from the shell. In use the linear compressor cylinder part will oscillate but because the piston part is made very light compared to the cylinder part the oscillation of the cylinder part is small compared with the relative reciprocation between the piston part and cylinder part.
  • An alternating current in stator windings 33 not necessarily sinusoidal, creates an oscillating force on armature magnets 17 to give the armature and stator substantial relative movement provided the oscillation frequency is close to the natural frequency of the mechanical system. This natural frequency is determined by the stiffness of the spring 19, and mass of the cylinder 10 and stator 15.
  • control system of the present invention operates in conjunction with the control system disclosed in US 6,809,434 .
  • FIG. 2 To provide context for the linear compressor control system in the present invention a basic control system for a refrigerator is shown in Figure 2 .
  • a refrigerator 101 incorporating an evaporator 102 and a compressor 103 is set by a user to operate at a desired cabinet temperature through a control which produces a signal 104.
  • compressor 103 is switched off.
  • the cabinet temperature exceeds a predetermined threshold the magnitude of error signal 106 exceeds the predetermined value and the compressor is again turned on. This is the conventional non-linear feedback system used in refrigerators.
  • the control system of the present invention resides within the conventional loop described with reference to Figure 2 . It receives as an input the output signal from amplifier 107 and controls the compressor 103 which in the present invention will be a free piston linear compressor.
  • linear compressor 103A which may be of the type already described with reference to Figure 1 , has its stator windings energised by an alternating voltage supplied from power switching circuit 107 which may take the form of the bridge circuit shown in Figure 7 which uses switching devices 411 and 412 to commutate current of reversing polarity through compressor stator winding 33.
  • the other end of the stator winding is connected to the junction of two series connected capacitors which are also connected across the DC power supply.
  • the "half" bridge shown in Figure 7 may be replaced with a full bridge using four switching devices.
  • the control system is preferably implemented as a programmed microprocessor controlling the operation of the power switching circuit 107.
  • the switching circuit 107 is thus controlled by a switching algorithm 108 executed by the control system microprocessor.
  • the microprocessor is programmed to execute various functions or use tables to be described which for the purposes of explanation are represented as blocks in the block diagrams of Figures 3 to 5 .
  • Reciprocations of the compressor piston and the frequency or period thereof are detected by movement detector 109 which in the preferred embodiment comprises the process of monitoring the back EMF induced in the compressor stator windings by the reciprocating compressor armature and detecting the zero crossings of that back EMF signal.
  • Switching algorithm 108 which provides microprocessor output signals for controlling the power switch 107 has its switching times initiated from logic transitions in the back EMF zero crossing signal 110. This ensures the reciprocating compressor peaks maximum power efficiency.
  • the compressor input power may be determined by controlling either the current magnitude or current duration applied to the stator windings by power switch 107. Pulse width modulation of the power switch may also be employed.
  • Figure 4 shows the basic compressor control system of Figure 3 enhanced by the control technique disclosed in US 6,809,434 which minimises piston/cylinder collisions in normal operation by setting a maximum power based on piston frequency and evaporator temperature.
  • Output 111 from an evaporator temperature sensor is applied to one of the microprocessor inputs and piston frequency is determined by a frequency routine 112 which times the time between zero crossings in back EMF signal 110. Both the determined frequency and measured evaporator temperature are used to select a maximum power from a maximum power lookup table 113 which sets a maximum allowable power P t for a comparator routine 114.
  • Comparator routine 114 receives as a second input value 106 representing the power demand (P r ) required from the overall refrigerator control. The comparator routine 114 is used by switching algorithm 118 to control switching current magnitude or duration. Comparator routine 114 provides an output value 115 which is the minimum of the power required by the refrigerator P r and the power P t allowed from maximum power table 113.
  • linear compressor 103A when active operating with no or minimal piston collisions in normal operation.
  • linear compressor 103A may be run in a "maximum power mode" where higher power can be achieved than with the Figure 4 control system, but with the inevitability of some piston collisions.
  • the control system of the present invention facilitates this mode as will now be described.
  • a power algorithm 116 is employed which provides values to a another input to comparison routine 114.
  • Power algorithm 116 slowly ramps up the compressor input power by providing successively increasing values to comparator routine 114 which causes switching algorithm 108 to ramp up the power switch 107 current magnitude or preferably ON time duration.
  • Collision detection process 117 is preferably determined from an analysis of the back EMF induced in the compressor windings and the technique used may be either that disclosed in US 6,812,597 , which looks for sudden decreases in piston period ( Figures 8(a) and 8(b) show graphs of piston half-periods against time as mentioned below), or that disclosed in US 10/880,389 which looks for discontinuities on the slope of the analogue back EMF signal.
  • power algorithm 116 Upon detection of a collision, power algorithm 116 causes a decremented value to be input to comparator routine 114 to achieve a decrease of power. Power algorithm 116 then again slowly ramps up the compressor input power until another collision is detected and the process is repeated.
  • the effective power ramping signal provided by power algorithm 116 is periodically pulsed every m cycles by a perturbation algorithm 119 (see Figure 6 ) with an increase (R b ) in power for a very short duration.
  • a typical valve of m might be 100. In one embodiment this is achieved by increasing the ON time of power switch 107 by 100 ⁇ s every 1 second (see Figure 8(c) ). Shorter increases in ON times, say 50 ⁇ s, could be used dependent on the collision detection system employed.
  • the linear compressor can be operated at maximum power and volumetric efficiency when required with low energy non-damaging piston collisions in the certainty that continued collisions at increasing power will be avoided.
  • the high power control methodology described is used in conjunction with control for normal operation where collision avoidance is employed as described with reference to Figure 4 .
  • a control system employing both techniques is shown in Figure 9 .
  • the comparison routine 114 receives three inputs, P r , P t and P a .
  • input P a from power algorithm 116 may be decremented by one or both of two collision detection processes 117 and 118.
  • Process 117 looks for period change and process 118 looks for back EMF slope change as previously mentioned.
  • Pt is a function of Running Frequency and Evaporating Pressure (or temperature, as evaporating temperature is closely correlated to pressure)
  • Pt C1 Collision reaction If a collision is detected power is decreased by about Rp Pt - Rp or Pr - Rp C2 Frequent collisions If there have been more than 1 collision in the last p cycles then decrease power by n x Rp Pt - nRp or Pr- nRp C3 No collisions recently If there has been no collisions in the last q cycles then increase Power by DP (this can continue until Power gets to its original value, Pt).
  • Pr, Pa Power levels that are set by altering the commutation time Pt Rp Power step that reduces the power level.
  • a preset minimum power normally about 20W Case Situation Description Output
  • a Normal running Output power is the minimum, of the power required by the refrigerator, Pr, and the power allowed by the Collision Analyser, Pa.
  • the collision detection algorithm is one derived from the ascertainment of a sudden decrease in piston period as disclosed in US 6,812,597 .
  • An enhanced technique derived from this method will now be described.
  • the period of the oscillating piston 22 is made up of two half periods between bottom dead centre and top dead centre respectively, but neither successive or even alternate half periods are symmetrical.
  • the half period expansion stroke when the piston moves away from the head (valve plate 5) is longer than the half period compression stroke when the piston moves towards the head.
  • four periods are stored and monitored; compression and expansion for the even cycles, plus compression and expansion for the odd cycles.
  • a sudden change in either of the two shorter half cycles (compression strokes) is assumed in this method to indicate a piston collision.
  • Figure 8(b) typical even short cycle periods are shown whereas Figure 8(a) shows typical even expansion stroke half periods.
  • the process used in the preferred collision detection algorithm 117 is to store the back EMF zero crossing time intervals from detector 109 for the four half periods mentioned above as an exponentially weighted moving average (ewma) to give a smoothed or filtered value for each of the first and second half periods of the odd and even cycles.
  • an infinite impulse response (IIR) filter is used with weightings such that the outputted latest estimate of half period time is 1 / 8 of the last value + 7 / 8 of the previous estimates. These estimates are continually compared with the detected period of the most recent corresponding half cycle and the comparison monitored for an abrupt reduction. If the difference exceeds an amount "A", algorithm 117 implies a collision.
  • a value for the threshold difference "A" may be 20 microseconds. Other thresholds could be used, especially if the perturbation impulse energy is different from that resulting from a 100 ⁇ s ON time.
  • the ON time of power switch 107 is reduced by (see for example transition D in Figure 8(c) ) to stop further collisions.
  • the ON period is reduced by 51.2 ⁇ s to produce the previously mentioned s.R p decrement.
  • the ON time of power switch 107 is allowed to slowly increase to its previous value over a period of time (see the ramp function R in Figure 8(c) ).
  • a value for the period of time for satisfactory operation may be approximately 1 hour.
  • power control may be achieved by controlling current magnitude or by pulse width modulation to achieve the same effect as that described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)
  • Air-Conditioning For Vehicles (AREA)

Claims (14)

  1. Verfahren zum Steuern/Regeln eines Freikolben-Linearkompressors, gekennzeichnet durch:
    (a) allmähliches Erhöhen der Eingangsleistung des Kompressors;
    (b) Stören der Leistungsfunktion des Schritts (a) durch Überlagern vorübergehender Erhöhungen der Leistung (Rb);
    (c) Beobachten auf Kolbenkollisionen;
    (d) wenn eine Kolbenkollision erfasst wird, Dekrementieren der Eingangsleistung; und
    (e) kontinuierliches Wiederholen der Schritte (a) bis (d).
  2. Verfahren nach Anspruch 1, wobei der Schritt des Störens der Leistungsfunktion periodisch durchgeführt wird.
  3. Verfahren nach Anspruch 1, wobei der Linearkompressor (1) einen Freikolben (22) enthält, der in einem Zylinder (12) pendelt und durch einen Elektromotor angetrieben wird, der einen Stator (5) mit einer oder mehreren Erregungswicklungen (33) und einen mit dem Kolben verbundenen Anker (17) aufweist, ferner den Schritt enthaltend:
    Zuführen eines Wechselstroms zur Statorwicklung, um den Anker und den Kolben zum Pendeln zu veranlassen,
    wobei der Schritt des allmählichen Erhöhens der Eingangsleistung das allmähliche Erhöhen des in die Statorwicklungen eingegebenen Stroms über viele Pendelperioden umfasst, und
    wobei der Schritt des Beobachtens auf Kolbenkollisionen das Erlangen einer Anzeigegröße der Pendelperiode des Kolbens, sowie das Erfassen irgendeiner plötzlichen Reduktion der Anzeigegröße umfasst, wobei die plötzliche Reduktion eine Kolbenkollision mit dem Zylinderkopf anzeigt.
  4. Verfahren nach Anspruch 1, wobei der Linearkompressor (1) einen Freikolben (22) enthält, der in einem Zylinder (12) pendelt und durch einen Elektromotor angetrieben wird, der einen Stator (5) mit einer oder mehreren Erregungswicklungen (33) und einen mit dem Kolben verbundenen Anker (17) aufweist, ferner den Schritt enthaltend:
    Zuführen eines Wechselstroms zur Statorwicklung, um den Anker und den Kolben zum Pendeln zu veranlassen,
    wobei der Schritt des allmählichen Erhöhens der Eingangsleistung das allmähliche Erhöhen des in die Statorwicklungen eingegebenen Stroms über viele Pendelperioden umfasst, und
    wobei der Schritt des Beobachtens auf Kolbenkollisionen das Beobachten der Motor-Gegen-EMK, das Erfassen von Nulldurchgängen der Motor-Gegen-EMK, das Beobachten der Steigung der Gegen-EMK-Wellenform in der Umgebung der Nulldurchgänge, und das Erfassen von Unstetigkeiten in der Wellenformsteigung umfasst, wobei die Unstetigkeiten eine Kolbenkollision mit dem Zylinderkopf anzeigen.
  5. Freikolben-Linearkompressor, gekennzeichnet durch:
    Mittel zum allmählichen Erhöhen der Eingangsleistung des Kompressors;
    Mittel zum Stören der zunehmenden Eingangsleistung durch Überlagern vorübergehender Erhöhungen der Leistung (Rb);
    Mittel zum Beobachten auf Kolbenkollisionen; und
    Mittel zum Dekrementieren der Eingangsleistung, wenn eine Kolbenkollision erfasst wird.
  6. Freikolben-Gaskompressor nach Anspruch 5, enthaltend:
    einen Zylinder (12),
    einen Kolben (17), wobei der Kolben (17) innerhalb des Zylinders (12) pendeln kann,
    einen pendelnden linearen Elektromotor, der mit dem Kolben gekoppelt ist und wenigstens eine Erregungswicklung (33) aufweist, und
    Mittel zum Erlangen einer Anzeigegröße der Pendelperiode des Kolbens (109), wobei
    die Mittel zum Beobachten auf Kolbenkollisionen Mittel (117) zum Erfassen irgendeiner plötzlichen Reduktion der Anzeigegröße der Pendelperiode umfassen, wobei die Reduktion eine Kolbenkollision mit dem Zylinderkopf aufgrund des Störungssignals anzeigt, und
    die Mittel zum Dekrementieren der Eingangsleistung, wenn eine Kolbenkollision erfasst wird, Mittel (116) zum Reduzieren der Eingangsleistung der Erregungswicklung in Reaktion auf irgendeine plötzliche Änderung der erfassten Pendelperiode umfasst.
  7. Freikolben-Gaskompressor nach Anspruch 6, wobei der Motor ein elektronisch kommutierter Permanentmagnet-Gleichstrommotor ist.
  8. Freikolben-Gaskompressor nach einem der Ansprüche 6 oder 7, wobei die Mittel zum Erlangen einer Anzeigegröße der Pendelperiode Gegen-EMK-Erfassungsmittel (98) zum Abtasten der Gegen-EMK, die in der wenigstens einen Erregungswicklung (33) induziert wird, wenn kein Erregungsstrom fließt, Nulldurchgangerfassungsmittel, die mit dem Ausgang der Gegen-EMK-Erfassungsmittel verbunden sind, und Zeitmessmittel (112), die das Zeitintervall zwischen den Nulldurchgängen bestimmen, um somit die Zeitspanne jedes Halbzyklus der Pendelbewegung des Kolbens zu bestimmen, umfassen.
  9. Freikolben-Gaskompressor nach irgendeinem der Ansprüche 6 bis 8, wobei die Mittel zum Erfassen irgendeiner plötzlichen Änderung der Pendelperiode Mittelungsmittel, die einen Mittelwert der Zeitspannen der alternierenden Pendelhalbzyklen bereitstellen, Vergleichsmittel, die den zuletzt gemessenen Pendelhalbzyklus mit dem Mittelwert der Zeitspannen der entsprechenden Halbzyklen vergleichen, um einen Differenzwert bereitzustellen, und Mittel zum Bestimmen, ob der Differenzwert für eine vorgegebene Zeitperiode über einer vorgegebenen Schwelle liegt, enthalten.
  10. Freikolben-Gaskompressor nach irgendeinem der Ansprüche 6 bis 9, wobei die Leistungseinstellmittel eine Leistungsschaltvorrichtung (107) sind und die Mittel (116) für die Steuerung die in den Motor eingegebene Leistung bestimmen, indem die Einschaltzeit der Schaltvorrichtung während der Pendelperiode gesteuert wird.
  11. Freikolben-Gaskompressor nach Anspruch 10, wobei die Störungsmittel (19) die Steuermittel (116) veranlassen, die Einschaltzeit der Schaltvorrichtung um ein vorgegebenes vorübergehendes Maß in periodischen Intervallen gleich dem Vielfachen der Pendelperiode zu erhöhen.
  12. Kältemaschine, die den Freikolben-Gaskompressor nach irgendeinem der Ansprüche 8 bis 11 und einen Verdampfer (102) umfasst, wobei der Kompressor Pendelfrequenzbestimmungsmittel (112) umfasst, die dem Zeitmessmittel zugeordnet sind, sowie einen Temperatursensor (97), der die Temperatur am Verdampfer erfasst, wobei die maximale Kompressoreingangsleistung als Funktion der Frequenz und der Verdampfertemperatur bestimmt wird.
  13. Kältemaschine nach Anspruch 12, die Mittel (118) zum Beobachten der Steigung der Gegen-EMK-Wellenform in der Umgebung der Nulldurchgänge und Mittel zum Erfassen von Unstetigkeiten in der Wellenformsteigung enthält, wobei die Unstetigkeiten eine Kolbenkollision mit dem Zylinderkopf anzeigen, und wobei die Mittel (116) zum Reduzieren der Leistung der Erregungswicklung ebenfalls auf die Erfassung irgendeiner Unstetigkeit der Gegen-EMK-Steigung ansprechen.
  14. Freikolben-Gaskompressor nach Anspruch 5, enthaltend:
    einen Zylinder (12),
    einen Kolben (17), wobei der Kolben (17) innerhalb des Zylinders (12) pendeln kann,
    einen pendelnden linearen Elektromotor, der mit dem Kolben gekoppelt ist und wenigstens eine Erregungswicklung (33) aufweist,
    Mittel zum Beobachten der Motor-Gegen-EMK (98),
    Mittel zum Erfassen der Nulldurchgänge der Motor-Gegen-EMK (99),
    Mittel (118) zum Beobachten der Steigung der Gegen-EMK-Wellenform in der Umgebung der Nulldurchgänge,
    Mittel (118) zum Erfassen von Unstetigkeiten in der Wellenformsteigung, wobei die Unstetigkeiten eine Kolbenkollision mit dem Zylinderkopf anzeigen, und
    Mittel (119) zum Stören der allmählich zunehmenden Leistungseingabe mit vorübergehenden Erhöhungen der Leistung, wobei:
    die Mittel zum Überwachen auf Kolbenkollisionen Mittel zum Erfassen der Unstetigkeiten, die eine Kolbenkollision mit dem Zylinderkopf anzeigen, aufgrund des Störungssignals umfassen, und
    die Mittel zum Dekrementieren der Eingangsleistung, wenn eine Kolbenkollision erfasst wird, Mittel (116) zum Reduzieren der Leistungseingabe in die Erregungswicklung in Reaktion auf irgendeine Unstetigkeit der erfassten Gegen-EMK-Steigung umfassen.
EP06006967A 2005-04-19 2006-03-31 Steuerungsvorrichtung für einen linear angetriebenen Verdichter Not-in-force EP1715184B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ53955405A NZ539554A (en) 2005-04-19 2005-04-19 Free piston linear compressor controller
NZ54164605 2005-07-25

Publications (2)

Publication Number Publication Date
EP1715184A1 EP1715184A1 (de) 2006-10-25
EP1715184B1 true EP1715184B1 (de) 2008-03-19

Family

ID=36600702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06006967A Not-in-force EP1715184B1 (de) 2005-04-19 2006-03-31 Steuerungsvorrichtung für einen linear angetriebenen Verdichter

Country Status (3)

Country Link
EP (1) EP1715184B1 (de)
AT (1) ATE389803T1 (de)
DE (1) DE602006000730T2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007030383A1 (de) * 2007-06-29 2009-01-08 Braun Gmbh Schaltungsanordnung und Verfahren zum Ansteuern eines oszillierenden Elektromotors sowie Elektrokleingerät
US8694131B2 (en) * 2009-06-30 2014-04-08 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling operations of vapor compression system
CN112746948B (zh) * 2019-10-31 2022-07-26 青岛海尔智能技术研发有限公司 用于控制直流线性压缩机的方法及装置、直流线性压缩机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2374351A1 (en) * 1999-06-21 2000-12-28 Fisher & Paykel Limited Linear motor
US6536326B2 (en) * 2001-06-15 2003-03-25 Sunpower, Inc. Control system and method for preventing destructive collisions in free piston machines
NZ515578A (en) * 2001-11-20 2004-03-26 Fisher & Paykel Appliances Ltd Reduction of power to free piston linear motor to reduce piston overshoot

Also Published As

Publication number Publication date
EP1715184A1 (de) 2006-10-25
DE602006000730T2 (de) 2009-04-23
ATE389803T1 (de) 2008-04-15
DE602006000730D1 (de) 2008-04-30

Similar Documents

Publication Publication Date Title
US7618243B2 (en) Linear compressor controller
US8221088B2 (en) Linear compressor controller
US5897296A (en) Vibrating compressor
EP1446579B1 (de) Linearmotorsteuerung
JP5406218B2 (ja) リニアコンプレッサの制御システム、及びその方法
US8231355B2 (en) Linear motor controller improvements
KR100865434B1 (ko) 리니어 압축기의 구동제어방법 및 차량용 리니어 압축기의구동제어방법
EP1715184B1 (de) Steuerungsvorrichtung für einen linear angetriebenen Verdichter
NZ539554A (en) Free piston linear compressor controller
MXPA06004217A (en) Linear compressor controller

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061124

17Q First examination report despatched

Effective date: 20061222

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602006000730

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

26N No opposition filed

Effective date: 20081222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200228

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200225

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006000730

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001