EP1706555B1 - Anchoring for pre-tensioned and/or stressed tensile elements - Google Patents

Anchoring for pre-tensioned and/or stressed tensile elements Download PDF

Info

Publication number
EP1706555B1
EP1706555B1 EP04802011A EP04802011A EP1706555B1 EP 1706555 B1 EP1706555 B1 EP 1706555B1 EP 04802011 A EP04802011 A EP 04802011A EP 04802011 A EP04802011 A EP 04802011A EP 1706555 B1 EP1706555 B1 EP 1706555B1
Authority
EP
European Patent Office
Prior art keywords
wedge
elasticity
layer
modulus
anchorage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04802011A
Other languages
German (de)
French (fr)
Other versions
EP1706555A1 (en
Inventor
Stefan L. Burtscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovationsagentur GmbH
Original Assignee
Innovationsagentur GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovationsagentur GmbH filed Critical Innovationsagentur GmbH
Publication of EP1706555A1 publication Critical patent/EP1706555A1/en
Application granted granted Critical
Publication of EP1706555B1 publication Critical patent/EP1706555B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/085Tensile members made of fiber reinforced plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/122Anchoring devices the tensile members are anchored by wedge-action
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/127The tensile members being made of fiber reinforced plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T24/00Buckles, buttons, clasps, etc.
    • Y10T24/39Cord and rope holders
    • Y10T24/3996Sliding wedge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members
    • Y10T403/7047Radially interposed shim or bushing
    • Y10T403/7051Wedging or camming
    • Y10T403/7052Engaged by axial movement
    • Y10T403/7054Plural, circumferentially related shims between members

Definitions

  • the invention relates to an anchoring for at least one prestressed or loaded tension element, which has one or more wedges, an anchor body and a wedge-shaped layer, wherein the tensile force by the wedge or wedges on the anchor body is transferable and the wedge-shaped layer with respect to the other parts the anchoring has lower modulus of elasticity, and wherein the largest thickness of the wedge-shaped layer is measured normal to the longitudinal axis of the tension element in the region close to the load of the anchorage.
  • Wedge anchors have been used for many years for tempering steels of high strength steel. They are based on a simple principle and can be produced with little expenditure of time and materials. In prestressed concrete construction, wedge anchoring is the most common method of anchoring.
  • the force in the tension element is introduced via shear stresses into the wedges and from there into the anchor body. Wedges and anchor bodies are in contact via an inclined plane on which the wedges can slide. Due to the wedge shape, when the tension element is loaded, a pressure force normal to the tension element, which presses the wedges against the tension element, is produced.
  • fiber composites are increasingly being used for prestressed or loaded tension elements such as lamellas, wires, rods or strands.
  • the fiber composites In comparison to the metallic tension elements, the fiber composites have a very high corrosion resistance and a low weight.
  • the main disadvantage of fiber composites is the high transverse pressure sensitivity.
  • the height of the maximum transferable shear stress between wedge and tension element depends on the contact pressure. The higher the contact pressure, the higher the transmittable maximum shear stress.
  • the contact pressure causes a transverse pressure in the tension element. For materials which are sensitive to transverse pressure, e.g. Fiber composite materials, the maximum transverse pressure must not exceed a certain size.
  • a minimum amount of slippage is necessary.
  • a conventional wedge anchoring creates a high contact pressure between the wedge and tension element in the region close to the load, there also has a high shear stress can arise, which subsides quickly and remains almost constant to the remote area.
  • the sum of the shear stresses along the entire contact surface between wedge and tension element corresponds to the tensile force in the tension element.
  • the largest shear stress occurs at the point of maximum contact pressure, at which also the largest part of the tensile force per surface unit is transmitted.
  • a disadvantage is that the shear stress can hardly be activated from the point of the maximum shear stress to the area away from the load.
  • Another disadvantage of a conventional anchoring is that the largest maximum contact pressure and the maximum maximum shear stress must be relatively low, since materials such as fiber composites fail at low contact pressures or transverse pressures.
  • An anchoring for a tension element made of fiber composite material is known, which is not designed as a wedge anchorage, but it is transmitted between the tension element and an anchor box shear forces through an adhesive bond via a potting compound.
  • the anchor box has a profiling, in which the forces are transmitted via a toothing.
  • a conical potting anchoring for fiber composites In the WO 95/29305 is described a conical potting anchoring for fiber composites.
  • the anchor box has a conical cavity.
  • the cavity is filled along the direction of the tension element in sections with potting compound with different modulus of elasticity.
  • potting compound with the lowest modulus of elasticity In the section close to the load area potting compound with the lowest modulus of elasticity is installed.
  • grouting material with ever-increasing elastic moduli is used. This achieves a more even force transmission from the tension element to the potting body.
  • the production of these layers is a complicated process.
  • the EP 0 197 912 A2 discloses an anchor for tendons of the type described above made of high strength steel, in which the anchor body consists of two layers of different materials, such as plastic or soft metal.
  • the layer of softer material is designed with a constant thickness over the entire wedge length or with a variable over the wedge length layer, but which has the smallest thickness in the region close to the load.
  • Transverse pressure-sensitive materials such as fiber composites, can not withstand these high transverse pressures and thereby fail prematurely.
  • the object of the invention is to provide an anchoring in which the contact pressures and the shear stresses acting on the tension element to be anchored are distributed uniformly over the clamping length of the tension element or slightly increase from the load near to the load distant area and have lower maximum values for contact pressures and shear stresses as the known embodiments.
  • the production and installation on the construction site should be possible in a substantially simplified manner compared with a potting anchorage.
  • the wedge and / or the anchor body is (are) formed by at least two wedge-shaped adjacent layers, wherein at least one of the layers is formed of a material having a lower modulus of elasticity than the material from which the further ( n) layer (s) of the wedge and / or the anchor body is (are), and the largest thickness of this layer is provided in the region close to the load.
  • the ratio of the moduli of elasticity of the layers is sufficiently great, then the total stiffness of both layers normal to the longitudinal axis of the tensile element is determined mainly by the layer of low modulus material. The thicker the low modulus layer, the lower the stiffness normal to the longitudinal axis of the tension element. Therefore, in the close-to-load area, where the thickness of the low modulus layer is greatest, the stiffness normal to the longitudinal axis of the tension member is less than in the off-load area.
  • the Fig. 1 shows the anchoring 7 in longitudinal section with a wedge 3, which is formed of two layers 32, 33 with a low elastic modulus and a layer 31 with a higher modulus of elasticity.
  • the layers 31, 32, 33 extend along the longitudinal axis 4 of the tension element 1.
  • the layer 33 with a lower modulus of elasticity and a constant thickness is used to compensate for possible stress peaks which may arise due to uneven surfaces or other imperfections.
  • the other lower elastic modulus layer 32 is disposed near the anchor body 2 and has the largest thickness in the near-load region 5, which decreases toward the off-load region 6. As the thickness of the lower elastic modulus layer 32 increases, the overall stiffness of the wedge 3 decreases normal to the longitudinal axis 4 of the tension member 1.
  • the contact pressure rises from the load-near 5 to the remote area 6 back towards easy and it can be utilized for the transmission of shear stresses the entire contact surface between the wedge 3 and tension element 1.
  • large contact pressures occur in the region close to the load 6 and thus also in a shear stress, which increases sharply in a short range, see line c in FIG Fig. 2 .
  • the maximum contact pressure is lower, which is particularly important in the application of fiber composites.
  • the contact pressure is distributed in accordance with the stiffnesses of the layers 31 and 32 and can be varied as a function of the ratio of the moduli of elasticity and the layer thicknesses in the near-load 5 and in the load-distant region 6.
  • the section III-III in Fig. 1 is in Fig. 3 shown and shows the cross section of Fig. 1 for anchoring a tension element 1 with a rectangular cross section, designed as a lamella. In this anchorage two wedges 3 with flat surfaces are used.
  • the anchoring 7 according to Fig. 4 is based on the same principle as anchoring 7 in Fig. 1 , but with the difference that the wedge 3 has a higher modulus of elasticity, the anchor body 2, however, is made up of a layer 22 with a lower modulus of elasticity, which is arranged near the sliding surface, and a layer 21 with a higher modulus of elasticity.
  • the cut VV in Fig. 4 is in Fig. 5 shown and shows the cross section of Fig. 4 for the anchoring of a wire, a stranded wire or a rod 1.
  • this anchorage 7 two complementary wedges 3 with rounded surfaces are used.
  • Fig. 6 shows an anchoring 7 of seven tension elements 1 in longitudinal section.
  • the section along the line VII-VII is in Fig. 7
  • each wedge 3 is divided into a lower elastic modulus layer 32 and a higher modulus elastic layer 31.
  • the lower elastic modulus layer 32 is disposed in the wedge 3 in the tension member 1, and the higher elastic modulus layer 31 is disposed near the sliding surface with the anchor body 2.
  • the tension element 1 is held with three wedges 3 with rounded surfaces.
  • slats When using slats as a tension element 1, not always several wedges 3 must be used for anchoring, see Fig. 8 , It is also only a wedge 3 of layers 31, 32, 33 with low and higher moduli of elasticity, which presses the blade 1 against a flat, lying parallel to the lamella 1 layer 23, which is part of the anchor body 2, used.
  • the wedge 3 here is additionally provided with a layer 33 with a lower modulus of elasticity and a constant thickness, in order to compensate for possible stress peaks which could arise due to imperfections.
  • the anchor body 2 a layer 23 with a lower modulus of elasticity and constant thickness near the lamella 1 on.
  • This anchor 7 offers particular advantages in a subsequent reinforcement of a structure, since the anchoring 7 can be installed at a small distance from the component surface and the resulting torque can be kept low on the anchorage 7.
  • the wedge 3 may also consist of multiple layers 31, 32, 34 with lower and higher moduli of elasticity 32, 34, as in FIG Fig. 9 shown here, in which case the layers 32, 34 with a lower modulus of elasticity have a greater thickness in the area close to the load 5 and these are not all guided into the area 6 remote from the load.
  • Fig. 10 For example, an anchoring 7 in which the wedges 3 consist of a layer 32 of lower modulus of elasticity and a layer 31 of higher modulus of elasticity is shown.
  • the peculiarity here is that the layer 32 having a lower modulus of elasticity has the greatest thickness at the region close to the load of the layer 31 with a higher modulus of elasticity, but is guided further in order to better initiate the introduction of force and occurring vibration stresses.
  • Fig. 11 For example, an anchoring 7 having a wedge 3 made of a lower modulus of elasticity layer 32 and a higher modulus of elasticity layer 31 is used, the thickness of the lower modulus of elasticity layer 32 changing its thickness to better match the contact pressure, not linearly but to a higher order curve ,
  • the lower modulus material layers 32, 33, 34, 22, 23 may also be created by geometric adjustments such as pores, holes, cavities or other recesses.
  • the embodiment with a wedge 3 of at least one layer 32 with a lower and a layer 31 with a higher modulus of elasticity or with an anchor body 2 of at least a lower modulus layer 22 and a higher modulus layer 21 may be used in combination.
  • the lower modulus layers may be supplemented or replaced by geometric adjustments such as pores, holes, cavities or other recesses.
  • an anchoring 7 of a tension element 1 formed by a CFRP lamella 1 which usually has a modulus of elasticity between 165,000 and 300,000 N / mm 2 , a strength between 1,500 and 3,500 N / mm 2 and a thickness of 0, 5 to 2.0 mm, as in Fig. 1 shown, described.
  • the lower elastic modulus layers 32, 33 are made of plastic having a modulus of elasticity of 5800 N / mm 2
  • the higher elastic modulus layer 31 and the anchor body 2 are made of steel having a modulus of elasticity of 210000 N / mm 2 .
  • the slip plane includes with the longitudinal axis 4 of the tension element 1 an angle of 15 ° and the wedge length, measured parallel to the tension element 1, is 80 mm.
  • the layer 32 with a lower modulus of elasticity has a thickness of 4 mm in the area close to the load 5 and a thickness of 2 mm in the area away from the load 6.
  • the thickness of the layer 32 is always measured normally on the longitudinal axis 4 of the tension element 1.
  • a contact pressure which increases from the load near 5 to the load distant region 6 of about 80 N / mm 2 to 100 N / mm 2 without local voltage spikes.
  • the shear stresses are evenly distributed, have no local peaks and give a coefficient of friction of 0.3 a maximum value of about 45 N / mm 2 .
  • CFRP lamellae 1 can certainly withstand higher contact pressures and shear stresses, which is why a failure of the tension element can only occur in the free length.
  • Steel may be used for the layer 31 of the higher modulus wedge 3 and epoxy for the lower modulus layer 32, 33.
  • the modulus of elasticity of steel is 210000 N / mm 2 and that of epoxy resin about 5800 N / mm 2 .
  • the production of a wedge 3, as in Fig. 6 shown, can be done in a formwork. So that the formwork can be easily removed after curing of the epoxy resin, it is recommended that these be made of Teflon.
  • the layer 31 of steel must be milled in advance and is attached before casting in the formwork. In order to avoid air pockets during casting, it is advisable to cast the epoxy resin from bottom to top. For this purpose, the epoxy resin can be pressed with an overpressure through an opening which is located at the bottom of the formwork. After curing and stripping, a two-layered wedge 3 according to the invention is obtained.
  • the higher elastic modulus must be at least two times higher than the lower modulus of elasticity, it is favorable if it is between 20 and 30 times higher.
  • the modulus of elasticity can be more than doubled by the addition of fillers, such as spheres of Al 2 O 3 with diameters between 0.5 and 3 mm. It is therefore possible to use the same epoxy resin but with Al 2 O 3 spheres for the lower elastic modulus layer 22, 32 and for the higher modulus elastic layer 21, 31.
  • Wedges 3 designed as lamellae tension elements 1 have no curved surfaces. They can be produced in a formwork by casting or by machine with an extruder. This works so that the cross-section of the wedge 3 is pressed with the layers 21, 22, 31, 32, 33, 34 with lower and higher modulus of elasticity as a strand of a mouthpiece. From this strand are then cut the wedges in the required widths.
  • the non-positive connection of the layers 31, 32, 33, 34, 21, 22 with lower and higher modulus of elasticity of the wedge 3 or anchor body 2 can be produced by toothing and / or gluing.
  • the gearing can, as in Fig. 12 shown executed. But there are others as well Fig. 12 illustrated interlocking elevations or depressions possible.
  • the teeth may be additionally glued.
  • the frictional connection can already take place during production, when the layer 21, 31 with higher and the layer 22, 32, 33, 34 with lower modulus of elasticity are cast together in a formwork. If the connection of the layers 31, 32, 33, 34 or 21, 22 is subsequently carried out with a bond, the contact surfaces should be roughened and free of grease.
  • particularly low-viscosity adhesives are suitable, which can withstand even high loads, such as the five-minute epoxy adhesive Hysol 3430 from Loctite.
  • the shear transmission between tension element 1 and wedge 3 can take place by friction, adhesion and / or toothing. If the transfer occurs by friction, it is expedient to increase this by roughening the contact surfaces or to use a friction material.
  • Friction material is, for example, a carbon fiber plastic in which the carbon fibers make a right angle with the friction surface.
  • epoxy resin adhesives such as Sikadur 30 from SIKA or the five-minute fast-curing epoxy adhesive Hysol 3422 from Loctite are favorable.
  • the bonding can be achieved by a profiling, similar to that between the layers 21, 22 or 31, 32 with lower and higher modulus of elasticity Fig. 12 shown to be improved.
  • a short curing time of the adhesive is advantageous for the execution.
  • the curing of epoxy resin based adhesives can be accelerated by the application of heat. Approximately every 10 ° of heating reduces the hardening time by half. The heating can be done for example by a heating wire in the wedge. Alternatively, the tension element 1 can be used instead of the heating wire.
  • the tension element 1 If a voltage is applied to both sides of the glue joint in the region close to the load and in the area away from the load and a current flows, then the tension element 1 and thus also the adhesive heat up. The lower the resistance, the higher the current flow and thus the heat generated. If electrically conductive adhesive is used, the electrical contacts can also be installed in the load-near and off-load area of the wedge 3 and heat the adhesive by applying a voltage.
  • the connection can also be made by profiling. It is advantageous if the profiling is performed regularly, for example in cross section, as a result of saw teeth or as a sine wave.
  • the profiling must be equal to the profiling of the tension element 1, so that a toothing is possible.
  • the profiling can be pressed on both sides with rollers in the soft matrix material.
  • the profiling of the wedge 3 can be done during casting by appropriate shaping in the formwork.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Piles And Underground Anchors (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Dowels (AREA)
  • Pens And Brushes (AREA)
  • Bridges Or Land Bridges (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Anchoring (7) comprises a wedge (3) and anchoring body (2) formed by at least two wedge-shaped layers (31, 32) lying over each other. One of the layers (32) is made from a material with a lower elastic modulus than the material of the other layer. Preferred Features: Pores, holes, recesses or slits are arranged in the layer having the lower elastic modulus. The different elastic moduli of the single layers are effected by special treatment such as heating and cooling during their manufacture. The anchoring body has receivers for wedges as coupling for tensile elements.

Description

Die Erfindung betrifft eine Verankerung für zumindest ein vorgespanntes oder belastetes Zugelement, die einen oder mehrere Keile, einen Ankerkörper und eine keilförmige Schicht aufweist, wobei die Zugkraft durch den Keil oder die Keile auf den Ankerkörper übertragbar ist und die keilförmige Schicht einen gegenüber den anderen Teilen der Verankerung niedrigeren Elastizitätsmodul aufweist, und wobei die größte Dicke der keilförmigen Schicht gemessen normal zur Längsachse des Zugelementes im lastnahen Bereich der Verankerung liegt.The invention relates to an anchoring for at least one prestressed or loaded tension element, which has one or more wedges, an anchor body and a wedge-shaped layer, wherein the tensile force by the wedge or wedges on the anchor body is transferable and the wedge-shaped layer with respect to the other parts the anchoring has lower modulus of elasticity, and wherein the largest thickness of the wedge-shaped layer is measured normal to the longitudinal axis of the tension element in the region close to the load of the anchorage.

Keilverankerungen werden seit vielen Jahren für das Vorspannen von Spannstählen aus hochfestem Stahl verwendet. Sie beruhen auf einem einfachen Prinzip und sind mit geringem Zeit- und Materialaufwand herstellbar. Im Spannbetonbau ist die Keil verankerung die häufigste Verankerungsart.Wedge anchors have been used for many years for tempering steels of high strength steel. They are based on a simple principle and can be produced with little expenditure of time and materials. In prestressed concrete construction, wedge anchoring is the most common method of anchoring.

Bei Keilverankerungen wird die Kraft im Zugelement über Schubspannungen in die Keile und von dort weiter in den Ankerkörper eingeleitet. Keile und Ankerkörper sind über eine geneigte Ebene, auf der die Keile gleiten können, in Kontakt. Durch die Keilform entsteht beim Belasten des Zugelementes eine Andruckkraft normal zum Zugelement, die die Keile an das Zugelement drückt.In wedge anchorages, the force in the tension element is introduced via shear stresses into the wedges and from there into the anchor body. Wedges and anchor bodies are in contact via an inclined plane on which the wedges can slide. Due to the wedge shape, when the tension element is loaded, a pressure force normal to the tension element, which presses the wedges against the tension element, is produced.

International werden anstelle von Stahl vermehrt neuartige Materialien wie Faserverbundwerkstoffe für vorgespannte oder belastete Zugelemente, wie Lamellen, Drähte, Stäbe oder Litzen, verwendet. Im Vergleich zu den metallischen Zugelementen weisen die Faserverbundwerkstoffe einen sehr hohen Korrosionswiderstand und ein geringes Gewicht auf. Der wesentliche Nachteil der Faserverbundwerkstoffe ist die hohe Querdruckempfindlichkeit.Internationally, instead of steel, new materials such as fiber composites are increasingly being used for prestressed or loaded tension elements such as lamellas, wires, rods or strands. In comparison to the metallic tension elements, the fiber composites have a very high corrosion resistance and a low weight. The main disadvantage of fiber composites is the high transverse pressure sensitivity.

Die Höhe der maximal übertragbaren Schubspannung zwischen Keil und Zugelement richtet sich nach dem Anpressdruck. Je höher der Anpressdruck um so höher die übertragbare maximale Schubspannung. Der Anpressdruck verursacht einen Querdruck im Zugelement. Bei Materialien, die auf Querdruck empfindlich sind, wie z.B. Faserverbundwerkstoffe, darf der maximal auftretende Querdruck eine bestimmte Größe nicht überschreiten.The height of the maximum transferable shear stress between wedge and tension element depends on the contact pressure. The higher the contact pressure, the higher the transmittable maximum shear stress. The contact pressure causes a transverse pressure in the tension element. For materials which are sensitive to transverse pressure, e.g. Fiber composite materials, the maximum transverse pressure must not exceed a certain size.

Um die Schubspannungen zwischen Keil und Zugelement zu aktivieren, ist ein Mindestmaß an Schlupf notwendig. Bei einer üblichen Keilverankerung entsteht im lastnahen Bereich ein hoher Anpressdruck zwischen Keil und Zugelement, der dort auch eine hohe Schubspannung entstehen läßt, die schnell wieder abklingt und bis zum lastfernen Bereich nahezu konstant bleibt. Die Summe der Schubspannungen entlang der gesamten Kontaktfläche zwischen Keil und Zugelement entspricht der Zugkraft im Zugelement. Die größte Schubspannung tritt an der Stelle des maximalen Anpressdrucks auf, an der auch der größe Anteil der Zugkraft je Oberflächeneinheit übertragen wird. Ein Nachteil ist, dass von der Stelle der maximalen Schubspannung bis zum lastfernen Bereich die Schubspannung kaum aktiviert werden kann. Ein weiterer Nachteil einer konventionellen Verankerung ist, dass der größte maximale Anpressdruck und die größte maximale Schubspannung relativ gering sein müssen, da Materialien, wie Faserverbundwerkstoffe, bei geringen Anpressdrücken oder Querdrücken versagen.To activate the shear stresses between the wedge and the tension element, a minimum amount of slippage is necessary. In a conventional wedge anchoring creates a high contact pressure between the wedge and tension element in the region close to the load, there also has a high shear stress can arise, which subsides quickly and remains almost constant to the remote area. The sum of the shear stresses along the entire contact surface between wedge and tension element corresponds to the tensile force in the tension element. The largest shear stress occurs at the point of maximum contact pressure, at which also the largest part of the tensile force per surface unit is transmitted. A disadvantage is that the shear stress can hardly be activated from the point of the maximum shear stress to the area away from the load. Another disadvantage of a conventional anchoring is that the largest maximum contact pressure and the maximum maximum shear stress must be relatively low, since materials such as fiber composites fail at low contact pressures or transverse pressures.

Aus der DE 100 10 564 C1 ist eine Verankerung für ein Zugelement aus Faserverbundwerkstoff bekannt, die nicht als Keilverankerung ausgebildet ist, sondern es werden zwischen dem Zugelement und einer Ankerbüchse Schubkräfte durch einen Klebeverbund über eine Vergussmasse übertragen. Die Ankerbüchse weist eine Profilierung auf, bei der die Kräfte über eine Verzahnung übertragen werden.From the DE 100 10 564 C1 An anchoring for a tension element made of fiber composite material is known, which is not designed as a wedge anchorage, but it is transmitted between the tension element and an anchor box shear forces through an adhesive bond via a potting compound. The anchor box has a profiling, in which the forces are transmitted via a toothing.

In der WO 95/29305 ist eine konische Vergußverankerung für Faserverbundwerkstoffe beschrieben. Die Ankerbüchse weist einen konischen Hohlraum auf. Der Hohlraum wird entlang der Richtung des Zugelementes in Abschnitten mit Vergußmasse mit unterschiedlichem Elastizitätsmodul ausgefüllt. Im Abschnitt am lastnahen Bereich wird Vergußmasse mit dem niedrigsten Elastizitätsmodul-eingebaut. In den folgenden Abschnitten bis zum lastfernen Bereich wird Vergußmaterial mit immer höher werdenden Elastizitätsmodulen verwendet. Man erreicht damit eine gleichmäßigere Kraftübertragung vom Zugelement auf den Vergusskörper. Die Herstellung dieser Schichten ist jedoch ein aufwendiger Prozess.In the WO 95/29305 is described a conical potting anchoring for fiber composites. The anchor box has a conical cavity. The cavity is filled along the direction of the tension element in sections with potting compound with different modulus of elasticity. In the section close to the load area potting compound with the lowest modulus of elasticity is installed. In the following sections up to the non-load area grouting material with ever-increasing elastic moduli is used. This achieves a more even force transmission from the tension element to the potting body. However, the production of these layers is a complicated process.

Die EP 0 197 912 A2 . offenbart eine Verankerung für Spannglieder der eingangs beschriebenen Art aus hochfestem Stahl, bei der der Ankerkörper aus zwei Schichten mit unterschiedlichen Materialien, wie Kunststoff oder Weichmetall, besteht. Die Schicht aus weicherem Material ist mit konstanter Dicke über die gesamte Keillänge oder mit einer über die Keillänge veränderlichen Schicht, die jedoch im lastnahen Bereich die kleinste Dicke aufweist, ausgeführt. Bei Belastung des Zugelementes kommt es zu hohen Querdruckspitzen im lastnahen Bereich. Querdruckempfindliche Materialien, wie Faserverbundwerkstoffe, können diesen hohen Querdrücken nicht standhalten und versagen dadurch vorzeitig.The EP 0 197 912 A2 , discloses an anchor for tendons of the type described above made of high strength steel, in which the anchor body consists of two layers of different materials, such as plastic or soft metal. The layer of softer material is designed with a constant thickness over the entire wedge length or with a variable over the wedge length layer, but which has the smallest thickness in the region close to the load. When the tension element is loaded, there are high transverse pressure peaks in the area close to the load. Transverse pressure-sensitive materials, such as fiber composites, can not withstand these high transverse pressures and thereby fail prematurely.

In der EP 0 197 912 ist weiters eine Variante gezeigt, gemäß der in einem einteiligen Ankerkörper zwei in Längsrichtung des Zugelementes hintereinander liegende Keile vorgesehen sind, von denen der lastnähere Keil aus einem Pressteil, der weicher ist als das Zugelement, gebildet ist, wobei dieser keilförmige Pressteil seine größte Dicke im lastnahen Bereich aufweist. Der lastfernere Keil ist als Ankerteil ausgebildet und weist seine größte Dicke im lastfernen Bereich auf, sodass hierdurch Spannungsspitzen und somit Querdruckspitzen am Zugelement auftreten.In the EP 0 197 912 is further shown a variant according to which in a one-piece anchor body two longitudinally of the tension element consecutive wedges are provided, of which the lastnähere wedge of a pressing part, which is softer than the tension element is formed, said wedge-shaped pressing part its greatest thickness in has close to the load area. The load-distant wedge is designed as an anchor part and has its greatest thickness in the non-load area, so that this spikes and thus transverse pressure peaks occur on the tension element.

Aufgabe der Erfindung ist die Schaffung einer Verankerung, bei der die Anpressdrücke und die Schubspannungen, die auf das zu verankernde Zugelement wirken, über die Einspannlänge des Zugelementes gleichmäßig verteilt sind oder vom lastnahen zum lastfernen Bereich leicht ansteigen und geringere maximale Werte für Anpressdrücke und Schubspannungen aufweisen als die bekannten Ausführungsformen. Zudem soll gegenüber einer Vergußverankerung die Herstellung und das Installieren auf der Baustelle wesentlich vereinfacht möglich sein.The object of the invention is to provide an anchoring in which the contact pressures and the shear stresses acting on the tension element to be anchored are distributed uniformly over the clamping length of the tension element or slightly increase from the load near to the load distant area and have lower maximum values for contact pressures and shear stresses as the known embodiments. In addition, the production and installation on the construction site should be possible in a substantially simplified manner compared with a potting anchorage.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der Keil und/oder der Ankerkörper mindestens von zwei keilförmigen aneinanderliegenden Schichten gebildet ist (sind), wobei mindestens eine der Schichten aus einem Material mit einem niedrigeren Elastizitätsmodul gebildet ist als das Material, aus dem die weitere(n) Schicht(en) des Keiles und/oder des Ankerkörpers gebildet ist (sind), und die größte Dicke dieser Schicht im lastnahen Bereich vorgesehen ist.This object is achieved according to the invention in that the wedge and / or the anchor body is (are) formed by at least two wedge-shaped adjacent layers, wherein at least one of the layers is formed of a material having a lower modulus of elasticity than the material from which the further ( n) layer (s) of the wedge and / or the anchor body is (are), and the largest thickness of this layer is provided in the region close to the load.

Hierdurch ist es möglich, den Anpressdruck und die Schubspannungen zwischen Keil und Zugelement vom lastnahen zum lastfernen Bereich hin gleichmäßig zu verteilen oder sogar leicht ansteigen zu lassen. Wenn das Verhältnis der Elastizitätsmodule der Schichten ausreichend groß ist, dann wird die Gesamtsteifigkeit beider Schichten normal zur Längsachse des Zugelementes hauptsächlich durch die Schicht aus Material mit niedrigem Elastizitätsmodul bestimmt. Je dicker die Schicht mit niedrigem Elastizitätsmodul ist, desto geringer ist die Steifigkeit normal zur Längsachse des Zugelementes. Daher ist im lastnahen Bereich, wo die Dicke der Schicht mit niedrigem Elastizitätsmodul am größten ist, die Steifigkeit normal zur Längsachse des Zugelementes geringer als im lastfernen Bereich. Diese geringere Steifigkeit im lastnahen Bereich dieses statisch unbestimmten Systems bewirkt einen geringeren maximalen Anpressdruck und somit eine gleichmäßige Verteilung des Anpressdrucks oder einen leichten Anstieg vom lastnahen zum lastfernen Bereich. Dadurch wird es auch möglich, die Schubspannungen im Kontaktbereich zwischen Zugelement und Keil über die gesamte Länge besser zu aktivieren. Der hierbei erreichte geringe maximale Anpressdruck verhindert ein Zerstören des Zugelementes zufolge des Querdrucks.This makes it possible to evenly distribute the contact pressure and the shear stresses between the wedge and tension element from the load-near to the load-distant area or even to increase slightly. If the ratio of the moduli of elasticity of the layers is sufficiently great, then the total stiffness of both layers normal to the longitudinal axis of the tensile element is determined mainly by the layer of low modulus material. The thicker the low modulus layer, the lower the stiffness normal to the longitudinal axis of the tension element. Therefore, in the close-to-load area, where the thickness of the low modulus layer is greatest, the stiffness normal to the longitudinal axis of the tension member is less than in the off-load area. This lower stiffness in the load-near range of this statically indeterminate system causes a lower maximum contact pressure and thus a uniform distribution of the contact pressure or a slight increase from the load near to the load distant area. This also makes it possible to better activate the shear stresses in the contact area between the tension element and the wedge over the entire length. The thereby achieved low maximum contact pressure prevents destruction of the tension element due to the transverse pressure.

Vorteilhafte Ausgestaltungen der erfindungsgemäßen Verankerung sind in den Unteransprüchen gekennzeichnet.Advantageous embodiments of the anchoring according to the invention are characterized in the subclaims.

Die Erfindung wird nun nachfolgend an mehreren Ausführungsbeispielen unter Bezug auf die beigefügte Zeichnung näher erläutert.The invention will now be explained in more detail below with reference to several embodiments with reference to the accompanying drawings.

Dabei zeigen:

  • Fig. 1 einen Längsschnitt mit Ankerkörper, Zugelement und zwei Keilen mit jeweils drei Schichten, wovon zwei Schichten des Keils einen niedrigen Elastizitätsmodul und eine Schicht einen hohen Elastizitätsmodul aufweisen, wobei eine Schicht mit niedrigem Elastizitätsmodul und veränderlicher Dicke nahe der Gleitebene zwischen Keil und Ankerkörper angeordnet ist;
  • Fig. 2 in Diagrammform die idealisierten Schubspannungsverteilungen entlang der Kontaktfläche zwischen Keil und Zugelement für eine herkömmliche Verankerung und eine erfindungsgemäße Verankerung;
  • Fig. 3 einen Querschnitt entlang der Schnittlinie III-III von Fig. 1, wobei hier das Zugelement einen rechteckigen Querschnitt aufweist und zwei Keile aus je drei Schichten eingesetzt werden;
  • Fig. 4 einen Längsschnitt mit Ankerkörper, Zugelement und zwei Keilen, wobei der Ankerkörper aus einer Schicht mit hohem Elastizitätsmodul und einer Schicht mit niedrigem Elastizitätsmodul und veränderlicher Dicke, die nahe der Gleitebene zwischen Keil und Ankerbüchse angeordnet ist, besteht;
  • Fig. 5 einen Querschnitt entlang der Schnittlinie V-V von Fig. 4, wobei das Zugelement hier einen kreisförmigen Querschnitt aufweist und zwei Keile ohne Schichten und ein Ankerkörper mit zwei Schichten eingesetzt werden;
  • Fig. 6 einen Längsschnitt durch eine Verankerung, in der sieben Drähte, Stäbe oder Litzen verankert werden und jeder Keil aus einer Schicht mit hohem Elastizitätsmodul und einer Schicht mit niedrigem Elastizitätsmodul und veränderlicher Dicke, die auf der Seite des Zugelementes angeordnet ist, besteht;
  • Fig. 7 einen Querschnitt entlang der Schnittlinie VII-VII von Fig. 6, wobei das Zugelement hier einen kreisförmigen Querschnitt aufweist und je Zugelement drei Keile aus zwei Schichten eingesetzt werden;
  • Fig. 8 einen Längsschnitt durch eine Verankerung in asymmetrischer Ausführung, bestehend aus Ankerkörper, Zugelement und einem Keil, der aus einer Schicht mit hohem Elastizitätsmodul und zwei Schichten mit niedrigem Elastizitätsmodul gefertigt ist, wovon eine Schicht mit niedrigem Elastizitätsmodul mit veränderlicher Dicke nahe der Gleitebene von Keil und Ankerbüchse angeordnet ist, und das Zugelement gegen eine zur Achse des Zugelementes parallele Ebene drückt und damit die Kräfte aus dem Zugelement in den Keil und die parallele Ebene eingeleitet werden;
  • Fig. 9 einen Längsschnitt durch eine Verankerung, die mit dreischichtigen Keilen ausgeführt ist, wovon zwei Schichten mit niedrigem Elastizitätsmodul und veränderlicher Dicke im lastnahen Bereich die größte Dicke aufweisen und nur eine Schicht mit niedrigem Elastizitätsmodul bis zum lastfernen Bereich geführt wird;
  • Fig. 10 einen Längsschnitt durch eine Verankerung, deren Keile mit einer Schicht mit niedrigem und einer Schicht mit hohem Elastizitätsmodul ausgeführt sind, wovon die Schicht mit niedrigem Elastizitätsmodul und veränderlicher Dicke weiter zum lastnahen Bereich geführt wird als die Schicht mit hohem Elastizitätsmodul;
  • Fig. 11 einen Längsschnitt durch eine Verankerung, deren Keile mit einer Schicht mit niedrigem und einer Schicht mit hohem Elastizitätsmodul ausgeführt ist, wobei die Schicht mit niedrigem Elastizitätsmodul sich nach einer Kurve höherer Ordnung zum lastfernen Bereich hin verjüngt.
  • Fig. 12 zeigt ein Detail der Verankerung in vergrößertem Maßstab.
Showing:
  • Fig. 1 a longitudinal section with anchor body, tension member and two wedges each having three layers, of which two layers of the wedge have a low modulus of elasticity and a high modulus of elasticity layer, with a layer of low modulus of elasticity and variable thickness disposed near the slip plane between the wedge and the anchor body;
  • Fig. 2 in diagram form the idealized shear stress distributions along the contact surface between wedge and tension element for a conventional anchorage and anchoring according to the invention;
  • Fig. 3 a cross section along the section line III-III of Fig. 1 , wherein here the tension element has a rectangular cross-section and two wedges of three layers are used;
  • Fig. 4 a longitudinal section with anchor body, tension member and two wedges, wherein the anchor body consists of a high modulus and a low elastic modulus layer of variable thickness, which is located near the sliding plane between the wedge and the anchor sleeve;
  • Fig. 5 a cross section along the section line VV of Fig. 4 in which the tension element here has a circular cross-section and two wedges without layers and an anchor body with two layers are used;
  • Fig. 6 a longitudinal section through an anchor anchored in the seven wires, rods or strands and each wedge consists of a high modulus and a low elastic modulus layer of variable thickness, which is arranged on the side of the tension element;
  • Fig. 7 a cross section along the section line VII-VII of Fig. 6 , wherein the tension element here has a circular cross-section and each tension element three wedges of two layers are used;
  • Fig. 8 a longitudinal section through an anchor in asymmetric design, consisting of anchor body, tension member and a wedge, which is made of a high modulus and two layers with low modulus of elasticity, of which a layer of low modulus of elasticity of varying thickness is disposed near the slip plane of the wedge and anchor sleeve, and the tension member is urged against a plane parallel to the axis of the tension member and the forces from the tension member are introduced into the wedge and the parallel plane;
  • Fig. 9 a longitudinal section through an anchorage, which is carried out with three-layer wedges, of which two layers with low elastic modulus and variable thickness in the region close to the load have the greatest thickness and only a layer with low modulus of elasticity is passed to the off-load area;
  • Fig. 10 a longitudinal section through an anchor, the wedges are performed with a layer with a low and a high modulus of elasticity, whereof the low modulus of elasticity and variable thickness layer is led to the region close to the load as the layer with high elastic modulus;
  • Fig. 11 a longitudinal section through an anchor, the wedges is designed with a layer with a low and a high modulus of elasticity, wherein the layer of low modulus of elasticity tapers after a higher-order curve to the non-load area.
  • Fig. 12 shows a detail of anchoring on an enlarged scale.

Die Fig. 1 zeigt die Verankerung 7 im Längsschnitt mit einem Keil 3, der aus zwei Schichten 32, 33 mit niedrigem Elastizitätsmodul und einer Schicht 31 mit höherem Elastizitätsmodul gebildet ist. Die Schichten 31, 32, 33 verlaufen entlang der Längsachse 4 des Zugelementes 1. Die Schicht 33 mit niedrigerem Elastizitätsmodul und konstanter Dicke wird zum Ausgleich von eventuellen Spannungsspitzen, die durch unebene Flächen oder sonstige Imperfektionen entstehen können, eingebaut. Die andere Schicht 32 mit niedrigerem Elastizitätsmodul ist nahe dem Ankerkörper 2 angeordnet und weist die größte Dicke im lastnahen Bereich 5 auf, die zum lastfernen Bereich 6 hin abnimmt. Mit zunehmender Dicke der Schicht 32 mit niedrigerem Elastizitätsmodul nimmt die Gesamtsteifigkeit des Keiles 3 normal zur Längsachse 4 des Zugelementes 1 ab. Der Anpressdruck steigt vom lastnahen 5 zum lastfernen Bereich 6 hin leicht an und es kann die gesamte Kontaktfläche zwischen Keil 3 und Zugelement 1 für die Übertragung der Schubspannungen ausgenutzt werden. Bei herkömmlichen Keilverankerungen kommt es im lastnahen Bereich 6 zu großen Anpressdrücken und damit auch zu einer in einem kurzen Bereich stark ansteigenden Schubspannung, siehe Linie c in Fig. 2. Durch den vom lastnahen 5 zum lastfernen Bereich 6 gleichmäßigen oder auch leicht ansteigenden Anpressdruck kommt es zu einer gleichmäßigeren Verteilung der Schubspannung, wie die Linie b von Fig. 2 veranschaulicht. Zusätzlich ist der maximale Anpressdruck geringer, was besonders bei der Anwendung von Faserverbundwerkstoffen von Bedeutung ist. Der Anpressdruck verteilt sich entsprechend den Steifigkeiten der Schichten 31 und 32 und kann in Abhängigkeit des Verhältnisses der Elastizitätsmodule und der Schichtdicken im lastnahen 5 und im lastfernen Bereich 6 variiert werden.The Fig. 1 shows the anchoring 7 in longitudinal section with a wedge 3, which is formed of two layers 32, 33 with a low elastic modulus and a layer 31 with a higher modulus of elasticity. The layers 31, 32, 33 extend along the longitudinal axis 4 of the tension element 1. The layer 33 with a lower modulus of elasticity and a constant thickness is used to compensate for possible stress peaks which may arise due to uneven surfaces or other imperfections. The other lower elastic modulus layer 32 is disposed near the anchor body 2 and has the largest thickness in the near-load region 5, which decreases toward the off-load region 6. As the thickness of the lower elastic modulus layer 32 increases, the overall stiffness of the wedge 3 decreases normal to the longitudinal axis 4 of the tension member 1. The contact pressure rises from the load-near 5 to the remote area 6 back towards easy and it can be utilized for the transmission of shear stresses the entire contact surface between the wedge 3 and tension element 1. In the case of conventional wedge anchors, large contact pressures occur in the region close to the load 6 and thus also in a shear stress, which increases sharply in a short range, see line c in FIG Fig. 2 , By the load near 5 to the load distant area 6 even or slightly increasing contact pressure results in a more even distribution of the shear stress, like the line b of Fig. 2 illustrated. In addition, the maximum contact pressure is lower, which is particularly important in the application of fiber composites. The contact pressure is distributed in accordance with the stiffnesses of the layers 31 and 32 and can be varied as a function of the ratio of the moduli of elasticity and the layer thicknesses in the near-load 5 and in the load-distant region 6.

Der Schnitt III-III in Fig. 1 ist in Fig. 3 dargestellt und zeigt den Querschnitt von Fig. 1 für die Verankerung eines Zugelementes 1 mit rechteckigem Querschnitt, ausgeführt als Lamelle. In dieser Verankerung kommen zwei Keile 3 mit ebenen Flächen zum Einsatz.The section III-III in Fig. 1 is in Fig. 3 shown and shows the cross section of Fig. 1 for anchoring a tension element 1 with a rectangular cross section, designed as a lamella. In this anchorage two wedges 3 with flat surfaces are used.

Die Verankerung 7 gemäß Fig. 4 basiert auf dem gleichen Prinzip wie die Verankerung 7 in Fig. 1, jedoch mit dem Unterschied, dass der Keil 3 einen höheren Elastizitätsmodul aufweist, der Ankerkörper 2 hingegen aus einer Schicht 22 mit niedrigerem Elastizitätsmodul, die nahe der Gleitfläche angeordnet ist, und einer Schicht 21 mit höherem Elastizitätsmodul aufgebaut ist.The anchoring 7 according to Fig. 4 is based on the same principle as anchoring 7 in Fig. 1 , but with the difference that the wedge 3 has a higher modulus of elasticity, the anchor body 2, however, is made up of a layer 22 with a lower modulus of elasticity, which is arranged near the sliding surface, and a layer 21 with a higher modulus of elasticity.

Der Schnitt V-V in Fig. 4 ist in Fig. 5 dargestellt und zeigt den Querschnitt von Fig. 4 für die Verankerung eines Drahtes, einer Litze oder eines Stabes 1. In dieser Verankerung 7 kommen zwei einander ergänzende Keile 3 mit gerundeten Flächen zum Einsatz.The cut VV in Fig. 4 is in Fig. 5 shown and shows the cross section of Fig. 4 for the anchoring of a wire, a stranded wire or a rod 1. In this anchorage 7, two complementary wedges 3 with rounded surfaces are used.

Fig. 6 zeigt eine Verankerung 7 von sieben Zugelementen 1 im Längsschnitt. Der Schnitt nach der Linie VII-VII ist in Fig. 7 dargestellt und zeigt den Querschnitt der Verankerung 7. Hier ist jeder Keil 3 in eine Schicht 32 mit niedrigerem Elastizitätsmodul und eine Schicht 31 mit höherem Elastizitätsmodul geteilt. Die Schicht 32 mit niedrigerem Elastizitätsmodul ist im Keil 3 beim Spannelement 1 angeordnet und die Schicht 31 mit dem höheren Elastizitätsmodul 31 ist nahe der Gleitfläche mit dem Ankerkörper 2 angeordnet. Gemäß Fig. 7 wird das Zugelement 1 mit drei Keilen 3 mit gerundeten Flächen gehalten. Fig. 6 shows an anchoring 7 of seven tension elements 1 in longitudinal section. The section along the line VII-VII is in Fig. 7 Here, each wedge 3 is divided into a lower elastic modulus layer 32 and a higher modulus elastic layer 31. The lower elastic modulus layer 32 is disposed in the wedge 3 in the tension member 1, and the higher elastic modulus layer 31 is disposed near the sliding surface with the anchor body 2. According to Fig. 7 the tension element 1 is held with three wedges 3 with rounded surfaces.

Bei der Verwendung von Lamellen als Zugelement 1 müssen nicht immer mehrere Keile 3 zur Verankerung verwendet werden, siehe Fig. 8. Es kann auch nur ein Keil 3 aus Schichten 31, 32, 33 mit niedrigen und höheren Elastizitätsmodulen, die die Lamelle 1 gegen eine ebene, parallel zur Lamelle 1 liegenden Schicht 23, die Teil des Ankerkörpers 2 ist, drückt, eingesetzt werden. Der Keil 3 ist hier zusätzlich mit einer Schicht 33 mit niedrigerem Elastizitätsmodul und konstanter Dicke ausgeführt, um eventuelle Spannungsspitzen, die durch Imperfektionen entstehen könnten, auszugleichen. Ebenso weist der Ankerkörper 2 eine Schicht 23 mit niedrigerem Elastizitätsmodul und konstanter Dicke nahe der Lamelle 1 auf. Diese Verankerung 7 bietet besondere Vorteile bei einer nachträglichen Verstärkung eines Tragwerks, da die Verankerung 7 in geringem Abstand von der Bauteiloberfläche eingebaut werden kann und das entstehende Moment auf die Verankerung 7 gering gehalten werden kann.When using slats as a tension element 1, not always several wedges 3 must be used for anchoring, see Fig. 8 , It is also only a wedge 3 of layers 31, 32, 33 with low and higher moduli of elasticity, which presses the blade 1 against a flat, lying parallel to the lamella 1 layer 23, which is part of the anchor body 2, used. The wedge 3 here is additionally provided with a layer 33 with a lower modulus of elasticity and a constant thickness, in order to compensate for possible stress peaks which could arise due to imperfections. Likewise, the anchor body 2 a layer 23 with a lower modulus of elasticity and constant thickness near the lamella 1 on. This anchor 7 offers particular advantages in a subsequent reinforcement of a structure, since the anchoring 7 can be installed at a small distance from the component surface and the resulting torque can be kept low on the anchorage 7.

Der Keil 3 kann auch aus mehren Schichten 31, 32, 34 mit niedrigeren und höheren Elastizitätsmodulen 32, 34, wie in Fig. 9 dargestellt, bestehen, wobei auch hier die Schichten 32, 34 mit niedrigerem Elastizitätsmodul eine größere Dicke im lastnahen Bereich 5 aufweisen und diese nicht alle in den lastfernen Bereich 6 geführt werden.The wedge 3 may also consist of multiple layers 31, 32, 34 with lower and higher moduli of elasticity 32, 34, as in FIG Fig. 9 shown here, in which case the layers 32, 34 with a lower modulus of elasticity have a greater thickness in the area close to the load 5 and these are not all guided into the area 6 remote from the load.

In Fig. 10 ist eine Verankerung 7, bei der die Keile 3 aus einer Schicht 32 mit niedrigerem Elastizitätsmodul und einer Schicht 31 mit höherem Elastizitätsmodul bestehen, dargestellt. Die Besonderheit hier ist, dass die Schicht 32 mit niedrigerem Elastizitätsmodul beim lastnahen Bereich der Schicht 31 mit höherem Elastizitätsmodul die größte Dicke aufweist, jedoch weiter geführt wird, um die Krafteinleitung und auftretende Schwingungsbeanspruchungen besser einleiten zu können.In Fig. 10 For example, an anchoring 7 in which the wedges 3 consist of a layer 32 of lower modulus of elasticity and a layer 31 of higher modulus of elasticity is shown. The peculiarity here is that the layer 32 having a lower modulus of elasticity has the greatest thickness at the region close to the load of the layer 31 with a higher modulus of elasticity, but is guided further in order to better initiate the introduction of force and occurring vibration stresses.

In Fig. 11 ist eine Verankerung 7 mit einem Keil 3 aus einer Schicht 32 mit niedrigerem Elastizitätsmodul und einer Schicht 31 mit höherem Elastizitätsmodul ausgeführt, wobei die Dicke der Schicht 32 mit niedrigerem Elastizitätsmodul zur besseren Anpassung des Anpressdrucks nicht linear, sondern nach einer Kurve höherer Ordnung ihre Dicke verändert.In Fig. 11 For example, an anchoring 7 having a wedge 3 made of a lower modulus of elasticity layer 32 and a higher modulus of elasticity layer 31 is used, the thickness of the lower modulus of elasticity layer 32 changing its thickness to better match the contact pressure, not linearly but to a higher order curve ,

Die Schichten 32, 33, 34, 22, 23 aus Material mit niedrigerem Elastizitätsmodul können auch durch geometrische Anpassungen, wie Poren, Löcher, Hohlräume oder sonstige Ausnehmungen, erstellt werden.The lower modulus material layers 32, 33, 34, 22, 23 may also be created by geometric adjustments such as pores, holes, cavities or other recesses.

Das Erreichen von Schichten 32, 33, 34, 22, 23 mit niedrigeren und höheren Elastizitätsmodulen 21, 31 in einem Ankerkörper 2 oder einem Keil 3 kann durch spezielle Behandlung, wie z.B. durch Erwärmungs- oder Abkühlvorgänge, bei der Herstellung erreicht werden. Dadurch ist es möglich, Schichten mit veränderlichem Elastizitätsmodul, die entlang der Längsachse 4 des Zugelementes 1 den gleichen Elastizitätsmodul und im lastnahen Bereich 5 die größte Dicke aufweisen, herzustellen.The achievement of layers 32, 33, 34, 22, 23 with lower and higher moduli of elasticity 21, 31 in an anchor body 2 or a wedge 3 may be achieved by special treatment, such as e.g. by heating or cooling processes, during manufacture. This makes it possible to produce layers with variable modulus of elasticity, which have the same modulus of elasticity along the longitudinal axis 4 of the tension element 1 and the greatest thickness in the area close to the load 5.

Die Ausführung mit einem Keil 3 aus mindestens einer Schicht 32 mit niedrigerem und einer Schicht 31 mit höherem Elastizitätsmodul oder mit einem Ankerkörper 2 aus mindestens einer Schicht 22 mit niedrigerem und einer Schicht 21 mit höherem Elastizitätsmodul können miteinander kombiniert zur Anwendung kommen. Genauso können die Schichten mit niedrigerem Elastizitätsmodul durch geometrische Anpassungen, wie Poren, Löcher, Hohlräume oder sonstige Ausnehmungen, ergänzt oder ersetzt werden.The embodiment with a wedge 3 of at least one layer 32 with a lower and a layer 31 with a higher modulus of elasticity or with an anchor body 2 of at least a lower modulus layer 22 and a higher modulus layer 21 may be used in combination. Likewise, the lower modulus layers may be supplemented or replaced by geometric adjustments such as pores, holes, cavities or other recesses.

Es wird nun beispielhaft die Herstellung einer Verankerung 7 eines Zugelementes 1, gebildet von einer CFK-Lamelle 1, die üblicherweise einen Elastizitätsmodul zwischen 165000 und 300000 N/mm2, eine Festigkeit zwischen 1500 und 3500 N/mm2 und eine Dicke von 0,5 bis 2,0 mm aufweist, wie in Fig. 1 dargestellt, beschrieben. Die Schichten 32, 33 mit niedrigerem Elastizitätsmodul sind aus Kunststoff mit einem Elastizitätsmodul von 5800 N/mm2 und die Schicht 31 mit höherem Elastizitätsmodul und der Ankerkörper 2 aus Stahl mit einem Elastizitätsmodul von 210000 N/mm2 gefertigt. Die Gleitebene schließt mit der Längsachse 4 des Zugelementes 1 einen Winkel von 15° ein und die Keillänge, parallel zum Zugelement 1 gemessen, beträgt 80 mm. Die Schicht 32 mit niedrigerem Elastizitätsmodul weist im lastnahen Bereich 5 eine Dicke von 4 mm und im lastfernen Bereich 6 ein Dicke von 2 mm auf. Die Dicke der Schicht 32 wird dabei immer normal auf die Längsachse 4 des Zugelementes 1 gemessen. Bei Erreichen der Festigkeit im Zugelement 1 entsteht dann in der Kontaktfläche zwischen dem Zugelement 1 und dem Keil 3 ein Anpressdruck, der vom lastnahen 5 zum lastfernen Bereich 6 von ca. 80 N/mm2 auf 100 N/mm2 ohne lokale Spannungsspitzen ansteigt. Die Schubspannungen sind gleichmäßig verteilt, weisen keine lokalen Spitzen auf und ergeben für einen Reibbeiwert von 0,3 einen Maximalwert von ca. 45 N/mm2. CFK-Lamellen 1 können durchaus höheren Anpressdrücken und Schubspannungen standhalten, weshalb ein Versagen des Zugelementes nur mehr in der freien Länge auftreten kann.By way of example, an anchoring 7 of a tension element 1 formed by a CFRP lamella 1, which usually has a modulus of elasticity between 165,000 and 300,000 N / mm 2 , a strength between 1,500 and 3,500 N / mm 2 and a thickness of 0, 5 to 2.0 mm, as in Fig. 1 shown, described. The lower elastic modulus layers 32, 33 are made of plastic having a modulus of elasticity of 5800 N / mm 2, and the higher elastic modulus layer 31 and the anchor body 2 are made of steel having a modulus of elasticity of 210000 N / mm 2 . The slip plane includes with the longitudinal axis 4 of the tension element 1 an angle of 15 ° and the wedge length, measured parallel to the tension element 1, is 80 mm. The layer 32 with a lower modulus of elasticity has a thickness of 4 mm in the area close to the load 5 and a thickness of 2 mm in the area away from the load 6. The thickness of the layer 32 is always measured normally on the longitudinal axis 4 of the tension element 1. Upon reaching the strength in the tension element 1 then arises in the contact surface between the tension element 1 and the wedge 3, a contact pressure which increases from the load near 5 to the load distant region 6 of about 80 N / mm 2 to 100 N / mm 2 without local voltage spikes. The shear stresses are evenly distributed, have no local peaks and give a coefficient of friction of 0.3 a maximum value of about 45 N / mm 2 . CFRP lamellae 1 can certainly withstand higher contact pressures and shear stresses, which is why a failure of the tension element can only occur in the free length.

Stahl kann für die Schicht 31 des Keils 3 mit höherem Elastizitätsmodul und Epoxidharz für die Schicht 32, 33 mit niedrigerem Elastizitätsmodul verwendet werden. Der Elastizitätsmodul von Stahl beträgt 210000 N/mm2 und der von Epoxidharz zirka 5800 N/mm2. Die Herstellung eines Keiles 3, wie in Fig. 6 dargestellt, kann in einer Schalung erfolgen. Damit die Schalung nach dem Aushärten des Epoxidharzes leicht entfernt werden kann, empfiehlt es sich, diese aus Teflon herzustellen. Die Schicht 31 aus Stahl muss vorab gefräst werden und wird vor dem Vergießen in der Schalung befestigt. Damit keine Lufteinschlüsse beim Vergießen entstehen, ist es zweckmäßig, das Epoxidharz von unten nach oben zu vergießen. Dazu kann das Epoxidharz mit einem Überdruck durch eine Öffnung, die sich am Tiefpunkt der Schalung befindet, eingepresst werden. Nach dem Aushärten und Ausschalen erhält man einen erfindungsgemäßen zweischichtigen Keil 3.Steel may be used for the layer 31 of the higher modulus wedge 3 and epoxy for the lower modulus layer 32, 33. The modulus of elasticity of steel is 210000 N / mm 2 and that of epoxy resin about 5800 N / mm 2 . The production of a wedge 3, as in Fig. 6 shown, can be done in a formwork. So that the formwork can be easily removed after curing of the epoxy resin, it is recommended that these be made of Teflon. The layer 31 of steel must be milled in advance and is attached before casting in the formwork. In order to avoid air pockets during casting, it is advisable to cast the epoxy resin from bottom to top. For this purpose, the epoxy resin can be pressed with an overpressure through an opening which is located at the bottom of the formwork. After curing and stripping, a two-layered wedge 3 according to the invention is obtained.

Anstelle von Stahl und Epoxidharz können auch andere Materialien eingesetzt werden, wichtig dabei ist nur, daß der Unterschied zwischen höherem und niedrigerem Elastizitätsmodul groß genug ist. Der höhere Elastizitätsmodul muß mindestens zweimal höher sein als der niedrigere Elastizitätsmodul, günstig ist es, wenn er zwischen 20 und 30-mal höher ist.Instead of steel and epoxy, other materials can be used, it is important that the difference between higher and lower modulus of elasticity is large enough. The higher elastic modulus must be at least two times higher than the lower modulus of elasticity, it is favorable if it is between 20 and 30 times higher.

Bei Epoxidharzen kann der Elastizitätsmodul durch die Zugabe von Füllstoffen, wie Kugeln aus Al2O3 mit Durchmessern zwischen 0,5 und 3 mm, um mehr als das doppelte erhöht werden. Es ist daher möglich, für die Schicht 22, 32 mit geringerem Elastizitätsmodul aus Epoxidharz und für die Schicht 21, 31 mit höherem Elastizitätsmodul das gleiche Epoxidharz jedoch mit Al2O3-Kugeln zu verwenden.For epoxy resins, the modulus of elasticity can be more than doubled by the addition of fillers, such as spheres of Al 2 O 3 with diameters between 0.5 and 3 mm. It is therefore possible to use the same epoxy resin but with Al 2 O 3 spheres for the lower elastic modulus layer 22, 32 and for the higher modulus elastic layer 21, 31.

Keile 3 für als Lamellen gestaltete Zugelemente 1 weisen keine gekrümmten Flächen auf. Sie können in einer Schalung durch Gießen oder maschinell mit einer Strangpresse hergestellt werden. Dies funktioniert so, daß der Querschnitt des Keils 3 mit den Schichten 21, 22, 31, 32, 33, 34 mit niedrigerem und höherem Elastizitätsmodul als Strang aus einem Mundstück gepresst wird. Von diesem Strang werden anschließend die Keile in den erforderlichen Breiten geschnitten.Wedges 3 designed as lamellae tension elements 1 have no curved surfaces. They can be produced in a formwork by casting or by machine with an extruder. This works so that the cross-section of the wedge 3 is pressed with the layers 21, 22, 31, 32, 33, 34 with lower and higher modulus of elasticity as a strand of a mouthpiece. From this strand are then cut the wedges in the required widths.

Die kraftschlüssige Verbindung der Schichten 31, 32, 33, 34, 21, 22 mit niedrigerem und höherem Elastizitätsmodul des Keils 3 oder Ankerkörpers 2 kann durch Verzahnung und/oder Klebung hergestellt werden. Die Verzahnung kann, wie in Fig. 12 dargestellt, ausgeführt sein. Es sind aber auch andere als in Fig. 12 dargestellte ineinandergreifende Erhöhungen bzw. Vertiefungen möglich. Um das Hantieren zu erleichtern und die Kraftübertragung zu verbessern, kann die Verzahnung noch zusätzlich verklebt sein. Die kraftschlüssige Verbindung kann schon beim Herstellen erfolgen, wenn die Schicht 21, 31 mit höherem und die Schicht 22, 32, 33, 34 mit niedrigerem Elastizitätsmodul zusammen in einer Schalung vergossen werden. Wird die Verbindung der Schichten 31, 32, 33, 34 bzw. 21, 22 nachträglich mit einer Klebung ausgeführt, sollten die Kontaktflächen aufgeraut und fettfrei sein. Für die Verklebung eignen sich besonders dünnflüssige Kleber, die auch hohen Belastungen widerstehen können, wie beispielsweise der Fünf-Minuten-Epoxid-Klebstoff Hysol 3430 von Loctite.The non-positive connection of the layers 31, 32, 33, 34, 21, 22 with lower and higher modulus of elasticity of the wedge 3 or anchor body 2 can be produced by toothing and / or gluing. The gearing can, as in Fig. 12 shown executed. But there are others as well Fig. 12 illustrated interlocking elevations or depressions possible. In order to facilitate the handling and to improve the power transmission, the teeth may be additionally glued. The frictional connection can already take place during production, when the layer 21, 31 with higher and the layer 22, 32, 33, 34 with lower modulus of elasticity are cast together in a formwork. If the connection of the layers 31, 32, 33, 34 or 21, 22 is subsequently carried out with a bond, the contact surfaces should be roughened and free of grease. For bonding, particularly low-viscosity adhesives are suitable, which can withstand even high loads, such as the five-minute epoxy adhesive Hysol 3430 from Loctite.

Werden die Zugelemente 1 mit Keilen 3 verankert, kann die Schubübertragung zwischen Zugelement 1 und Keil 3 durch Reibung, Klebung und/oder Verzahnung erfolgen. Erfolgt die Übertragung durch Reibung, ist es zweckmäßig, diese durch Aufrauen der Kontaktflächen zu erhöhen oder einen Friktionswerkstoff einzusetzen. Ein guter Friktionswerkstoff ist zum Beispiel ein Kohlefaserkunststoff, bei dem die Kohlefasern einen rechten Winkel mit der Reibfläche einschließen.If the tension elements 1 are anchored with wedges 3, the shear transmission between tension element 1 and wedge 3 can take place by friction, adhesion and / or toothing. If the transfer occurs by friction, it is expedient to increase this by roughening the contact surfaces or to use a friction material. A good Friction material is, for example, a carbon fiber plastic in which the carbon fibers make a right angle with the friction surface.

Wird das Zugelement 1 und der Keil 3 durch eine Klebung verbunden, sind Epoxidharzkleber wie Sikadur 30 der Firma SIKA oder der schnellhärtende Fünf-Minuten-Epoxid-Klebstoff Hysol 3422 der Firma Loctite günstig. Die Verklebung kann durch eine Profilierung, ähnlich wie zwischen den Schichten 21, 22 bzw. 31, 32 mit niedrigerem und höherem Elastizitätsmodul in Fig. 12 dargestellt, verbessert werden. Eine kurze Aushärtungszeit des Klebers ist vorteilhaft für die Ausführung. Das Aushärten von Klebstoffen auf Epoxidharzbasis kann durch die Zufuhr von Wärme beschleunigt werden. Annähernd wird je 10° Erwärmung die Aushärtungszeit um die Hälfte reduziert. Die Erwärmung kann beispielsweise durch einen Heizdraht im Keil erfolgen. Alternativ kann auch das Zugelement 1 anstelle des Heizdrahtes verwendet werden. Wird an beiden Seiten der Klebefuge im lastnahen und im lastfernen Bereich eine Stromspannung angelegt und fließt ein Strom, dann erwärmt sich das Zugelement 1 und damit auch der Klebstoff. Je geringer der Widerstand, umso höher ist der Stromfluss und damit auch die erzeugte Wärme. Wird elektrisch leitender Klebstoff verwendet, können die elektrischen Kontakte auch im lastnahen und lastfernen Bereich des Keils 3 eingebaut werden und durch Anlegen einer Spannung den Klebstoff erwärmen.If the tension element 1 and the wedge 3 are bonded together, epoxy resin adhesives such as Sikadur 30 from SIKA or the five-minute fast-curing epoxy adhesive Hysol 3422 from Loctite are favorable. The bonding can be achieved by a profiling, similar to that between the layers 21, 22 or 31, 32 with lower and higher modulus of elasticity Fig. 12 shown to be improved. A short curing time of the adhesive is advantageous for the execution. The curing of epoxy resin based adhesives can be accelerated by the application of heat. Approximately every 10 ° of heating reduces the hardening time by half. The heating can be done for example by a heating wire in the wedge. Alternatively, the tension element 1 can be used instead of the heating wire. If a voltage is applied to both sides of the glue joint in the region close to the load and in the area away from the load and a current flows, then the tension element 1 and thus also the adhesive heat up. The lower the resistance, the higher the current flow and thus the heat generated. If electrically conductive adhesive is used, the electrical contacts can also be installed in the load-near and off-load area of the wedge 3 and heat the adhesive by applying a voltage.

Die Verbindung kann auch durch eine Profilierung hergestellt werden. Hierbei ist es günstig, wenn die Profilierung regelmäßig, beispielsweise im Querschnitt, als Folge von Sägezähnen oder als Sinuswelle ausgeführt wird. Auf den Keilen 3 muss die Profilierung gegengleich zur Profilierung des Zugelementes 1 sein, damit eine Verzahnung möglich ist. Bei der Herstellung des Zugelementes 1 kann die Profilierung beidseitig mit Rollen in das weiche Matrixmaterial eingedrückt werden. Die Profilierung des Keils 3 kann beim Vergießen durch entsprechende Formgebung in der Schalung erfolgen.The connection can also be made by profiling. It is advantageous if the profiling is performed regularly, for example in cross section, as a result of saw teeth or as a sine wave. On the wedges 3, the profiling must be equal to the profiling of the tension element 1, so that a toothing is possible. In the production of the tension element 1, the profiling can be pressed on both sides with rollers in the soft matrix material. The profiling of the wedge 3 can be done during casting by appropriate shaping in the formwork.

Claims (9)

  1. An anchorage (7) for at least one pre-tensioned or stressed tensile element (1), which comprises at least one wedge (3), an anchor body (2) and a wedge-shaped layer (22, 32, 34), wherein the tensile force is transmittable to the anchor body (2) by means of the at least one wedge (3) and the wedge-shaped layer (22, 32, 34) has a modulus of elasticity that is lower compared to the other parts of the anchorage (7), and whereby the greatest thickness of the wedge-shaped layer (22, 32, 34), measured normal to the longitudinal axis (4) of the tensile element (1), lies in the region (5) of the anchorage (7) which is near the load, characterized in that the at least one wedge (3) and/or the anchor body (2) is/are formed at least by two wedge-shaped adjacent layers (21, 22, 31, 32, 34), with at least one of the layers (22, 32, 34) being formed from a material having a lower modulus of elasticity than the material from which the further layer(s) of the at least one wedge (3) and/or of the anchor body (2) is/are formed, and the greatest thickness of said layer (22, 32, 34) is provided in the region (5) near the load.
  2. An anchorage (7) according to claim 1, characterized in that, in the layer (22, 32, 34) having a lower modulus of elasticity, pores, holes, notches or slots reducing the stiffness of said layer normal to the longitudinal axis (4) of the tensile element (1) are arranged.
  3. An anchorage (7) according to claim 1 or 2, characterized in that the different moduli of elasticity of the individual layers (21, 22, 23, 31, 32, 33, 34) are caused during their manufacture by means of specific treatments such as heating or cooling processes.
  4. An anchorage (7) according to one or several of claims 1 to 3, characterized in that the anchor body (2) as a coupling for two tensile elements (1) is provided with seats for wedges (3), which seats are oriented opposite to each other.
  5. An anchorage (7) according to one or several of claims 1 to 4, characterized in that the layer (22, 32, 34) having a lower modulus of elasticity is connected to the layer (31, 21) having a higher modulus of elasticity via a non-positive and/or positive connection such as a profile with a counterprofile, e.g., a gear tooth system, and/or by adhesive bonding.
  6. An anchorage (7) according to one or several of claims 1 to 5, characterized in that a transmission of shearing force between the at least one wedge (3) and the tensile element (1) is ensured by a non-positive connection and/or by form closure, such as, e.g., by friction, adhesive bonding or the shaping of a profile, e.g., by gearing with counter gear teeth.
  7. An anchorage (7) according to one or several of claims 1 to 6, characterized in that the ratio of a lower modulus of elasticity to a higher modulus of elasticity amounts to at least 1:2, preferably to at least 1:10, especially to between 1:20 and 1:30.
  8. An anchorage (7) according to one or several of claims 1 to 7, characterized in that the wedge-shaped layer having a lower modulus of elasticity is formed by two likewise wedge-shaped partial layers (32, 34) with different moduli of elasticity.
  9. An anchorage (7) according to one or several of claims 1 to 8, characterized in that the at least one wedge (3) and/or the anchor body (2), provided that they are formed from a material having a higher modulus of elasticity, is/are provided with filling materials increasing the modulus of elasticity, such as bodies from Al2O3.
EP04802011A 2003-12-22 2004-12-21 Anchoring for pre-tensioned and/or stressed tensile elements Not-in-force EP1706555B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0206203A AT412564B (en) 2003-12-22 2003-12-22 Anchoring for pre-tensioned and/or stressed tensile elements comprises a wedge and anchoring body formed by at least two wedge-shaped layers lying over each other
PCT/AT2004/000449 WO2005061813A1 (en) 2003-12-22 2004-12-21 Anchoring for pre-tensioned and/or stressed tensile elements

Publications (2)

Publication Number Publication Date
EP1706555A1 EP1706555A1 (en) 2006-10-04
EP1706555B1 true EP1706555B1 (en) 2008-08-20

Family

ID=32932063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802011A Not-in-force EP1706555B1 (en) 2003-12-22 2004-12-21 Anchoring for pre-tensioned and/or stressed tensile elements

Country Status (6)

Country Link
US (1) US7857542B2 (en)
EP (1) EP1706555B1 (en)
CN (1) CN1898450A (en)
AT (2) AT412564B (en)
DE (1) DE502004007928D1 (en)
WO (1) WO2005061813A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644242A (en) * 2011-02-17 2012-08-22 上海方济减震器材有限公司 Tooth-shaped wedge block of guy cable rubber damper

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240647B (en) * 2008-02-28 2010-10-06 柳州职业技术学院 Prestressed reforcement anchoring method and its elastic clamp piece and rigid clamping piece
BR112012002984B1 (en) * 2009-08-12 2019-10-15 Tokyo Rope Manufacturing Co., Ltd. END-STRUCTURE ANCHOR STRUCTURE AND METHOD FOR FIBER-REINFORCED PLASTIC BODY BODY
AT509076B1 (en) * 2010-03-22 2011-06-15 Hermann Dipl Ing Thal ANCHORING FOR SPANNING MEMBERS
CN102343578A (en) * 2010-08-03 2012-02-08 刘于颇 Quick assembly disengaging device
EP2420622A1 (en) * 2010-08-18 2012-02-22 Sika Technology AG Device for the application of force to tension members from fiber-reinforced plastic plates
EP2602399A1 (en) 2011-12-05 2013-06-12 Latvijas Universitates agentura "Latvijas Universitates Polimeru mehanikas Instituts" Gripping device for transmission of tensile load to an elastic strip
EP2631392A1 (en) * 2012-02-21 2013-08-28 Sika Technology AG Device for the application of force to tension members from fiber-reinforced plastic plates
EP2689867A1 (en) * 2012-07-27 2014-01-29 GESIPA Blindniettechnik GmbH Connection element and setting device for a connection element
CN102839823A (en) * 2012-09-21 2012-12-26 铁煤集体企业联合发展有限公司 Prestressed anchorage device
CA2893026C (en) * 2012-12-18 2018-01-16 Wobben Properties Gmbh Anchor, tensioning device, wind energy plant and method for tensioning tensile cords on an anchor
CN103009478B (en) * 2012-12-21 2014-10-01 中铁九局集团有限公司桥梁分公司 Tensioning locking and lossless extending device
CN103410095A (en) * 2013-07-23 2013-11-27 中铁十三局集团第一工程有限公司 Steel strand pulling device
EP3134577A4 (en) * 2014-04-22 2018-01-10 Richard V. Campbell Advanced stranded cable termination methods and design
EP3146120A4 (en) 2014-05-19 2017-11-29 Felix L. Sorkin Modified permanent cap
CN104690665B (en) * 2015-02-16 2017-04-19 沈阳工业大学 Double-layer jig for fatigue elongation test of ordinary steel bar and prestressed steel bar, as well as mounting technique for double-layer jig
EP3314073A1 (en) 2015-06-26 2018-05-02 Danmarks Tekniske Universitet Anchorage device
CN108301637A (en) * 2018-04-12 2018-07-20 贝正河北工程技术有限公司 A kind of pre-stressed carbon fiber plate wedge shape anchorage
CN109629462A (en) * 2019-01-17 2019-04-16 上海悍马建筑科技有限公司 Pre-stressed carbon fiber tension ground tackle
US20200248781A1 (en) * 2019-02-01 2020-08-06 Craig W. Patterson Cinching device
US11486143B2 (en) * 2020-03-26 2022-11-01 Felix Sorkin Intermediate anchor assembly
CN112095466B (en) * 2020-09-17 2022-04-15 东南大学 FRP inhaul cable anchoring method and anchoring end
CN112942685B (en) * 2021-02-07 2022-05-31 哈尔滨工业大学 Novel anchoring system and anchoring method for fiber reinforced resin composite material rod
CN113356589A (en) * 2021-07-21 2021-09-07 中联西北工程设计研究院有限公司 Multifunctional split bolt for building outer wall and using method thereof
CN116659573B (en) * 2023-05-23 2024-07-05 南通理工学院 CFRP sensor point distribution method suitable for health monitoring of anchorage structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6601081U (en) 1966-03-23 1969-04-03 Rehm G DEVICE FOR ANCHORING STEEL BARS OR STEEL WIRE AND THE LIKE WITH PROFILED SURFACE
US3393720A (en) * 1967-09-11 1968-07-23 John M. Fenlin Portable impact tools
AT328156B (en) 1974-04-26 1976-03-10 Felten & Guilleaume Ag Oester ANCHORING DEVICE FOR CONNECTED RODS MADE OF A PLASTIC BODY AND IN PARTICULAR PARALLEL WIRES EMBEDDED IN THESE
AT390100B (en) * 1985-03-05 1990-03-12 Vorspann Technik Gmbh ANCHORAGE FOR TENSION LINKS
FR2686916A1 (en) 1992-01-31 1993-08-06 Sif Entreprise Bachy DEVICE FOR ANCHORING A BEAM OF FIBROUS JONCS.
US5802788A (en) * 1994-02-22 1998-09-08 Kabushiki Kaisha Komatsu Seisakusho Komatsu Plastics Industry Co., Ltd. Fixing device for tensioning member for prestressed concrete
DE59508259D1 (en) 1994-04-25 2000-06-08 Empa ANCHORAGE FOR HIGH-PERFORMANCE FIBER COMPOSITE WIRE
DE19815823C2 (en) 1998-04-08 2000-11-30 Bilfinger Berger Bau Anchoring device for tension members
DE10010564C1 (en) 2000-03-03 2001-07-05 Johann Kollegger Anchoring for pretensioned or loaded tractive component of fiber compound material transmits component tractive forcce to anchor bush via anchor body of hardened cast material
JP2003278314A (en) * 2002-03-20 2003-10-02 Daisen:Kk Strand fixer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644242A (en) * 2011-02-17 2012-08-22 上海方济减震器材有限公司 Tooth-shaped wedge block of guy cable rubber damper

Also Published As

Publication number Publication date
US7857542B2 (en) 2010-12-28
DE502004007928D1 (en) 2008-10-02
US20070221894A1 (en) 2007-09-27
WO2005061813A1 (en) 2005-07-07
ATA20622003A (en) 2004-09-15
EP1706555A1 (en) 2006-10-04
ATE405713T1 (en) 2008-09-15
AT412564B (en) 2005-04-25
CN1898450A (en) 2007-01-17

Similar Documents

Publication Publication Date Title
EP1706555B1 (en) Anchoring for pre-tensioned and/or stressed tensile elements
EP1036246A1 (en) Reinforcement element for load-carrying or load-transferring structural parts and method for fixing said reinforcement element to the surface of a structural part
EP0363779B1 (en) Anchoring device for a tensioning rod composed of a fibre composite
EP1505223A1 (en) Corrosion protected tendon, especially for prestressed concrete
EP0025856A2 (en) Device for anchoring the end of at least one rod of fibrous composite material used as a tensioning member in prestressed concrete constructions
EP2817465B1 (en) Device for the application of force to tension members from fiber-reinforced plastic plates
EP2606185B1 (en) Device for introducing a force into tension members made of fiber-reinforced plastic flat strip lamella
DE2613682A1 (en) DEVICE FOR THE ELASTIC CLAMPING OF GLASS FIBER RODS
DE3640208C2 (en)
EP1380705B1 (en) Use of an anchorage device for tension members
DE10010564C1 (en) Anchoring for pretensioned or loaded tractive component of fiber compound material transmits component tractive forcce to anchor bush via anchor body of hardened cast material
DE2515423B2 (en) Anchoring device for composite strands
DE2333278A1 (en) LONGITUDINAL COMPONENT WITH TENSIONS
DE2425524C3 (en) Clamp anchoring for prestressing steels
EP3061978B1 (en) Fastening element for fastening attachments to a piece of masonry or a concrete body, a fastening system, a tensioning anchor and a method for fastening attachments to a piece of masonry or a concrete body
DE2522807C3 (en) Clamp anchorage
DE2932809A1 (en) End anchorage for tensioning element in prestressed concrete - has compressible clamping elements tightened on to cables
EP1656485B1 (en) Force transfer element
DE3236614C2 (en) Anchoring for a tendon for prestressed concrete
DE2950303A1 (en) Anchor for fibre reinforced bars in concrete base - uses friction clamp providing lateral force by wedges secured by bolts
EP0098927A2 (en) Device for anchoring the end of at least one rod of fibrous composite material used as a tensioning member in prestressed concrete constructions
DE29706119U1 (en) Expansion dowels
AT509718A4 (en) sandwich panel
DE202012010422U1 (en) composite beams

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004007928

Country of ref document: DE

Date of ref document: 20081002

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081201

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: BURTSCHER, STEFAN L.

Effective date: 20081231

Owner name: AUSTRIA WIRTSCHAFTSSERVICE -G. MIT BESCHRANKTER H

Effective date: 20081231

26N No opposition filed

Effective date: 20090525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171228

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171228

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180119

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191230

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004007928

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701