EP1711803A1 - Detecteur et procede de production correspondant - Google Patents

Detecteur et procede de production correspondant

Info

Publication number
EP1711803A1
EP1711803A1 EP05707905A EP05707905A EP1711803A1 EP 1711803 A1 EP1711803 A1 EP 1711803A1 EP 05707905 A EP05707905 A EP 05707905A EP 05707905 A EP05707905 A EP 05707905A EP 1711803 A1 EP1711803 A1 EP 1711803A1
Authority
EP
European Patent Office
Prior art keywords
silicon
sensor
containing components
silanization
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05707905A
Other languages
German (de)
English (en)
Inventor
Markus Burgmair
Ignaz Eisele
Thorsten Knittel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
TDK Micronas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004035551A external-priority patent/DE102004035551A1/de
Application filed by TDK Micronas GmbH filed Critical TDK Micronas GmbH
Publication of EP1711803A1 publication Critical patent/EP1711803A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • G01N27/4143Air gap between gate and channel, i.e. suspended gate [SG] FETs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a sensor, for example gas sensor, acceleration sensor or pressure sensor with silicon-containing components, by means of which electrical signals can be read out in the presence of analyte or in the event of mechanical deformation, and a manufacturing method.
  • the moisture contained in the air forms a thin film of water on the surface of silicon-containing material, which leads to increased surface conductivity.
  • the leakage currents caused by this increase represent a problem with regard to stability and signal behavior for many sensors that are in contact with air.
  • the invention has for its object to provide a sensor with a semiconductor body, the sensitivity to moisture or whose leakage currents is / are significantly reduced. A manufacturing process must also be specified.
  • the invention is based on the knowledge that the method of silanization known from glass coating also can be transferred to semiconductor technology. This creates a monolayer of the common, hydrophobic molecular chains on the silicon-containing surface, which prevent the adsorption of water molecules. All hydrophobic molecular chains that form a stable connection with the surface are suitable for this. Thus, up to high air humidity, almost 100%, no closed water film can arise, which favors the undesirable surface conductivity.
  • silicon-containing components can be operated unheated and unencapsulated in ambient air without any disturbing influences from surface currents induced by moisture.
  • the semiconductor body used as the basis in this silicon technology is silanized. Both pure silicon and superficial silicon compounds can be treated.
  • silicon-based semiconductor sensors which are insensitive to moisture are, for example, gas sensors, pressure sensors or generally all sensors which come into contact with essentially atmospheric moisture during operation. Therefore, analytes such as target gases are detected in gas sensors and mechanical shape changes in pressure or acceleration sensors.
  • FIG. 1 shows a comparison between a silanized hydrogen sensor and one without a hydrophobic cover layer
  • FIG. 2 shows a representation with different moisture values and additional gases
  • Figure 3 shows the prior art in the form of a floating gate FET.
  • FGFET floating gate field effect transistor
  • Other types of FETs can also be used, such as suspended gate FETs.
  • 3 shows the schematic structure of the FGFET used.
  • the potential change at the sensitive layer, caused by the application of gas, is conducted to the MOSFET via the voltage control spanned by the floating gate and capacitive well (electrode) and leads there to a
  • the strong drift and "deformation" of the hydrogen signals is effectively prevented by the silanization.
  • the remaining small moisture levels in the silanized signal are caused by the dipole signal of the water on the sensitive platinum layer and are no longer a problem.
  • the above FGFET with surfaces without a hybrid gate was both silanized and unsilanized.
  • the sensitivity of the floating gate was used.
  • the guard ring was controlled with a rectangular generator and the moisture-dependent coupling to the transistors was measured.
  • the frequency was chosen to be very low (0.1 Hz) in order to exclude frequency-dependent effects in the RC elements.
  • the representation corresponding to FIG. 2 contains a comparison of these measurements with different humidities and additional gases.
  • the current in the transistors is kept constant via feedback electronics. The resulting signals originate from the feedback control loop and thus reflect the potential present at the floating gate.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

L'invention concerne un détecteur comprenant des composants à base de silicium, au niveau de l'élément de détection sensible duquel des signaux électriques peuvent être lus par un système semi-conducteur au silicium, sur la base d'un analyte présent. Ledit détecteur se caractérise en ce que les composants à base de silicium sont recouverts d'une couche de matériau hydrophobe pour éviter la formation de signaux parasites, sous l'effet de l'humidité.
EP05707905A 2004-02-06 2005-02-01 Detecteur et procede de production correspondant Withdrawn EP1711803A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004005927 2004-02-06
DE102004035551A DE102004035551A1 (de) 2004-02-06 2004-07-22 Sensor und Verfahren zu dessen Herstellung
PCT/EP2005/050418 WO2005075969A1 (fr) 2004-02-06 2005-02-01 Detecteur et procede de production correspondant

Publications (1)

Publication Number Publication Date
EP1711803A1 true EP1711803A1 (fr) 2006-10-18

Family

ID=34839585

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05707905A Withdrawn EP1711803A1 (fr) 2004-02-06 2005-02-01 Detecteur et procede de production correspondant

Country Status (3)

Country Link
US (1) US7719004B2 (fr)
EP (1) EP1711803A1 (fr)
WO (1) WO2005075969A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046944A1 (de) * 2005-09-30 2007-04-05 Micronas Gmbh Gassensitiver Feldeffekttransistor zur Detektion von Chlor
EP2006668B1 (fr) 2007-06-22 2014-05-07 Micronas GmbH Capteur de gaz
US8878257B2 (en) * 2010-06-04 2014-11-04 Freescale Semiconductor, Inc. Methods and apparatus for an ISFET
GB2540904B (en) 2010-10-08 2017-05-24 Dnae Group Holdings Ltd Electrostatic discharge protection
US20170089941A1 (en) * 2014-04-08 2017-03-30 Panasonic Intellectual Property Management Co., Ltd. Sensor
DE102014226816A1 (de) 2014-12-22 2016-06-23 Robert Bosch Gmbh Halbleiterbasierte Gassensoranordnung zum Detektieren eines Gases und entsprechendes Herstellungsverfahren
DE102017215310A1 (de) * 2017-09-01 2019-03-07 Robert Bosch Gmbh Gassensorvorrichtung und Verfahren zum Herstellen einer Gassensorvorrichtung
JP2022048545A (ja) * 2020-09-15 2022-03-28 セイコーエプソン株式会社 物理量センサー、慣性計測ユニット及び物理量センサーの製造方法
CN113447534B (zh) * 2021-07-06 2023-01-06 重庆大学 一种氨气传感器及其制备方法
TWI808541B (zh) * 2021-11-22 2023-07-11 財團法人工業技術研究院 晶片封裝結構的透氣封裝蓋及其製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020830A (en) * 1975-03-12 1977-05-03 The University Of Utah Selective chemical sensitive FET transducers
JPS5825221B2 (ja) 1977-12-12 1983-05-26 株式会社クラレ Fet比較電極
JPS56100350A (en) 1980-01-11 1981-08-12 Kuraray Co Ltd Fet comparison electrode
NL8400916A (nl) 1984-03-22 1985-10-16 Stichting Ct Voor Micro Elektr Werkwijze voor het vervaardigen van een isfet en een aldus vervaardigde isfet.
JPS63171355A (ja) * 1987-01-09 1988-07-15 Seitai Kinou Riyou Kagakuhin Shinseizou Gijutsu Kenkyu Kumiai 半導体化学センサ
US5182005A (en) * 1990-06-01 1993-01-26 Basf Aktiengesellschaft Reference electrode for chemical sensors
DE4017905A1 (de) * 1990-06-02 1991-12-05 Basf Ag Referenzelektrode fuer chemische sensoren
JP3384900B2 (ja) * 1995-01-09 2003-03-10 長野計器株式会社 圧力センサ
DE19621997C1 (de) * 1996-05-31 1997-07-31 Siemens Ag Elektrochemischer Sensor
DE19814855C1 (de) * 1998-04-02 1999-11-04 Siemens Ag Gassensor nach dem Prinzip der Messung der Austrittsarbeit bzw. des Kontaktpotentiales
DE10163567A1 (de) * 2001-12-21 2003-07-17 Endress & Hauser Gmbh & Co Kg Drucksensor mit hydrophober Beschichtung
DE10246283B3 (de) * 2002-10-02 2004-03-25 Infineon Technologies Ag Verfahren zur Herstellung von Kanälen und Kavitäten in Halbleitergehäusen und elektronisches Bauteil mit derartigen Kanälen und Kavitäten
DE10335163B3 (de) * 2003-07-30 2005-03-03 Micronas Gmbh Gassensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005075969A1 *

Also Published As

Publication number Publication date
US20070262358A1 (en) 2007-11-15
US7719004B2 (en) 2010-05-18
WO2005075969A1 (fr) 2005-08-18

Similar Documents

Publication Publication Date Title
EP1711803A1 (fr) Detecteur et procede de production correspondant
US7053439B2 (en) Chemoreceptive semiconductor structure
WO2019048202A1 (fr) Capteur de gaz pour mesurer une concentration de gaz d'analyse
CA2572485A1 (fr) Sensor for detecting and/or measuring concentration of electric charges contained in an atmosphere, corresponding uses and method for making same
EP2057452A2 (fr) Unité de détection
DE102011086479A1 (de) Integrierter Feuchtesensor und Verfahren zu dessen Herstellung
EP1436607B1 (fr) Transistor a effet de champ sensible aux ions, et procede de fabrication d'un tel transistor
EP2006668A1 (fr) Capteur de gaz
DE102013018850A1 (de) Vorrichtung und Verfahren zur Messung kleiner Spannungen und Potentiale an einer biologischen, chemischen oder anderen Probe
Hashim et al. Fabrication of silicon nitride ion sensitive field-effect transistor for pH measurement and DNA immobilization/hybridization
DE102004035551A1 (de) Sensor und Verfahren zu dessen Herstellung
EP1249699B1 (fr) Capteur pour mesurer une concentration gaseuse ou une concentration ionique
EP1249700B1 (fr) Capteur pour mesurer une concentration ionique ou une concentration gazeuse
EP2315013A1 (fr) Capteur d'humidité
EP1649272A1 (fr) Transistor a effet de champ a commande capacitive sensible aux gaz comprenant une couche hydrophobe
Rocher et al. Nitrate-sensitive field-effect transistor with silica gate insulator modified by chemical grafting
EP2027459B1 (fr) Détecteur d'humidité et procédé de mesure de l'humidité d'un milieu gazeux
DE112013004201T5 (de) lonensensor
EP1583957A1 (fr) Transistor a effet de champ isfet et procede pour produire un transistor a effet de champ isfet
Hussin et al. Simulation and fabrication of extended gate ion sensitive field effect transistor for biosensor application
US8410530B2 (en) Sensitive field effect transistor apparatus
DE102008041960A1 (de) Messsensor, Verfahren zum Analysieren einer unpolaren Flüssigkeit, Verfahren zum Herstellen eines Messsensors
Kal et al. Design and modeling of ISFET for pH sensing
DE10254523B4 (de) Sensor zum Messen einer Gaskonzentration oder Ionenkonzentration
EP1736740B1 (fr) Capteur pour la détection du mouvement de liquide provenant de et/ou dans des liquides tout comme son utilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BURGMAIR, MARKUS

Inventor name: EISELE, IGNAZ

Inventor name: KNITTEL, THORSTEN

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20080925

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110901