EP1700925A1 - High-strength air cooled steel alloy, manufacturing method and hot worked product - Google Patents

High-strength air cooled steel alloy, manufacturing method and hot worked product Download PDF

Info

Publication number
EP1700925A1
EP1700925A1 EP05101801A EP05101801A EP1700925A1 EP 1700925 A1 EP1700925 A1 EP 1700925A1 EP 05101801 A EP05101801 A EP 05101801A EP 05101801 A EP05101801 A EP 05101801A EP 1700925 A1 EP1700925 A1 EP 1700925A1
Authority
EP
European Patent Office
Prior art keywords
percent
weight
set forth
steel alloy
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05101801A
Other languages
German (de)
French (fr)
Other versions
EP1700925B1 (en
Inventor
Vesa Ollilainen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ovako Bar Oy
Original Assignee
Imatra Steel Oy AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imatra Steel Oy AB filed Critical Imatra Steel Oy AB
Priority to EP05101801A priority Critical patent/EP1700925B1/en
Priority to AT05101801T priority patent/ATE442464T1/en
Priority to DE602005016522T priority patent/DE602005016522D1/en
Publication of EP1700925A1 publication Critical patent/EP1700925A1/en
Application granted granted Critical
Publication of EP1700925B1 publication Critical patent/EP1700925B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Definitions

  • the invention relates to steel, and to a forged product manufactured therewith and characterized by a totally ferritic-pearlitic microstructure without bainite and, accordingly, by a high strength, a particularly high fatigue strength, and good machinability
  • microalloyed steels in hot-forged products are economically sensible as the pieces require no hardening and tempering.
  • a problem with these microsteels is a modest strength, especially a low yield strength, when compared to tempered alloy steels.
  • the highest strength microalloyed forging steel is 46MnVS6, having a minimum yield limit of 580 MPa.
  • the strength of air cooled microalloyed steels can be improved by increased alloying, for example by adding manganese and/or chromium.
  • increased alloying creates a problem as a result of the formation of bainite in the microstructure of steels.
  • An objective in such steels is to obtain a totally ferritic-pearlitic microstructure capable of providing the desired properties. Even small amounts of bainite in the microstructure undermine mechanical properties by decreasing yield strength and toughness, especially elongation and reduction of area in tensile test, as well as by degrading machinability.
  • bainite An element particularly active with regard to the development of bainite is molybdenum, which in such steels must be considered an impurity and the concentration of which must be often limited to as low as not more than 0,03...0,04 wt-%. Occasionally, in the microstructure is formed not only bainite but also untempered martensite, the effect of which on the above properties is even more deteriorating than that of bainite.
  • bainitic steels are a steel as set forth in the published EP application 00850178.5 , which is cooled in air.
  • a problem in this case is also a poor and uneven machinability and an increase of alloy content. Since attaining a totally bainitic structure by air cooling without retaining a constant temperature is difficult in practice, in the microstructure usually formed untempered martensite as well. In order to attain even a moderate toughness and machinability, it is generally necessary that the pieces be also annealed for softening hard martensite regions, which increases costs even more.
  • an object of the invention is to provide a steel alloy having improved machinability combined with high yield stress and toughness.
  • a steel of the invention is characterized by what is set forth in the characterizing clause of claim 1.
  • the simultaneous use of silicon alloying and molybdenum alloying results economically a high-strength steel, having a structure which is purely ferritic-pearlitic with neither bainite nor martensite nor drawbacks inflicted thereby.
  • chromium concentrations within the range of appr. 0,5 wt-% to appr. 1,5 wt-% enables an improvement in the nitriding properties of steel.
  • the chromium concentration is preferably within the range of appr. 0,5 wt-% to appr. 0,8 wt-%.
  • the chromium alloying causes development of chromium nitrides in the ferritic diffusion layer of a nitrided surface, thus increasing the layer's hardness.
  • 1 wt-% of chromium provides a hardness of about 600 HV ( K-E. Thelning, Steel and its Heat Treatment, Butterworths 1975 pp. 86-87 ). This hardness in the diffusion layer is sufficient even for highly demanding mechanical engineering.
  • titanium and vanadium also provide activities similar to that of chromium, thus enhancing the latter's effect.
  • the diffusion layer in chromium-alloyed steel has a hardness which is several hundred HV degrees higher, which provides a solid base for an extremely hard compound layer present in the outermost surface. Vanadium and titanium alloying enhances this effect.
  • a surface layer nitrided as described is more resistant to a surface pressure without a risk of cracking, which makes it possible to use the steel e.g. for gears and shafts.
  • a hard diffusion layer means usually also a greater consolidated layer thickness for improved fatigue strength. This is favourable, for example in nitrided crankshafts.
  • the invention relates also to a method of manufacturing ferritic-pearlitic hot forged products having a high yield and fatigue strength, said method being characterized by what is set forth in the characterizing clause of the independent claim 13.
  • Still another object of the invention is a forged product, which is characterized by what is set forth in the characterizing clause of the independent claim 16.
  • a yet further object of the invention is a method of manufacturing ferritic-pearlitic hot rolled steel bars having a high yield and fatigue strength, said method being characterized by what is set forth in the characterizing clause of the independent claim 19.
  • the invention relates also to a hot rolled steel bar, which is characterized by what is set forth in the characterizing clause of the independent claim 21.
  • Table 1 Chemical composition of test steels and reference steels in weight percentage Steel C Si Mn P S Cr Ni Mo V Ti Als N Ref. 1 0,37 0,60 1,31 0,008 0,034 0,13 0,09 0,02 0,11 0,025 0,018 0,011 Ref.
  • Re yield strength [MPa]
  • AS elongation [%]
  • Z reduction of area [%]
  • KCU2 notch impact strength with 2 mm U-notch bar [J/cm2]
  • X sum value representing bainite formation [%]
  • KCU2 Microstructure Austenite grain size Ref. 1 555 18 48 46 F + P Ref.
  • Raising the carbon concentration to higher than 0,4 wt-% increases strength, but the effect on tensile strength is lesser than on yield strength.
  • a lower carbon concentration e.g. 0,15...0,25 wt-%, it is possible to establish a higher yield ratio, which is beneficial in some cases.
  • the inventive steel has a fatigue strength which is better than that of standard quenched and tempered and micro-alloy steels, as disclosed in the publication EP 0572246B1 .
  • the silicon alloying particularly reduces the tendency to bainite formation as evident by comparing a prior known reference alloy (Ref. 2) with test alloys 2...5 of the invention (Tables 1...3), the sum expression thereof giving the value X of higher than 3,3 wt-%.
  • Table 2 also shows how the yield strength, elongation, reduction of area and impact strength of a bainite containing reference alloy (Ref. 2) are distinctly weaker than those of test alloys containing more silicon.
  • Manganese and chromium increase strength, but add to the risk of bainite formation at high concentrations.
  • An alloying element with a particularly powerful strengthening effect and at the same time promoting bainite formation is molybdenum.
  • molybdenum alloying together with silicon alloying, has been utilized for increasing strength without drawbacks resulting from bainite.
  • the inventive steel tolerates 0,06 wt-% of molybdenum with no problems, but at large dimensions the cooling rate is slower and higher molybdenum concentrations (e.g. 0,1...0,2 wt-%) are possible without a risk of bainite.
  • Vanadium is an effective precipitation hardener. Provided that hot working temperatures are not overly high, vanadium is also functional as a grain-size growth inhibitor. At rather high concentrations, higher than 0,3 wt-%, the use of vanadium is uneconomical and, in addition, toughness is reduced by vanadium. For these reasons it is in some cases advisable to omit vanadium completely.
  • Nitrogen is an effective hardener, either as such or together with vanadium.
  • high concentrations those higher than 0,03...0,04 wt-%, may nevertheless degrade the surface quality of a hot-rolled bar.
  • Niobium functions as a precipitation hardener the same way as vanadium.
  • Titanium nitrides are capable of withstanding, without dissolving, extremely high temperatures, even higher than 1200 C, which is why a minor addition of titanium is preferred especially in hot forging to inhibit an excessive growth of grain size and to improve toughness.
  • Oversized additions of titanium result in a structure developing large primary TiN particles, which precipitate as early as during solidification and which are ineffective in terms of grain growth and which, by functioning as a crack initiator, undermine toughness and fatigue strength.
  • they deteriorate machinability especially at higher cutting speeds.
  • For the maximum machinability Ti should be kept lower than 0,008 wt-%.
  • the inventive steel is highly suitable for such a process by virtue of its minor tendency to bainite formation.
  • steels of the invention covers hot-forged products, for example parts of automotive engines, such as crankshafts, connecting rods and pistons.
  • such steels are especially applicable for parts of a vehicular chassis, such as suspension arms, steering arms, front axle beams, etc.
  • Chromium-alloyed steel in particular, is highly applicable for nitrided components, such as crankshafts, gear wheels and pinions.
  • steels of the invention can be used directly in hot rolled condition without forging or heat treatment.
  • steels can replace steel bars heat-treated by hardening and tempering.
  • Intended applications include vehicular parts and machine components, for example drive shafts, steering components, fasteners, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

The invention relates to a steel alloy, which in hot-worked condition has a ferritic-pearlitic microstructure and austenite grain size coarser than ASTM 10 (coarser than 10 µm), and which has a chemical composition of: C 0,15...0,6 percent by weight Si 1,25...2,0 percent by weight Mn 0,5...1,6 percent by weight S 0...0,2 percent by weight Cr 0 ...1,5 percent by weight Mo 0,02...0,1 percent by weight Al 0 ...0,1 1 percent by weight V 0 ...0,2 percent by weight N 0 ...0,04 percent by weight Nb 0 ...0,1 percent by weight Ti 0 ...0,05 percent by weight.
The invention relates additionally to methods for manufacturing ferritic-pearlitic hot forged products and hot-rolled steel bars having a high yield strength, high fatigue strength and good machinability.

Description

  • The invention relates to steel, and to a forged product manufactured therewith and characterized by a totally ferritic-pearlitic microstructure without bainite and, accordingly, by a high strength, a particularly high fatigue strength, and good machinability
  • The use of air cooled microalloyed steels in hot-forged products is economically sensible as the pieces require no hardening and tempering. However, a problem with these microsteels is a modest strength, especially a low yield strength, when compared to tempered alloy steels. For example, in EN 10267:1998 standard, the highest strength microalloyed forging steel is 46MnVS6, having a minimum yield limit of 580 MPa. In practice, however, the most popular grade is 38MnVS6, having an Re = 520 N/mm2.
  • The strength of air cooled microalloyed steels can be improved by increased alloying, for example by adding manganese and/or chromium. However, increased alloying creates a problem as a result of the formation of bainite in the microstructure of steels. An objective in such steels is to obtain a totally ferritic-pearlitic microstructure capable of providing the desired properties. Even small amounts of bainite in the microstructure undermine mechanical properties by decreasing yield strength and toughness, especially elongation and reduction of area in tensile test, as well as by degrading machinability. An element particularly active with regard to the development of bainite is molybdenum, which in such steels must be considered an impurity and the concentration of which must be often limited to as low as not more than 0,03...0,04 wt-%. Occasionally, in the microstructure is formed not only bainite but also untempered martensite, the effect of which on the above properties is even more deteriorating than that of bainite.
  • Since, in addition to molybdenum, there are also other effective alloying elements, the tendency to bainite formation can be practically demonstrated by the following summation in wt-%:
    X = 2Mn + 5Mo + Cr + Ni,
    wherein Mn, Mo, Cr and Ni represent concentrations of these particular alloying elements in weight percentage. According to prior experience, if X > 3,1...3,3, bainite develops in air cooling at thin (20 mm) diameters.
  • One way of upgrading the strength of air cooled forging steels is to subject them to such intensive alloying that their microstructure becomes completely or at least substantially bainitic. An example of such steels is described in the publication US 5820706 . Instead of direct, simple air cooling, a problem in this technique is maintaining the temperature range of bainite formation, which hampers the forging process and brings forth one more source of process error. Moreover, there are problems regarding the machinability of such steels, especially because from retained austenite they can also easily develop small amounts of hard untempered martensite in addition to bainite. Generally, especially with forged products of considerable thickness, it is also necessary to increase the alloy content of such steels, thus resulting in high manufacturing costs.
  • Another example of bainitic steels is a steel as set forth in the published EP application 00850178.5 , which is cooled in air. A problem in this case is also a poor and uneven machinability and an increase of alloy content. Since attaining a totally bainitic structure by air cooling without retaining a constant temperature is difficult in practice, in the microstructure usually formed untempered martensite as well. In order to attain even a moderate toughness and machinability, it is generally necessary that the pieces be also annealed for softening hard martensite regions, which increases costs even more.
  • It is known that a fatigue strength higher than conventional can be achieved in microalloyed steels rich in silicon. A steel like this is disclosed in the publication EP 0572246B1 . A problem here is a low yield strength which is also typical of microalloyed steels in general.
  • The bainite formation in conventional microalloyed steels rich in manganese is sometimes discouraged by decelerating their post-forging cooling by providing for example a tunnel around the cooling line. However, this represents an extra cost and, at the same time, another source of error in the manufacturing process.
  • It is obvious in light of the above that, by finding a steel alloying based way of precluding bainite formation, the strength of microalloyed steels can be enhanced without disrupting the properties. Thus, it is economically feasible to achieve simultaneously high yield strength, good toughness and good machinability.
  • In part making usually the greatest individual cost is machining. It is well known that a fine grain size deteriorates machinability of steel. Therefore, a prior austenite grain size coarser than 10 ASTM (greater than about 10 µm in grain diameter) in the material of workpiece is advantageous. Therefore, an object of the invention is to provide a steel alloy having improved machinability combined with high yield stress and toughness.
  • In order to accomplish the objectives of the invention, a steel of the invention is characterized by what is set forth in the characterizing clause of claim 1.
  • With respect to the inventive steel, the simultaneous use of silicon alloying and molybdenum alloying results economically a high-strength steel, having a structure which is purely ferritic-pearlitic with neither bainite nor martensite nor drawbacks inflicted thereby.
  • Further, the use of chromium concentrations within the range of appr. 0,5 wt-% to appr. 1,5 wt-% enables an improvement in the nitriding properties of steel. The chromium concentration is preferably within the range of appr. 0,5 wt-% to appr. 0,8 wt-%.
  • Being a major nitride producer, the chromium alloying causes development of chromium nitrides in the ferritic diffusion layer of a nitrided surface, thus increasing the layer's hardness. For example, 1 wt-% of chromium provides a hardness of about 600 HV (K-E. Thelning, Steel and its Heat Treatment, Butterworths 1975 pp. 86-87). This hardness in the diffusion layer is sufficient even for highly demanding mechanical engineering. As nitride producers, titanium and vanadium also provide activities similar to that of chromium, thus enhancing the latter's effect.
  • Compared with unalloyed steel or steel with no alloying elements capable of forming nitrides, the diffusion layer in chromium-alloyed steel has a hardness which is several hundred HV degrees higher, which provides a solid base for an extremely hard compound layer present in the outermost surface. Vanadium and titanium alloying enhances this effect. A surface layer nitrided as described is more resistant to a surface pressure without a risk of cracking, which makes it possible to use the steel e.g. for gears and shafts. A hard diffusion layer means usually also a greater consolidated layer thickness for improved fatigue strength. This is favourable, for example in nitrided crankshafts.
  • On the other hand, an excessively high chromium concentration reduces the toughness of forged ferritic-pearlitic steel, which is why it is advisable to retain the concentration at less than 1,5 wt-% and in certain cases at less than 1 wt-%.
  • The invention relates also to a method of manufacturing ferritic-pearlitic hot forged products having a high yield and fatigue strength, said method being characterized by what is set forth in the characterizing clause of the independent claim 13.
  • Still another object of the invention is a forged product, which is characterized by what is set forth in the characterizing clause of the independent claim 16.
  • A yet further object of the invention is a method of manufacturing ferritic-pearlitic hot rolled steel bars having a high yield and fatigue strength, said method being characterized by what is set forth in the characterizing clause of the independent claim 19.
  • The invention relates also to a hot rolled steel bar, which is characterized by what is set forth in the characterizing clause of the independent claim 21.
  • The following table illustrates mechanical properties and microstructures measured for test steel alloys of the invention as well as corresponding properties in standard reference steels. Table 1. Chemical composition of test steels and reference steels in weight percentage
    Steel C Si Mn P S Cr Ni Mo V Ti Als N
    Ref. 1 0,37 0,60 1,31 0,008 0,034 0,13 0,09 0,02 0,11 0,025 0,018 0,011
    Ref. 2 0,39 0,55 1,44 0,007 0,037 0,22 0,17 0,04 0,09 0,020 0,021 0,016
    Test 1 0,35 1,49 1,57 0,017 0,057 0,18 0,11 0,03 0,12 0,023 0,024 0,014
    Test 2 0,36 1,26 1,08 0,010 0,059 0,20 0,14 0,03 0,12 0,014 0,016 0,011
    Test 3 0,35 1,46 1,39 0,020 0,059 0,26 0,13 0,06 0,13 0,004 0,007 0,014
    Test 4 0,36 1,43 1,33 0,017 0,056 0,27 0,11 0,06 0,16 0,010 0,009 0,021
    Test 5 0,36 1,47 1,34 0,017 0,055 0,27 0,11 0,06 0,22 0,010 0,010 0,028
    Table 2. Mechanical properties and microstructure in test steels and reference steels. Bar diameter 20 mm. Heat treatment 1200 C air cooling. Legends: Re = yield strength [MPa]; AS = elongation [%]; Z = reduction of area [%]; KCU2 = notch impact strength with 2 mm U-notch bar [J/cm2]; X = sum value representing bainite formation [%], microstructures: F = ferrite, P = pearlite, B = bainite
    Steel Re A5 Z KCU2 X Microstructure Austenite grain size
    Ref. 1 580 16 50 72 2,94 F + P
    Ref. 2 682 8 10 12 3,47 F + P + B
    Test 1 717 15 45 50 3,58 F + P ASTM 6 (50 µm)
    Test 2 651 15 42 39 2,65 F + P ASTM 4 (100 µm)
    Test 3 658 10 20 38 3,47 F+ P
    Test 4 735 14 30 40 3,34 F + P
    Test 5 820 13 27 19 3,36 F + P
    Table 3. Mechanical properties and microstructure in test steels and reference steels. Bar diameter 60 mm. Heat treatment 1200 C air cooling. Legends: Re = yield strength [MPa]; AS = elongation [%]; Z = reduction of area [%]; KCU2 = notch impact strength with 2 mm U-notch bar [J/cm2]; X = sum value representing bainite formation [%], microstructures: F = ferrite, P = pearlite, B = bainite
    Steel Re A5 Z KCU2 Microstructure Austenite grain size
    Ref. 1 555 18 48 46 F + P
    Ref. 2 591 14 34 12 F + P
    Test 1 647 15 42 19 F + P ASTM 4 (100 µm)
    Test 2 598 15 42 F + P ASTM 4 (100 µm)
    Test 3 665 16 38 27 F + P
    Test 4 695 13 34 20 F + P
    Test 5 744 13 33 15 F + P
  • As indicated by the tables, there is no bainite present in test alloys regardless of high alloying rate and molybdenum concentrations. In test alloys, the sum value representing bainite formation is as high as 3,58 without the presence of bainite.
  • In reference alloy 2 of the prior art, as expected, bainite is present at the rate of X = 3,47 wt-%. It is further noted that, as a result of bainite, the elongation, reduction of area and impact ductility of said reference alloy are lower than those of the inventive steels. Because of the absence of bainite it is also clear that the inventive steel is better than the reference steels in terms of machinability.
  • Raising the carbon concentration to higher than 0,4 wt-% increases strength, but the effect on tensile strength is lesser than on yield strength. On the other hand, at a lower carbon concentration, e.g. 0,15...0,25 wt-%, it is possible to establish a higher yield ratio, which is beneficial in some cases.
  • By virtue of silicon alloying, the inventive steel has a fatigue strength which is better than that of standard quenched and tempered and micro-alloy steels, as disclosed in the publication EP 0572246B1 .
  • In a steel of this invention, the silicon alloying particularly reduces the tendency to bainite formation as evident by comparing a prior known reference alloy (Ref. 2) with test alloys 2...5 of the invention (Tables 1...3), the sum expression thereof giving the value X of higher than 3,3 wt-%. Table 2 also shows how the yield strength, elongation, reduction of area and impact strength of a bainite containing reference alloy (Ref. 2) are distinctly weaker than those of test alloys containing more silicon.
  • Manganese and chromium increase strength, but add to the risk of bainite formation at high concentrations.
  • An alloying element with a particularly powerful strengthening effect and at the same time promoting bainite formation is molybdenum. In a steel of the invention, molybdenum alloying, together with silicon alloying, has been utilized for increasing strength without drawbacks resulting from bainite. At small dimensions (20 mm), the inventive steel tolerates 0,06 wt-% of molybdenum with no problems, but at large dimensions the cooling rate is slower and higher molybdenum concentrations (e.g. 0,1...0,2 wt-%) are possible without a risk of bainite.
  • Vanadium is an effective precipitation hardener. Provided that hot working temperatures are not overly high, vanadium is also functional as a grain-size growth inhibitor. At rather high concentrations, higher than 0,3 wt-%, the use of vanadium is uneconomical and, in addition, toughness is reduced by vanadium. For these reasons it is in some cases advisable to omit vanadium completely.
  • Nitrogen is an effective hardener, either as such or together with vanadium. On the other hand, high concentrations, those higher than 0,03...0,04 wt-%, may nevertheless degrade the surface quality of a hot-rolled bar.
  • Niobium functions as a precipitation hardener the same way as vanadium.
  • Titanium nitrides are capable of withstanding, without dissolving, extremely high temperatures, even higher than 1200 C, which is why a minor addition of titanium is preferred especially in hot forging to inhibit an excessive growth of grain size and to improve toughness. Oversized additions of titanium, however, result in a structure developing large primary TiN particles, which precipitate as early as during solidification and which are ineffective in terms of grain growth and which, by functioning as a crack initiator, undermine toughness and fatigue strength. Moreover, they deteriorate machinability especially at higher cutting speeds. For the maximum machinability Ti should be kept lower than 0,008 wt-%.
  • Strength can be enhanced in hot forging by accelerating the cooling rate of the forged product in flowing air, in water-air mist or in some other flowing gas. The inventive steel is highly suitable for such a process by virtue of its minor tendency to bainite formation.
  • The range of application for steels of the invention covers hot-forged products, for example parts of automotive engines, such as crankshafts, connecting rods and pistons.
  • In addition, such steels are especially applicable for parts of a vehicular chassis, such as suspension arms, steering arms, front axle beams, etc.
  • Chromium-alloyed steel, in particular, is highly applicable for nitrided components, such as crankshafts, gear wheels and pinions.
  • In addition, steels of the invention can be used directly in hot rolled condition without forging or heat treatment. Thus, such steels can replace steel bars heat-treated by hardening and tempering. Intended applications include vehicular parts and machine components, for example drive shafts, steering components, fasteners, etc.

Claims (23)

  1. A steel alloy, characterized in that, in hot-worked condition, it has a ferritic-pearlitic microstructure, austenite grain size coarser than ASTM 10 (coarser than 10 µm), and that it has a chemical composition of: C 0,15...0,6 percent by weight Si 1,25...2,0 percent by weight Mn 0,5...1,6 percent by weight S 0 ...0,2 percent by weight Cr 0 ...1,5 percent by weight Mo 0,02...0,1 percent by weight Al 0 ...0,1 percent by weight V 0 ...0,2 percent by weight N 0 ...0,04 percent by weight Nb 0 ...0,1 percent by weight Ti 0 ...0,05 percent by weight.
  2. A steel alloy as set forth in claim 1, characterized in that Mo = 0,02...0,04 percent by weight.
  3. A steel alloy as set forth in claim 1, characterized in that Mo = 0,03...0,04 percent by weight.
  4. A steel alloy asset forth in claim 1, characterized in that Mo = 0,04...0,10 percent by weight.
  5. A steel alloy asset forth in claim 1, characterized in that Cr = 0,5...1,0 percent by weight.
  6. A steel alloy as set forth in claim 1, characterized in that Cr = 0,5...0,8 percent by weight.
  7. A steel alloy as set forth in any of claims 1-6, characterized in that the lower limit of V concentration is 0,04 percent by weight.
  8. A steel alloy as set forth in any of claims 1-7, characterized in that the lower limit of N concentration is 0,012 percent by weight.
  9. A steel alloy as set forth in any of claims 1-8, characterized in that the lower limit of Ti concentration is 0,008 percent by weight.
  10. A steel alloy as set forth in any of claims 1-8, characterized in that the upper limit of Ti concentration is 0,007 percent by weight.
  11. A steel alloy as set forth in any of claims 1-10, characterized in that the sum 2Mn + 5Mo + Cr + Ni is more than 3 percent by weight.
  12. A steel alloy as set forth in claim 11, characterized in that the sum 2Mn + 5Mo + Cr + Ni is more than 3,3 percent by weight.
  13. A method for manufacturing ferritic-pearlitic hot forged products having a high yield and fatigue strength, characterized in that a billet for the forged product is made of a steel alloy having a chemical composition as follows: C 0,15...0,6 percent by weight Si 1,25...2,0 percent by weight Mn 0,5...1,6 percent by weight S 0 ...0,2 percent by weight Cr 0 ...1,5 percent by weight Mo 0,02...0,1 percent by weight Al 0 ...0,1 percent by weight V 0 ...0,2 percent by weight N 0 ...0,04 percent by weight Nb 0 ...0,1 percent by weight Ti 0 ...0,05 percent by weight,
    and having austenite grain size coarser than ASTM 10 (coarser than 10 µm), and that the method comprises heating the billet to a temperature higher than 800°C and the hot-worked forged product is cooled immediately in a standing or flowing gaseous medium.
  14. A method as set forth in claim 13 for manufacturing ferritic-pearlitic hot forged products having a high yield and fatigue strength, characterized in that a billet for the forged product is made of a steel alloy having a chemical composition as set forth in any of claims 2-12.
  15. A method as set forth in claim 13 or 14, characterized in that the method comprises cooling the hot-worked forged product or steel bar immediately in flowing air, in a water-air mixture or in some other flowing gas.
  16. A forged product, characterized in that, in hot-worked condition, it has a ferritic-pearlitic microstructure as well as a high yield and fatigue strength, and that it has austenite grain size coarser than ASTM 10 (coarser than 10 µm) and a chemical composition of: C 0,15...0,6 percent by weight Si 1,25...2,0 percent by weight Mn 0,5...1,6 percent by weight S 0 ...0,2 percent by weight Cr 0 ...1,5 percent by weight Mo 0,02...0,1 percent by weight Al 0 ...0,1 percent by weight V 0 ...0,2 percent by weight N 0 ...0,04 percent by weight Nb 0 ...0,1 percent by weight Ti 0 ...0,05 percent by weight.
  17. A forged product as set forth in claim 16, characterized in that the steel alloy has a chemical composition as set forth in any of claims 2-9.
  18. A forged product as set forth in claim 16, characterized in that it has been manufactured by a method as set forth in any of claims 10-12.
  19. A method for manufacturing ferritic-pearlitic hot rolled steel bars having a high yield and fatigue strength, characterized in that the bar is made of a steel alloy having a chemical composition as follows: C 0,15...0,6 percent by weight Si 1,25...2,0 percent by weight Mn 0,5...1,6 percent by weight S 0 ...0,2 percent by weight Cr 0 ...1,5 percent by weight Mo 0,02...0,1 percent by weight Al 0 ...0,1 percent by weight V 0 ...0,2 percent by weight N 0 ...0,04 percent by weight Nb 0 ...0,1 percent by weight Ti 0 ...0,05 percent by weight,
    and having austenite grain size coarser than ASTM 10 (coarser than 10 µm).
  20. A method as set forth in claim 19, characterized in that the bar is made of a steel alloy having a chemical composition as set forth in any of claims 2-9.
  21. A hot-rolled steel bar, characterized in that it has a ferritic-pearlitic microstructure, austenite grain size coarser than ASTM 10 (coarser than 10 µm) as well as a high yield and fatigue strength, and that it has a chemical composition of: C 0,15...0,6 percent by weight Si 1,25...2,0 percent by weight Mn 0,5...1,6 percent by weight S 0 ...0,2 percent by weight Cr 0 ...1,5 percent by weight Mo 0,02...0,1 percent by weight Al 0 ...0,1 percent by weight V 0 ...0,2 percent by weight N 0 ...0,04 percent by weight Nb 0 ...0,1 percent by weight Ti 0 ...0,05 percent by weight.
  22. A hot-rolled steel bar as set forth in claim 21, characterized in that the steel alloy has a chemical composition as set forth in any of claims 2-12.
  23. The use of a steel alloy as set forth in any of claims 1-12, a method as set forth in any of claims 13-15 or 19-20, a forged product as set forth in any of claims 16-18 or a bar as set forth in any of claims 21-22 for various vehicular and machine parts either with or without nitriding.
EP05101801A 2005-03-09 2005-03-09 High-strength air cooled steel alloy and hot worked product Not-in-force EP1700925B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05101801A EP1700925B1 (en) 2005-03-09 2005-03-09 High-strength air cooled steel alloy and hot worked product
AT05101801T ATE442464T1 (en) 2005-03-09 2005-03-09 HIGH-STRENGTH AIR-COOLED STEEL AND RESULTING HOT-FORMED PRODUCT.
DE602005016522T DE602005016522D1 (en) 2005-03-09 2005-03-09 High-strength air-cooled steel and resulting thermoformed product.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05101801A EP1700925B1 (en) 2005-03-09 2005-03-09 High-strength air cooled steel alloy and hot worked product

Publications (2)

Publication Number Publication Date
EP1700925A1 true EP1700925A1 (en) 2006-09-13
EP1700925B1 EP1700925B1 (en) 2009-09-09

Family

ID=34938930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05101801A Not-in-force EP1700925B1 (en) 2005-03-09 2005-03-09 High-strength air cooled steel alloy and hot worked product

Country Status (3)

Country Link
EP (1) EP1700925B1 (en)
AT (1) ATE442464T1 (en)
DE (1) DE602005016522D1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20090451A1 (en) * 2009-06-12 2010-12-13 F A C E M S P A PROCEDURE FOR THE PRODUCTION OF A CEMENTATION STEEL PIECE, BASED ON HOT MOLDING FOLLOWED BY CONDITIONED COOLING AND SUB-CRITICAL ANNEALING, AND ITS RELATIVE SYSTEM
CN102560248A (en) * 2012-01-31 2012-07-11 首钢总公司 Method for producing bolt steel
EP2784169A4 (en) * 2011-11-21 2016-03-16 Nippon Steel & Sumitomo Metal Corp Rolled steel bar for hot forging
JP6525115B1 (en) * 2018-06-27 2019-06-05 日本製鉄株式会社 Nitriding bars and machine parts
WO2019177034A1 (en) * 2018-03-13 2019-09-19 日本製鉄株式会社 Steel material
CN110819892A (en) * 2019-10-14 2020-02-21 长沙东鑫环保材料有限责任公司 Niobium-nitrogen-containing microalloyed HRB400E steel bar and production method thereof
WO2020090816A1 (en) * 2018-10-29 2020-05-07 日本製鉄株式会社 Raw blank for nitrided component, and nitrided component
CN111663076A (en) * 2020-05-29 2020-09-15 江苏联峰实业有限公司 Automobile steel with high plasticity and high strength
JP2020147786A (en) * 2019-03-13 2020-09-17 株式会社神戸製鋼所 Hot forged non-heat treated parts and method for producing the same, and hot forged non-heat treated parts steel material
FR3119445A1 (en) 2021-02-03 2022-08-05 Adam Pyrométrie "RAKU" electric ceramic kiln on domestic power supply

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343962A (en) * 2019-07-26 2019-10-18 马鞍山钢铁股份有限公司 A kind of 700Mpa grades or more hot-rolled ribbed high tensile reinforcement steel and its production method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3434744A1 (en) * 1984-09-21 1986-04-03 M.A.N.-B & W Diesel GmbH, 8900 Augsburg Process for producing hot-rolled bars
DE4017973A1 (en) * 1989-06-09 1990-12-13 Thyssen Edelstahlwerke Ag Precipitation hardenable ferritic pearlitic steel
DE4137240A1 (en) * 1991-11-13 1993-05-19 Thyssen Edelstahlwerke Ag AFP steel used for prodn. of large forged tools - has low sulphur content and uniformly high tensile strength through tempering
FI932437A (en) * 1992-05-29 1993-11-30 Imatra Steel Oy Ab Forging piece and its manufacturing process
EP0572246A1 (en) * 1992-05-29 1993-12-01 Imatra Steel Oy Ab Forging and a method for its manufacture
JPH07102340A (en) * 1993-10-05 1995-04-18 Nippon Steel Corp Production of non-heattreated steel excellent in fatigue characteristic
JPH09111340A (en) * 1995-08-11 1997-04-28 Sumitomo Metal Ind Ltd High strength and low yield ratio steel for reinforcing bar and its production
JPH10235447A (en) * 1997-02-25 1998-09-08 Daido Steel Co Ltd Manufacture of ferrite plus pearlite type non-heattreated steel forged product having high toughness and high yield strength
JPH10237587A (en) * 1996-12-20 1998-09-08 Sumitomo Metal Ind Ltd Ferrite-pearlite type non-refining steel
US5820706A (en) 1996-02-08 1998-10-13 Ascometal Process for manufacturing a forging
JPH11152542A (en) * 1997-09-18 1999-06-08 Kobe Steel Ltd Non-heattreated steel for hot forging, having high fatigue limit ratio, and its production
JPH11293390A (en) * 1998-04-10 1999-10-26 Sumitomo Metal Ind Ltd High strength free cutting non-heat treated steel
EP1098011A1 (en) 1999-11-02 2001-05-09 Ovako Steel AB An air hardenable low to medium carbon steel composition

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3434744A1 (en) * 1984-09-21 1986-04-03 M.A.N.-B & W Diesel GmbH, 8900 Augsburg Process for producing hot-rolled bars
DE4017973A1 (en) * 1989-06-09 1990-12-13 Thyssen Edelstahlwerke Ag Precipitation hardenable ferritic pearlitic steel
DE4137240A1 (en) * 1991-11-13 1993-05-19 Thyssen Edelstahlwerke Ag AFP steel used for prodn. of large forged tools - has low sulphur content and uniformly high tensile strength through tempering
EP0572246B1 (en) 1992-05-29 1997-01-15 Imatra Steel Oy Ab Forging and a method for its manufacture
EP0572246A1 (en) * 1992-05-29 1993-12-01 Imatra Steel Oy Ab Forging and a method for its manufacture
FI932437A (en) * 1992-05-29 1993-11-30 Imatra Steel Oy Ab Forging piece and its manufacturing process
JPH07102340A (en) * 1993-10-05 1995-04-18 Nippon Steel Corp Production of non-heattreated steel excellent in fatigue characteristic
JPH09111340A (en) * 1995-08-11 1997-04-28 Sumitomo Metal Ind Ltd High strength and low yield ratio steel for reinforcing bar and its production
US5820706A (en) 1996-02-08 1998-10-13 Ascometal Process for manufacturing a forging
JPH10237587A (en) * 1996-12-20 1998-09-08 Sumitomo Metal Ind Ltd Ferrite-pearlite type non-refining steel
JPH10235447A (en) * 1997-02-25 1998-09-08 Daido Steel Co Ltd Manufacture of ferrite plus pearlite type non-heattreated steel forged product having high toughness and high yield strength
JPH11152542A (en) * 1997-09-18 1999-06-08 Kobe Steel Ltd Non-heattreated steel for hot forging, having high fatigue limit ratio, and its production
JPH11293390A (en) * 1998-04-10 1999-10-26 Sumitomo Metal Ind Ltd High strength free cutting non-heat treated steel
EP1098011A1 (en) 1999-11-02 2001-05-09 Ovako Steel AB An air hardenable low to medium carbon steel composition

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
K.SACHS: "Residuals in Engineering Steels", METALS TECHNOLOGY, 1979, UK, pages 33 - 37, XP002324238 *
K-E. THELNING: "Steel and its Heat Treatment", BUTTERWORTHS, 1975, pages 86 - 87
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 07 31 August 1995 (1995-08-31) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 08 29 August 1997 (1997-08-29) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14 31 December 1998 (1998-12-31) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 11 30 September 1999 (1999-09-30) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 01 31 January 2000 (2000-01-31) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20090451A1 (en) * 2009-06-12 2010-12-13 F A C E M S P A PROCEDURE FOR THE PRODUCTION OF A CEMENTATION STEEL PIECE, BASED ON HOT MOLDING FOLLOWED BY CONDITIONED COOLING AND SUB-CRITICAL ANNEALING, AND ITS RELATIVE SYSTEM
EP2784169A4 (en) * 2011-11-21 2016-03-16 Nippon Steel & Sumitomo Metal Corp Rolled steel bar for hot forging
US9574255B2 (en) 2011-11-21 2017-02-21 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar for hot forging
CN102560248A (en) * 2012-01-31 2012-07-11 首钢总公司 Method for producing bolt steel
JP6597945B1 (en) * 2018-03-13 2019-10-30 日本製鉄株式会社 Steel
WO2019177034A1 (en) * 2018-03-13 2019-09-19 日本製鉄株式会社 Steel material
CN111836910A (en) * 2018-03-13 2020-10-27 日本制铁株式会社 Steel material
JP6525115B1 (en) * 2018-06-27 2019-06-05 日本製鉄株式会社 Nitriding bars and machine parts
WO2020003425A1 (en) * 2018-06-27 2020-01-02 日本製鉄株式会社 Reinforcing bar for nitriding, and machine component
WO2020090816A1 (en) * 2018-10-29 2020-05-07 日本製鉄株式会社 Raw blank for nitrided component, and nitrided component
JPWO2020090816A1 (en) * 2018-10-29 2021-09-16 日本製鉄株式会社 Nitrided parts Rough material and nitrided parts
JP2020147786A (en) * 2019-03-13 2020-09-17 株式会社神戸製鋼所 Hot forged non-heat treated parts and method for producing the same, and hot forged non-heat treated parts steel material
CN110819892A (en) * 2019-10-14 2020-02-21 长沙东鑫环保材料有限责任公司 Niobium-nitrogen-containing microalloyed HRB400E steel bar and production method thereof
CN111663076A (en) * 2020-05-29 2020-09-15 江苏联峰实业有限公司 Automobile steel with high plasticity and high strength
FR3119445A1 (en) 2021-02-03 2022-08-05 Adam Pyrométrie "RAKU" electric ceramic kiln on domestic power supply

Also Published As

Publication number Publication date
ATE442464T1 (en) 2009-09-15
EP1700925B1 (en) 2009-09-09
DE602005016522D1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
EP1700925B1 (en) High-strength air cooled steel alloy and hot worked product
US8961710B2 (en) Carburized component and manufacturing method
EP2415892B1 (en) Carburized steel part
WO2007074986A1 (en) Steel wire having excellent cold heading quality and quenching property, and method for producing the same
EP2412840A1 (en) High-strength and high-ductility steel for spring, method for producing same, and spring
JP2007146232A (en) Method for producing soft-nitrided machine part made of steel
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
US20140283954A1 (en) Bainitic microalloy steel with enhanced nitriding characteristics
EP0648853A1 (en) Non-heat-treated steel for hot forging, process for producing non-heat-treated hot forging, and non-heat-treated hot forging
US6383311B1 (en) High strength drive shaft and process for producing the same
JPH0953149A (en) Case hardening steel with high strength and high toughness
EP1158064B1 (en) Large bearing parts made of steel
KR20140084758A (en) Alloy steel for hot forging and method for heat treatment of the same
KR100940038B1 (en) Non quenched and tempered steel for hot forging with excellent impact toughness and a method for manufacturing the same and the chassis parts for automobile using the same
EP1876255B1 (en) Carbonitriding or cementation steel and method of producing parts with said steel
US20070256767A1 (en) Steel Wire for Cold Forging Having Excellent Low Temperature Impact Properties and Method of Producing the Same
JPH11269541A (en) Manufacture of high strength steel excellent in fatigue characteristic
KR102174416B1 (en) Low Carbon Bainite Micro-alloyed Steels for Cold Heading Applications having High Strength and High Impact Toughness and Method for Manufacturing the Same
JP2001032036A (en) Low distortion carburized and quenched steel for gear, excellent in machinability, and manufacture of gear using the steel
KR102448754B1 (en) High-strength wire rod with excellent heat treatment property and resistance of hydrogen delayed fracture, heat treatment parts using the same, and methods for manufacturing thereof
JP3042574B2 (en) Hot forged product having high fatigue strength and method of manufacturing the same
EP0586179B1 (en) Forging and a method for its manufacture
Rubin et al. Novel Cost-Efficient Method of Producing Ausferritic Steels Displaying Excellent Combination of Mechanical Properties
WO2021180978A1 (en) Method of manufacturing a steel article and article
JPH08295981A (en) Case hardening steel with grain coarcening resistance, surface-hardened parts excellent in strength and toughness, and their production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20070313

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070426

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OVAKO BAR OY AB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: HIGH-STRENGTH AIR COOLED STEEL ALLOY AND HOT WORKED PRODUCT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005016522

Country of ref document: DE

Date of ref document: 20091022

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

26N No opposition filed

Effective date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100309

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150319

Year of fee payment: 11

Ref country code: SE

Payment date: 20150319

Year of fee payment: 11

Ref country code: FR

Payment date: 20150319

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005016522

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160310

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160309