EP1706597B1 - Turbine a gaz avec rotor axialement deplacable - Google Patents

Turbine a gaz avec rotor axialement deplacable Download PDF

Info

Publication number
EP1706597B1
EP1706597B1 EP05701049A EP05701049A EP1706597B1 EP 1706597 B1 EP1706597 B1 EP 1706597B1 EP 05701049 A EP05701049 A EP 05701049A EP 05701049 A EP05701049 A EP 05701049A EP 1706597 B1 EP1706597 B1 EP 1706597B1
Authority
EP
European Patent Office
Prior art keywords
rotor
moving
guide surface
guide
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05701049A
Other languages
German (de)
English (en)
Other versions
EP1706597A1 (fr
Inventor
Bernd STÖCKER
Arnd Reichert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05701049A priority Critical patent/EP1706597B1/fr
Publication of EP1706597A1 publication Critical patent/EP1706597A1/fr
Application granted granted Critical
Publication of EP1706597B1 publication Critical patent/EP1706597B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/22Actively adjusting tip-clearance by mechanically actuating the stator or rotor components, e.g. moving shroud sections relative to the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/052Axially shiftable rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/312Arrangement of components according to the direction of their main axis or their axis of rotation the axes being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other

Definitions

  • the invention relates to a turbomachine, in particular an axial flow compressor for a gas turbine, according to the preamble of claim 1.
  • Gas turbines coupled to generators are used to convert fossil energy into electrical energy.
  • a gas turbine has along its rotor shaft to a compressor, a combustion chamber and a turbine unit.
  • the compressor draws in ambient air and compresses it.
  • the compressed air is mixed with a fuel and fed to the combustion chamber.
  • the mixture burns to a hot working fluid and then flows into the turbine unit, are provided in the blades.
  • the guide vanes attached to the housing of the turbine unit guide the working medium onto the rotor blades attached to the rotor so that they cause the rotor to rotate.
  • the rotational energy absorbed in this way is then converted into electrical energy by the generator coupled to the rotor. Furthermore, it is used to drive the compressor.
  • a gas turbine with a compressor is known, whose rotor for adjusting the radial gap, which is formed between the tips of the turbine blades and the inner housing, is displaced counter to the flow direction of the working medium.
  • the radial gaps of the turbine unit are reduced, which leads to a significant reduction of flow losses in the turbine unit and thus to an increase in efficiency of the gas turbine.
  • the radial gaps in the compressor are increased, which reduces the flow losses in the compressor elevated.
  • the displacement of the rotor leads to a performance increase of the gas turbine.
  • the US 5,056,986 a gas turbine with a compressor in which alternately wreaths of vanes and blades are arranged one behind the other.
  • the vanes are fixed on the head side in a fastening ring encompassing the rotor, and the vanes are each provided with shrouds which form a top-side shroud ring which faces the housing to form a radial gap.
  • the radial gaps run in parallel direction to the axis of rotation.
  • Object of the present invention is to provide a turbomachine with an axially displaceable rotor whose flow losses are at least not increased in an axial displacement of the rotor.
  • the solution of the problem provides that the dimension of each radial gap between the end of each freestanding blade and guide vane and the opposite axial portion of the guide surface is constant at least over the displacement of the rotor and the radial gap is parallel to the axis of rotation of the rotor.
  • the solution is based on the knowledge that the flow losses are not increased in a displacement of the rotor when the radial gap between fixed and rotating components remains constant over the displacement of the rotor.
  • the radial gap forming components such as the end of a running or guide vane and the opposite boundary or. Guide surface, formed parallel to the rotor axis of rotation. With a displacement of the rotor in the axial direction thus remains the dimension of each radial gap is constant. This is particularly advantageous for a flow channel of a compressor of a gas turbine.
  • the outer guide surface for the flow medium is at least partially formed by the upper side of the platforms of the guide vanes, which faces the guide profile. This ensures that the flow medium is guided by the platforms of the guide vanes.
  • the inner guide surface is at least partially formed by the top of the platforms of the blades, which faces the tread.
  • the flow medium is guided by the inner guide surface.
  • the inner guide surface is cylindrical and the outer guide surface inclined, in particular conical, to the axis of rotation runs.
  • the change in the flow cross-section of the flow channel necessary for the turbomachine takes place for the considered subsection, ie for the vane ring, thus only on the boundary side of the flow channel, where there are no radial gaps.
  • an inclined guide surface is understood to mean that the guide surface deviating from the cylindrical shape forms the cross section of the flow channel in the axial direction in a diverging or converging manner.
  • both the inner and the outer guide surface each have a "wave-shaped" in the axial direction contour, i. in the axial direction, inclined and cylindrical contours of the guide surfaces alternate, wherein within a portion of a cylindrical contour in each case an inclined contour is opposite and vice versa.
  • this embodiment turns away from the purely aerodynamic design of the flow channel.
  • the turbomachine is designed as an axial flow compressor of a gas turbine.
  • the axial displacement of the rotor against the flow direction of the flow medium leads in the turbine unit to decreasing and efficiency-increasing radial gaps, whereas the radial gaps in the compressor remain constant. Flow losses in the compressor are thus kept constant despite the displacement of the common rotor. In general, this leads to a further increased power output compared to that of the prior art.
  • the Fig. 1 shows a gas turbine 1 in a longitudinal partial section. It has inside a rotatably mounted about a rotational axis 2 rotor 3, which is also referred to as a turbine rotor or rotor shaft. Along the rotor 3 follow one another a suction housing 4, a compressor 5, a toroidal annular combustion chamber 6 with a plurality of coaxially arranged burners 7, a turbine unit 8 and the exhaust housing. 9
  • annular compressor passage 10 is seen before, which tapers in the direction of the annular combustion chamber 6 in cross section.
  • a diffuser 11 is arranged, which communicates with the annular combustion chamber 6 in fluid communication.
  • the annular combustion chamber 6 forms a combustion chamber 12 for a mixture of a fuel and compressed air.
  • a hot gas duct 13 arranged in the turbine unit 8 is in flow communication with the combustion space 12, the exhaust gas housing 9 being arranged downstream of the hot gas duct 13.
  • each blade rings are arranged.
  • a vane ring 15 formed by vanes 14 is followed by a blade ring 17 formed by blades 16.
  • the stationary vanes 14 are connected to one or more vane carriers 18, whereas the rotor blades 16 are secured to the rotor 3 by means of a disk 19.
  • the turbine unit 8 has a conically widening hot gas duct 13 whose outer guide surface 21 widens concentrically in the flow direction of the working fluid 20.
  • the inner guide surface 22, however, is aligned substantially parallel to the axis of rotation 2 of the rotor 3.
  • the blades 16 have at their free ends Anstreifkanten 29 which forms a radial gap 23 with the opposite outer guide surfaces 21.
  • An inlet-side compressor bearing 32 serves in addition to the axial and radial bearing as adjusting for a displacement of the rotor.
  • the rotor 2 in the stationary state of a starting position in a stationary operating position counter to the flow direction of the working fluid 20, in Fig. 1 to the left, moved.
  • the radial gap 23 formed in the turbine unit 8 by the rotor blades 16 and the outer guide surface 21 is reduced. This leads to a reduction of the flow losses in the turbine unit 8 and thus to an increase in the efficiency of the gas turbine 1.
  • FIG. 2 a portion of the annular channel of the compressor 5 with two blade rings 17 and with an intermediate vane ring 15 is shown.
  • the annular channel is designed as a flow channel 24 for the flow medium 26 air.
  • the outer guide surface 21 is in Fig. 2 and Fig. 3 with the outer boundary surface 37 and the inner guide surface 22 with the inner boundary surface 36 identical.
  • Fig. 2 the rotor 3 is in its starting position.
  • the vanes 14 of the vane ring 15 are fixed against rotation on an outer wall, whereas the rotor blades 16 are arranged on the rotor 3 of the compressor 3.
  • Each blade 16 has at its fixed end in each case a platform 25 whose surfaces define the compressor channel 10 inwardly.
  • each vane 14 at its fixed end to a platform 25, which limit the compressor passage 10 to the outside.
  • a running profile 27 extends into the compressor passage 10, which compresses the air L during operation of the compressor 5.
  • the free ends of the running or guide profiles 27, 28, which lie opposite the platform-side ends, are formed as squeal edges 29 and lie below Forming the radial gap 23 each guide rings 30 opposite.
  • Seen in the axial direction is in a subsection, d. H. the axial length of a blade ring including a displacement path V explained later, the radial gap 23 in each case aligned parallel to the axis of rotation 2, i. the guide ring 30 and the squealer 29 extend cylindrically to the rotation axis 2.
  • the arranged in the section platforms 25, however, are each inclined to the axis of rotation 2 of the rotor 3, so that viewed in the axial direction, a taper of the flow channel 24 results.
  • the result is a cylindrical contour of the flow channel 24 in the areas of the radially opposite fixed and rotating components, which seen in the axial direction sections and radial direction are within or outside the guide or running profiles.
  • both the outer guide surface 21 and inner guide surface 22 alternately cylindrical and inclined to the axis of rotation 2 of the rotor 3, wherein the cylindrical guide surface 21, 22 respectively in the radial direction of the rotor 3 viewed an inclined guide surface 21, 22 opposite.
  • Fig. 3 the rotor 3 is moved against the rotationally fixed components of the gas turbine 1 against the flow direction of the flow medium 26 in its stationary operating position. For comparison, its starting position is indicated in dashed line style.
  • the dimension of the radial gap 23 remains constant, so that the flow losses in the compressor 5 are not increased.
  • the section A is made up of the axial length of the squealer edges 29 and the axial displacement V together.
  • Fig. 4 shows a section of the flow channel 26 of the compressor 3, in which each vane 14 at its end facing the rotor 3 each having a second platform 31.
  • the further platforms 31 of the guide vanes 14 of the vane ring 15 form a rotor 3 encompassing ring.
  • the surfaces of the further platforms 31 facing the guide profile 28 form the inner guide surface 22 for the flow medium 26.
  • a rear side 34 of the platform 31, 34 remote from the guide surfaces 22 lies opposite a boundary surface 36. Between the rear side 34 of the platform 31 and the boundary surface 36 of the axis of rotation 2 parallel radial gap 23 is formed.
  • the blades 16 are attached to the discs 19 of the rotor 3.
  • Each running profile 27 has further platforms 31 at their free ends, whose surface facing the running profile 27 forms the flow channel 24 as inner guide surfaces 22.
  • the other platforms 31 have on their guide surface 21, 22 opposite rear side 34 each have a peripheral surface which faces the boundary surface 36 of the annular channel 10.
  • the radial gap 23 is formed between the inner boundary surface 36 and the inner guide surface 22, which, seen in the axial direction, runs parallel to the axis of rotation 2 of the rotor 3.
  • a labyrinth seal 38 is arranged in the radial gap 23, which prevents flow losses in the flow medium 26.
  • the guide surfaces 21, 22 no longer have to be cylindrically shaped relative to the axis of rotation 2, since they do not delimit the radial gap 23. Only the rear side 34 of the other platforms 31 must be cylindrically shaped here so that the radial gap 23 remains constant during the displacement of the rotor 3.
  • a flow channel 24 is conceivable in which guide vanes 16 with further platforms 31 form a guide vane ring 15 followed by a rotor blade ring 17 with free-standing rotor blades 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un compresseur (5), parcouru dans le sens axial, pour turbine à gaz (1) munie d'un rotor (3) à déplacement axial. Il se forme, entre une surface de délimitation extérieure (37) bloquée en rotation et une surface de délimitation intérieure (36) disposée sur le rotor (3), un canal d'écoulement (24) annulaire diminuant dans le sens axial, dans lequel est disposée au moins une couronne fixe (15) de profilés de guidage (28) et dans lequel est disposée au moins une couronne (17) de profilés mobiles (27) fixés sur le rotor. L'extrémité de chaque boucle d'aubes mobiles et d'aubes de guidage (14, 16) se trouve dans chaque cas opposée à une section axiale (A) d'une des deux surfaces de délimitation (36, 37), de manière à former une fente radiale (23). Afin de mettre au point une turbomachine à rotor à déplacement axial, dont les pertes d'écoulement ne soient pas trop majorées lors d'un déplacement axial du rotor, il est prévu que la proportion de chaque fente radiale (23) entre l'extrémité de chaque aube mobile ou de chaque aube de guidage (14, 16) et la section axiale (A) opposée de la surface de délimitation (36, 37) soit constante, au moins sur le parcours de déplacement du rotor (3) et que la fente radiale (23) s'étende parallèlement à l'axe de rotation (2) du rotor (3).

Claims (9)

  1. Turbomachine, notamment compresseur (5) à circulation axiale pour une turbine (1) à gaz, comprenant un rotor (3) pouvant coulisser axialement et un canal annulaire qui est prévu dans un carter et qui forme, entre une surface (21, 22) de guidage extérieure fixe en rotation et une surface (21, 22) de guidage intérieure disposée sur le rotor (3), un canal (24) d'écoulement de forme annulaire et se rétrécissant dans la direction axiale,
    comprenant au moins une couronne (15) fixe, disposée dans le canal annulaire de profils (28) directeurs et au moins une couronne (17) constituée de profils (27) mobiles fixés au rotor et s'étendant respectivement entre une plateforme (25) et une extrémité libre opposée à la plateforme, (25) d'une aube (14, 16) mobile ou directrice,
    dans laquelle l'extrémité de chaque aube (14, 16) mobile et directrice est opposée respectivement à un tronçon (A) axial de l'une des deux surfaces (21, 22) de guidage, en formant notamment respectivement un intervalle (23) radial,
    caractérisée en ce que
    la valeur de chaque intervalle (23) radial entre l'extrémité d'une aube (14, 16) mobile ou directrice et le tronçon (A) axial opposé de la surface (21, 22) de guidage est constant au moins sur le trajet de coulissement du rotor (3) et l'intervalle (23) radial s'étend parallèlement à l'axe (2) de rotation du rotor (3).
  2. Turbomachine suivant la revendication 1,
    caractérisée en ce que
    au moins en partie la surface (21) de guidage extérieure est formée par le côté supérieur des plateformes (25) des aubes (14) directrices, qui est tourné vers le profil (28) directeur.
  3. Turbomachine suivant la revendication 1 ou 2,
    caractérisée en ce que
    au moins en partie la surface (22) de guidage intérieure est formée par le côté supérieur des plateformes (25) des aubes (16) mobiles, qui est tourné vers le profil (27) mobile.
  4. Turbomachine suivant la revendication 2 et 3,
    caractérisée en ce que
    les côtés supérieurs des plateformes (25) des aubes (14, 16) mobiles et directrices sont inclinés dans la direction axiale par rapport à la direction V de coulissement de sorte que le canal (24) d'écoulement se rétrécit dans la direction axiale.
  5. Turbomachine suivant au moins l'une des revendications précédentes,
    caractérisée en ce que
    la surface (21) de guidage intérieure est dans les tronçons partiels axiaux dans lesquels sont disposés des profils directeurs, cylindrique et la surface de guidage extérieure est inclinée, notamment coniquement, par rapport à l'axe de rotation.
  6. Turbomachine suivant au moins l'une des revendications précédentes,
    caractérisée en ce que
    la surface (21) extérieure de guidage est, dans les tronçons axiaux partiels dans lesquels sont disposés des profils mobiles, cylindrique et la surface de guidage intérieure est inclinée, notamment coniquement, par rapport à l'axe de rotation.
  7. Turbomachine suivant la revendication 5 ou 6,
    caractérisée en ce que
    les tronçons partiels alternent considérés dans la direction d'écoulement.
  8. Turbomachine suivant au moins l'une des revendications précédentes,
    caractérisée en ce que
    la surface (21) de guidage extérieure et le tronçon A s'étendant dans la direction axiale de la surface (21) de guidage extérieure, qui est opposée aux extrémités des aubes (16) mobiles d'une couronne (17) d'aubes mobiles est formée au moyen d'un anneau (30) de guidage.
  9. Turbomachine suivant l'une des revendications précédentes,
    caractérisée en ce que
    la turbomachine est constituée sous la forme d'un compresseur (5) à circulation axiale d'une turbine (1) à gaz.
EP05701049A 2004-01-22 2005-01-19 Turbine a gaz avec rotor axialement deplacable Not-in-force EP1706597B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05701049A EP1706597B1 (fr) 2004-01-22 2005-01-19 Turbine a gaz avec rotor axialement deplacable

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04001335A EP1557536A1 (fr) 2004-01-22 2004-01-22 Turbine à gaz avec rotor axialement déplaçable
PCT/EP2005/000498 WO2005071229A1 (fr) 2004-01-22 2005-01-19 Turbomachine a rotor a deplacement axial
EP05701049A EP1706597B1 (fr) 2004-01-22 2005-01-19 Turbine a gaz avec rotor axialement deplacable

Publications (2)

Publication Number Publication Date
EP1706597A1 EP1706597A1 (fr) 2006-10-04
EP1706597B1 true EP1706597B1 (fr) 2009-03-11

Family

ID=34626485

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04001335A Withdrawn EP1557536A1 (fr) 2004-01-22 2004-01-22 Turbine à gaz avec rotor axialement déplaçable
EP05701049A Not-in-force EP1706597B1 (fr) 2004-01-22 2005-01-19 Turbine a gaz avec rotor axialement deplacable

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04001335A Withdrawn EP1557536A1 (fr) 2004-01-22 2004-01-22 Turbine à gaz avec rotor axialement déplaçable

Country Status (4)

Country Link
US (1) US7559741B2 (fr)
EP (2) EP1557536A1 (fr)
DE (1) DE502005006804D1 (fr)
WO (1) WO2005071229A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435218B2 (en) 2013-07-31 2016-09-06 General Electric Company Systems relating to axial positioning turbine casings and blade tip clearance in gas turbine engines
US9441499B2 (en) 2013-07-31 2016-09-13 General Electric Company System and method relating to axial positioning turbine casings and blade tip clearance in gas turbine engines

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8016553B1 (en) * 2007-12-12 2011-09-13 Florida Turbine Technologies, Inc. Turbine vane with rim cavity seal
DE102009021384A1 (de) * 2009-05-14 2010-11-18 Mtu Aero Engines Gmbh Strömungsvorrichtung mit Kavitätenkühlung
DE102009042857A1 (de) * 2009-09-24 2011-03-31 Rolls-Royce Deutschland Ltd & Co Kg Gasturbine mit Deckband-Labyrinthdichtung
US20110088379A1 (en) * 2009-10-15 2011-04-21 General Electric Company Exhaust gas diffuser
US8388313B2 (en) * 2009-11-05 2013-03-05 General Electric Company Extraction cavity wing seal
US8328513B2 (en) * 2009-12-31 2012-12-11 General Electric Company Systems and apparatus relating to compressor stator blades and diffusers in turbine engines
US8939715B2 (en) * 2010-03-22 2015-01-27 General Electric Company Active tip clearance control for shrouded gas turbine blades and related method
US9249687B2 (en) 2010-10-27 2016-02-02 General Electric Company Turbine exhaust diffusion system and method
DE102012213016A1 (de) * 2012-07-25 2014-01-30 Siemens Aktiengesellschaft Verfahren zur Minimierung des Spalts zwischen einem Läufer und einem Gehäuse
US10107115B2 (en) * 2013-02-05 2018-10-23 United Technologies Corporation Gas turbine engine component having tip vortex creation feature
WO2015030946A1 (fr) * 2013-08-26 2015-03-05 United Technologies Corporation Moteur à turbine à gaz doté d'une commande de jeu de ventilateur
US9593589B2 (en) 2014-02-28 2017-03-14 General Electric Company System and method for thrust bearing actuation to actively control clearance in a turbo machine
EP3023600B1 (fr) 2014-11-24 2018-01-03 Ansaldo Energia IP UK Limited Élément de carter de moteur
EP3222824A1 (fr) 2016-03-24 2017-09-27 Siemens Aktiengesellschaft Segment statorique, membre d'accouplage et aube directrice associés
US20170328203A1 (en) * 2016-05-10 2017-11-16 General Electric Company Turbine assembly, turbine inner wall assembly, and turbine assembly method
DE102016115868A1 (de) 2016-08-26 2018-03-01 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit hohem Ausnutzungsgrad
CN109751131A (zh) * 2019-03-29 2019-05-14 国电环境保护研究院有限公司 一种提升燃气轮机效率和功率的调整方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775023A (en) * 1971-02-17 1973-11-27 Teledyne Ind Multistage axial flow compressor
US4371311A (en) * 1980-04-28 1983-02-01 United Technologies Corporation Compression section for an axial flow rotary machine
US4606699A (en) * 1984-02-06 1986-08-19 General Electric Company Compressor casing recess
US5056986A (en) * 1989-11-22 1991-10-15 Westinghouse Electric Corp. Inner cylinder axial positioning system
EP1131537B1 (fr) * 1998-11-11 2004-10-06 Siemens Aktiengesellschaft Procede de fonctionnement d'une turbomachine
US6732530B2 (en) * 2002-05-31 2004-05-11 Mitsubishi Heavy Industries, Ltd. Gas turbine compressor and clearance controlling method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435218B2 (en) 2013-07-31 2016-09-06 General Electric Company Systems relating to axial positioning turbine casings and blade tip clearance in gas turbine engines
US9441499B2 (en) 2013-07-31 2016-09-13 General Electric Company System and method relating to axial positioning turbine casings and blade tip clearance in gas turbine engines

Also Published As

Publication number Publication date
EP1557536A1 (fr) 2005-07-27
US7559741B2 (en) 2009-07-14
WO2005071229A1 (fr) 2005-08-04
DE502005006804D1 (de) 2009-04-23
US20080232949A1 (en) 2008-09-25
EP1706597A1 (fr) 2006-10-04

Similar Documents

Publication Publication Date Title
EP1706597B1 (fr) Turbine a gaz avec rotor axialement deplacable
EP2024606B1 (fr) Conduit d'écoulement annulaire pour une turbomachine pouvant être traversée par un courant principal dans le sens axial
DE4309636C2 (de) Radialdurchströmte Abgasturboladerturbine
EP2179143B1 (fr) Refroidissement de fente entre une paroi de chambre de combustion et une paroi de turbine d'une installation de turbine à gaz
DE4242494C1 (en) Adjustable flow-guide for engine exhaust turbocharger - has axially-adjustable annular insert in sectors forming different kinds of guide grilles supplied simultaneously by spiral passages
EP2167793B1 (fr) Turbocompresseur a suralimentation de gaz d'échappement pour moteur à combustion interne
EP2824282A1 (fr) Turbine à gaz avec système de refroidissement de turbine à haute pression
EP1656493A1 (fr) Anneau de fixation segmente pour une turbine
EP1508669A1 (fr) Diaphragme pour compresseur et turbine
DE10330084A1 (de) Rezirkulationsstruktur für Turboverdichter
EP3064706A1 (fr) Rangée d'aubes directrices pour une turbomachine traversée axialement
EP1532368B1 (fr) Compresseur dans un turbocompresseur a gaz d'echappement pour un moteur a combustion interne
DE10028733A1 (de) Abgasturbine für einen Turbolader
EP0131719B1 (fr) Dispositif variable de guidage
EP0999349B1 (fr) Turbine axiale
EP1624192A1 (fr) Aube de rouet pour compresseur axial
WO2009130262A1 (fr) Bague de support pour un dispositif de guidage avec canal d’air de retenue
WO2014012725A1 (fr) Diffuseur parallèle pour une machine à fluide
DE102005059438B3 (de) Turbostrahlantrieb
EP3387244A1 (fr) Turbine à gaz d'aéronef à tuyère de sortie variable d'un canal de flux secondaire
DE3413304A1 (de) Verstellbare leitbeschaufelung fuer eine turbomaschine
EP1574667B1 (fr) Diffuseur pour compresseur
EP2318664B1 (fr) Dispositif de turbine à gaz avec conduit de transition non cylindrique
DE102013226496A1 (de) Fluggasturbine mit verstellbarer Ausströmdüse des Nebenstromkanals
DE102020216193A1 (de) Schaufelbauteil, Verfahren zu dessen Herstellung und Gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005006804

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180319

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006804

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210406

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220124

Year of fee payment: 18

Ref country code: FR

Payment date: 20220125

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230119