EP1709372A1 - Evaporation a haut rendement dans des dispositifs frigorifiques et procede correspondant d'obtention de conditions stables avec des differences de temperature minimales et/ou requises des produits a refroidir par rapport a la temperature d'evaporation - Google Patents

Evaporation a haut rendement dans des dispositifs frigorifiques et procede correspondant d'obtention de conditions stables avec des differences de temperature minimales et/ou requises des produits a refroidir par rapport a la temperature d'evaporation

Info

Publication number
EP1709372A1
EP1709372A1 EP04705750A EP04705750A EP1709372A1 EP 1709372 A1 EP1709372 A1 EP 1709372A1 EP 04705750 A EP04705750 A EP 04705750A EP 04705750 A EP04705750 A EP 04705750A EP 1709372 A1 EP1709372 A1 EP 1709372A1
Authority
EP
European Patent Office
Prior art keywords
measures
temperature
refrigeration system
operating
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04705750A
Other languages
German (de)
English (en)
Other versions
EP1709372B1 (fr
Inventor
Remo Meister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMS Energietechnik AG
Original Assignee
BMS Energietechnik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMS Energietechnik AG filed Critical BMS Energietechnik AG
Priority to EP09003503A priority Critical patent/EP2063201B1/fr
Publication of EP1709372A1 publication Critical patent/EP1709372A1/fr
Application granted granted Critical
Publication of EP1709372B1 publication Critical patent/EP1709372B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Definitions

  • Refrigeration systems in cooling and freezing systems refrigeration technology, refrigeration machine for cooling and heating operation, refrigeration systems, refrigeration units, heat pumps, air conditioning systems and others.
  • thermosiphon mode in which the refrigerant is fed to the evaporator via a compensating and separating vessel, either by gravity or with the help of a pump, and where the evaporator outlet may still contain liquid components in the vapor, and so in the There is usually no overheating of the refrigerant at the evaporator outlet.
  • Dry expansion systems have the advantage of simple construction and small refrigerant contents.
  • the evaporator efficiency is essentially influenced by the smallest possible evaporator overheating.
  • Our innovation relates firstly to the dry expansion system (6) (1), to the dry expansion system (6) (1) with a downstream IWT (2) (internal heat exchanger, i.e. with a heat exchange between the refrigerant liquid line upstream of the expansion valve on the one hand and the suction steam after the evaporator on the other hand), to the two-stage evaporation system (6) (1 + 2) (a combination of dry expansion system and thermosiphon system, evaporator with IWT) and other refrigeration systems built on this basis.
  • IWT internal heat exchanger, i.e. with a heat exchange between the refrigerant liquid line upstream of the expansion valve on the one hand and the suction steam after the evaporator on the other hand
  • x-value is the value that indicates the proportion of the refrigerant that has already evaporated at the beginning of the evaporation process) of the refrigerant state in the injection valve (6 ) and at the beginning of the evaporator (1), which affects the injection valve (6) and evaporator output (1) as well as the control behavior of the injection valve (6) and its output, respectively the promoted refrigerant mass flow and, on the other hand, with suction steam at the inlet to the compressor (5 ), where the changed temperature (B), because of the specific volume assigned to the respective temperature (and pressure), has an influence on the delivery volume of the compressor (5), that is, again on the delivered mass flow.
  • the aim of the invention is to achieve the following in cooling / freezing systems, refrigeration machines for cooling and heating operation, refrigeration systems, refrigeration units, heat pumps and all systems using refrigerants and coolants:
  • This temperature difference can in any case be smaller than if the refrigerant leaves the evaporator (1) "overheated" (P8 / T22) during dry expansion operation.
  • This constant can be achieved by various measures. For the sake of simplicity, we describe keeping it constant by means of a heat exchanger (4) in the refrigerant liquid line upstream of the injection valve, which uses a second medium to keep the outlet temperature of the liquid refrigerant constant.
  • the medium used to keep the refrigerant liquid temperature constant can be of any type (gaseous, liquid, etc.).
  • One way of keeping the refrigerant liquid temperature upstream of the injection valve (A) constant is for the flow (D) of the medium to be cooled, for example water, brine, etc., to be passed through a heat exchanger (4), on the second side of the heat exchanger the refrigerant is led either in cocurrent, cross or countercurrent, etc.
  • the refrigerant liquid temperature upstream of the injection valve (A) can also be regulated by means of mass flow control of the refrigerant liquid (9) by the IWT (2) or the suction steam (12) by the IWT (2) (depending on the conditions, only partial mass flows sometimes flow through) the IWT (2)).
  • a new feature of the invention is that the refrigerant liquid temperature upstream of the injection valve (6) (A) is kept constant.
  • a new feature of the invention is that the refrigerant liquid temperature, especially in the two-stage evaporation process (1 + 2) upstream of the injection valve (6) (A), is at a very low value, close to or on the left limit curve of the log (p), h diagram for Refrigerant, (the refrigerant enters liquid like in a thermosiphon system or with a minimal vapor content in the evaporator (1)) is kept constant.
  • a new feature of the invention is that the refrigerant suction steam at the inlet to the compressor (5) (B) is kept constant.
  • Measures for this can be appropriate, such as keeping the refrigerant liquid upstream of the injection valve (6) (A) :.
  • IWTs (2) two-stage evaporators, semi-flooded systems
  • IWTs (2) two-stage evaporators, semi-flooded systems
  • the suction steam temperature can also be maintained by means of measures such as external subcoolers (3), which regulate the refrigerant liquid inlet temperature in the IWT (2) (8) and in this way the suction steam outlet temperature from the IWT (2) (B).
  • measures such as external subcoolers (3), which regulate the refrigerant liquid inlet temperature in the IWT (2) (8) and in this way the suction steam outlet temperature from the IWT (2) (B).
  • the constant maintenance of the suction steam temperature can also be controlled by means of mass flow control of the refrigerant liquid (9) by the IWT (2) or the suction steam (12) by the IWT (2).
  • the constant maintenance of the suction steam temperature can also be achieved by more or less "flooding" the IWT (2) (only in the two-stage evaporation process).
  • the "flooding" of the IWT's (2) can be done by means of temperature control of the suction steam at the inlet of the compressor (two-stage evaporator control) (T23), level control (7) directly via the evaporator (1), IWT (2) individually or together or a reference size such as for example, the collector or another or a pressure difference control (7) directly via the evaporator (1), IWT (2) individually or together.
  • the invention is essentially based on the fact that, through suitable measures, the refrigerant liquid temperature upstream of the injection valve (A) and the suction steam temperature upstream of the compressor (B) are at an arbitrary value (within the physically possible but, if necessary, reaching the physical limits) is held.
  • the constant temperature of the refrigerant at these two points in the refrigeration system ensures stable operation and, if desired, the smallest temperature differences between the media to be cooled (inlet / outlet temperature ( C / D) on the one hand and inlet and / or outlet temperature to the evaporation temperature (C / D to to) on the other) reached.
  • the invention is based on the fact that by means of suitable measures a stable operation of cooling systems with small temperature differences of the media to be cooled and thus higher efficiencies (and thereby highly efficient evaporation in cooling systems) is achieved.
  • the process of refrigeration is supplemented or changed in such a way that in addition to the controlled suction and high pressures in refrigeration systems, the temperature of the liquid refrigerant upstream of the injection valve (A) and the suction steam upstream of the compressor inlet (B) is now controlled, regulated and kept constant.
  • the innovation is the control of the two refrigerant states described (A + B), regardless of which method is used, whereby depending on the application, only one or the other measure (A or B or 7) has to be taken. It is therefore possible only with the temperature control of the liquid refrigerant upstream of the injection valve (A) or the temperature control of the suction steam upstream of the compressor (B) or with the control of the liquid refrigerant upstream of the injection valve and the temperature control of the suction steam (A + B) desired result to come.
  • Suitable measures for controlling the temperature of the refrigerant upstream of the injection valve are:
  • a controlled fill level of the refrigerant to be liquefied in the evaporator or. in the IWT resp. in the second stage of the two-stage evaporator for example by means of level control (7) or pressure difference measurement (7) or suction steam temperature control (T23) in front of the compressor, with level control via the evaporator, the IWT or the second stage of the two-stage evaporator individually and / or the evaporator alone or in combination with the IWT or the second stage of the two-stage evaporator or a reference object, e.g. B. collector.
  • control and integration can be carried out as follows (combinations and variants thereof are also possible): Injector control by detecting the temperature of the refrigerant upstream of the injection valve (T20) and pressure / temperature after the injection valve (T21 / P7), between the first and the second evaporator stage P8 / T22) or after the second evaporator stage (P9 / T23) or combinations thereof.
  • the temperature / pressure difference (T20 / P7, P8, P9) serves as the controlled variable for the injection valve (6).
  • a level or pressure difference control (7) can be used for the injection valve.
  • the temperature upstream of the injection valve is kept constant by means of suitable measures (as described above).
  • This constant temperature of the liquid refrigerant upstream of the injection valve can be achieved, for example, with a heat exchanger (4) installed between the liquid line and the medium flow.
  • Part or all of the mass flow of the cooled medium is passed through the heat exchanger (4) in cocurrent, countercurrent or crossflow, etc. to the refrigerant liquid (10/11).
  • the medium can be fed through the exchanger at a regulated or unregulated temperature.
  • the refrigerant liquid is subcooled or kept constant in front of the injection valve (A) at any but, if desired, also at a very low temperature level, which means that the evaporator (1) has a liquid or only a small amount Share of already evaporated refrigerant is fed.
  • the proportion of refrigerant that has already evaporated in the evaporator can be optimized and adjusted to the evaporator type (1) with a corresponding temperature of the liquid refrigerant upstream of the injection valve (A) and thus the efficiency for starting the evaporation process.
  • the refrigerant liquid inlet temperature can be entered into the second evaporator stage (IWT) (2) (F), for example using an ex- internal subcooler (3) can be limited at high condensation temperatures.
  • part of the refrigerant liquid mass flow (E), depending on the suction steam temperature (B), can be directed past the second compressor stage (IWT) (2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Greenhouses (AREA)
EP04705750A 2004-01-28 2004-01-28 Evaporation a haut rendement dans des dispositifs frigorifiques et procede correspondant d'obtention de conditions stables avec des differences de temperature minimales et/ou requises des produits a refroidir par rapport a la temperature d'evaporation Expired - Lifetime EP1709372B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09003503A EP2063201B1 (fr) 2004-01-28 2004-01-28 Procédé de fonctionnement d'un système frigorifique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2004/000046 WO2005073645A1 (fr) 2004-01-28 2004-01-28 Evaporation a haut rendement dans des dispositifs frigorifiques et procede correspondant d'obtention de conditions stables avec des differences de temperature minimales et/ou requises des produits a refroidir par rapport a la temperature d'evaporation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP09003503A Division EP2063201B1 (fr) 2004-01-28 2004-01-28 Procédé de fonctionnement d'un système frigorifique

Publications (2)

Publication Number Publication Date
EP1709372A1 true EP1709372A1 (fr) 2006-10-11
EP1709372B1 EP1709372B1 (fr) 2009-03-25

Family

ID=34812843

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04705750A Expired - Lifetime EP1709372B1 (fr) 2004-01-28 2004-01-28 Evaporation a haut rendement dans des dispositifs frigorifiques et procede correspondant d'obtention de conditions stables avec des differences de temperature minimales et/ou requises des produits a refroidir par rapport a la temperature d'evaporation
EP09003503A Expired - Lifetime EP2063201B1 (fr) 2004-01-28 2004-01-28 Procédé de fonctionnement d'un système frigorifique

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09003503A Expired - Lifetime EP2063201B1 (fr) 2004-01-28 2004-01-28 Procédé de fonctionnement d'un système frigorifique

Country Status (6)

Country Link
US (1) US9010136B2 (fr)
EP (2) EP1709372B1 (fr)
AT (1) ATE426785T1 (fr)
DE (1) DE502004009247D1 (fr)
ES (2) ES2322152T3 (fr)
WO (1) WO2005073645A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073645A1 (fr) 2004-01-28 2005-08-11 Bms-Energietechnik Ag Evaporation a haut rendement dans des dispositifs frigorifiques et procede correspondant d'obtention de conditions stables avec des differences de temperature minimales et/ou requises des produits a refroidir par rapport a la temperature d'evaporation
EP2215412A1 (fr) * 2007-11-21 2010-08-11 Remo Meister Installation pour le refroidissement, le chauffage ou la climatisation, en particulier installations frigorifiques
DE102008043823B4 (de) * 2008-11-18 2011-05-12 WESKA Kälteanlagen GmbH Wärmepumpenanlage
DE102012002593A1 (de) * 2012-02-13 2013-08-14 Eppendorf Ag Zentrifuge mit Kompressorkühleinrichtung und Verfahren zur Steuerung einer Kompressorkühleinrichtung einer Zentrifuge
WO2021035945A1 (fr) * 2019-08-23 2021-03-04 广东美芝制冷设备有限公司 Compresseur rotatif et dispositif à cycle de réfrigération

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640086A (en) * 1970-02-27 1972-02-08 American Standard Inc Refrigerant flow control employing plural valves
US3952533A (en) * 1974-09-03 1976-04-27 Kysor Industrial Corporation Multiple valve refrigeration system
DE2451361A1 (de) 1974-10-29 1976-05-06 Jakob Verfahren zum regeln einer kompressorkuehlanlage
US4493193A (en) * 1982-03-05 1985-01-15 Rutherford C. Lake, Jr. Reversible cycle heating and cooling system
DE3801711A1 (de) * 1988-01-21 1989-07-27 Linde Ag Verfahren zum betreiben einer kaelteanlage und kaelteanlage zur durchfuehrung des verfahrens
US5150584A (en) * 1991-09-26 1992-09-29 General Motors Corporation Method and apparatus for detecting low refrigerant charge
US5533352A (en) * 1994-06-14 1996-07-09 Copeland Corporation Forced air heat exchanging system with variable fan speed control
JP3598604B2 (ja) * 1995-09-08 2004-12-08 ダイキン工業株式会社 熱搬送装置
JPH1054616A (ja) * 1996-08-14 1998-02-24 Daikin Ind Ltd 空気調和機
US5970732A (en) * 1997-04-23 1999-10-26 Menin; Boris Beverage cooling system
JPH11193967A (ja) * 1997-12-26 1999-07-21 Zexel:Kk 冷凍サイクル
DE29800048U1 (de) * 1998-01-03 1998-04-23 König, Harald, 04934 Hohenleipisch Wärmepumpe mit Anordnung eines Wärmetauschers zur Leistungszahlverbesserung
US6438978B1 (en) * 1998-01-07 2002-08-27 General Electric Company Refrigeration system
US5921092A (en) * 1998-03-16 1999-07-13 Hussmann Corporation Fluid defrost system and method for secondary refrigeration systems
FR2779994B1 (fr) * 1998-06-23 2000-08-11 Valeo Climatisation Circuit de climatisation de vehicule muni d'un dispositif de predetente
US6170270B1 (en) * 1999-01-29 2001-01-09 Delaware Capital Formation, Inc. Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost
JP3985394B2 (ja) * 1999-07-30 2007-10-03 株式会社デンソー 冷凍サイクル装置
US6216481B1 (en) * 1999-09-15 2001-04-17 Jordan Kantchev Refrigeration system with heat reclaim and with floating condensing pressure
US6446450B1 (en) * 1999-10-01 2002-09-10 Firstenergy Facilities Services, Group, Llc Refrigeration system with liquid temperature control
US6330802B1 (en) * 2000-02-22 2001-12-18 Behr Climate Systems, Inc. Refrigerant loss detection
NO320664B1 (no) * 2001-12-19 2006-01-16 Sinvent As System for oppvarming og kjoling av kjoretoy
US7665321B2 (en) * 2002-12-11 2010-02-23 Bms-Energietechnik Ag Evaporation process control used in refrigeration
NO318864B1 (no) * 2002-12-23 2005-05-18 Sinvent As Forbedret varmepumpesystem
WO2005073645A1 (fr) 2004-01-28 2005-08-11 Bms-Energietechnik Ag Evaporation a haut rendement dans des dispositifs frigorifiques et procede correspondant d'obtention de conditions stables avec des differences de temperature minimales et/ou requises des produits a refroidir par rapport a la temperature d'evaporation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005073645A1 *

Also Published As

Publication number Publication date
EP2063201A2 (fr) 2009-05-27
ES2401946T3 (es) 2013-04-25
US9010136B2 (en) 2015-04-21
EP2063201B1 (fr) 2013-02-27
EP1709372B1 (fr) 2009-03-25
WO2005073645A1 (fr) 2005-08-11
ES2322152T3 (es) 2009-06-17
EP2063201A3 (fr) 2009-10-14
US20070137229A1 (en) 2007-06-21
ATE426785T1 (de) 2009-04-15
DE502004009247D1 (de) 2009-05-07

Similar Documents

Publication Publication Date Title
DE2545606C2 (de) Verfahren zum Betrieb eines Kühlsystems sowie Kühlsystem zur Durchführung des Verfahrens
DE60132287T2 (de) Hochdruckregelung in einem transkritischen Dampfkompressionskreislauf
DE60035409T2 (de) Dampfkompressionssystem und verfahren
EP3553422B1 (fr) Système pompé mécaniquement pour la commande directe d'une évaporation isotherme à deux phases
WO2021104864A1 (fr) Appareil de réfrigération ayant un compartiment qui peut être utilisé d'une manière variable
EP3730873A2 (fr) Procédé de fonctionnement d'une pompe à chaleur dotée d'un système de compression de vapeur
DE102004031701A1 (de) Dampfkompressionskühlkreis
DE202007017723U1 (de) Anlage für die Kälte-, Heiz- oder Klimatechnik, insbesondere Kälteanlage
EP1709372A1 (fr) Evaporation a haut rendement dans des dispositifs frigorifiques et procede correspondant d'obtention de conditions stables avec des differences de temperature minimales et/ou requises des produits a refroidir par rapport a la temperature d'evaporation
EP3816543B1 (fr) Procédé de régulation d'un détendeur
EP1570215B1 (fr) Systeme de commande de processus d'evaporation utilise dans la technique frigorifique
EP3922925A1 (fr) Procédé de fonctionnement d'une installation de réfrigération à compression et installation de réfrigération à compression
DE102020115270A1 (de) Verfahren und Vorrichtung zum Regeln eines Kältekreislaufs
EP2028429A2 (fr) Installation de pompe de chaleur
DE2438418A1 (de) Gaskompressor der verdraengerbauart, insbesondere fuer kaeltemaschinen
EP3922931B1 (fr) Installation de réfrigération à compression et procédé de fonctionnement de celle-ci
EP3922930B1 (fr) Procédé de fonctionnement d'une installation de réfrigération à compression et installation de réfrigération à compression associée
DE10303782B4 (de) Einspritzregelung am Kältemittelverdampfer
EP3922924B1 (fr) Procédé de fonctionnement d'une installation de réfrigération à compression et installation de réfrigération à compression
EP3922932A1 (fr) Procédé de fonctionnement d'une installation de réfrigération à compression et installation de réfrigération à compression
DE102020115267A1 (de) Verfahren zum Regeln einer Kompressionskälteanlage und Kompressionskälteanlage
DE102020115276A1 (de) Verfahren zum Regeln einer Kompressionskälteanlage und Kompressionskälteanlage
EP1050727A1 (fr) Procédé et dispositif de réglage d'un cycle thermodynamique
DE19812495A1 (de) Verfahren zum Betrieb einer Wärmepumpenanlage oder Kältemaschinenanlage und zur Durchführung dieses Verfahrens geeignete Komponenten
WO2020157010A1 (fr) Appareil frigorifique avec des évaporateurs parallèles et procédé de fonctionnement associé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20061229

R17P Request for examination filed (corrected)

Effective date: 20060713

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH & PARTNER

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004009247

Country of ref document: DE

Date of ref document: 20090507

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2322152

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090325

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091229

BERE Be: lapsed

Owner name: BMS-ENERGIETECHNIK A.G.

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BMS-ENERGIETECHNIK AG

Free format text: BMS-ENERGIETECHNIK AG#BOENIGSTRASSE 11A#3812 WILDERSWIL (CH) -TRANSFER TO- BMS-ENERGIETECHNIK AG#BOENIGSTRASSE 11A#3812 WILDERSWIL (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090926

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140122

Year of fee payment: 11

Ref country code: SE

Payment date: 20140121

Year of fee payment: 11

Ref country code: IE

Payment date: 20140128

Year of fee payment: 11

Ref country code: CH

Payment date: 20140121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20140106

Year of fee payment: 11

Ref country code: AT

Payment date: 20140113

Year of fee payment: 11

Ref country code: FR

Payment date: 20140123

Year of fee payment: 11

Ref country code: ES

Payment date: 20140123

Year of fee payment: 11

Ref country code: IT

Payment date: 20140128

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140121

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009247

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 426785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150128

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128