EP1714376A1 - Electromagnetic coupler - Google Patents

Electromagnetic coupler

Info

Publication number
EP1714376A1
EP1714376A1 EP05717696A EP05717696A EP1714376A1 EP 1714376 A1 EP1714376 A1 EP 1714376A1 EP 05717696 A EP05717696 A EP 05717696A EP 05717696 A EP05717696 A EP 05717696A EP 1714376 A1 EP1714376 A1 EP 1714376A1
Authority
EP
European Patent Office
Prior art keywords
electromagnetic coupler
coupler according
axis
cylinder head
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05717696A
Other languages
German (de)
French (fr)
Inventor
Alex Romagny
Armando Fonseca
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1714376A1 publication Critical patent/EP1714376A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • H02K49/043Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with a radial airgap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/262Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators the motor or generator are used as clutch, e.g. between engine and driveshaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/18Reluctance machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/1836Rotary to rotary

Definitions

  • an electromagnetic coupler In the application to a vehicle, an electromagnetic coupler makes it possible, for example, to transmit mechanical power between an internal combustion engine and the wheels of the vehicle, by continuously adjusting the torque and the speed on the latter. It also makes it possible, if necessary, to ensure conversion of driving or generating electromechanical energy in conjunction with means for storing electrical energy. It can thus be particularly useful in transmissions or hybrid electric traction systems of motor vehicles.
  • an electromagnetic coupler 10 conventionally comprises - an input shaft 12 intended to be mechanically coupled to a power source - an output shaft 14 intended to be mechanically coupled to at least one element to be driven - a casing 16, - and two electric machines.
  • the first electric machine 1 comprises in this illustration:
  • the first armature 22 comprises coils 52 installed in its magnetic circuit 60, and electrically connected to a source of electrical energy, conventionally one or more batteries 32, by means of a first electronic unit 34.
  • the first unit electronics 34 is shaped to transform the direct current leaving the battery 32 into a polyphase current whose phases supply the windings of the first armature 22, and vice versa.
  • the coils of the first armature 22 are distributed in a known manner at the periphery of the input rotor 20 so that the polyphase current flowing therein can generate a first rotating electromagnetic field.
  • the first electronic unit 34 is controlled by a control unit 36 designed to allow control of the "slip", that is to say of the difference between the rotational speeds of the input rotor 20 and the output rotor 30 , notably by modifying the frequency of the electric current.
  • the first armature 22 is generator or receiver, that is to say that the transfer of energy between the output shaft 14 and the battery 32 takes place in the direction of a charging or discharging this battery, respectively.
  • the second electrical machine M2 comprises - a second machine stator 40, fixed to the casing 16 and carrying a second armature 42 comprising a plurality of coils 100 installed in its magnetic circuit 43, and
  • the coils of the second armature 42 are supplied with polyphase current via a second electronic unit 46 connected to the battery 32 so as to generate a second rotating electromagnetic field.
  • the control unit 36 controls the second electronic unit 46 to control the additive or subtractive torque introduced by the machine M2 on the rotor 30 and therefore the output shaft 14.
  • the magnets of the crowns 23 and 44 can for example be replaced by an asynchronous squirrel cage, or by a reluctant toothing, the design of the first and second corresponding armatures being adapted accordingly.
  • the control unit 36 controls the electronic units
  • Position information can be provided by position encoders, not shown, or derived from other measurements.
  • the two electric machines can cooperate so that the electric power resulting from the sliding of the first machine is used by the second electric machine to produce an additional mechanical torque on the shaft 14.
  • the patent AU 5840173 describes different embodiments of electromagnetic couplers . By acting on the two electrical machines, it is understood that it is thus possible to adapt the transmission in speed and torque as desired and possibly exploit the potential of storing electrical energy.
  • the supply of electrical energy to the first armature 22 conventionally requires sliding electrical contacts 48 between the first fixed electronic unit 34 and the rotating windings of the first armature 22.
  • the sliding contacts 48 represent an integration constraint in terms of topology, in volume, in terms of compatibility with the physical environment and reliability, they also constitute a significant cost item.
  • an electromagnetic coupler is known from US 6,380,653, the first armature 22 of which comprises a stator from the first machine, or “first stator 50” of axis A, fixed, and carrying coils 52 (see FIG. 2) and an input rotor 20 without winding, consisting of a cylindrical supp ⁇ rt provided with ferromagnetic peripheral pads.
  • the stator 50 fixed to the casing 16, is concentric with the input rotor 20 and separated radially from the latter by an additional air gap 54.
  • the coils 52 of the first armature 22 are conventionally introduced into longitudinal peripheral notches, that is to say - Say extending along the axis A, formed on the surface of the first stator 50, according to the usual embodiment of the armatures of multi-phase machines.
  • the coupler described in US 6 380658 however, has a large size. In addition, its operation generates high Joule losses. There is therefore a need for an electromagnetic coupler which would not have these drawbacks. There is also a permanent need for an electromagnetic coupler which is simpler and less expensive to manufacture.
  • the object of the invention is to provide an electromagnetic coupler capable of satisfying these needs.
  • an electromagnetic coupler in particular for a motor vehicle, comprising - a first electric machine comprising a first stator of axis A carrying at least a first coil wound on a first fixed yoke, and being able to be coupled by magnetic induction with a first part of an output rotor movable in rotation along the axis A relative to said first stator, said coupling being carried out through an internal drum, movable in rotation along the axis A relative to said first stator and said first part and radially separated from said first part and said first cylinder head by a first air gap and an additional air gap, respectively - a second electric machine of axis A comprising a second stator carrying at least a second coil wound on a "second yoke" having the form of a second magnetic circuit or a yoke, and can nt be coupled by magnetic induction with a second part of said output rotor via a second air gap,
  • the electromagnetic coupler according to the invention
  • the electromagnetic coupler according to the invention allows good electromagnetic exploitation of space as well as a significant gain on the Joule losses in the winding of the first armature, losses which are a major challenge both thermally and in terms of energy consumption. According to other preferred characteristics of the invention,
  • said first cylinder head is substantially annular with axis A and has a U-shaped cross section, the first and second wings of said first cylinder head ending in first and second surfaces spaced from said inner drum by said additional air gap;
  • - Said first coil is wound in a groove of said first yoke and does not protrude outside said groove;
  • - Said second annular coil is wound around the axis A, preferably in a groove of said second cylinder head without protruding outside said groove;
  • - Said second cylinder head is substantially annular with axis A and has a U-shaped cross section whose first and second wings have a regularly crenellated profile;
  • said second cylinder head is substantially annular with axis A and has a U-shaped cross section, the first and second wings of said second cylinder head being extended by first and second sets of claws, respectively, arranged alternately, without contact with each other, facing and separated from said second part of said outlet rotor by said second air gap;
  • - Said input rotor is at least partially covered with a hoop made of a magnetic material of the Fe-17.5Cr-0.5C type; - Said hoop is made by rolling on the field of a sheet metal strip of said magnetic material or by spiral flat winding of a sheet of said magnetic material, the turns of said winding being electrically isolated from each other;
  • said electromagnetic coupler comprises first and second adjacent wafers each comprising at least one first coil wound, around the axis A, on a first fixed yoke, said first yokes of first and second wafers being separated by a magnetic decoupling space;
  • said electromagnetic coupler has first and second adjacent wafers and said output rotor has a magnetic decoupling space disposed between said first and second wafers, in a plane substantially perpendicular to the axis A;
  • a cooling circuit is arranged in said decoupling space.
  • Said second part of said output rotor comprises an outer ring of magnetic studs, facing and separated from said first and second wings of said second cylinder head by said second air gap.
  • said inner drum comprises first and second coaxial plates of axis A, pierced in their centers by first and second holes delimited by first and second interior surfaces, respectively, and carrying first and second sets of claws extending to ta periphery desdtts first and second plates, respectively, said first and second plates being shaped and arranged relative to each other so that the claws of said first and second plates are arranged alternately, without contact with each other , opposite and spaced from said first part of said outlet rotor, said first and second interior surfaces being opposite and spaced from said first and second wings of said first cylinder head, respectively;
  • - Said first part of said output rotor comprises a crown of inner magnets, magnetized radially, with alternating polarities, and arranged opposite and spaced from said claws;
  • - Said second part of said outlet rotor comprises a ring of facing external magnets and spaced from said second cylinder head;
  • the number of said exterior magnets is equal to the number of said interior magnets, said exterior and interior magnets being arranged with the same direction of magnetization; - Said hoop has, above a zone separating two said adjacent claws, an electromagnetic permeability lower than that which it presents above said adjacent claws;
  • - Said first cylinder head and / or said first plate and / or said second plate and their claws are made of a composite magnetic material of the "iron powder" type, or in English “Soft Magnetic Composites”;
  • - Said inner drum comprises first and second toothed rings, coaxial with axis A, pierced in their centers by first and second holes delimited by first and second interior surfaces, respectively, and carrying first and second sets of teeth, respectively , said first and second toothed rings being shaped and arranged with respect to each other so that the teeth of said first and second toothed rings are arranged opposite and separated from said first part of said outlet rotor, said first and second interior surfaces facing and apart from said first and second wings of said first cylinder head, respectively;
  • said first part of said output rotor has an inner ring of facing magnetic pads and spaced from said teeth;
  • said inner ring has as many magnetic studs as said first gear or said second gear has teeth;
  • FIG. 1 schematically shows an electromagnetic coupler seton US 6,380,653;
  • FIG. 4 and 5 schematically show, in a two-phase configuration with two wafers, an electromagnetic coupler according to a first embodiment of the invention, in section in the plane of the sheet of Figure 3, and in quarter section along the plane PP of FIG. 4, respectively;
  • - Figure 6 shows an exploded perspective view of part of the electromagnetic coupler shown in Figures 4 and 5;
  • FIGS. 7 and 8 schematically represent, in a two-phase configuration, an electromagnetic coupler of the type shown in FIG. 3, according to a second embodiment of the invention, in section in the plane of the sheet of FIG. 3, and in quarter section along the plane P'-P 'of Figure 7, respectively;
  • FIG. 9 schematically represent two variants of an electromagnetic coupler according to the invention.
  • identical references have been used to designate identical or analogous members.
  • Figures 1 and 2 having been described in the introduction, reference is made to Figure 3.
  • the electromagnetic coupler according to the invention shown in Figure 3 comprises for its electrical machine M1 three wafers G1, G2, and G3 that is say three units operating in a similar manner and cooperating with each other as a function of the electric currents supplying the coils of the armatures which they comprise.
  • the wafers G1, G2 and G3 here form a three-phase system; their operation being similar, only the first wafer G1 is described below in detail.
  • the first electric machine 1, of axis A comprises a first stator
  • a coil 52 is wound on a yoke 60 of first stator 50, or “first yoke 60", around the axis A.
  • the cylinder head 60 being fixed on the casing 16, the electrical supply of the coil 52 is advantageously possible without sliding contact.
  • the first cylinder head 60 which is substantially annular, has an annular groove, open radially towards the axis A, with a cross section in the shape of a "U”. The groove of the first cylinder head 60 thus delimits a bottom 61 and first and second cylinder head wings, 62 and 64 formed by the two branches of the "U".
  • the wings 62 and 64 extend substantially pe ⁇ endicular to the axis A and end with first and second substantially cylindrical surfaces 66 and 68, respectively, of axis A (see Figure 6).
  • the annular coil 52 is wound in your groove of the first yoke SO, the turns of the coil 52 preferably not protruding outside said groove.
  • the input rotor 20, mounted for rotation about the axis A on the casing 16, comprises a support 70 in the form of a disc, fixed in its center and pe ⁇ endicular to the axis A on the input shaft 12 (figure 4) and an inner drum 72 of axis A, fixed to the periphery of the support 70.
  • the inner drum 72 is common to the different wafers.
  • first and second claw plates 74 and 76 are of substantially the same shape, as shown in FIG. 6.
  • the first and second plates, 74 and 76 respectively have the form of discs of axis A, drilled in their respective centers by first and second holes, 80 and 81 respectively, substantially circular.
  • the edges of the holes 80 and 81 delimit first and second interior surfaces, 82 and 83 respectively, cylindrical opposite the first and second cylindrical surfaces, 66 and 68 respectively, first and second wings, 62 and 64 respectively, of the first cylinder head 60.
  • the additional air gap 54 radially separates the first and second interior surfaces, 82 and 83 respectively, on the one hand, and the first and second cylindrical surfaces, 66 and 68 respectively, on the other hand.
  • the first and second plates, 74 and 76 respectively, carry first and second sets of claws comprising the same number of claws.
  • the first and second claws, respectively, are called “first claws 78" and “second claws 84".
  • the claws 78 and 84 extend substantially pe ⁇ endicular to the plates 74 and 76.
  • the first and second plates, 74 and 76 respectively, are nested one inside the other so that first and second external lateral faces, 88 and 89 respectively, said first and second claws, respectively, extend alternately, but without contact with each other, at the periphery of a cylindrical portion of the inner drum 72 facing the inner magnets 24 carried by the rotor of outlet 30.
  • the angular difference between two successive claws is substantially constant.
  • the plates 74 and 76 are held integral with one another and with the support 70 by means of a non-magnetic binder 86, for example a plastic overmolding.
  • the yoke 60 and the plates 74 and 76 are made of a magnetically conductive material, preferably electrically resistive. In fact, in the sliding operating phases of the electromagnetic coupler, the flows circulating in these parts are alternating, and therefore generators of
  • the traditional solution of "lamination” by juxtaposition of magnetic sheets is possible, but not very effective due to the three-dimensional circulation of the magnetic flux in the cylinder head 60 and the plates 74 and 76.
  • the cylinder head 60 and your trays 74 and 76 are made of a magnetic composite material of the "iron powder” type, or in English “Soft Magnetic Composites” (SMC), like those offered for example by the companies Hôganâs in Sweden or Québec Métal Powder in Canada.
  • SMC Soft Magnetic Composites
  • the parts made of SMC "iron powder” can be segmented into smaller elements assembled later.
  • the good tolerances obtained in the forming of SMC parts generally avoid the need for resumption of machining.
  • the lateral faces 88 and 89 are intended to form, under the effect of the magnetic field generated by the coil 52, magnetic poles of opposite polarities.
  • the low relative sliding speeds between the input and output rotors which often characterize a majority of the coupler operating cases, as well as the use of "iron powders" which allow operation at high frequencies, allow a multiplication the number of poles.
  • the high torque performance of centralized armature structures are therefore well exploited.
  • the outer lateral faces 88 and 89 of the claws 78 and 84 are encircled by a hoop 90, which advantageously allows high rotational speeds of the input rotor 20.
  • a hoop 90 is a magnetic material of composition Fe-17.5Cr-0.5C), for example of the type "YEP-FA1" sold by the company Hitachi.
  • This material has a magnetic permeability of the order of 900 which can be reduced to less than 1.01 after local heat treatment.
  • the hoop 90 is preferably produced by rolling "Slinky" (that is to say on the field) of a strip of sheet metal of this material on the outer surface of the inner drum 72 of the input rotor 20. A heat treatment is then applied to the zones whose permeability must be eliminated, in particular to the zones 15 separating a claw 78 and a claw 84 adjacent.
  • such a hoop can have a significant thickness compared to a usual non-magnetic hooping while making it possible to effectively guide the magnetic field lines.
  • the hoop 90 may result from a flat spiral winding of a sheet of "YEP-FA1".
  • the turns of this winding are electrically isolated from each other and the sheet metal strip is of a small width, suitable for limiting the eddy currents at the frequencies considered.
  • the bands of the hoop are demagnetized according to the desired pattern.
  • a hoop wire with high mechanical strength is wound between the turns of this spiral winding in order to improve the efficiency of the hoop.
  • the first armature 22 therefore comprises at least one fixed annular coil 52 and partly fixed magnetic conduction means, namely the first yoke 60, and partly mobile, namely the plates 74 and 76.
  • 30 Le output rotor 30 includes a disk-shaped support 92, mounted for rotation about the axis A on the input shaft 12 and in drive relation with the output shaft 14 (FIG. 4), and a drum outside 94 of axis A, fixed to the periphery of the support 92.
  • the outside drum 94 common to the different pancakes, is made of a ferromagnetic material preferably electrically resistive or laminated.
  • the inner cylindrical surface 96 of the outer drum 94 carries a crown 23 of interior magnets 24 arranged so as to face the lateral faces 82 and 89 of the claws 78 and 84.
  • the interior magnets 24 follow one another at regular space, the number of inner magnets 24 being equal to the total number of claws of the two plates 74 and 76.
  • a first armature gap 98 or "first gap 98" separates the inner magnets 24 from the lateral faces 82 and 88 of the claws 78 and 84.
  • the geometry of the pancakes is adapted to take account of the electrical phase shift between the electrical phases which supply their respective first armature windings.
  • each claw of the wafer G1 is axially aligned with a claw of the wafer G2
  • the two inner magnet rings of these two wafers are angularly offset by an angle corresponding to the electrical phase shift of the two phases.
  • the two sets of claws of the two wafers are angularly offset by an angle corresponding to the electrical phase shift of the two phases.
  • the second electrical machine M2 can be produced according to a known architecture.
  • the magnetic circuit 43 is an annular external yoke carrying notches opening inwards. It can also be designated below by "second cylinder head”.
  • the magnetic circuit 43 carries a set of polyphase coils 100. Conventionally, the coils 100 are introduced into axial peripheral notches 102 formed on the inner surface 104 of the magnetic circuit 43, according to the usual embodiment of the armatures of polyphase machines.
  • the magnetic circuit 43 preferably comprises a stack of magnetic sheets.
  • a second air gap 106 separates the internal surface 104 of the magnetic circuit 43 from a ring 44 of external magnets 45, spaced regularly from one another, and disposed on the external surface 108 of the external drum 94.
  • a hoop 110 is made, for example in the manner of the hoop 90 of the input rotor 20, to improve the fixing of the external magnets 45 on the external drum 94.
  • the number of external magnets 45 may be the same or different from the number of internal magnets 24.
  • the number of exterior magnets 45 is equal to the number of interior magnets 24, the magnets 45 and 24 being placed opposite one another with the same direction of magnetization.
  • the outer drum 94 can then be very reduced in thickness, or even disappear in favor of a simple non-magnetic ring ensuring the maintenance of the fused magnets and housed in recesses formed in this ring.
  • This arrangement of the magnets known as "through flow" is also possible with an asynchronous rotor with a cage without a cylinder head. It is also directly transposable in the variant of the invention with synchronous variable reluctance in which the outer drum 94 is provided with ferromagnetic studs, as shown in FIGS. 7 and 8, the description of which will be given below.
  • a decoupling space without ferromagnetic material is preferably provided between two successive wafers at the level of the first U-shaped yokes of the first armature.
  • an annular cooling circuit 12 is arranged in this decoupling space.
  • decoupling can also be carried out at the level of the external drum 94, for example by an annular magnetic break of axis A in a non-ferromagnetic material.
  • a simple thinning of the drum 94, in the form of an annular groove of axis A formed between successive pancakes may also prove to be sufficient
  • the two cylinder heads 60 of the two pancakes can be attached, without decoupling space, which optimizes the axial size of the electromagnetic coupler.
  • Cooling means 114 can finally be arranged at the outer periphery of the second stator 40, as shown in FIG. 4.
  • the operation with the electromagnetic coupler according to the invention shown in FIGS. 4 and 5 is as follows:
  • the annular coil 52 is supplied with electrical energy via the first electronic unit 34.
  • the circulation of electric current in the coil 52 produces a magnetic field whose field lines substantially follow the following circuit.
  • the field lines are oriented substantially along the axis A in the bottom 61 of the "U" of the first cylinder head 60, then reoriented substantially radially in the wings 62 and 64 of the first cylinder head 60. They then cross substantially the surfaces 66 and 68 and the additional air gap 54, then enter the plates 74 and 76 through the first and second interior surfaces, 82 and 83 respectively. They then regroup in the first and second claws 78 and 84 of the plates 74 and 76, respectively. The field lines then follow the substantially axial direction of the claws 78 and 84, then straighten themselves out, substantially radially, by the external lateral faces. 88 and 89 of these claws.
  • the field lines coming from the two wings 62 and 64 are reoriented substantially tangentially, in a plane pe ⁇ endicutary to the axis A and meet so as to form loops.
  • the magnetic flux flows along these flanges, in one direction or the other depending on the direction of the electric current flowing in the coil 52.
  • All the outer lateral faces 88 of the first claws are ho opolar.
  • All the outer lateral faces 89 of the second claws are also zero sequence, but of a polarity opposite to that of the outer lateral faces of the first claws.
  • the control unit 36 controls the first electronic unit 34 so as to circulate in the coils 52 an electric current whose frequency is adapted as required.
  • the control unit 36 supplies the first coil 52 with direct current.
  • the magnetic poles established by the outer faces 88 and 89 of the claws 78 and 84 then rotate about the axis A only due to the rotation of the input rotor 20.
  • the coil 52 and the corresponding coils of the other wafers are supplied by polyphase alternating currents, their assembly generally forms the equivalent of a rotating field: the speed of this rotating field then corresponds to the sliding speed between the inner drum d inlet and outlet rotor.
  • the product of the torque transmitted by the slip corresponds to the generation or respectively to the absorption of an electromagnetic power.
  • the control unit 36 can therefore electrically modify the direction and the sliding speed of the output rotor 30 relative to that of the input rotor 20. According to the invention, this speed variation is advantageously possible without rotation of the magnetic field source, that is to say of the coils 52.
  • the electrical supply of the coils 52 therefore does not require a sliding contad
  • the cooling of the coils 52 is facilitated and makes it possible to have recourse to effective means favorable to compactness.
  • the electromagnetic coupler comprises only a single first coil 52, the torque transmitted to the output shaft 14 will include a significant drawing component.,. ! it is therefore preferable to use at least two wafers whose first coils are supplied with two-phase, the two phases being offset by 90 ° electrical. More preferably, the electromagnetic coupler comprises three wafers, the armatures of which are supplied with a three-phase electric current. The number of pancakes is however not limiting. Field lines following a three-dimensional circuit, the use of materials of the SMC type, in particular for the first cylinder head 60 and the plates 74 and 76, is particularly advantageous. The additional air gap 54 induces a parasitic reluctance, not very sensitive for embodiments with magnets of low permeability.
  • a flared shape of the wings 62 and 64 towards the surfaces 66 and 68 makes it possible to reduce the parasitic reluctance without having to resort to prohibitive radial tolerances.
  • the operation of the second electric machine M2 is conventional, as explained in the preamble.
  • the polyphase supply of the coils 100 makes it possible to generate a rotating magnetic field controlled by the synchronism of the rotor of output 30.
  • the current level and its phasing make it possible to adjust at will the amplitude and the sign of the torque created by the machine M2 on the output rotor 30.
  • the electric power produced or consumed by the first machine M1 can be balanced with that respectively consumed or produced by the second machine M2 by adjusting the torque of 2.
  • the second armature can, like the first armature, include an annular winding of axis A, wound around a second annular yoke 164 with cross section U-shaped, the two substantially radial wings of which extend by first and second sets of claws, respectively arranged alternately, without contact with each other, facing each other and separated from the second part of the output rotor 30 by the second air gap 106.
  • FIGS. 7 and 8 represent a second embodiment of the invention exploiting the principle of your variable reluctance with double salience both for your first electric machine M and for the second machine M2 ⁇
  • the claw plates 74 and 76 of the first electric machine M1 ′ are replaced by first and second toothed rings, 150 and 152 respectively, of axis A, drilled in their centers by first and second holes delimited by first and second interior surfaces, 150 'and 152' respectively, axially aligned with the first and second wings of the first cylinder head 60, respectively 62 and 64.
  • the first and second interior surfaces, 150 'and 152', opposite the first and second wings, respectively, are separated by the additional air gap 54.
  • the toothed rings 150 and 152 are provided with first and second sets of radial teeth, 154 and 155. The teeth of each of the sets, in identical number, are regularly spaced. Crowns 150 and 152 are arranged and held perpendicular to the axis A by a binder 156, so that each tooth of the crown 150 is aligned axially with a tooth of the crown 52.
  • the external drum 94 of the outlet rotor 30 comprises, instead of the crown of inner magnets 24, an inner ring 157 of magnetic studs 158 of iron powder, regularly spaced, in a number equal to the number of teeth of one of the toothed crowns 150 and 152.
  • the teeth of the toothed crowns 150 and 152 are arranged opposite and separated from the inner ring 157 by the first air gap 98.
  • Each stud 158 extends axially so as to be able to cover simultaneously at least in part, a tooth of each ring 150 and 152, then forming a magnetically conductive "arch" between these teeth.
  • the toothed rings 150 and 152 are constituted by stacks of flat sheets pe ⁇ endicula ⁇ res with the axis A.
  • the second electrical machine M2 ′ comprises an annular coil, or “second coil” 162, of axis A, wound at the bottom of a second yoke 164 having a U-shaped cross section.
  • the second yoke 164 has a bottom 166, preferably made of a composite magnetic material, and first and second breech wings, 168 and 170, respectively formed by the two wings of the "U".
  • the wings 168 and 170 are made up of stacks, along the axis A, of sheets extending pe ⁇ endicular to the axis A.
  • the wings 168 and 170 extend substantially perpendicular to the axis A and have, in section along a plane pe ⁇ endicular to axis A ( Figure 8) a profile regularly crenellated.
  • the slots of the wings 168 and 170 constitute sets of first and second teeth, 172 and 173 respectively, and have the same number of teeth, each first tooth 172 being axially aligned with a second tooth 173.
  • the teeth 172 and 173 are provided, at least in part, over the height of the winding 162.
  • the size of the second machine M2 ′ is reduced.
  • the external drum 94 of the output rotor 30 comprises, in place of the ring 44 of external magnets 45, an external ring 177 of magnetic studs 178, preferably of iron powder, regularly spaced, in a number equal to the number of teeth of each of the wings 168 and 170.
  • Each stud 178 extends axially so as to be able to cover simultaneously, at least partially, a tooth 172 of each wing 168 and 170.
  • the second air gap 106 separates the outer crown 177 and the wings 168 and 170.
  • a hoop 180 preferably made of a demagnetisable material, is provided for externally encircling the magnetic pads 178.
  • the pads 158 and 178 may consist simply of bundles of sheets.
  • Such an electromagnetic coupler is less expensive to manufacture than that shown in FIGS. 4 and 5, in particular because the external drum 94 is no longer necessarily made of a magnetically conductive material.
  • the thickness of the outer drum 94 between the pads 58 and 178 can be reduced, or even canceled by bringing these pads into contact, which, advantageously, gives the electromagnetic coupler additional compactness.
  • the operation of the first machine M1 ′ is similar to that of your first machine M1 of the electromagnetic coupler shown in FIGS. 4 and 5.
  • the operation of the second machine M2 ′ is similar to that of the first machine M1 ⁇
  • the annular winding of the first and / or second coils is favorable to limiting the losses Joules, which represent the main losses of the coupler in its frequent operations in the vicinity of synchronism.
  • This advantage is due in particular to the drcuiaire geometry which reduces the average length of winding of the windings, to a favorable effect of the structures with centralized armature, and also to the possibility of obtaining a high coefficient of filling.
  • the filling coefficient designates the ratio between the volume of copper inside the cylinder head groove and the volume of this groove.
  • limiting the Joule losses also makes it possible to limit the capacity of the means necessary for cooling the electromagnetic coupler.
  • the manufacture and assembly of annular windings are very simple and inexpensive.
  • the present invention is not limited to the embodiments described and shown, provided by way of illustrative and nonlimiting examples.
  • the position of the input and output shafts, the downward movement towards the output shaft 14 shown in FIGS. 1, 2 and 3, the shape of the claws or studs, the number of electrical phases, and the number of wafers per phase are not limiting.
  • the relative position of the input and output rotors can be reversed, the input rotor becoming external and the output rotor becoming internal.
  • the centralized armature structure with additional air gap can be used on various known principles.
  • the structure of the second electric machine is also non-limiting: asynchronous, variable reluctance, etc.
  • the input 20 and output 30 rotors are not necessarily arranged in the same transverse plane, but can be offset axially.
  • the inlet 20 and outlet 30 rotors are inserted one inside the other, the outlet rotor 30 being for example arranged around the inlet rotor 20.
  • this arrangement gives the coupler good compactness. electromagnetic.
  • the position of the armatures with respect to their air gaps is reversed with respect to that which Us occupy in the variants represented in FIGS. 1 to 8.
  • the first armature 22 has become external with respect to the first air gap 54, while the second armature 42 is on the contrary internal with respect to the second air gap 106. Consequently, the magnetic circuits corresponding to these air gaps are geometrically dissociated, one inside the machine, l other outside.
  • the first and second stators, 50 and 40 respectively can thus be joined.
  • Mechanical integration is simplified and I get simplified cooling.
  • this variant allows a movement output positioned on the side opposite to the motor source relative to the electromagnetic coupler.
  • the application of the invention is not limited to the transmission of power between an engine and the wheels of a motor vehicle.
  • the input shaft drive may or may not be direct.
  • the input and output trees can reverse their roles.

Abstract

The invention relates to an electromagnetic coupler for a motor vehicle. The inventive coupler consists of: a first electric machine having an axis A and comprising a first stator (50) bearing a first coil (52), an input rotor (20) and a first part (23; 157) of an output rotor (30); and a second electric machine comprising a second stator (40) bearing a second coil (100) and a second part (44; 177) of the output rotor (30). The input rotor (20) comprises an inner drum (77) which is spaced apart from the first part (23; 157) of the output rotor (30) and from the first yoke (60), while the second yoke (43) is spaced apart from the second part (44; 177) of the output rotor (30) by a second air gap (98; 106). According to the invention, the first coil (52) is wound onto the yoke (60) of the first stator (50) around axis A.

Description

COUPLEUR ÉLECTROMAGNÉTIQUE La présente invention concerne un coupleur électromagnétique. Dans l'application à un véhicule, un coupleur électromagnétique permet par exemple de transmettre de la puissance mécanique entre un moteur à combustion interne et les roues du véhicule, en ajustant à volonté et de manière continue le couple et la vitesse sur ces dernières. Il permet de plus, le cas échéant, d'assurer une conversion d'énergie électromécanique motrice ou génératrice en liaison avec des moyens de stockage d'énergie électrique. Il peut ainsi notamment être utile dans des transmissions ou des systèmes de traction hybrides électriques de véhicules automobiles. Comme représenté sur la figure 1, un coupleur électromagnétique 10 comporte classiquement - un arbre d'entrée 12 destiné à être couplé mécaniquement à une source motrice - un arbre de sortie 14 destiné à être couplé mécaniquement à au moins un élément à entraîner - un carter 16, - et deux machines électriques. La première machine électrique 1 comprend sur cette illustration : The present invention relates to an electromagnetic coupler. In the application to a vehicle, an electromagnetic coupler makes it possible, for example, to transmit mechanical power between an internal combustion engine and the wheels of the vehicle, by continuously adjusting the torque and the speed on the latter. It also makes it possible, if necessary, to ensure conversion of driving or generating electromechanical energy in conjunction with means for storing electrical energy. It can thus be particularly useful in transmissions or hybrid electric traction systems of motor vehicles. As shown in FIG. 1, an electromagnetic coupler 10 conventionally comprises - an input shaft 12 intended to be mechanically coupled to a power source - an output shaft 14 intended to be mechanically coupled to at least one element to be driven - a casing 16, - and two electric machines. The first electric machine 1 comprises in this illustration:
- un rotor d'entrée 20, d'axe A, entraîné en rotation par l'arbre d'entrée 12 et comportant un premier induit 22, etan input rotor 20, of axis A, driven in rotation by the input shaft 12 and comprising a first armature 22, and
- une couronne 23 d'aimants intérieurs 24 couplée magnétiquement avec le premier induit 22 et portée par un rotor de sortie 30 d'axe A monté à rotation sur le carter 16 et en relation d'entraînement mécanique avec l'arbre de sortie 14. Le premier induit 22 comporte des bobinages 52 installés dans son circuit magnétique 60, et connectés électriquement à une source d'énergie électrique, classiquement une ou plusieurs batteries 32, par l'intermédiaire d'une première unité électronique 34. Classiquement, la première unité électronique 34 est conformée pour transformer le courant continu sortant de la batterie 32 en un courant polyphasé dont les phases alimentent les bobinages du premier induit 22, et réciproquement. Les bobines du premier induit 22 sont réparties de manière connue à la périphérie du rotor d'entrée 20 de manière à ce que le courant polyphasé y circulant puisse générer un premier champ électromagnétique tournant. La première unité électronique 34 est pilotée par une unité de pilotage 36 conçue pour permettre le contrôle du « glissement », c'est-à-dire de la différence entre les vitesses de rotation du rotor d'entrée 20 et du rotor de sortie 30, notamment en modifiant la fréquence du courant électrique. Selon que le glissement est positif ou négatif, le premier induit 22 est générateur ou récepteur, c'est-à-dire que le transfert d'énergie entre l'arbre de sortie 14 et la batterie 32 se fait dans le sens d'une charge ou d'une décharge de cette batterie, respectivement. Ce transfert d'énergie, additif ou soustractif, se traduit par une variation de ta vitesse de rotation de l'arbre de sortie 14. Au synchronisme, c'est-à-dire à vitesse de glissement nulle, les arbres d'entrée 12 et de sortie 14 sont reliés comme ils le seraient par un couplage mécanique direct, le premier induit 22 ne recevant alors que la puissance électrique nécessaire à la magnétisation, c'est-à-dire un courant continu. La deuxième machine électrique M2 comporte - un stator de deuxième machine 40, fixé au carter 16 et portant un deuxième induit 42 comprenant une pluralité de bobines 100 installées dans son circuit magnétique 43, eta crown 23 of internal magnets 24 magnetically coupled with the first armature 22 and carried by an output rotor 30 of axis A rotatably mounted on the casing 16 and in mechanical drive relation with the output shaft 14. The first armature 22 comprises coils 52 installed in its magnetic circuit 60, and electrically connected to a source of electrical energy, conventionally one or more batteries 32, by means of a first electronic unit 34. Conventionally, the first unit electronics 34 is shaped to transform the direct current leaving the battery 32 into a polyphase current whose phases supply the windings of the first armature 22, and vice versa. The coils of the first armature 22 are distributed in a known manner at the periphery of the input rotor 20 so that the polyphase current flowing therein can generate a first rotating electromagnetic field. The first electronic unit 34 is controlled by a control unit 36 designed to allow control of the "slip", that is to say of the difference between the rotational speeds of the input rotor 20 and the output rotor 30 , notably by modifying the frequency of the electric current. Depending on whether the slip is positive or negative, the first armature 22 is generator or receiver, that is to say that the transfer of energy between the output shaft 14 and the battery 32 takes place in the direction of a charging or discharging this battery, respectively. This transfer of energy, additive or subtractive, results in a variation of the speed of rotation of the output shaft 14. At synchronism, that is to say at zero slip speed, the input shafts 12 and output 14 are connected as they would be by direct mechanical coupling, the first armature 22 then receiving only the electric power necessary for magnetization, that is to say a direct current. The second electrical machine M2 comprises - a second machine stator 40, fixed to the casing 16 and carrying a second armature 42 comprising a plurality of coils 100 installed in its magnetic circuit 43, and
- une couronne 44 d'aimants extérieurs 45 du rotor de sortie 30 avec laquelle le deuxième induit 42 est couplé magnétiquement. Les bobines du deuxième induit 42 sont alimentées en courant polyphasé par l'intermédiaire d'une deuxième unité électronique 46 connectée à la batterie 32 de manière à générer un deuxième champ électromagnétique tournant. L'unité de pilotage 36 commande la deuxième unité électronique 46 pour contrôler le couple additif ou soustractif introduit par la machine M2 sur le rotor 30 et donc l'arbre de sortie 14. Classiquement, les aimants des couronnes 23 et 44 peuvent par exemple être remplacés par une cage d'écureuil asynchrone, ou encore par une denture réluctante, la conception des premier et deuxième induits correspondants étant adaptée en conséquence. Classiquement, l'unité de pilotage 36 commande les unités électroniques- A ring 44 of external magnets 45 of the outlet rotor 30 with which the second armature 42 is magnetically coupled. The coils of the second armature 42 are supplied with polyphase current via a second electronic unit 46 connected to the battery 32 so as to generate a second rotating electromagnetic field. The control unit 36 controls the second electronic unit 46 to control the additive or subtractive torque introduced by the machine M2 on the rotor 30 and therefore the output shaft 14. Conventionally, the magnets of the crowns 23 and 44 can for example be replaced by an asynchronous squirrel cage, or by a reluctant toothing, the design of the first and second corresponding armatures being adapted accordingly. Conventionally, the control unit 36 controls the electronic units
34 et 46 en fonction d'informations de position angulaire des rotors d'entrée 20 et de sortie 30, et de consignes par exemple fournies par le conducteur du véhicule. Les informations de position peuvent être fournies par des codeurs de position, non représentés, ou déduites d'autres mesures. Les deux machines électriques peuvent coopérer de manière que la puissance électrique issue du glissement de la première machine soit utilisée par la deuxième machine électrique pour produire un couple mécanique supplémentaire sur l'arbre 14. Le brevet AU 5840173 décrit différents modes de réalisation de coupleurs électromagnétiques. En agissant sur les deux machines électriques, on comprend qu'il est ainsi possible d'adapter à volonté la transmission en vitesse et en couple et d'exploiter éventuellement le potentiel d'un stockage d'énergie électrique. L'alimentation en énergie électrique du premier induit 22 nécessite classiquement des contacts électriques glissants 48 entre la première unité électronique 34 fixe et les bobinages tournants du premier induit 22. Les contacts glissants 48 représentent une contrainte d'intégration au plan topologique, en volume, en termes de compatibilité à l'environnement physique et de fiabilité, ils constituent par ailleurs un poste de coût non négligeable. Pour éviter de tels contacts glissants, on connaît de US 6,380,653 un coupleur électromagnétique dont le premier induit 22 comporte un stator de première machine, ou « premier stator 50 » d'axe A, fixe, et portant des bobines 52 (voir figure 2) et un rotor d'entrée 20 sans bobinage, constitué d'un suppσrt cylindrique pourvu de plots périphériques ferromagnétiques. Le stator 50, fixé au carter 16, est concentrique au rotor d'entrée 20 et séparé radialement de ce dernier par un entrefer supplémentaire 54. Les bobines 52 du premier induit 22 sont classiquement introduites dans des encoches périphériques longitudinales, c'est-à- dire s'étendant selon l'axe A, ménagées à la surface du premier stator 50, selon le mode usuel de réalisation des induits de machines polyphasées. Le coupleur décrit dans US 6 380658 présente cependant un encombrement important. En outre, son fonctionnement génère des pertes Joule élevées. Il existe donc un besoin pour un coupleur électromagnétique qui ne présenterait pas ces inconvénients. Il existe également un besoin permanent pour un coupleur électromagnétique plus simple et moins coûteux à fabriquer. Le but de l'invention est de fournir un coupleur électromagnétique apte à satisfaire ces besoins. Selon l'invention, on atteint ce but au moyen d'un coupleur électromagnétique, notamment pour un véhicule automobile, comportant - une première machine électrique comportant un premier stator d'axe A portant au moins une première bobine enroulée sur une première culasse fixe, et pouvant être couplé par induction magnétique avec une première partie d'un rotor de sortie mobile en rotation selon l'axe A relativement audit premier stator, ledit couplage étant réalisé au travers d'un tambour intérieur, mobile en rotation selon l'axe A relativement audit premier stator et à ladite première partie et écarté radialement de ladite première partie et de ladite première culasse par un premier entrefer et un entrefer supplémentaire, respectivement - une deuxième machine électrique d'axe A comportant un deuxième stator portant au moins une deuxième bobine enroulée sur une « deuxième culasse » ayant la forme d'un deuxième circuit magnétique ou d'une culasse, et pouvant être couplé par induction magnétique avec une deuxième partie dudit rotor de sortie par l'intermédiaire d'un deuxième entrefer, Le coupleur électromagnétique selon l'invention est remarquable en ce que ladite première bobine est enroulée sur ladite première culasse autour dudit axe A dudit premier stator. Comme on le verra plus en détail dans la suite de la description, le coupleur électromagnétique selon l'invention permet une bonne exploitation électromagnétique de l'espace ainsi qu'un gain important sur les pertes Joule dans le bobinage du premier induit, pertes qui sont un enjeu majeur tant au plan thermique qu'au plan de la consommation énergétique. Selon d'autres caractéristiques préférées de l'invention,34 and 46 as a function of information on the angular position of the input 20 and output 30 rotors, and instructions for example provided by the driver of the vehicle. Position information can be provided by position encoders, not shown, or derived from other measurements. The two electric machines can cooperate so that the electric power resulting from the sliding of the first machine is used by the second electric machine to produce an additional mechanical torque on the shaft 14. The patent AU 5840173 describes different embodiments of electromagnetic couplers . By acting on the two electrical machines, it is understood that it is thus possible to adapt the transmission in speed and torque as desired and possibly exploit the potential of storing electrical energy. The supply of electrical energy to the first armature 22 conventionally requires sliding electrical contacts 48 between the first fixed electronic unit 34 and the rotating windings of the first armature 22. The sliding contacts 48 represent an integration constraint in terms of topology, in volume, in terms of compatibility with the physical environment and reliability, they also constitute a significant cost item. To avoid such sliding contacts, an electromagnetic coupler is known from US 6,380,653, the first armature 22 of which comprises a stator from the first machine, or “first stator 50” of axis A, fixed, and carrying coils 52 (see FIG. 2) and an input rotor 20 without winding, consisting of a cylindrical suppσrt provided with ferromagnetic peripheral pads. The stator 50, fixed to the casing 16, is concentric with the input rotor 20 and separated radially from the latter by an additional air gap 54. The coils 52 of the first armature 22 are conventionally introduced into longitudinal peripheral notches, that is to say - Say extending along the axis A, formed on the surface of the first stator 50, according to the usual embodiment of the armatures of multi-phase machines. The coupler described in US 6 380658, however, has a large size. In addition, its operation generates high Joule losses. There is therefore a need for an electromagnetic coupler which would not have these drawbacks. There is also a permanent need for an electromagnetic coupler which is simpler and less expensive to manufacture. The object of the invention is to provide an electromagnetic coupler capable of satisfying these needs. According to the invention, this object is achieved by means of an electromagnetic coupler, in particular for a motor vehicle, comprising - a first electric machine comprising a first stator of axis A carrying at least a first coil wound on a first fixed yoke, and being able to be coupled by magnetic induction with a first part of an output rotor movable in rotation along the axis A relative to said first stator, said coupling being carried out through an internal drum, movable in rotation along the axis A relative to said first stator and said first part and radially separated from said first part and said first cylinder head by a first air gap and an additional air gap, respectively - a second electric machine of axis A comprising a second stator carrying at least a second coil wound on a "second yoke" having the form of a second magnetic circuit or a yoke, and can nt be coupled by magnetic induction with a second part of said output rotor via a second air gap, The electromagnetic coupler according to the invention is remarkable in that said first coil is wound on said first yoke around said axis A of said first stator. As will be seen in more detail in the following description, the electromagnetic coupler according to the invention allows good electromagnetic exploitation of space as well as a significant gain on the Joule losses in the winding of the first armature, losses which are a major challenge both thermally and in terms of energy consumption. According to other preferred characteristics of the invention,
- ladite première culasse est sensiblement annulaire d'axe A et présente une section transversale en forme de "U", des première et deuxième ailes de ladite première culasse se terminant par des première et deuxième surfaces écartées dudit tambour intérieur par ledit entrefer supplémentaire ;- Said first cylinder head is substantially annular with axis A and has a U-shaped cross section, the first and second wings of said first cylinder head ending in first and second surfaces spaced from said inner drum by said additional air gap;
- ladite première bobine est enroulée dans une gorge de ladite première culasse et ne fait pas saillie en dehors de ladite gorge ; - ladite deuxième bobine, annulaire, est enroulée, autour de l'axe A, de préférence dans une gorge de ladite deuxième culasse sans faire saillie en dehors de ladite gorge ;- Said first coil is wound in a groove of said first yoke and does not protrude outside said groove; - Said second annular coil is wound around the axis A, preferably in a groove of said second cylinder head without protruding outside said groove;
- ladite deuxième culasse est sensiblement annulaire d'axe A et présente une section transversale en U dont les première et deuxième ailes ont un profil régulièrement crénelé ;- Said second cylinder head is substantially annular with axis A and has a U-shaped cross section whose first and second wings have a regularly crenellated profile;
- ou, en variante, ladite deuxième culasse est sensiblement annulaire d'axe A et présente une section transversale en forme de "U", les première et deuxième ailes de ladite deuxième culasse se prolongeant par des premier et deuxième jeux de griffes, respectivement, disposées en alternance, sans contact les unes avec les autres, en regard et écartées de ladite deuxième partie dudit rotor de sortie par ledit deuxième entrefer ;- or, as a variant, said second cylinder head is substantially annular with axis A and has a U-shaped cross section, the first and second wings of said second cylinder head being extended by first and second sets of claws, respectively, arranged alternately, without contact with each other, facing and separated from said second part of said outlet rotor by said second air gap;
- lesdits rotors d'entrée et de sortie sont insérés l'un dans l'autre ;- Said input and output rotors are inserted one inside the other;
- ledit rotor d'entrée est au moins en partie recouvert d'une frette en un matériau magnétique de type Fe-17,5Cr-0,5C ; - ladite frette est réalisée par roulage sur champ d'une bande de tôle dudit matériau magnétique ou par enroulement spiral à plat d'une tôle dudit matériau magnétique, les spires dudit enroulement étant isolées électriquement les unes des autres ;- Said input rotor is at least partially covered with a hoop made of a magnetic material of the Fe-17.5Cr-0.5C type; - Said hoop is made by rolling on the field of a sheet metal strip of said magnetic material or by spiral flat winding of a sheet of said magnetic material, the turns of said winding being electrically isolated from each other;
- ledit coupleur électromagnétique comporte des première et deuxième galettes adjacentes comportant chacune au moins une première bobine enroulée, autour de l'axe A, sur une première culasse fixe, lesdites premières culasses de première et deuxième galettes étant séparées par un espace de découplage magnétique ;- Said electromagnetic coupler comprises first and second adjacent wafers each comprising at least one first coil wound, around the axis A, on a first fixed yoke, said first yokes of first and second wafers being separated by a magnetic decoupling space;
- ledit coupleur électromagnétique comporte des première et deuxième galettes adjacentes et ledit rotor de sortie comporte un espace de découplage magnétique disposé entre lesdites première et deuxième galettes, dans un plan sensiblement perpendiculaire à l'axe A ;- Said electromagnetic coupler has first and second adjacent wafers and said output rotor has a magnetic decoupling space disposed between said first and second wafers, in a plane substantially perpendicular to the axis A;
- un circuit de refroidissement est disposé dans ledit espace de découplage. - ladite deuxième partie dudit rotor de sortie comporte une couronne extérieure de plots magnétiques, en regard et écartée desdites première et deuxième ailes de ladite deuxième culasse par ledit deuxième entrefer. Selon d'autres caractéristiques préférées d'un premier mode de réalisation de l'invention,- A cooling circuit is arranged in said decoupling space. - Said second part of said output rotor comprises an outer ring of magnetic studs, facing and separated from said first and second wings of said second cylinder head by said second air gap. According to other preferred characteristics of a first embodiment of the invention,
- ledit tambour intérieur comporte des premier et deuxième plateaux coaxiaux d'axe A, percés en leurs centres par des premier et deuxième trous délimités par des première et deuxième surfaces intérieures, respectivement, et portant des premier et deuxième jeux de griffes s'étendant à ta périphérie desdtts premier et deuxième plateaux, respectivement, lesdits premier et deuxième plateaux étant conformés et agencés l'un par rapport à l'autre de manière que les griffes desdits premier et deuxième plateaux soient disposées en alternance, sans contact les unes avec les autres, en regard et écartées de ladite première partie dudit rotor de sortie, lesdites première et deuxième surfaces intérieures étant en regard et écartées desdites première et deuxième ailes de ladite première culasse, respectivement ;- Said inner drum comprises first and second coaxial plates of axis A, pierced in their centers by first and second holes delimited by first and second interior surfaces, respectively, and carrying first and second sets of claws extending to ta periphery desdtts first and second plates, respectively, said first and second plates being shaped and arranged relative to each other so that the claws of said first and second plates are arranged alternately, without contact with each other , opposite and spaced from said first part of said outlet rotor, said first and second interior surfaces being opposite and spaced from said first and second wings of said first cylinder head, respectively;
- ladite première partie dudit rotor de sortie comporte une couronne d'aimants intérieurs, magnétisée radialement, à polarités alternées, et disposée en regard et écartée desdites griffes ; - ladite deuxième partie dudit rotor de sortie comporte une couronne d'aimants extérieurs en regard et écartée de ladite deuxième culasse ;- Said first part of said output rotor comprises a crown of inner magnets, magnetized radially, with alternating polarities, and arranged opposite and spaced from said claws; - Said second part of said outlet rotor comprises a ring of facing external magnets and spaced from said second cylinder head;
- le nombre desdits aimants extérieurs est égal au nombre desdits aimants intérieurs, lesdits aimants extérieurs et intérieurs étant disposés avec le même sens de magnétisation ; - ladite frette présente, au-dessus d'une zone séparant deux dites griffes adjacentes, une perméabilité électromagnétique inférieure à celle qu'elle présente au-dessus desdites griffes adjacentes ;- The number of said exterior magnets is equal to the number of said interior magnets, said exterior and interior magnets being arranged with the same direction of magnetization; - Said hoop has, above a zone separating two said adjacent claws, an electromagnetic permeability lower than that which it presents above said adjacent claws;
- ladite première culasse et/ou ledit premier plateau et/ou ledit deuxième plateau et leurs griffes sont en un matériau magnétique composite du type "poudres de fer", ou en anglais "Soft Magnetic Composites" ; Selon d'autres caractéristiques préférées d'un deuxième mode de réalisation de l'invention, - ledit tambour intérieur comporte des première et deuxième couronnes dentées, coaxiales d'axe A, percées en leurs centres par des premier et deuxième trous délimités par des première et deuxième surfaces intérieures, respectivement, et portant des premier et deuxième jeux de dents, respectivement, lesdites première et deuxième couronnes dentées étant conformées et agencées l'une par rapport à l'autre de manière que les dents desdites première et deuxième couronnes dentées soient disposées en regard et écartées de ladite première partie dudit rotor de sortie, lesdites première et deuxième surfaces intérieures étant en regard et écartées desdites première et deuxième ailes de ladite première culasse, respectivement ;- Said first cylinder head and / or said first plate and / or said second plate and their claws are made of a composite magnetic material of the "iron powder" type, or in English "Soft Magnetic Composites"; According to other preferred features of a second embodiment of the invention, - Said inner drum comprises first and second toothed rings, coaxial with axis A, pierced in their centers by first and second holes delimited by first and second interior surfaces, respectively, and carrying first and second sets of teeth, respectively , said first and second toothed rings being shaped and arranged with respect to each other so that the teeth of said first and second toothed rings are arranged opposite and separated from said first part of said outlet rotor, said first and second interior surfaces facing and apart from said first and second wings of said first cylinder head, respectively;
- ladite première partie dudit rotor de sortie comporte une couronne intérieure de plots magnétiques en regard et écartée desdites dents ;- Said first part of said output rotor has an inner ring of facing magnetic pads and spaced from said teeth;
- ladite couronne intérieure comporte autant de plots magnétiques que ladite première couronne dentée ou ladite deuxième couronne dentée comporte de dents ;- Said inner ring has as many magnetic studs as said first gear or said second gear has teeth;
- lesdits plots magnétiques s'étendent axialement de manière à pouvoir recouvrir simultanément, au moins en partie, une dent de chacune desdites première et deuxième couronnes dentées. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre et à l'examen du dessin annexé dans lequel- Said magnetic pads extend axially so as to be able to simultaneously cover, at least in part, a tooth of each of said first and second toothed rings. Other characteristics and advantages of the present invention will appear on reading the description which follows and on examining the appended drawing in which
- la figure 1 représente schématiquement un coupleur électromagnétique selon la technique antérieure ;- Figure 1 schematically shows an electromagnetic coupler according to the prior art;
-' la figure 2 représente schématiquement un coupleur électromagnétique seton US 6,380,653 ;- ' Figure 2 schematically shows an electromagnetic coupler seton US 6,380,653;
- la figure 3 représente schématiquement un coupleur électromagnétique selon l'invention ;- Figure 3 schematically shows an electromagnetic coupler according to the invention;
- les figures 4 et 5 représentent schématiquement, dans une configuration biphasée à deux galettes, un coupleur électromagnétique selon un premier mode de réalisation de l'invention, en coupe dans le plan de la feuille de la figure 3, et en quart de section selon le plan P-P de la figure 4, respectivement ; - la figure 6 représente une vue éclatée, en perspective, d'une partie du coupleur électromagnétique représenté sur les figures 4 et 5 ;- Figures 4 and 5 schematically show, in a two-phase configuration with two wafers, an electromagnetic coupler according to a first embodiment of the invention, in section in the plane of the sheet of Figure 3, and in quarter section along the plane PP of FIG. 4, respectively; - Figure 6 shows an exploded perspective view of part of the electromagnetic coupler shown in Figures 4 and 5;
- les figures 7 et 8 représentent schématiquement, dans une configuration biphasée, un coupleur électromagnétique du type représenté sur la figure 3, selon un deuxième mode de réalisation de l'invention, en coupe dans le plan de la feuille de la figure 3, et en quart de section selon le plan P'-P' de la figure 7, respectivement ;FIGS. 7 and 8 schematically represent, in a two-phase configuration, an electromagnetic coupler of the type shown in FIG. 3, according to a second embodiment of the invention, in section in the plane of the sheet of FIG. 3, and in quarter section along the plane P'-P 'of Figure 7, respectively;
- les figures 9 et 10 représentent schématiquement deux variantes d'un coupleur électromagnétique selon l'invention. Dans les figures, des références identiques ont été utilisées pour désigner des organes identiques ou analogues. Les figures 1 et 2 ayant été décrites en introduction, on se reporte à la figure 3. Le coupleur électromagnétique selon l'invention représenté en figure 3 comporte pour sa machine électrique M1 trois galettes G1, G2, et G3 c'est-à-dire trois unités fonctionnant de manière analogue et coopérant entre elles en fonction des courants électriques alimentant les bobines des induits qu'elles comportent. Les galettes G1 , G2 et G3 forment ici un système triphasé ; leur fonctionnement étant analogue, seule la première galette G1 est décrite ci-dessous dans le détail. La première machine électrique 1, d'axe A, comporte un premier stator- Figures 9 and 10 schematically represent two variants of an electromagnetic coupler according to the invention. In the figures, identical references have been used to designate identical or analogous members. Figures 1 and 2 having been described in the introduction, reference is made to Figure 3. The electromagnetic coupler according to the invention shown in Figure 3 comprises for its electrical machine M1 three wafers G1, G2, and G3 that is say three units operating in a similar manner and cooperating with each other as a function of the electric currents supplying the coils of the armatures which they comprise. The wafers G1, G2 and G3 here form a three-phase system; their operation being similar, only the first wafer G1 is described below in detail. The first electric machine 1, of axis A, comprises a first stator
50 d'axe A, fixé sur le carter 16. Selon l'invention, une bobine 52, dite « annulaire centralisée », est enroulée sur une culasse 60 de premier stator 50, ou « première culasse 60 », autour de l'axe A. La culasse 60 étant fixée sur le carter 16, l'alimentation électrique de la bobine 52 est avantageusement possible sans contact glissant. La première culasse 60, sensiblement annulaire, comporte une gorge annulaire, ouverte radialement vers l'axe A, à section transversale en forme de "U". La gorge de la première culasse 60 délimite ainsi un fond 61 et des première et deuxième ailes de culasse, 62 et 64 formées par les deux branches du « U ». Les ailes 62 et 64 s'étendent sensiblement peφendiculairement à l'axe A et se terminent par des première et deuxième surfaces sensiblement cylindriques 66 et 68, respectivement, d'axe A (voir figure 6). Comme cela apparaît sur les figures 4, 5 et 6, la bobine annulaire 52 est enroulée dans ta gorge de la première culasse SO, les spires de la bobine 52 ne faisant, de préférence, pas saillie en dehors de ladite gorge. Le rotor d'entrée 20, monté à rotation selon l'axe A sur le carter 16, comporte un support 70 en forme de disque, fixé en son centre et peφendiculairement à l'axe A sur l'arbre d'entrée 12 (figure 4) et un tambour intérieur 72 d'axe A, fixé à la périphérie du support 70. Le tambour intérieur 72, est commun aux différentes galettes. Il incoφore, po>ur chaque galette, des premier et deuxième plateaux à griffes 74 et 76, respectivement, sensiblement de même forme, tels que représentés sur la figure 6. Les premier et deuxième plateaux, 74 et 76 respectivement, ont la forme de disques d'axe A, percés en leurs centres respectifs par des premier et deuxième trous, 80 et 81 respectivement, sensiblement circulaires. Les bord des trous 80 et 81 délimitent des première et deuxième surfaces intérieures, 82 et 83 respectivement, cylindriques en regard des première et deuxième surfaces cylindriques, 66 et 68 respectivement, des première et deuxième ailes, 62 et 64 respectivement, de la première culasse 60. L'entrefer supplémentaire 54 sépare radialement les première et deuxième surfaces intérieures, 82 et 83 respectivement, d'une part, et les première et deuxième surfaces cylindriques, 66 et 68 respectivement, d'autre part. Les premier et deuxième plateaux, 74 et 76 respectivement, portent des premier et deuxième jeux de griffes comportant un même nombre de griffes. On appelle « premières griffes 78» et « deuxièmes griffes 84» les griffes des premier et deuxième, jeux, respectivement. Les griffes 78 et 84 s'étendent sensiblement peφendiculairement aux plateaux 74 et 76. Les premier et deuxième plateaux, 74 et 76 respectivement, sont imbriqués l'un dans l'autre de manière que des premières et deuxièmes faces latérales extérieures, 88 et 89 respectivement, desdites, premières et deuxièmes griffes, respectivement, s'étendent en alternance, mais sans contact les unes avec les autres, à la périphérie d'une portion cylindrique du tambour intérieur 72 en faisant face aux aimants intérieurs 24 portés par le rotor de sortie 30. De préférence, l'écart angulaire entre deux griffes successives est sensiblement constant. Les plateaux 74 et 76 sont maintenus solidaires l'un de l'autre et du support 70 au moyen d'un liant non magnétique 86, par exemple un surmoulage plastique. La culasse 60 et les plateaux 74 et 76 sont en un matériau conducteur magnétiquement, de préférence électriquement résistif. En effet, dans les phases de fonctionnement en glissement du coupleur électromagnétique, les flux qui circulent dans ces pièces sont alternatifs, et donc générateurs de courants de50 of axis A, fixed on the casing 16. According to the invention, a coil 52, called "centralized annular", is wound on a yoke 60 of first stator 50, or "first yoke 60", around the axis A. The cylinder head 60 being fixed on the casing 16, the electrical supply of the coil 52 is advantageously possible without sliding contact. The first cylinder head 60, which is substantially annular, has an annular groove, open radially towards the axis A, with a cross section in the shape of a "U". The groove of the first cylinder head 60 thus delimits a bottom 61 and first and second cylinder head wings, 62 and 64 formed by the two branches of the "U". The wings 62 and 64 extend substantially peφendicular to the axis A and end with first and second substantially cylindrical surfaces 66 and 68, respectively, of axis A (see Figure 6). As shown in Figures 4, 5 and 6, the annular coil 52 is wound in your groove of the first yoke SO, the turns of the coil 52 preferably not protruding outside said groove. The input rotor 20, mounted for rotation about the axis A on the casing 16, comprises a support 70 in the form of a disc, fixed in its center and peφendicular to the axis A on the input shaft 12 (figure 4) and an inner drum 72 of axis A, fixed to the periphery of the support 70. The inner drum 72 is common to the different wafers. It incorporates, for each wafer, first and second claw plates 74 and 76, respectively, of substantially the same shape, as shown in FIG. 6. The first and second plates, 74 and 76 respectively, have the form of discs of axis A, drilled in their respective centers by first and second holes, 80 and 81 respectively, substantially circular. The edges of the holes 80 and 81 delimit first and second interior surfaces, 82 and 83 respectively, cylindrical opposite the first and second cylindrical surfaces, 66 and 68 respectively, first and second wings, 62 and 64 respectively, of the first cylinder head 60. The additional air gap 54 radially separates the first and second interior surfaces, 82 and 83 respectively, on the one hand, and the first and second cylindrical surfaces, 66 and 68 respectively, on the other hand. The first and second plates, 74 and 76 respectively, carry first and second sets of claws comprising the same number of claws. The first and second claws, respectively, are called "first claws 78" and "second claws 84". The claws 78 and 84 extend substantially peφendicular to the plates 74 and 76. The first and second plates, 74 and 76 respectively, are nested one inside the other so that first and second external lateral faces, 88 and 89 respectively, said first and second claws, respectively, extend alternately, but without contact with each other, at the periphery of a cylindrical portion of the inner drum 72 facing the inner magnets 24 carried by the rotor of outlet 30. Preferably, the angular difference between two successive claws is substantially constant. The plates 74 and 76 are held integral with one another and with the support 70 by means of a non-magnetic binder 86, for example a plastic overmolding. The yoke 60 and the plates 74 and 76 are made of a magnetically conductive material, preferably electrically resistive. In fact, in the sliding operating phases of the electromagnetic coupler, the flows circulating in these parts are alternating, and therefore generators of
Foucault. La solution traditionnelle de "feuilletage" par juxtaposition de tôles magnétiques est possible, mais peu efficace en raison de la circulation tridimensionnelle du flux magnétique dans la culasse 60 et les plateaux 74 et 76. C'est pourquoi, de préférence, la culasse 60 et tes plateaux 74 et 76 sont en un matériau magnétique composite du type "poudres de fer", ou en anglais "Soft Magnetic Composites" (SMC), comme ceux que proposent par exemple les sociétés Hôganâs en Suède ou Québec Métal Powder au Canada. Pour faciliter la fabrication, notamment dans le cas des réalisations de grandes dimensions, les pièces réalisées en "poudre de fer" SMC peuvent être sectorisées en éléments plus petits assemblés postérieurement. Avantageusement, les bonnes tolérances obtenues dans le formage des pièces SMC évitent généralement la nécessité de reprise d'usinage. Comme on le verra plus en détail dans la suite de la description, les faces latérales 88 et 89 sont destinées à former, sous l'effet du champ magnétique généré par la bobine 52, des pôles magnétiques de polarités opposées. Les faibles vitesses de glissement relatif entre les rotors d'entrée et de sortie qui caractérisent souvent une majorité des cas de fonctionnement du coupleur, ainsi que l'utilisation de « poudres de fer » qui permettent un fonctionnement à des fréquences importantes, autorisent une multiplication du nombre de pôles. Avantageusement, les performances de fort couple volumîque des structures à induit centralisé sont donc bien exploitées. De préférence, les faces latérales extérieures 88 et 89 des griffes 78 et 84 sont cerclées d'une frette 90, ce qui, avantageusement, autorise des vitesses de rotation élevées du rotor d'entrée 20. Pour ce frettage, on peut utiliser les solutions déjà connues, par exemple les solutions mises en œuvre pour les machines à aimants de surface où l'on doit éviter dans l'entrefer à la fois les matériaux électriquement conducteurs et ceux pouvant induire des courts-circuits magnétiques (recours à des fibres de 5 carbone...). Ces solutions présentent cependant l'inconvénient d'augmenter de manière non négligeable la réluctance d'entrefer. De préférence, la frette 90 est un matériau magnétique de composition Fe- 17,5Cr-0,5C), par exemple du type « YEP-FA1 » commercialisé par la société Hitachi. Ce matériau a une perméabilité magnétique de l'ordre de 900 qui peut être 10 réduite à moins de 1 ,01 après traitement thermique local. La frette 90 est de préférence réalisée par roulage "Slinky" (c'est-à-dire sur champ) d'une bande de tôle de ce matériau sur la surface extérieure du tambour intérieur 72 du rotor d'entrée 20. Un traitement thermique est ensuite appliqué sur les zones dont la perméabilité doit être annihilée, en particulier sur les zones 15 séparant une griffe 78 et une griffe 84 adjacentes. Avantageusement, une telle frette peut avoir une épaisseur importante par rapport à un frettage non magnétique usuel tout en permettant de guider efficacement les lignes de champ magnétique.Foucault. The traditional solution of "lamination" by juxtaposition of magnetic sheets is possible, but not very effective due to the three-dimensional circulation of the magnetic flux in the cylinder head 60 and the plates 74 and 76. This is why, preferably, the cylinder head 60 and your trays 74 and 76 are made of a magnetic composite material of the "iron powder" type, or in English "Soft Magnetic Composites" (SMC), like those offered for example by the companies Hôganâs in Sweden or Québec Métal Powder in Canada. To facilitate manufacturing, in particular in the case of large-scale constructions, the parts made of SMC "iron powder" can be segmented into smaller elements assembled later. Advantageously, the good tolerances obtained in the forming of SMC parts generally avoid the need for resumption of machining. As will be seen in more detail in the following description, the lateral faces 88 and 89 are intended to form, under the effect of the magnetic field generated by the coil 52, magnetic poles of opposite polarities. The low relative sliding speeds between the input and output rotors which often characterize a majority of the coupler operating cases, as well as the use of "iron powders" which allow operation at high frequencies, allow a multiplication the number of poles. Advantageously, the high torque performance of centralized armature structures are therefore well exploited. Preferably, the outer lateral faces 88 and 89 of the claws 78 and 84 are encircled by a hoop 90, which advantageously allows high rotational speeds of the input rotor 20. For this hooping, it is possible to use the solutions already known, for example the solutions implemented for machines with surface magnets where it is necessary to avoid in the air gap both the electrically conductive materials and those capable of inducing short- magnetic circuits (use of 5 carbon fibers ...). However, these solutions have the drawback of significantly increasing the air gap reluctance. Preferably, the hoop 90 is a magnetic material of composition Fe-17.5Cr-0.5C), for example of the type "YEP-FA1" sold by the company Hitachi. This material has a magnetic permeability of the order of 900 which can be reduced to less than 1.01 after local heat treatment. The hoop 90 is preferably produced by rolling "Slinky" (that is to say on the field) of a strip of sheet metal of this material on the outer surface of the inner drum 72 of the input rotor 20. A heat treatment is then applied to the zones whose permeability must be eliminated, in particular to the zones 15 separating a claw 78 and a claw 84 adjacent. Advantageously, such a hoop can have a significant thickness compared to a usual non-magnetic hooping while making it possible to effectively guide the magnetic field lines.
<v. En variante, la frette 90 peut résulter d'un enroulftaent spiral à plat d'une 20 tôle en « YEP-FA1 ». Pour éviter le développement de courants de Foucault gênants, les spires de cet enroulement sont isolées électriquement les unes des autres et la bande de tôle est d'une largeur faible, adaptée à la limitation des courants de Foucault aux fréquences considérées. Comme dans la disposition précédente, les bandes de la frette sont démagnétisées selon le motif souhaité. De 25 préférence, un fil de frettage à haute tenue mécanique est enroulé entre les spires de cet enroulement en spiral afin d'améliorer l'efficacité de la frette. Selon l'invention, le premier induit 22 comporte donc au moins une bobine annulaire 52 fixe et des moyens de conduction magnétique en partie fixes, à savoir la première culasse 60, et en partie mobiles, à savoir les plateaux 74 et 76. 30 Le rotor de sortie 30 comporte un support 92 en forme de disque, monté à rotation selon l'axe A sur l'arbre d'entrée 12 et en relation d'entraînement avec l'arbre de sortie 14 (figure 4), et un tambour extérieur 94 d'axe A, fixé à la périphérie du support 92. Le tambour extérieur 94, commun aux différentes galettes, est en un matériau ferromagnétique de préférence électriquement résistif ou feuilleté. La surface cylindrique intérieure 96 du tambour extérieur 94 porte une couronne 23 d'aimants intérieurs 24 disposée de manière à faire face aux faces latérales 82 et 89 des griffes 78 et 84. Les aimants intérieurs 24 se succèdent à espace régulier, le nombre d'aimants intérieurs 24 étant égal au nombre total de griffes des deux plateaux 74 et 76. Un entrefer de premier induit 98 ou « premier entrefer 98 » sépare les aimants intérieurs 24 des faces latérales 82 et 88 des griffes 78 et 84. La géométrie des galettes est adaptée pour tenir compte du déphasage électrique entre les phases électriques qui alimentent leurs bobinages de premier induit respectifs. Par exemple, dans un mode de réalisation où chaque griffe de la galette G1 est alignée axialement avec une griffe de la galette G2, les deux couronnes d'aimants intérieurs de ces deux galettes sont décalées angulairement d'un angle correspondant au déphasage électrique des deux phases. Réciproquement, dans un mode de réalisation où les deux couronnes d'aimants intérieurs des galettes G1 et G2 ne sont pas décalées l'une de l'autre, chaque aimant intérieur de la galette G1 étant aligné axialement avec un aimant intérieur de la galette G2, les deux ensembles de griffes des deux galettes sont décalés angulairement d'un angle correspondant au déphasage électrique des deux phases. La deuxième machine électrique M2 peut être réalisée selon une architecture connue. Elle comporte dassiquement un deuxième induit 42, sous la forme d'un deuxième stator 40 fixé sur le carter 16, comportant un αrcuit magnétique 43. Le circuit magnétique 43 est une culasse externe annulaire portant des encoches s'ouvrant vers l'intérieur. Elle peut être également désignée ci-après par « deuxième culasse ». Le circuit magnétique 43 porte un ensemble de bobines 100 polyphasées. Classiquement, les bobines 100 sont introduites dans des encoches périphériques axiales 102 ménagées à la surface intérieure 104 du circuit magnétique 43, selon le mode usuel de réalisation des induits de machines polyphasées. Le circuit magnétique 43 comporte de préférence un empilement de tôles magnétiques. Un deuxième entrefer 106 sépare la surface intérieure 104 du circuit magnétique 43 d'une couronne 44 d'aimants extérieurs 45, espacés régulièrement les uns des autres, et disposés à la surface extérieure 108 du tambour extérieur 94. De préférence, une frette 110 est réalisée, par exemple à la manière de la frette 90 du rotor d'entrée 20, pour améliorer la fixation des aimants extérieurs 45 sur le tambour extérieur 94. Le nombre d'aimants extérieurs 45 peut être identique ou différent du nombre d'aimants intérieurs 24. De préférence, te nombre d'aimants extérieurs 45 est égal au nombre d'aimants intérieurs 24, les aimants 45 et 24 étant placés en regard les uns des autres avec le même sens de magnétisation. Le tambour extérieur 94 peut alors être d'épaisseur très réduite, voire disparaître au profit d'un simple anneau non magnétique assurant le maintien des aimants fusionnés et logés dans des évidements ménagés dans cet anneau. Cette disposition des aimants, dite à "flux traversant", est également réalisable avec un rotor asynchrone à cage dépourvu de culasse. Elle est aussi directement transposable dans la variante de l'invention à réluctance variable synchrone dans laquelle le tambour extérieur 94 est doté de plots ferromagnétiques, comme représenté sur les figures 7 et 8, dont la description sera faite ci-dessous. Pour limiter les couplages magnétiques parasites par les fuites entre galettes voisines, un espace de découplage sans matériau ferromagnétique est de préférence ménagé entre deux galettes successives au niveau des premières culasses en « U » de premier induit. De préférence, un circuit annulaire de refroidissement 12 est disposé dans cet espace de découplage. Dans un mode de réalisation non représenté, un découplage peut être également réalisé au niveau du tambour extérieur 94, par exemple par une coupure magnétique annulaire d'axe A en un matériau non ferromagnétique. Un simple amincissement du tambour 94, sous la forme d'une rainure annulaire d'axe A ménagée entre galettes successives peut également s'avérer suffisant Avantageusement, si un découplage est prévu au niveau du tambour 94, les deux culasses 60 des deux galettes peuvent être accolées, sans espace de découplage, ce qui permet d'optimiser l'encombrement axial du coupleur électromagnétique. Des moyens de refroidissement 114 peuvent enfin être disposés en périphérie extérieure du deuxième stator 40, comme représenté sur la figure 4. Le fonctionnement au coupleur électromagnétique selon l'invention représenté sur les figures 4 et 5 est le suivant : La bobine annulaire 52 est alimentée en énergie électrique par l'intermédiaire de la première unité électronique 34. La circulation de courant électrique dans la bobine 52 produit un champ magnétique dont les lignes de champs suivent sensiblement le circuit suivant. Les lignes de champs sont orientées sensiblement selon l'axe A dans le fond 61 du « U » de la première culasse 60, puis réorientées sensiblement radialement dans les ailes 62 et 64 de la première culasse 60. Elles traversent alors sensiblement radialement les surfaces 66 et 68 et l'entrefer supplémentaire 54, puis pénètrent dans les plateaux 74 et 76 par les première et deuxième surfaces intérieures, 82 et 83 respectivement. Elles se regroupent ensuite dans les premières et deuxièmes griffes 78 et 84 des plateaux 74 et 76, respectivement Les lignes de champ suivent alors la direction sensiblement axiale des griffes 78 et 84, puis se redressent pour sortir, sensiblement radialement, par les faces latérales extérieures 88 et 89 de ces griffes. Elles traversent alors la frette 90, le premier entrefer 98, les aimants 24, puis le tambour extérieur 94, Dans te tambour extérieur 94, les lignes de champ provenant des deux ailes 62 et 64 sont réorientées sensiblement tangentiellement, dans un plan peφendicutaire à l'axe A et se rejoignent de manière à former des boucles. Le flux magnétique circule selon ces boudes, dans un sens ou dans l'autre selon le sens du courant électrique circulant dans la bobine 52. Toutes les faces latérales extérieures 88 des premières griffes sont ho opolaires. Toutes les faces latérales extérieures 89 des deuxièmes griffes sont également homopolaires, mais d'une polarité opposée à celle des faces latérales extérieures des premières griffes. L'unité de pilotage 36 commande la première unité électronique 34 de manière à faire circuler dans les bobines 52 un courant électrique dont la fréquence est adaptée en fonction des besoins. En particulier, pour aboutir au synchronisme, l'unité de pilotage 36 alimente la première bobine 52 en courant continu. Les pôles magnétiques établis par les faces extérieures 88 et 89 des griffes 78 et 84 ne tournent alors autour de l'axe A que du fait de la rotation du rotor d'entrée 20. Lorsque la bobine 52 et les bobines correspondantes des autres galettes sont alimentées par des courants alternatifs polyphasés, leur ensemble forme globalement l'équivalent d'un champ tournant : la vitesse de ce champ tournant correspond alors à la vitesse de glissement entre le tambour intérieur d'entrée et le rotor de sortie. Le produit du couple transmis par le glissement, positif ou négatif, correspond à la génération ou respectivement à l'absoφtion d'une puissance électromagnétique. Par ajustement de la fréquence et du phasage des courants électriques circulant dans les bobines 52, l'unité de pilotage 36 peut donc modifier électriquement le sens et ta vitesse de glissement du rotor de sortie 30 par rapport à celle du rotor d'entrée 20. Selon l'invention, cette variation de vitesse est avantageusement possible sans mise en rotation de la source de champ magnétique, c'est-à-dire des bobines 52. L'alimentation électrique des bobines 52 ne nécessite donc pas de contad glissant En outre, le refroidissement des bobines 52 en est facilité et permet de recourir à des moyens efficaces favorables à la compa té. Si le coupleur électromagnétique ne comprend qu'une seule première bobine 52, le couple transmis à l'arbre de sortie 14 comportera une composante puisante importante.,.!! est donc préférable d'utiliser au moins deux galettes dont les premières bobines sont alimentées en biphasé, les deux phases étant décalées de 90° électriques. De préférence encore, le coupleur électromagnétique comporte trois galettes dont tes induits sont alimentés avec un courant électrique triphasé. Le nombre de galettes n'est cependant pas limitatif. Les lignes de champ suivant un circuit tri-dimensionnet, l'utilisation des matériaux de type SMC, en particulier pour la première culasse 60 et les plateaux 74 et 76, est particulièrement avantageuse. L'entrefer supplémentaire 54 induit une réluctance parasite, peu sensible pour les réalisations à aimants de faible perméabilité. Avantageusement, une forme évasée des ailes 62 et 64 vers les surfaces 66 et 68 permet de diminuer la réluctance parasite sans avoir recours à des tolérances radiales prohibitives. Le fonctionnement de la deuxième machine électrique M2 est classique, comme expliqué en préambule. L'alimentation polyphasée des bobines 100 permet de générer un champ magnétique tournant piloté au synchronisme du rotor de sortie 30. Le niveau de courant et son phasage permettent d'ajuster à volonté l'amplitude et le signe du couple créé par la machine M2 sur le rotor de sortie 30. Bien entendu, la puissance électrique produite ou consommée par la première machine M1 peut être mise en équilibre avec celle respectivement consommée ou produite par la deuxième machine M2 par ajustement du couple de 2. Dans ces conditions, il n'y a pas d'échange de puissance avec la batterie 32 : la puissance mécanique introduite par l'arbre d'entrée 12 est transmise à l'arbre 14, aux pertes près dans le coupleur. Dans une variante de la deuxième machine M2, représentée schématiquement dans une version triphasée sur la figure 9, le deuxième induit peut comme le premier induit, comporter un bobinage annulaire d'axe A, enroulé autour d'une deuxième culasse 164 annulaire à section transversale en « U » dont les deux ailes sensiblement radiales se prolongent par des premier et deuxième jeux de griffes, respectivement disposées en alternance, sans contact les unes avec les autres, en regard et écartées de la deuxième partie du rotor de sortie 30 par le deuxième entrefer 106. A la différence des griffes du premier induit, les griffes du deuxième induit, utilisées pour distribuer le flux magnétique dans le deuxième entrefer 106, sont fixés. Les figures 7 et 8 représentent un deuxième mode de réalisation de l'invention exploitant le principe de ta réluctance variable à double saillance tant pour ta première machine électrique M que pour la deuxième machine M2\ Dans ce deuxième mode de réalisation, les plateaux à griffes 74 et 76 de la première machine électrique M1' sont remplacés par des première et deuxième couronnes dentées, 150 et 152 respectivement, d'axe A, percées en leurs centres par des premier et deuxième trous délimités par des première et deuxième surfaces intérieures, 150' et 152' respectivement, alignées axialement avec les première et deuxième ailes de la première culasse 60, respectivement 62 et 64. Les première et deuxième surfaces intérieures, 150' et 152', en regard des première et deuxième ailes, respectivement, en sont écartées par l'entrefer supplémentaire 54. Les couronnes dentées 150 et 152 sont pourvues de premier et deuxième jeux de dents radiales, 154 et 155. Les dents de chacun des jeux, en nombre identique, sont régulièrement espacées. Les couronnes 150 et 152 sont disposées et maintenues perpendiculaire à l'axe A par un liant 156, de manière que chaque dent de la couronne 150 soit alignée axialement avec une dent de la couronne 52. Le tambour extérieur 94 du rotor de sortie 30 comporte, à la place de la couronne d'aimants intérieurs 24, une couronne intérieure 157 de plots magnétiques 158 en poudre de fer, régulièrement espacés, en un nombre égal au nombre de dents d'une des couronnes dentées 150 et 152. Les dents des couronnes dentées 150 et 152 sont disposées en regard et écartées de la couronne intérieure 157 par le premier entrefer 98. Chaque plot 158 s'étend axialement de manière à pouvoir recouvrir simultanément au moins en partie, une dent de chaque couronne 150 et 152, formant alors un « arceau » conducteur magnétiquement entre ces dents. De préférence les couronnes dentées 150 et 152 sont constituées par des empilements de tôles à plat peφendiculaïres à t'axe A. Dans le deuxième mode de réalisation de l'invention représenté sur les figures 7 et 8, tes lignes du champ magnétique généré par la bobine 52 suivent le circuit suivant : Après être sorties des ailes de la première culasse 60 et avoir traversé le premier entrefer 98, les lignes du champ magnétique traversent radialement les dents des couronnes 150 et 152, puis bouclent axialement dans les plots 158. Le tambour intérieur 94 supportant les plots magnétiques 158 n'exerce donc plus nécessairement la fonction de culasse magnétique et peut être choisi prin palement pour sa tenue mécanique. La deuxième machine électrique M2' comporte une bobine annulaire, ou « deuxième bobine » 162, d'axe A, enroulée au fond d'une deuxième culasse 164 ayant une section transversale en U. La deuxième culasse 164 comporte un fond 166, de préférence en un matériau magnétique composite, et des première et deuxième ailes de culasse, 168 et 170, respectivement formées par les deux ailes du « U ». De préférence, les ailes 168 et 170 sont constituées d'empilements, selon l'axe A, de tôles s'étendant peφendiculairement à l'axe A. Les ailes 168 et 170 s'étendent sensiblement perpendiculairement à l'axe A et présentent, en coupe selon un plan peφendiculaire à l'axe A (figure 8) un profil régulièrement crénelé. Les créneaux des ailes 168 et 170 constituent des jeux de premières et deuxièmes dents, 172 et 173 respectivement, et comportent un même nombre de dents, chaque première dent 172 étant alignée axialement avec une deuxième dent 173. De préférence, les dents 172 et 173 sont ménagées, au moins en partie, sur ta hauteur du bobinage 162. Avantageusement, l'encombrement de la deuxième machine M2' en est réduit. Le tambour extérieur 94 du rotor de sortie 30 comporte, à la place de la couronne 44 d'aimants extérieurs 45, une couronne extérieure 177 de plots magnétiques 178, de préférence en poudre de fer, régulièrement espacés, en un nombre égal au nombre de dents de chacune des ailes 168 et 170. Chaque plot 178, s'étend axialement de manière à pouvoir recouvrir simultanément, au moins partiellement, une dent 172 de chaque aile 168 et 170. Le deuxième entrefer 106 sépare la couronne extérieure 177 et les ailes 168 et 170. De préférence, une frette 180, de préférence en un matériau démagnétisable, est prévue pour cercler extérieurement les plots magnétiques 178. Les plots 158 et 178 peuvent être constitués simplement de paquets de tôles. Le coupleur électromagnétique selon l'invention représenté sur les figures<V. As a variant, the hoop 90 may result from a flat spiral winding of a sheet of "YEP-FA1". To avoid the development of annoying eddy currents, the turns of this winding are electrically isolated from each other and the sheet metal strip is of a small width, suitable for limiting the eddy currents at the frequencies considered. As in the previous arrangement, the bands of the hoop are demagnetized according to the desired pattern. Preferably, a hoop wire with high mechanical strength is wound between the turns of this spiral winding in order to improve the efficiency of the hoop. According to the invention, the first armature 22 therefore comprises at least one fixed annular coil 52 and partly fixed magnetic conduction means, namely the first yoke 60, and partly mobile, namely the plates 74 and 76. 30 Le output rotor 30 includes a disk-shaped support 92, mounted for rotation about the axis A on the input shaft 12 and in drive relation with the output shaft 14 (FIG. 4), and a drum outside 94 of axis A, fixed to the periphery of the support 92. The outside drum 94, common to the different pancakes, is made of a ferromagnetic material preferably electrically resistive or laminated. The inner cylindrical surface 96 of the outer drum 94 carries a crown 23 of interior magnets 24 arranged so as to face the lateral faces 82 and 89 of the claws 78 and 84. The interior magnets 24 follow one another at regular space, the number of inner magnets 24 being equal to the total number of claws of the two plates 74 and 76. A first armature gap 98 or "first gap 98" separates the inner magnets 24 from the lateral faces 82 and 88 of the claws 78 and 84. The geometry of the pancakes is adapted to take account of the electrical phase shift between the electrical phases which supply their respective first armature windings. For example, in an embodiment where each claw of the wafer G1 is axially aligned with a claw of the wafer G2, the two inner magnet rings of these two wafers are angularly offset by an angle corresponding to the electrical phase shift of the two phases. Conversely, in an embodiment where the two inner magnet rings of the wafers G1 and G2 are not offset from each other, each inner magnet of the wafer G1 being axially aligned with an inner magnet of the wafer G2 , the two sets of claws of the two wafers are angularly offset by an angle corresponding to the electrical phase shift of the two phases. The second electrical machine M2 can be produced according to a known architecture. It basically includes a second armature 42, in the form of a second stator 40 fixed on the casing 16, comprising a magnetic αrcuit 43. The magnetic circuit 43 is an annular external yoke carrying notches opening inwards. It can also be designated below by "second cylinder head". The magnetic circuit 43 carries a set of polyphase coils 100. Conventionally, the coils 100 are introduced into axial peripheral notches 102 formed on the inner surface 104 of the magnetic circuit 43, according to the usual embodiment of the armatures of polyphase machines. The magnetic circuit 43 preferably comprises a stack of magnetic sheets. A second air gap 106 separates the internal surface 104 of the magnetic circuit 43 from a ring 44 of external magnets 45, spaced regularly from one another, and disposed on the external surface 108 of the external drum 94. Preferably, a hoop 110 is made, for example in the manner of the hoop 90 of the input rotor 20, to improve the fixing of the external magnets 45 on the external drum 94. The number of external magnets 45 may be the same or different from the number of internal magnets 24. Preferably, the number of exterior magnets 45 is equal to the number of interior magnets 24, the magnets 45 and 24 being placed opposite one another with the same direction of magnetization. The outer drum 94 can then be very reduced in thickness, or even disappear in favor of a simple non-magnetic ring ensuring the maintenance of the fused magnets and housed in recesses formed in this ring. This arrangement of the magnets, known as "through flow", is also possible with an asynchronous rotor with a cage without a cylinder head. It is also directly transposable in the variant of the invention with synchronous variable reluctance in which the outer drum 94 is provided with ferromagnetic studs, as shown in FIGS. 7 and 8, the description of which will be given below. To limit the magnetic couplings parasitic by leaks between neighboring wafers, a decoupling space without ferromagnetic material is preferably provided between two successive wafers at the level of the first U-shaped yokes of the first armature. Preferably, an annular cooling circuit 12 is arranged in this decoupling space. In an embodiment not shown, decoupling can also be carried out at the level of the external drum 94, for example by an annular magnetic break of axis A in a non-ferromagnetic material. A simple thinning of the drum 94, in the form of an annular groove of axis A formed between successive pancakes may also prove to be sufficient Advantageously, if a decoupling is provided at the drum 94, the two cylinder heads 60 of the two pancakes can be attached, without decoupling space, which optimizes the axial size of the electromagnetic coupler. Cooling means 114 can finally be arranged at the outer periphery of the second stator 40, as shown in FIG. 4. The operation with the electromagnetic coupler according to the invention shown in FIGS. 4 and 5 is as follows: The annular coil 52 is supplied with electrical energy via the first electronic unit 34. The circulation of electric current in the coil 52 produces a magnetic field whose field lines substantially follow the following circuit. The field lines are oriented substantially along the axis A in the bottom 61 of the "U" of the first cylinder head 60, then reoriented substantially radially in the wings 62 and 64 of the first cylinder head 60. They then cross substantially the surfaces 66 and 68 and the additional air gap 54, then enter the plates 74 and 76 through the first and second interior surfaces, 82 and 83 respectively. They then regroup in the first and second claws 78 and 84 of the plates 74 and 76, respectively. The field lines then follow the substantially axial direction of the claws 78 and 84, then straighten themselves out, substantially radially, by the external lateral faces. 88 and 89 of these claws. They then pass through the hoop 90, the first air gap 98, the magnets 24, then the outer drum 94. In the outer drum 94, the field lines coming from the two wings 62 and 64 are reoriented substantially tangentially, in a plane peφendicutary to the axis A and meet so as to form loops. The magnetic flux flows along these flanges, in one direction or the other depending on the direction of the electric current flowing in the coil 52. All the outer lateral faces 88 of the first claws are ho opolar. All the outer lateral faces 89 of the second claws are also zero sequence, but of a polarity opposite to that of the outer lateral faces of the first claws. The control unit 36 controls the first electronic unit 34 so as to circulate in the coils 52 an electric current whose frequency is adapted as required. In particular, to achieve synchronism, the control unit 36 supplies the first coil 52 with direct current. The magnetic poles established by the outer faces 88 and 89 of the claws 78 and 84 then rotate about the axis A only due to the rotation of the input rotor 20. When the coil 52 and the corresponding coils of the other wafers are supplied by polyphase alternating currents, their assembly generally forms the equivalent of a rotating field: the speed of this rotating field then corresponds to the sliding speed between the inner drum d inlet and outlet rotor. The product of the torque transmitted by the slip, positive or negative, corresponds to the generation or respectively to the absorption of an electromagnetic power. By adjusting the frequency and phasing of the electric currents flowing in the coils 52, the control unit 36 can therefore electrically modify the direction and the sliding speed of the output rotor 30 relative to that of the input rotor 20. According to the invention, this speed variation is advantageously possible without rotation of the magnetic field source, that is to say of the coils 52. The electrical supply of the coils 52 therefore does not require a sliding contad In addition , the cooling of the coils 52 is facilitated and makes it possible to have recourse to effective means favorable to compactness. If the electromagnetic coupler comprises only a single first coil 52, the torque transmitted to the output shaft 14 will include a significant drawing component.,. !! it is therefore preferable to use at least two wafers whose first coils are supplied with two-phase, the two phases being offset by 90 ° electrical. More preferably, the electromagnetic coupler comprises three wafers, the armatures of which are supplied with a three-phase electric current. The number of pancakes is however not limiting. Field lines following a three-dimensional circuit, the use of materials of the SMC type, in particular for the first cylinder head 60 and the plates 74 and 76, is particularly advantageous. The additional air gap 54 induces a parasitic reluctance, not very sensitive for embodiments with magnets of low permeability. Advantageously, a flared shape of the wings 62 and 64 towards the surfaces 66 and 68 makes it possible to reduce the parasitic reluctance without having to resort to prohibitive radial tolerances. The operation of the second electric machine M2 is conventional, as explained in the preamble. The polyphase supply of the coils 100 makes it possible to generate a rotating magnetic field controlled by the synchronism of the rotor of output 30. The current level and its phasing make it possible to adjust at will the amplitude and the sign of the torque created by the machine M2 on the output rotor 30. Of course, the electric power produced or consumed by the first machine M1 can be balanced with that respectively consumed or produced by the second machine M2 by adjusting the torque of 2. Under these conditions, there is no power exchange with the battery 32: the mechanical power introduced by the input shaft 12 is transmitted to shaft 14, near losses in the coupler. In a variant of the second machine M2, shown diagrammatically in a three-phase version in FIG. 9, the second armature can, like the first armature, include an annular winding of axis A, wound around a second annular yoke 164 with cross section U-shaped, the two substantially radial wings of which extend by first and second sets of claws, respectively arranged alternately, without contact with each other, facing each other and separated from the second part of the output rotor 30 by the second air gap 106. Unlike the claws of the first armature, the claws of the second armature, used to distribute the magnetic flux in the second air gap 106, are fixed. FIGS. 7 and 8 represent a second embodiment of the invention exploiting the principle of your variable reluctance with double salience both for your first electric machine M and for the second machine M2 \ In this second embodiment, the claw plates 74 and 76 of the first electric machine M1 ′ are replaced by first and second toothed rings, 150 and 152 respectively, of axis A, drilled in their centers by first and second holes delimited by first and second interior surfaces, 150 'and 152' respectively, axially aligned with the first and second wings of the first cylinder head 60, respectively 62 and 64. The first and second interior surfaces, 150 'and 152', opposite the first and second wings, respectively, are separated by the additional air gap 54. The toothed rings 150 and 152 are provided with first and second sets of radial teeth, 154 and 155. The teeth of each of the sets, in identical number, are regularly spaced. Crowns 150 and 152 are arranged and held perpendicular to the axis A by a binder 156, so that each tooth of the crown 150 is aligned axially with a tooth of the crown 52. The external drum 94 of the outlet rotor 30 comprises, instead of the crown of inner magnets 24, an inner ring 157 of magnetic studs 158 of iron powder, regularly spaced, in a number equal to the number of teeth of one of the toothed crowns 150 and 152. The teeth of the toothed crowns 150 and 152 are arranged opposite and separated from the inner ring 157 by the first air gap 98. Each stud 158 extends axially so as to be able to cover simultaneously at least in part, a tooth of each ring 150 and 152, then forming a magnetically conductive "arch" between these teeth. Preferably the toothed rings 150 and 152 are constituted by stacks of flat sheets peφendiculaïres with the axis A. In the second embodiment of the invention shown in FIGS. 7 and 8, your lines of the magnetic field generated by the coil 52 follow the following circuit: After having left the wings of the first yoke 60 and having crossed the first air gap 98, the lines of the magnetic field radially cross the teeth of the crowns 150 and 152, then loop axially in the studs 158. The drum interior 94 supporting the magnetic studs 158 therefore no longer necessarily exercises the function of magnetic yoke and can be chosen mainly for its mechanical strength. The second electrical machine M2 ′ comprises an annular coil, or “second coil” 162, of axis A, wound at the bottom of a second yoke 164 having a U-shaped cross section. The second yoke 164 has a bottom 166, preferably made of a composite magnetic material, and first and second breech wings, 168 and 170, respectively formed by the two wings of the "U". Preferably, the wings 168 and 170 are made up of stacks, along the axis A, of sheets extending peφendicular to the axis A. The wings 168 and 170 extend substantially perpendicular to the axis A and have, in section along a plane peφendicular to axis A (Figure 8) a profile regularly crenellated. The slots of the wings 168 and 170 constitute sets of first and second teeth, 172 and 173 respectively, and have the same number of teeth, each first tooth 172 being axially aligned with a second tooth 173. Preferably, the teeth 172 and 173 are provided, at least in part, over the height of the winding 162. Advantageously, the size of the second machine M2 ′ is reduced. The external drum 94 of the output rotor 30 comprises, in place of the ring 44 of external magnets 45, an external ring 177 of magnetic studs 178, preferably of iron powder, regularly spaced, in a number equal to the number of teeth of each of the wings 168 and 170. Each stud 178 extends axially so as to be able to cover simultaneously, at least partially, a tooth 172 of each wing 168 and 170. The second air gap 106 separates the outer crown 177 and the wings 168 and 170. Preferably, a hoop 180, preferably made of a demagnetisable material, is provided for externally encircling the magnetic pads 178. The pads 158 and 178 may consist simply of bundles of sheets. The electromagnetic coupler according to the invention shown in the figures
7 et 8 présente donc une configuration à réluctance variable à double saillance avec boudage transverse du flux par l'intermédiaire d'un rotor de sortie non bobiné. Avantageusement, un tel coupleur électromagnétique est moins coûteux à fabriquer que celui représenté sur les figures 4 et 5, notamment du fait que le tambour extérieur 94 n'est plus nécessairement en un matériau conducteur magnétiquement. L'épaisseur du tambour extérieur 94 entre les plots 58 et 178 peut être réduite, voire annulée par mise en contact de ces plots, ce qui, avantageusement, confère une compadté supplémentaire au coupleur électromagnétique. Le fonctionnement de la première machine M1' est similaire à celui de ta première machine M1 du coupleur électromagnétique représenté sur les figures 4 et 5. Le fonctionnement de la deuxième machine M2' est similaire à celui de la première machine M1\ L'enroulement annulaire des première et/ou deuxième bobines est favorable à ta limitation des pertes Joules, qui représentent l'essentiel des pertes du coupleur dans ses fréquents fonctionnements au voisinage du synchronisme. Ce bénéfice tient notamment à la géométrie drcuiaire qui réduit la longueur moyenne de spire des bobinages, à un effet favorable des structures à induit centralisé, et également à la possibilité d'obtenir un coefficient de remplissage élevé. Le coeffident de remplissage désigne le rapport entre le volume de cuivre à l'intérieur de la gorge de la culasse et Je volume de cette gorge. Avantageusement, la limitation des pertes Joule permet en outre de limiter la capacité des moyens nécessaires au refroidissement du coupleur électromagnétique. Avantageusement enfin, la fabrication et le montage de bobinages annulaires sont très simples et bon marché. Bien entendu, la présente invention n'est pas limitée aux modes de réalisation décrits et représentés, fournis à titre d'exemples illustratifs et non limitatifs. En particulier, la position des arbres d'entrée et de sortie, la descente de mouvement vers l'arbre de sortie 14 représentée sur les figures 1, 2 et 3, la forme des griffes ou des plots, le nombre de phases électriques, et le nombre de galettes par phase ne sont pas limitatifs. La position relative des rotors d'entrée et de sortie peut être inversée, le rotor d'entrée devenant externe et le rotor de sortie devenant interne. Une combinaison de la première machine M1 et de ia deuxième machine7 and 8 therefore have a double reluctance variable reluctance configuration with transverse extrusion of the flow by means of an unwound output rotor. Advantageously, such an electromagnetic coupler is less expensive to manufacture than that shown in FIGS. 4 and 5, in particular because the external drum 94 is no longer necessarily made of a magnetically conductive material. The thickness of the outer drum 94 between the pads 58 and 178 can be reduced, or even canceled by bringing these pads into contact, which, advantageously, gives the electromagnetic coupler additional compactness. The operation of the first machine M1 ′ is similar to that of your first machine M1 of the electromagnetic coupler shown in FIGS. 4 and 5. The operation of the second machine M2 ′ is similar to that of the first machine M1 \ The annular winding of the first and / or second coils is favorable to limiting the losses Joules, which represent the main losses of the coupler in its frequent operations in the vicinity of synchronism. This advantage is due in particular to the drcuiaire geometry which reduces the average length of winding of the windings, to a favorable effect of the structures with centralized armature, and also to the possibility of obtaining a high coefficient of filling. The filling coefficient designates the ratio between the volume of copper inside the cylinder head groove and the volume of this groove. Advantageously, limiting the Joule losses also makes it possible to limit the capacity of the means necessary for cooling the electromagnetic coupler. Advantageously, finally, the manufacture and assembly of annular windings are very simple and inexpensive. Of course, the present invention is not limited to the embodiments described and shown, provided by way of illustrative and nonlimiting examples. In particular, the position of the input and output shafts, the downward movement towards the output shaft 14 shown in FIGS. 1, 2 and 3, the shape of the claws or studs, the number of electrical phases, and the number of wafers per phase are not limiting. The relative position of the input and output rotors can be reversed, the input rotor becoming external and the output rotor becoming internal. A combination of the first machine M1 and the second machine
M2\ ou une combinaison de la deuxième machine M2 et de la première machine 1\ sont possibles. La strudure à induit centralisé avec entrefer supplémentaire peut être dédînée sur divers principes connus. On peut par exemple introduire en lieu et place de la couronne 23 d'aimants 24 une cage asynchrone. La strudure de la deuxième machine électrique est également non limitative : asynchrone, réluctance variable, etc. Les rotors d'entrée 20 et de sortie 30 ne sont pas nécessairement disposés dans un même plan transversal, mais peuvent être décalés axialement. De préférence cependant, les rotors d'entrée 20 et de sortie 30 sont insérés l'un dans l'autre, le rotor de sortie 30 étant par exemple disposé autour du rotor d'entrée 20. Avantageusement cette disposition confère une bonne compadté au coupleur électromagnétique. De même, ta géométrie des entrefers des coupleurs électromagnétiques représentés n'est pas limitative. Les entrefers pourraient s'étendre non plus selon un cylindre d'axe A (configuration dite « radiale » des entrefers), mais dans un plan peφendîculaire à l'axe A (configuration dite « axiale » des entrefers), voire selon d'autres configurations mixtes. Une configuration axiale permet avantageusement d'obtenir des entrefers de grande surface, sous réserve de commodité de montage et de l'équilibrage des efforts axiaux. La position relative des induits par rapport à leurs entrefers respectifs peut également être différente de celle décrite. Une variante d'intérêt particulier est illustrée sur la figure 9. La position des induits par rapport à leurs entrefers est inversée par rapport à celle qu'Us occupent dans les variantes représentées sur les figures 1 à 8. Le premier induit 22 est devenu externe par rapport au premier entrefer 54, tandis que le deuxième induit 42 est au contraire interne par rapport au deuxième entrefer 106. En conséquence, les circuits magnétiques correspondant à ces entrefers sont dissociés géométriquement, l'un à l'intérieur de la machine, l'autre à l'extérieur. Avantageusement, les premier et deuxième stators, 50 et 40 respectivement, peuvent être ainsi accolés. L'intégration mécanique en est simplifiée et Je drcuit de refroidissement simplifié. Avantageusement encore, comme représenté sur la figure 10, cette variante permet une sortie de mouvement positionnée du côté opposé à la source motrice par rapport au coupleur électromagnétique. Bien entendu, l'application de l'invention n'est pas limitée à la transmission de puissance entre un moteur et les roues d'un véhicule automobile. L'entraînement de l'arbre d'entrée peut être direct ou pas. Les arbres d'entrée et de sortie peuvent inverser leurs rôles. M2 \ or a combination of the second M2 machine and the first machine 1 \ are possible. The centralized armature structure with additional air gap can be used on various known principles. One can for example introduce in place of the crown 23 of magnets 24 an asynchronous cage. The structure of the second electric machine is also non-limiting: asynchronous, variable reluctance, etc. The input 20 and output 30 rotors are not necessarily arranged in the same transverse plane, but can be offset axially. Preferably, however, the inlet 20 and outlet 30 rotors are inserted one inside the other, the outlet rotor 30 being for example arranged around the inlet rotor 20. Advantageously, this arrangement gives the coupler good compactness. electromagnetic. Likewise, your geometry of the air gaps of the electromagnetic couplers shown is not limiting. The air gaps could no longer extend along a cylinder of axis A (so-called “radial” configuration of the air gaps), but in a plane peφendîulaire to the axis A (so-called “axial” configuration of the air gaps), or even according to others. mixed configurations. An axial configuration advantageously makes it possible to obtain air gaps of large surface area, subject to assembly convenience and the balancing of the axial forces. The relative position of the armature with respect to their respective air gaps may also be different from that described. A variant of particular interest is illustrated in FIG. 9. The position of the armatures with respect to their air gaps is reversed with respect to that which Us occupy in the variants represented in FIGS. 1 to 8. The first armature 22 has become external with respect to the first air gap 54, while the second armature 42 is on the contrary internal with respect to the second air gap 106. Consequently, the magnetic circuits corresponding to these air gaps are geometrically dissociated, one inside the machine, l other outside. Advantageously, the first and second stators, 50 and 40 respectively, can thus be joined. Mechanical integration is simplified and I get simplified cooling. Advantageously also, as shown in FIG. 10, this variant allows a movement output positioned on the side opposite to the motor source relative to the electromagnetic coupler. Of course, the application of the invention is not limited to the transmission of power between an engine and the wheels of a motor vehicle. The input shaft drive may or may not be direct. The input and output trees can reverse their roles.

Claims

REVENDICATIONS
1. Coupleur électromagnétique, notamment pour un véhicule automobile, comportant - une première machine électrique comportant un premier stator (50) d'axe A portant au moins une première bobine (52) enroulée sur une première culasse (60) fixe, et pouvant être couplé par induction magnétique avec une première partie (23 ;157) d'un rotor de sortie (30) mobile en rotation selon l'axe A relativement audit premier stator (50), ledit couplage étant réalisé par l'intermédiaire d'un tambour intérieur (72), mobile en rotation selon l'axe A relativement audit premier stator (50) et à ladite première partie (23 ;157) et écarté de ladite première partie (23 ;157) et de ladite première culasse (60) par un premier entrefer (98) et un entrefer supplémentaire, respectivement, - une deuxième machine électrique d'axe A comportant un deuxième stator (40) portant au moins une deuxième bobine (100) enroulée sur une « deuxième culasse » (43; 164) ayant la forme d'un deuxième circuit magnétique (43) ou d'une culasse (164), et pouvant être couplé par induction magnétique avec une deuxième partie (44 ;177) dudit rotor de sortie (30) par l'intermédiaire d'un deuxième entrefer (106), - une unité électronique (34) apte à alimenter en courant alternatif ladite première bobine (52) ledit coupleur étant caractérisé en ce que ladite première bobine (52) est enroulée sur ladite première culasse (60) autour dudit axe A dudit premier stator (50).1. Electromagnetic coupler, in particular for a motor vehicle, comprising - a first electrical machine comprising a first stator (50) of axis A carrying at least a first coil (52) wound on a first fixed cylinder head (60), and which can be coupled by magnetic induction with a first part (23; 157) of an output rotor (30) movable in rotation along the axis A relative to said first stator (50), said coupling being carried out by means of a drum interior (72), movable in rotation along the axis A relative to said first stator (50) and to said first part (23; 157) and spaced from said first part (23; 157) and said first cylinder head (60) by a first air gap (98) and an additional air gap, respectively, - a second electric machine of axis A comprising a second stator (40) carrying at least a second coil (100) wound on a "second cylinder head" (43; 164) having the shape of a second magnetic circuit (43) or of a yoke (164), and being able to be coupled by magnetic induction with a second part (44; 177) of said output rotor (30) via a second air gap (106), - an electronic unit (34) adapted to supply alternating current to said first coil (52) said coupler being characterized in that said first coil (52) is wound on said first yoke (60) around said axis A of said first stator (50 ).
2. Coupleur électromagnétique selon la revendication 1, caractérisé en ce que ladite première culasse (60) est sensiblement annulaire d'axe A et présente une section transversale en forme de "U", des première (62) et deuxième (64) ailes de ladite première culasse (60) se terminant par des première (66) et deuxième (68) surfaces écartées dudit tambour intérieur (72) par ledit entrefer supplémentaire (54). 2. Electromagnetic coupler according to claim 1, characterized in that said first cylinder head (60) is substantially annular with axis A and has a cross section in the shape of a "U", first (62) and second (64) wings of said first cylinder head (60) ending in first (66) and second (68) surfaces spaced from said inner drum (72) by said additional air gap (54).
3. Coupleur électromagnétique selon l'une quelconque des revendications 1 et 2, caractérisé en ce que ladite deuxième bobine (162), annulaire, est enroulée, autour de l'axe A.3. Electromagnetic coupler according to any one of claims 1 and 2, characterized in that said second coil (162), annular, is wound around the axis A.
4. Coupleur électromagnétique selon la revendication 3, caractérisé en ce que ladite deuxième culasse (164) est sensiblement annulaire d'axe A et présente une section transversale en U dont les première et deuxième ailes ont un profil régulièrement crénelé.4. Electromagnetic coupler according to claim 3, characterized in that said second yoke (164) is substantially annular with axis A and has a U-shaped cross section whose first and second wings have a regularly crenellated profile.
5. Coupleur électromagnétique selon la revendication 4, caractérisé en ce que ladite deuxième partie (177) dudit rotor de sortie (30) comporte une couronne extérieure (177) de plots magnétiques (178), en regard et écartée de première (168) et deuxième (170) ailes de ladite deuxième culasse (164) par ledit deuxième entrefer (98).5. An electromagnetic coupler according to claim 4, characterized in that said second part (177) of said output rotor (30) comprises an outer ring (177) of magnetic studs (178), facing and separated from the first (168) and second (170) wings of said second cylinder head (164) by said second air gap (98).
6. Coupleur électromagnétique selon la revendication 3, caractérisé en ce que ladite deuxième culasse (164) est sensiblement annulaire d'axe A et présente une section transversale en forme de "U", les première et deuxième ailes de ladite deuxième culasse (164), se prolongeant par des premier et deuxième jeux de griffes, respectivement, disposées en alternance, sans contact les unes avec les autres, en> regard et écartées de ladite deuxième partie dudit rotor de sortie (30) par ledit deuxième entrefer (106).6. Electromagnetic coupler according to claim 3, characterized in that said second cylinder head (164) is substantially annular with axis A and has a cross section in the shape of "U", the first and second wings of said second cylinder head (164) , extending by first and second sets of claws, respectively, arranged alternately, without contact with each other, > facing and separated from said second part of said output rotor (30) by said second air gap (106).
7. Coupleur électromagnétique selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite deuxième partie dudit rotor de sortie (30) comporte une couronne (44) d'aimants extérieurs (45) en regard et écartée de ladite deuxième culasse (43) par ledit deuxième entrefer (106).7. Electromagnetic coupler according to any one of the preceding claims, characterized in that said second part of said output rotor (30) comprises a ring (44) of external magnets (45) facing and separated from said second cylinder head (43 ) by said second air gap (106).
8. Coupleur électromagnétique selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits rotors d'entrée (20) et de sortie (30) sont insérés l'un dans l'autre.8. Electromagnetic coupler according to any one of the preceding claims, characterized in that said input (20) and output (30) rotors are inserted one into the other.
9. Coupleur électromagnétique selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit rotor d'entrée (20) est au moins en partie recouvert d'une frette (90) en un matériau magnétique de type Fe-17,5Cr- 0.5C.9. Electromagnetic coupler according to any one of the preceding claims, characterized in that said input rotor (20) is at least in part covered with a hoop (90) made of a magnetic material of Fe-17.5Cr- 0.5C type.
lO.Coupleur électromagnétique selon la revendication 9, caractérisé en ce que ladite frette (90) est réalisée par roulage sur champ d'une bande de tôle dudit matériau magnétique ou par enroulement spiral à plat d'une tôle dudit matériau magnétique, les spires dudit enroulement étant isolées électriquement les unes des autres.10. An electromagnetic coupler according to claim 9, characterized in that said hoop (90) is produced by rolling on a strip of sheet metal of said magnetic material or by spiral flat winding of a sheet of said magnetic material, the turns of said winding being electrically isolated from each other.
11. Coupleur électromagnétique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des première (G1) et deuxième (G2) galettes adjacentes comportant chacune au moins une première bobine enroulée, autour de l'axe A, sur une première culasse fixe, lesdites premières culasses de première (G1) et deuxième (G2) galettes étant séparées par un espace de découplage magnétique.11. Electromagnetic coupler according to any one of the preceding claims, characterized in that it comprises first (G1) and second (G2) adjacent wafers each comprising at least one first coil wound, around the axis A, on a first fixed cylinder head, said first cylinder heads of first (G1) and second (G2) wafers being separated by a magnetic decoupling space.
12.Coupleur électromagnétique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'if comporte des première (G1) et deuxième (G2) galettes adjacentes et en ce que ledit rotor de sortie (30) comporte un espace de découplage magnétique disposé entre lesdites première (G1) et deuxième (G2) galettes, dans un plan sensiblement perpendiculaire à l'axe A.12.Electromagnetic coupler according to any one of the preceding claims, characterized in that it has first (G1) and second (G2) adjacent wafers and in that said output rotor (30) has a magnetic decoupling space arranged between said first (G1) and second (G2) wafers, in a plane substantially perpendicular to the axis A.
13.Coupleur électromagnétique selon l'une quelconque des revendications 11 et 12, caractérisé en ce qu'un circuit de refroidissement est disposé dans ledit espace de découplage.13. Electromagnetic coupler according to any one of claims 11 and 12, characterized in that a cooling circuit is arranged in said decoupling space.
14,Coupleur électromagnétique selon l'une quelconque des revendications 2 à 13, caractérisé en ce que ledit tambour intérieur (72) comporte des premier (74) et deuxième (76) plateaux coaxiaux d'axe A, percés en leurs centres par des premier et deuxième trous (80) délimités par des première (82) et deuxième (83) surfaces intérieures, respectivement, et portant des premier et deuxième jeux de griffes (78,84) s'étendant à la périphérie desdits premier (74) et deuxième (76) plateaux, respectivement, lesdits premier (74) et deuxième (76) plateaux étant conformés et agencés l'un par rapport à l'autre de manière que les griffes desdits premier (74) et deuxième (76) plateaux soient disposées en alternance. sans contact les unes avec les autres, en regard et écartées de ladite première partie (23) dudit rotor de sortie (30), lesdites première (82) et deuxième (83) surfaces intérieures étant en regard et écartées desdites première (62) et deuxième (64) ailes de ladite première culasse (60), respectivement.14, electromagnetic coupler according to any one of claims 2 to 13, characterized in that said inner drum (72) comprises first (74) and second (76) coaxial plates of axis A, pierced in their centers by first and second holes (80) delimited by first (82) and second (83) interior surfaces, respectively, and carrying first and second sets of claws (78,84) extending at the periphery of said first (74) and second (76) trays, respectively, said first (74) and second (76) trays being shaped and arranged relative to each other so that the claws of said first (74) and second (76) trays are arranged in alternately. without contact with each other, facing and spaced from said first part (23) of said outlet rotor (30), said first (82) and second (83) interior surfaces being opposite and spaced from said first (62) and second (64) wings of said first cylinder head (60), respectively.
15. Coupleur électromagnétique selon la revendication 14, caractérisé en ce que ladite première partie (23) dudit rotor de sortie (30) comporte une couronne d'aimants intérieurs (24), magnétisée radialement, à polarités alternées, et disposée en regard et écartée desdites griffes.15. An electromagnetic coupler according to claim 14, characterized in that said first part (23) of said output rotor (30) comprises a crown of inner magnets (24), radially magnetized, with alternating polarities, and arranged opposite and separated said claws.
16.Coupleur électromagnétique selon l'une quelconque des revendications 14 et 15, la revendication 7 s'appliquant, caractérisé en ce que ie nombre desdits aimants extérieurs (45) est égal au nombre desdits aimants intérieurs (24), lesdits aimants extérieurs (45) et intérieurs (24) étant disposés avec le même sens de magnétisation.16.Electromagnetic coupler according to any one of claims 14 and 15, claim 7 applying, characterized in that the number of said exterior magnets (45) is equal to the number of said interior magnets (24), said exterior magnets (45 ) and interiors (24) being arranged with the same direction of magnetization.
17.Coupleur électromagnétique selon l'une quelconque des revendications 14 et 15, la revendication 9 s'appliquant, caractérisé en ce que ladite frette (90) présente, au-dessus d'une zone séparant deux dites griffes adjacentes, une perméabilité électromagnétique inférieure à celle qu'elle présente au-dessus desdites griffes adjacentes. ' 17.Electromagnetic coupler according to any one of claims 14 and 15, claim 9 applying, characterized in that said hoop (90) has, above an area separating two said adjacent claws, a lower electromagnetic permeability to that which it presents above said adjacent claws. '
18-Coupleur électromagnétique selon l'une quelconque des revendications 14 à 17, caractérisé en ce que ladite première culasse (60) et/ou ledit premier plateau (74) et/ou ledit deuxième plateau (76) sont en un matériau magnétique composite du type "poudres de fer", ou en anglais "Soft Magnetîc Composites".18-electromagnetic coupler according to any one of claims 14 to 17, characterized in that said first cylinder head (60) and / or said first plate (74) and / or said second plate (76) are made of a composite magnetic material of type "iron powders", or in English "Soft Magnetîc Composites".
19.Coupleur électromagnétique selon l'une quelconque des revendications 2 à 13, caractérisé en ce que ledit tambour intérieur (72) comporte des première (150) et deuxième (152) couronnes dentées, coaxiales d'axe A, percées en leurs centres par des premier et deuxième trous délimités par des première (150") et deuxième (152') surfaces intérieures, respectivement, et portant des premier et deuxième jeux de dents, respectivement, lesdites première (150) et deuxième (152) couronnes dentées étant conformées et agencées J'une par rapport à l'autre de manière que les dents desdites première et deuxième couronnes dentées soient disposées en regard et écartées de ladite première partie (72) dudit rotor de sortie (30), lesdites première (150') et deuxième (152') surfaces intérieures étant en regard et écartées desdites première (62) et deuxième (64) ailes de ladite première culasse (60), respectivement.19.Electromagnetic coupler according to any one of claims 2 to 13, characterized in that said inner drum (72) comprises first (150) and second (152) toothed rings, coaxial with axis A, pierced in their centers by first and second holes delimited by first (150 ") and second (152 ') interior surfaces, respectively, and carrying first and second sets of teeth, respectively, said first (150) and second (152) toothed rings being shaped and arranged I with respect to each other so that the teeth of said first and second toothed rings are arranged opposite and spaced from said first part (72) of said outlet rotor (30), said first (150 ') and second (152') interior surfaces being opposite and spaced from said first (62) and second (64) wings of said first yoke (60), respectively.
20.Coupleur électromagnétique selon la revendication 19, caractérisé en ce que ladite première partie (72) dudit rotor de sortie (30) comporte une couronne intérieure (157) de plots magnétiques (158) en regard et écartée desdites dents.20. An electromagnetic coupler according to claim 19, characterized in that said first part (72) of said output rotor (30) has an inner ring (157) of magnetic studs (158) facing and spaced from said teeth.
21. Coupleur électromagnétique selon l'une quelconque des revendications 19 et 20, caractérisé en ce que ladite couronne intérieure (157) comporte autant de plots magnétiques (158) que ladite première couronne dentée (150) ou ladite deuxième couronne dentée (152) comporte de dents.21. An electromagnetic coupler according to any one of claims 19 and 20, characterized in that said inner ring (157) comprises as many magnetic studs (158) as said first toothed ring (150) or said second toothed ring (152) comprises teeth.
22.Coupleur électromagnétique selon l'une quelconque des revendications 19 à 21 , caractérisé en ce que lesdits plots magnétiques (158) s'étendent axialement de manière à pouvoir recouvrir simultanément, au moins en partie, une dent de chacune desdites première (150) et deuxième (152) couronnes dentées. 22.Electromagnetic coupler according to any one of claims 19 to 21, characterized in that said magnetic pads (158) extend axially so as to be able to simultaneously cover, at least in part, a tooth of each of said first (150) and second (152) toothed crowns.
EP05717696A 2004-01-29 2005-01-31 Electromagnetic coupler Withdrawn EP1714376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0400830A FR2865867B1 (en) 2004-01-29 2004-01-29 ELECTROMAGNETIC COUPLER
PCT/FR2005/050057 WO2005076443A1 (en) 2004-01-29 2005-01-31 Electromagnetic coupler

Publications (1)

Publication Number Publication Date
EP1714376A1 true EP1714376A1 (en) 2006-10-25

Family

ID=34746296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05717696A Withdrawn EP1714376A1 (en) 2004-01-29 2005-01-31 Electromagnetic coupler

Country Status (5)

Country Link
US (1) US7535143B2 (en)
EP (1) EP1714376A1 (en)
JP (1) JP4709775B2 (en)
FR (1) FR2865867B1 (en)
WO (1) WO2005076443A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004030063A1 (en) * 2004-06-23 2006-03-16 Heinz Leiber Permanent magnet excited rotating field machine
DE102006028940B3 (en) * 2006-06-23 2008-01-10 Siemens Ag Regulator and method for controlling a continuously variable electric transmission
JP4310361B2 (en) 2006-12-27 2009-08-05 本田技研工業株式会社 Power equipment
JP2010525774A (en) * 2007-04-18 2010-07-22 ゲ−ヨン パク Motor having rotor arranged concentrically and driving device having said motor
GB2457682B (en) * 2008-02-21 2012-03-28 Magnomatics Ltd Variable magnetic gears
GB0813173D0 (en) * 2008-02-21 2008-08-27 Magnomatics Ltd Wind turbine power train
JP4505521B2 (en) * 2008-07-09 2010-07-21 本田技研工業株式会社 Power equipment
US8653677B2 (en) * 2009-01-15 2014-02-18 Volvo Technology Corporation Electromagnetic, continuously variable transmission power split turbo compound and engine and vehicle comprising such a turbo compound
US8541922B2 (en) * 2010-03-03 2013-09-24 Industrial Technology Research Institute Magnetic transmission assembly
US8188629B2 (en) * 2010-03-03 2012-05-29 Industrial Technology Research Institute Magnetic transmission assembly
US20110219795A1 (en) * 2010-03-10 2011-09-15 Chisun Ahn Core assembly for air conditioner and air conditioner having the same
GB201006790D0 (en) * 2010-04-23 2010-06-09 Rolls Royce Plc Electrical machine
US8742641B2 (en) 2010-11-23 2014-06-03 Remy Technologies, L.L.C. Concentric motor power generation and drive system
US10243440B2 (en) * 2010-12-08 2019-03-26 Floor 36, Inc. Electromagnetic generator and method of using same
JP5958466B2 (en) * 2011-07-15 2016-08-02 日立金属株式会社 Magnetic gear device
US20130181562A1 (en) * 2012-01-17 2013-07-18 Hamilton Sundstrand Corporation Dual-rotor machine
US9000644B2 (en) 2012-06-05 2015-04-07 Remy Technologies, L.L.C. Concentric motor power generation and drive system
JP5708566B2 (en) 2012-06-11 2015-04-30 株式会社豊田中央研究所 Electromagnetic coupling
JP5849890B2 (en) * 2012-07-30 2016-02-03 株式会社デンソー Double stator type motor
GB2522439B (en) * 2014-01-23 2017-06-14 Jaguar Land Rover Ltd Variable speed magnetic gear
DE102014206284A1 (en) * 2014-04-02 2015-10-08 Siemens Aktiengesellschaft Magnetic coupling, coupling arrangement and method
CN106460962B (en) * 2014-05-09 2019-07-02 舍弗勒技术股份两合公司 The clutch apparatus of the eddy-current brake for the air gap being reduced with band
US10208755B2 (en) * 2014-08-08 2019-02-19 Baker Hughes, A Ge Company, Llc Magnetic coupling for motor drive shaft of electrical submersible pump
KR102331602B1 (en) * 2015-04-06 2021-11-30 엘지전자 주식회사 Laundry Treating Apparatus
DE102015014814B4 (en) 2015-11-14 2023-03-23 Audi Ag Drive device for a motor vehicle
US11070115B2 (en) * 2016-01-12 2021-07-20 Prototus, Ltd. Motor/generator system and method
US10505431B1 (en) * 2017-03-06 2019-12-10 Harold O. Hosea Brushless dual rotor electromagnetic induction motor
CN108233673A (en) * 2018-03-26 2018-06-29 大连交通大学 Permanent magnet speed regulation device based on rotor loop induced potential adjusting type
WO2020025131A1 (en) * 2018-08-01 2020-02-06 Siemens Aktiengesellschaft Method for producing a magnetic gear, and magnetic gear
US20220250087A1 (en) * 2018-10-22 2022-08-11 Shanghai Bixiufu Enterprise Management Co., Ltd. Engine exhaust dust removing system and method
JP2020096484A (en) * 2018-12-14 2020-06-18 Tdk株式会社 Permanent magnet and rotating electric machine
JP7331356B2 (en) * 2018-12-14 2023-08-23 Tdk株式会社 Permanent magnets and rotating electrical machines
CN114008892A (en) * 2019-06-26 2022-02-01 索尼集团公司 Motor and motor control device
CN114123713A (en) * 2020-06-17 2022-03-01 福州市长乐区汇智科技服务有限公司 Working method of non-contact transmission
DE102022106633A1 (en) 2022-03-22 2023-09-28 TenneT TSO GmbH Composite of an electrical network, a power plant and a storage power plant as well as methods for balancing the fluctuating power supply of the power plant

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1188200A (en) * 1957-12-10 1959-09-21 Improvements made to eddy current devices to improve performance
DE1110293B (en) * 1959-05-01 1961-07-06 Heenan & Froude Ltd Electromagnetic induction coupling assembled with an electric motor
JPS5123791Y1 (en) * 1969-09-16 1976-06-18
DE2146798A1 (en) * 1971-09-18 1973-03-22 Bosch Gmbh Robert AIR PUMP FOR EXHAUST GAS POST-COMBUSTION
AU5840173A (en) 1972-07-25 1975-01-30 Stephen John Elliott Dual mode propulsion system
JPS534587B2 (en) * 1972-07-27 1978-02-18
JPH01101174U (en) * 1987-12-21 1989-07-07
DE3826339C1 (en) * 1988-08-03 1990-02-22 J.M. Voith Gmbh, 7920 Heidenheim, De
JP2921313B2 (en) * 1992-12-28 1999-07-19 株式会社三井三池製作所 Electromagnetic coupling
US5783893A (en) * 1995-10-20 1998-07-21 Newport News Shipbuilding And Dry Dock Company Multiple stator, single shaft electric machine
JPH1084665A (en) * 1996-09-06 1998-03-31 Toyota Motor Corp Power output equipment
JP2000350309A (en) * 1999-06-04 2000-12-15 Denso Corp Power converting system and driving system in vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005076443A1 *

Also Published As

Publication number Publication date
US20070096574A1 (en) 2007-05-03
FR2865867A1 (en) 2005-08-05
FR2865867B1 (en) 2006-11-24
JP2007520188A (en) 2007-07-19
JP4709775B2 (en) 2011-06-22
US7535143B2 (en) 2009-05-19
WO2005076443A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
EP1714376A1 (en) Electromagnetic coupler
EP2814147B1 (en) Electrical machine with a plurality of air gaps and 3D magnetic flux
EP0909010A1 (en) Electrical machine with flux commutation, particularly alternator for vehicle
EP2763296B1 (en) Electrical machine having intermediate parts with a plurality of air gaps and 3D magnetic flux
EP2999102A2 (en) Rotary electrical machine comprising at least one stator and at least two rotors
EP1079505A1 (en) Infinitely variable electromagnetic transmission
WO2015193562A1 (en) Electromagnetic synchronous motor with combined axial and radial magnetic fluxes
WO2005041391A2 (en) Electric transmission for transmitting mechanical power, in particular for a motor vehicle transmission
WO2014033411A2 (en) Rotor flange of a rotating electrical machine comprising inner ventilation blades, and associated electrical machine rotor
FR2941105A1 (en) ROTATING ELECTRIC MACHINE, ESPECIALLY FOR A MOTOR VEHICLE STARTER
FR2918512A1 (en) Rotating electric machine e.g. alternator-starter, for motor vehicle, has winding strings with predetermined interchangeable connector links placed between connection points according to electric voltage under which machine functions
WO2016193558A2 (en) Electromagnetic armature for rotating electrical machine and method for manufacturing same
EP1527509A1 (en) Electromagnetic retarder for a vehicle provided with a speed increasing unit
WO2008043926A1 (en) Toothed rotor equipped with ferromagnetic interpolar elements of optimized width and rotary machine equipped with such a rotor
WO2015049467A2 (en) Multiphase electric rotating machine with at least five phases
FR3030931A1 (en) ELECTRIC MACHINE WITH EXCITATION SEPARATE WITH AT LEAST TWO INDUCTIONS AND INDUCTOR
EP3782270B1 (en) Synchronous electrical machine
EP1351367A1 (en) Electric machine with modular stator and /or rotor and vehicular heat exchanger incorporating this machine
WO2022069500A1 (en) Axial-flux inductor for a rotary electrical machine providing traction
FR3056833B1 (en) ROTATING ELECTRIC MACHINE EQUIPPED WITH TWO COILS
FR2809240A1 (en) Homo-polar electrical machine and fabrication method, uses stampings from a flat metallic sheet, shaped teeth to support conductors
WO2015193563A1 (en) Electromagnetic synchronous motor with combined axial and radial magnetic fluxes with double excitation
WO2024028133A1 (en) Axial-flux electric traction machine
FR3104335A1 (en) Pole wheel for rotating electric machine rotor
FR3098043A1 (en) Polyphase synchronous electrical machine with mechanical switch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20130128